
Temporal Recommendation on Graphs via Long- and
Short-term Preference Fusion

Liang Xiang † ∗
, Quan Yuan ‡, Shiwan Zhao ‡, Li Chen §,

Xiatian Zhang ‡, Qing Yang † and Jimeng Sun $

† Institute of Automation Chinese Academy of Sciences
‡ IBM Research - China

§ Department of Computer Science, Hong Kong Baptist University
$ IBM T.J. Watson Research Center

xlvector@gmail.com, (quanyuan,zhaosw,xiatianz)@cn.ibm.com
lichen@comp.hkbu.edu.hk,qyang@nlpr.ia.ac.cn,jimeng@us.ibm.com

ABSTRACT
Accurately capturing user preferences over time is a great
practical challenge in recommender systems. Simple correla-
tion over time is typically not meaningful, since users change
their preferences due to different external events. User be-
havior can often be determined by individual’s long-term
and short-term preferences. How to represent users’ long-
term and short-term preferences? How to leverage them
for temporal recommendation? To address these challenges,
we propose Session-based Temporal Graph (STG) which si-
multaneously models users’ long-term and short-term pref-
erences over time. Based on the STG model framework, we
propose a novel recommendation algorithm Injected Pref-
erence Fusion (IPF) and extend the personalized Random
Walk for temporal recommendation. Finally, we evaluate
the effectiveness of our method using two real datasets on
citations and social bookmarking, in which our proposed
method IPF gives 15%-34% improvement over the previous
state-of-the-art.

Categories and Subject Descriptors
H.2.8.d [Information Technology and Systems]: Database
Applications—Data Mining

General Terms
Algorithms, Experimentation

Keywords
Temporal Recommendation, Graph, User Preference

∗This author conducted this work while he was an intern at
IBM Research - China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
Temporal dynamics in recommender systems are of great

importance for many real-world applications, such as Ama-
zon’s product recommendation, Netflix’s movie recommen-
dation, Google’s news and video recommendation. The key
question is how to accurately capture user preferences over
time.

Unlike traditional concept drifting mining [20, 24] that fo-
cuses primarily on global pattern shifting over time, tempo-
ral recommendation focuses on local recommendation mod-
els for each user. The temporal recommendation for indi-
vidual users poses great challenges due to diverse and time-
sensitive user preferences. Overall behavior of a user may
be determined by her long-term interest. But at any given
time, a user is also affected by her short-term interest due
to transient events, such as new product releases and special
personal occasions such as birthdays.

Time is certainly an important aspect in capturing tempo-
ral dynamics. Many time-evolving models [21, 22] introduce
time as a universal dimension shared by all users. How-
ever, we argue that the time dimension is a local effect and
should not be compared cross all users arbitrarily. For exam-
ple, users bought different items at the same time triggered
by completely different external events. Correlation among
those items or users on time is typically not useful because
the occurrence is purely coincident. On the other hand, it
is more likely due to the same external event that a user
bought multiple items in a short period. In this case, the
correlation of those items on time for a specific user is signif-
icant. In another word, user-specific time dimension is more
likely to capture the “true” correlation over time.

Recently, on the explicit rating data of Netflix, Koren [10]
modeled the time factors for each user separately in a fac-
torization model, but generalizing factorization models to
handle implicit feedback (binary) data only gains slight im-
provement [5]. Moreover, explicit feedback (e.g., ratings) is
not always available, and in more abundant practical sit-
uations, recommender systems have to deal with implicit
feedback [16], including users’ purchase history, browsing
history, etc.

In this paper, we focus on explicitly modeling users’ long-
term and short-term preferences for recommendation on im-
plicit datasets. There are two unique challenges: 1) how
to represent the two types of user preferences? 2) how to
model the interaction between the two types of preferences?

723

To address these challenges, we propose Session-based Tem-
poral Graph (STG), and design new algorithms to make
accurate top-N recommendation on STG. The uniqueness
of the proposed model is the introduction of session nodes,
which capture user-specific time aspect. In particular, STG
captures long-term interests through user-item connections,
while short-term interests through session-item connections.

To summarize, our main contributions are as follows:

• We propose a Session-based Temporal Graph (STG)
which incorporates temporal information to model long-
term and short-term preferences simultaneously.

• Based on STG framework, we propose a new algo-
rithm, Injected Preference Fusion (IPF), to balance
the impacts of users’ long-term and short-term pref-
erences for accurate recommendation. IPF is also a
computationally efficient online method.

• To further demonstrate the model generality, we ex-
tend the personalized Random Walk [4] for temporal
recommendation based on STG.

• We systematically compare our approaches with other
algorithms on two real datasets. The results confirm
that STG is effective for incorporating temporal data
into the graph, and our proposed algorithms, espe-
cially IPF, are effective to balance users’ long-term and
short-term preferences for accurate recommendation.

The rest of the paper is organized as follows. Section 2
provides a brief review of related work on temporal dy-
namics in recommendation and graph-based recommenda-
tion respectively. Section 3 formally presents STG. Sec-
tion 4 introduces our novel algorithm IPF for recommenda-
tion based on STG, along with an extension to the Random
Walk model. Section 5 presents the experimental results on
two real datasets. Finally, we conclude in Section 6.

Table 1 gives the main symbols used in this paper.

Symbol Description
G the bipartite graph STG
E the edge set of G

U, I, S
user node set, item node set,

session node set
vu, vi, vut user node, item node, session node

w the weight function defined on edges
N(u) all items viewed by the user u
N(u, t) all items viewed by the user u at time t

P
a path in STG, from a user

or session node to an unknown item node
P(u, i) the set of paths from {vu, vut} to vi

φ(P) the weight of the path P
γ(v) injected preferences on the source node v

ψ(vk, vk+1) the propagation function from vk to vk+1

out(v) the out node set of the node v

ρ
the parameter to control the impact of

nodes’ out degree in preference propagation

β
the parameter to adjust the ratio of injected
preferences between user and session nodes

η
the parameter to adjust the edge weight
from item nodes to user/session nodes

Table 1: Symbols

2. RELATED WORK
In this section, we introduce related work on fusing tempo-

ral dynamics into recommenders at first, and then describe
the graph-based algorithms for recommendation and influ-
ence propagation, which related to our algorithms.

2.1 Temporal Dynamics in Recommendation
Ding [2] presented a novel algorithm to compute the time

weights for different items by decreasing weights to old data.
This approach has a disadvantage due to latest data are not
always important while old data are not trivial all the time.
Zimdars [25] treated collaborative filtering (CF) as a uni-
variate time series problem, and transforming the data to
encode time order information, and following a decision-tree
learning process to compare it with CF without ordering in-
formation. Lathia [11] formalized CF as a time-dependent
iterative prediction problem, and found that certain pre-
diction methods that improve prediction accuracy in the
Netflix do not show similar improvement over a set of it-
erative train-test experiments with growing data. So they
proposed a method to automatically assign and update per-
user neighborhood sizes other than setting global parame-
ters. Compared to these work which handled the temporal
dynamics in different ways, we focus on explicitly modeling
users’ long-term and short-term preferences and their com-
binational impacts on recommendation.

Ricci [19] proposed a critique-based mobile recommen-
dation methodology, which collected long-term preferences
both by mining past interactions and by letting users ex-
plicitly define a set of stable preferences; and introduced a
type of critique that lets users express additional session-
specific preferences. Recently, Koren [10] predicted movie
ratings for Netflix by modeling the temporal dynamics via
a factorization model. Our focus is on using graph to ex-
plicitly model users’ long-term and short-term preferences,
and make accurate top-N recommendation based on implicit
binary data.

2.2 Graph-based Recommendation
Graph-based methods have been introduced into recom-

mendation to model the interaction between users and items
on a graph, and compute node similarity from a global per-
spective, instead of local pairwise computation of neighbor-
hood.

Baluja et al. [1] built a video co-view graph, and then
adopted the label propagation method in semi-supervised
learning to make video recommendation for YouTube. He
summarized three rules for a good recommendation, i.e., the
user u will have a high preference on the item i if: 1) u and
i have a short path between them; 2) u and i have several
paths between them and these paths are not very long; 3)
u and i have paths that avoid high-degree nodes. We are
inspired from these rules in developing our IPF algorithm,
though IPF is based on a user-item bipartite graph, and uses
a local search strategy instead of iterative global propaga-
tion.

Random walks on graphs have been extensively discussed
and shown a rather good performance in recommendation.
PageRank was a famous random walk model [17] being used
in search engines to rank items globally, while Haveliwala [4]
proposed a topic-sensitive PageRank which introduced the
topic vector to make personalized search. As the topic vector
can also be used as a personalized vector to bias users’ pref-

724

erences on items, [3, 15, 12, 7] proposed their personalized
random walk models respectively to make recommendation
in different domains. For example, Gori et al. [3] proposed
a random walk based scoring algorithm, ItemRank, which
can be used to rank products according to expected user
preferences. Recently, Jamali et al. [7] proposed Trust-
Walker, a random walk model combining the trust network
and collaborative filtering for recommendation, and got the
results by performing random walks on the graph. Li et
al. [12] described a recommender system in the domain of
grocery shopping based on basket-sensitive random walk.
Besides random walk models, Huang [6] proposed a two-
layered graph model for products recommendation based on
the association strengths between a customer and products.
However, all these work do not consider the temporal infor-
mation in the random walk model.

Li et al. [13] proposed a method to incorporate temporal
data on the graph for expert search by dividing the data into
bins for each time window, building a graph for each window,
and linking the neighboring graphs by forward and backward
edges. Finally they applied random walks on this graph
to rank experts. This approach introduced too many item
nodes since one item appears across many windows; and it
didn’t address users’ long-term and short-term preferences
particularly.

In a word, to the best of our knowledge, we haven’t seen
any work on modeling users’ long-term and short-term pref-
erences on a graph, and applied this model in recommenda-
tion.

3. STG CONSTRUCTION
In this section, we illustrate how to model users’ long-term

and short-term preferences on the graph by using different
node types, and treating edges with different weights.

Our data are in the form of <user, item, time> triples
which are usually modeled by a tri-partite graph [8] or a ten-
sor [22]. However, both tri-partite grpah and tensor treat
time as a universal dimension shared by all users, while we
argue that, in a recommender system, the time dimension is
a local effect and should not be compared cross all users ar-
bitrarily. Correlation of users/items on time is typically not
useful, while correlation of items on time for a specific user
is significant, i.e., items within a user session are somewhat
more relevant.

Therefore, we create a new node type - session (associated
with a user at specific time), to enable new linkages between
items. In this way, we transform <user, item, time> into
<user, item> and <session, item> by dividing the time
into bins and binding the bins with corresponding users.
Note that the session node is a combined node with a user
and a specific time bin. The length of a session can last for
one hour, one day or one week, etc., which depends on the
domain we are facing.

Based on <user, item> and <session, item>, we cre-
ate the graph and name it Session-based Temporal Graph
(STG). STG is a directed bipartite graph G(U, S, I, E,w),
where U denotes the set of user nodes, S is the set of session
nodes, and I is the set of item nodes. w : E → R denotes a
non-negative weight function for edges. Figure 1 is a simple
example of STG containing 2 user nodes, 3 session nodes,
and 4 item nodes. It shows user u1 interacted with items
i1, i2, i3, and user u2 interacted with items i3, i4. Further-
more, items i1 and i2 are also linked to the session node s1

Figure 1: An example of STG.

because they were co-viewed by user u1 at time t1; and i3 is
connected with the session node s2, i3 and i4 are connected
with the session node s3 too.

In STG, user node vu connects to all items viewed by user
u, denoted as N(u), representing u’s long-term preferences;
session node vut only connects to items user u viewed at time
t, denoted asN(u, t), representing u’s short-term preferences
at time t. Therefore, if we start walking from the user node
vu, we will pass throughN(u) and then reach unknown items
which are similar to items in N(u); and if we walk from the
session node vut, we will reach unknown items similar to
items in N(u, t). In this way, we say that the user node is
a representation of the users’ long-term preferences and the
session node is a representation of short-term preferences.

The edge weights of G are defined as:

w(v, v′) =

⎧⎪⎨⎪⎩
1 v ∈ U ∪ S, v′ ∈ I

ηu v ∈ I, v′ ∈ U

ηs v ∈ I, v′ ∈ S

(1)

This definition means, given an edge e(v, v′) starting from
user or session nodes, its weight will be 1, since both user
and session nodes are only connected to item nodes and
hence arbitrary weight assignment will have the same effect
after normalization based on their out-degrees. For the edge
that starts from item nodes, if it connects to a user node,
its weight is ηu; if it connects to a session node, its weight
is ηs. Here we use different weights to model the influence
of long-term and short-term preferences more precisely. If
two items are connected by user nodes, their item-item sim-
ilarity is contributed by long-term preferences; if two items
are connected by session nodes, their item-item similarity is
contributed by short-term preferences.

4. RECOMMENDATION ON STG
Users’ long-term and short-term preferences are modeled

by user nodes and session nodes respectively in STG, and
now we will uncover the interaction of the two preferences,
and their impacts on recommendation by a novel algorithm
called IPF. Furthermore, based on STG, we extend the per-
sonalized Random Walk to model the impacts of long-term
and short-term preferences and make temporal recommen-
dation.

4.1 Injected Preference Fusion
When modeling the interaction of long-term and short-

term preferences for user u and making recommendation at
time t, our basic idea is to consider the user node vu and its
related session node vut as the sources to be injected with
user preferences. Preferences injected into the user node will
be propagated to items N(u) viewed by the user at all time,

725

and then tend to propagate to unknown items approximate
to u’s long-term preferences; while preferences injected into
the session node will propagate to items N(u, t) viewed by
the user at time t, and then tend to propagate to unknown
items approximate to u’s short-term preferences. In STG,
there will be a bunch of propagation paths from the source
nodes to the unknown item nodes. The user preferences to
an unknown item node is the sum of the weights of all in-
coming paths from both user and session nodes, and the one
which gets the highest preferences will be considered as the
best one to be recommended to the user. The preferences
propagated to this node is the consensus of the long-term
and short-term preferences, balancing the two types of im-
pacts.

Given a user u and the time t, both user node vu and
session node vut will be chosen as source nodes. Note that
only the current session node vut is selected from among
all session nodes, because we adopt an appropriate bin size
to include most short-term influence in the current session
node. Then, if P{v0, v1, ..., vn} is the path from the source
node v0 ∈ {vu, vut} to an unknown item node vn, the final
preference value propagated to vn is defined as:

φ(P) =
∏

vk∈P,0≤k<n

ψ(vk, vk+1)γ(v0) (2)

where γ(v0) is the value of injected preferences on the source
node, and its value depends on the node type:

γ(v0) =

{
β v0 = vu

1 − β v0 = uut
(3)

Here, β is a parameter used to tune the ratio of injected
preferences on the user node against the session node. β = 0
means no preferences are injected into the user node; while
β = 1 means no preferences are injected into the session
node.
ψ(vk, vk+1) is a propagation function that measures how

many preferences of vk is propagated to its succeed node
vk+1. It is defined as:

ψ(vk, vk+1) = (
w(vk, vk+1)∑

v′∈out(vk) w(vk, v′)
)ρ (4)

where out(vk) = {v′ ∈ V : e(vk, v
′) ∈ E} and ρ ∈ [0, 1] is a

parameter to tune the impact of the out-degree in the prop-
agation process. This definition means node vk+1 will get
lower incoming preference if node vk has larger out-degree.
By applying edge weight definition (see Equation 1), Equa-
tion 4 can be refined as:

ψ(v, v′) =

⎧⎪⎨⎪⎩
1

|out(v)|ρ v ∈ U ∪ S, v′ ∈ I

(η
η|out(v)∩U|+|out(v)∩S|)

ρ v ∈ I, v′ ∈ U

(1
η|out(v)∩U|+|out(v)∩S|)

ρ v ∈ I, v′ ∈ S

(5)
where η = ηu/ηs is a parameter which controls the ratio
of preferences (from an item node) to a user node against
to a session node, thus affects the importance of long-term
and short-term factors respectively on measuring item-item
similarity. If η = ∞, two items are only connected via user
nodes and it means only users’ long-term preferences can
contribute to item-item similarity. If η = 0, two items are
only connected via session nodes and thus only short-term
preferences will contribute to item-item similarity.

As STG is a bipartite graph, the distance from user/session
nodes to unknown item nodes should be odd numbers equal
to or larger than 3. Given a user and an unknown item,
there will be many paths (distance >= 3) between these
two nodes in STG. But we only consider the shortest paths
to measure the user’s preferences on the item for two rea-
sons: one is that long paths contribute less weights than
short paths to the final item nodes and may even bring in
noise; the other is that the shortest paths can be obtained
effectively by Bread-First-Search.

Consequently, we use P(u, i) to represent the set of short-
est paths from source nodes to an unknown item node vi for
the user u, and the estimated preference pui of user u on
item i is then measured as:

pui =
∑

P∈P(u,i)

φ(P) (6)

where φ(P) is the weight of the path P defined in Equation 2.
Finally, we sort pui for all unknown items, and then return

top-N unknown items to user u.
IPF is implemented by Bread-First-Search on STG. The

pseudo code of IPF is shown in Algorithm 1.
In a word, given a user u, there are four types of shortest

paths starting from source nodes vu, vut to unknown item
nodes with three steps.

• user-item-user-item (P1): this type of paths start from
vu, and then jump to all items in N(u) viewed by u,
and at last jump to u’s unknown items through other
users who also viewed items in N(u);

• user-item-session-item (P2): similar to P1, but connect
viewed items with unknown items by session nodes in-
stead of user nodes;

• session-item-user-item (P3): this type of paths start
from a session node vut, and jump to all items in
N(u, t) viewed by u at t, then reach similar unknown
items;

• session-item-session-item (P4): similar to P3, but con-
nect viewed items with unknown items by session nodes
instead of user nodes.

Thus in summary, P1 and P2 start from user node vu, and
at last reach unknown item nodes similar to N(u), reflecting
u’s long-term preferences. P3 and P4 start from session node
vut, and at last reach unknown item nodes similar to N(u, t),
reflecting u’s short-term preferences. P1 and P3 connect
items by user nodes, measuring the item relevance mainly
from users’ long-term preferences. P2 and P4 connect items
by session nodes, measuring the item similarity mainly from
users’ short-term preferences.

For the special case without temporal data (no session
nodes), only P1 is available in the user-item bipartite graph.
IPF can also be used for non-temporal recommendation by
only injecting preferences on the source user node. We name
this type of IPF Single Source IPF (SS-IPF) because the
preference propagation only starts from user nodes and fol-
lows P1 paths. IPF in STG with temporal data is called
Multi Source IPF (MS-IPF) for its use of both user and
session nodes as injected source nodes.

726

Algorithm 1: Pseudo code of IPF to make recommen-
dation for active user u at time t.
Data: STG G, user u, time t
Result: Recommendation for user u at time t
Queue Q;
NodeSet V;
Q.append(vu);
Q.append(vut);
distance[vu] = distance[vut] = 0;
rank[vu] = β;
rank[vut] = 1 − β;
while Q is not empty do

Node v = Q.top();
if V.contains(v) then

continue;

if distance[v] > 3 then
break;

V.insert(v);
foreach v′ ∈ out(v) do

if !V.contains(v′) then
distance[v′] = distance[v] + 1;
Q.append(v′);

if distance[v] < distance[v′] then
rank[v′] = rank[v′] + rank[v] ·ψ(v, v′);

rank.sort();
return top-N unknown items;

4.2 Temporal Personalized Random Walk
Recommendation via personalized random walks on graphs

has been well studied [3, 15, 12, 7]. Here, we extend PageR-
ank, one of the most typical random walk algorithms, as
temporal personalized random walk (TPRW) to support tem-
poral recommendation.

The following formulation is used by PageRank [4] to rank
nodes in a graph:

PR = α ·M · PR + (1 − α) · d (7)

where α is the damping factor, M is a transition matrix
and vector d defined below is a user-specific personalized
vector indicating which nodes the random walker will jump
to after a restart:

d(v) =

{
1 v = vu

0 otherwise
(8)

The basic idea of TPRW is similar to personalized PageR-
ank. When making recommendation for the active user u at
time t, vector d should bias both user node vu and related
session node vut, which means that the active user would
like to jump to his own user node and corresponding session
node after a restart:

d̃(v) =

⎧⎪⎨⎪⎩
β v = vu

1 − β v = vu,t

0 otherwise

(9)

d is d̃ after L-1 normalization. This formula also contains the
idea of fusing users’ long-term and short-term preferences by
using a temporal personalized vector.

In order to make recommendation for user u at time t, we
need to construct d for each user firstly, and run Equation 7

to rank all nodes on STG. Finally, we only keep the top-N
item nodes for recommendation.

4.3 Complexity Analysis
This section discusses the complexity of all the algorithms.

IPF is based on Breadth-First-Search (BFS) on the graph
and no iteration is involved. In IPF, the injected preferences
propagate on a subgraph of STG which only includes nodes
whose distance is less than or equal to 3-step from source
node(s). Like BFS, the major computational cost of IPF
comes from the final step of preference propagation, i.e.,
from length-2 nodes to length-3 nodes. For example, in SS-
IPF, the length-2 nodes are user nodes, and length-3 nodes
are item nodes. In the worst case, the length-2 nodes contain
all the user nodes, and then the preferences are propagated
to all the item nodes, in which all the edges are involved in
the propagation, so the complexity for all users is O(e · |U |),
where e is the total number of edges, and |U | is the number of
user nodes. For MS-IPF, due to the introduction of session
nodes and corresponding session-item edges, we assume that
its number of edges is k times larger than SS-IPF, so its
complexity is O(k · e · |U |).

For TPRW, it walks on the global graph, and is imple-
mented in an iterative method, so for all users its complexity
is O(m · (e) · |U |), where m is the iteration times, and e is
the number of edges. For userKNN, because it is based on
the pair-wise similarity computation of users, and the av-
erage items viewed by each user is e/|U |, its complexity is
O(|U |2 · (e/|U |)), which equals to O(e · |U |). In the same
way, the complexity for itemKNN is O(e · |I |), where |I | is
the total number of item nodes.

From above complexity analysis, IPF is rather efficient
compared to TPRW because it is a local search algorithm
and does not need iterations. When comparing the com-
plexity between IPF and UserKNN/ItemKNN, we can see
that the complexity of SS-IPF equals to userKNN, and may
be slower or faster than itemKNN depending on the ratio
between the number of users and items. MS-IPF is slower
than SS-IPF due to the growth of edges, but k is a constant,
and from our experience on the two datasets, its value ap-
proximately equals to 4.

5. EXPERIMENTS

5.1 Data Description
As our goal is to make accurate top-N recommendation

on implicit binary data abundant on the web, we adopt two
real binary datasets, CiteULike1 and Delicious2, instead of
explicit rating data like Netflix. CiteULike is a free online
service to organize academic publications. It allows users
to tag or bookmark research papers. CiteULike releases a
”who bookmarked what” data which contains 52,689 users,
1,793,954 items and 2,119,200 user-item pairs from Nov.
2004 to Sep. 2009. This dataset is very sparse and many
papers are only tagged once. Our dataset is a dense subset
which contains 4,607 users, 16,054 items and 109,346 user-
item pairs. The dataset is made by firstly removing papers
which were posted by less than 5 users and then removing

1The CiteULike data can be downloaded from the website
of CiteULike (http://www.citeulike.org).
2The Delicious data can be downloaded from the website of
DAI-Labor (http://www.dai-labor.de).

727

users who posted less than 5 papers. The sparsity of the
resulting dataset is 99.85%.

Delicious is a social bookmarking web service for storing,
sharing, and discovering web bookmarks. Users can tag web
pages from different web sites in Delicious. In the experi-
ment, only web pages from Wikipedia and users’ preferences
on Wikipedia pages are extracted. Then, items which were
tagged by less than 10 users and users who tagged less than
4 items were deleted. The resulting dataset contains 8,861
users, 3,257 items and 59,694 user-item pairs from Dec. 2005
to Dec. 2007. The sparsity of this dataset is 99.79%.

Furthermore, we are also interested in the average activity
level of users and the average lifecycle of items in these two
datasets. The activity level of a user is the number of days
this user is active in the system while the lifecycle of an item
is the number of days this item is viewed/tagged by some
users. In CiteUlike dataset, the average user activity level
is 313 days and the average item lifecycle is 701 days. In
Delicious dataset, the average user activity is 138 days and
average item lifecycle is 309 days.

5.2 Evaluation Metric
We adopt the All-But-One evaluation method and use Hit

Ratio [9] as the metric for the Top-N recommendation. Our
datasets were splitted into training part and testing part:
for every user, the latest item she likes is selected as test
data and other items are selected as training data.

When make recommendation, we generate a list of N (N=10)
items named R(u, t) for each user u at time t. If the test
item appears in the recommendation list, we call it a hit.
The Hit Ratio is calculated in the following way:

Hit Ratio =

∑
u I(Tu ∈ R(u, t))

|U |
where I(·) is an indicator function, R(u, t) is a set of top-N
items recommended to user u at time t, Tu is the hold-off
item that user u accessed at time t.

5.3 Compared Methods
In last two decades, many algorithms have been proposed

for top-N recommendation on binary data. Two most fa-
mous algorithms of them are user-based collaborative fil-
tering [18] (UserKNN) and item-based collaborative filter-
ing [14] (ItemKNN). These two algorithms, UserKNN and
ItemKNN, together with personalized PageRank [4] (Per-
sonalPR, which is extended to TPRW by us to support
temporal data), a graph-based top-N recommendation al-
gorithm, will be used to compare with SS-IPF in the experi-
ment of non-temporal top-N recommendation. Note that we
do not compare our algorithm with SVD-like factorization
methods, because they only achieve slight improvement on
implicit binary data [5].

Research on temporal top-N recommendation on binary
data began in recent years, but only got a little attention.
Ding et al. [2] and Andreas [23] both proposed a time-
weighted item-based collaborative filtering method (TItemKNN)
by reducing the influence of old data when predicting users’
further behavior. TItemKNN was designed for rating pre-
diction task but it can be easily extended to Top-N recom-
mendation for binary data. Similarly, UserKNN can also be
revised to support temporal recommendation (TUserKNN).
Therefore, TItemKNN and TUserKNN are selected to com-

9

9.5

10

10.5

11

11.5

12

H
it

R
at

io
(%

)

0.3 0.6 0.9 1.2 1.5
ρ

SS-PFP

ItemKNN

UserKNN

PersonalPR

Figure 2: The parameter ρ’s impact of SS-IPF on
CiteULike dataset.

6

6.5

7

7.5

8

H
it

R
at

io
(%

)

0.3 0.6 0.9 1.2
ρ

SS-PFP
ItemKNN
UserKNN
PersonalPR

Figure 3: The parameter ρ’s impact of SS-IPF on
Delicious dataset.

pare with two STG-based temporal algorithms, TPRW and
MS-IPF.

5.4 Results without Temporal Data
We first present the results on user-item matrix (without

temporal data) for two reasons: one is that we want to study
the importance of the parameter ρ (Equation 4) which con-
trols the impact of out-degree in the propagation process,
and then fix it for following experiments; the other is that
the results can be used as a baseline to see whether temporal
data can improve recommendation accuracy.

For the user-item data, the propagation factor ψ defined
in Equation 5 will become

ψ(v, v′) =
1

|out(v)|ρ
We compare the Hit Ratio of our SS-IPF with other three al-
gorithms, ItemKNN, UserKNN, and PersonalPR [4], on Ci-
teULike and Delicious datasets. Results are shown in Figure
2 and Figure 3.

The results show that ρ is important in determining the
Hit Ratio, which means in the propagation process, the

728

element CiteULike Delicious

#user 4607 8861
#item 16054 3257

#session 39939 45463
#edge 437384 238776

Table 2: Basic information of STG constructed on
CiteULike/Delicious datasets

propagated preferences are not linearly proportional to the
node’s out-degree. In CiteULike, the optimal ρ is about 0.6,
and in Delicious, it is about 0.4. Both of them are less than
1, so it means the preferences will be amplified when propa-
gated to next nodes, and we do not ensure the total sum of
the preferences on final unknown nodes equals to the sum of
source nodes. The Hit Ratios of other algorithms are under
these optimal parameters: in CiteULike dataset, the neigh-
borhood size of ItemKNN is 100, the neighborhood size of
UserKNN is 60 and damping factor α of PersonalPR is 0.5.
In Delicious dataset, the neighborhood size of ItemKNN is
300, the neighborhood size of UserKNN is 60 and damping
factor α of PersonalPR is 0.5.

In the following experiments, we fix ρ to 0.6 for CiteULike
dataset and 0.4 for Delicious dataset.

5.5 Results with Temporal Data
In this section, we illustrate the results of temporal top-N

recommendation. Firstly, we split the time into bins for the
construction of session nodes. According to our experiments,
the optimal time unit in CiteULike is one week while in
Delicious is one day. This is owing to the difference between
papers and web pages. Then we build the STG on <user,
item> and <session, item> data. Detail information of the
STGs based on two datasets is shown in Table 2.

In the following, we investigate the impacts of the pa-
rameters β and η respectively, and then compare the Hit
Ratios of the four temporal algorithms: MS-IPF, TPRW,
TItemKNN, and TUserKNN.

5.5.1 Long-term versus short-term influence by β
This section focuses on analyzing the parameter β (Equa-

tion 3 and 9), which governs the influence of long-term and
short-term preferences in temporal recommendation. MS-
IPF and TPRW are STG-based algorithms and above equa-
tions (Equation 3 and 9) show that they are both related
to β. However, the meaning of β varies for each algorithm.
In MS-IPF, β controls the ratio of injected preferences into
user nodes against session nodes. If β equals to 0, no pref-
erences are injected into the user node; if β equals to 1, no
preferences are injected into the session node. In TPRW, β
adjusts the probability of jumping to the user node and ses-
sion node after a restart in the form of personalized vector.
Although they are in different forms, β balances the long-
term and short-term influence in both algorithms, the bigger
the β is, the bigger the influence of long-term preferences.

When tuning β, we set the parameter η to 0.5, which
means we balance the influence of long-term and short-term
preferences on measuring item-item similarity. The results
of how Hit Ratios change against β of both algorithms are
shown in Figure 4 and Figure 5. TUserKNN and TItemKNN
do not have parameter β, so their Hit Ratios are drawn as a
straight line. Firstly, the results show that MS-IPF outper-

9

10

11

12

13

14

15

16

H
it

R
at

io
(%

)

0 0.5 1

β

MS-IPF

TPRW

TItemKNN

TUserKNN

Figure 4: Hit Ratios of all algorithms with different
β on CiteULike dataset (η = 0.5, ρ = 0.6).

5

6

7

8

9

10

11

H
it

R
at

io
(%

)

0 0.5 1

β

MS-IPF

TPRW

TItemKNN

TUserKNN

Figure 5: Hit Ratios of all algorithms with different
β on Delicious dataset (η = 0.5, ρ = 0.4).

forms other algorithms when β ∈ [0.1, 1] in both datasets.
Secondly, the results also show that ignoring long-term pref-
erences (β = 0) can not generate good results while ignor-
ing short-term preferences (β = 1) can not generate good
results either. Optimal results can be got by combining
long-term and short-term factors together. Moreover, one
advantage of our algorithms is that β is rather stable: ar-
bitrary β ∈ [0.1, 0.5] can generate results with similar ac-
curacy. Therefore, we simply fix β to 0.5 in the following
experiments.

5.5.2 Long-term versus short-term linkage by η
In this section, we look into the parameter η (Equation

5), which is used to balance the influence of long-term and
short-term preferences from items’ angle. η = 0 means items
are only connected by user nodes and item-item similarity
only depends on users’ long-term preference while η = ∞
means items are only connected by session nodes and item-
item similarity only depends on users’ short-term prefer-
ences. Both Figure 6 and Figure 7 describe the trends of

729

10

11

12

13

14

15
H

it
R

at
io

(%
)

10−2 10−1 100 101 102

η(LogP lot)

MS-IPF

TPRW

TItemKNN

TUserKNN

Figure 6: Performance of all algorithms with differ-
ent η on CiteULike dataset (β = 0.5, ρ = 0.6).

7

8

9

10

11

H
it

R
at

io
(%

)

10−2 10−1 100 101 102

η(LogP lot)

MS-IPF
TPRW
TItemKNN
TUserKNN

Figure 7: Performance of all algorithms with differ-
ent η on Delicious dataset (β = 0.5, ρ = 0.4).

accuracy against η. As the X-axis is the logarithmic value
of η, we can see in both datasets, η being close to 1 can
produce good results, which means in both datasets, both
users’ long-term and short-term interests are important to
measure item similarity. Furthermore, results show that η
is not a sensitive parameter either.

5.5.3 Selection of time window size
Before creating session nodes, we split time into bins.

When determining the window size, two criteria were consid-
ered. One is recommendation accuracy which means select-
ing of a proper time window to generate a more accurate
recommendation. The other is computational complexity.
As the smaller the window size is, the larger the number of
session nodes and edges would be, which in turn increases
computational complexity, so when recommendations from
two time window sizes are with similar accuracy, we prefer
to choose the one with larger window size. In order to see
the impact of the window size on recommendation accuracy,

time window (days) CiteULike Delicious

1 13.85% 9.83%
2 13.70% 9.72%
3 13.70% 9.72%
4 13.76% 9.72%
5 13.81% 9.74%
6 13.87% 9.68%
7 13.85% 9.69%
15 13.76% 9.59%
30 13.81% 9.48%
45 13.35% 9.24%
60 13.24% 9.20%
90 13.19% 8.83%

Table 3: Time window size’s impact on Hit Ratio of
MS-IPF (β = 0.5, η = 0.5, ρ = 0.5)

we did experiments on both datasets, and results are shown
in Table 3.

We observed that in CiteULike, recommendations with
time window size less than one month have similar accuracy,
and the optimal size is 6 to 7 days (one week or so), which
is our setting in previous experiments. For Delicious data,
recommendations with window size less than 7 days have
similar accuracy, while the optimal size is one day. The
above results indicate that users’ interests on research topics
(CiteULike) drift more slowly than interests on browsing
web pages (Delicious), which is consistent with our real life
experience. Moreover, it also shows that IPF’s accuracy is
not sensitive to the selection of window size. As long as we
set the window size in a proper range, it will generate similar
results.

5.5.4 Overall accuracy comparison
In this section, we compare the overall accuracy of all

algorithms in temporal Top-N recommendation.
For the accuracy comparison, table 4 shows the best Hit

Ratios of all algorithms on CiteULike data under optimal
parameters. Results show that TUserKNN has the lowest
Hit Ratio while MS-IPF has the highest Hit Ratio. By us-
ing TItemKNN [2] as the benchmark, TPRW outperforms
TItemKNN 4.75%, and MS-IPF improves it up to 15.02%.
Table 5 shows the best Hit Ratios on Delicious dataset. In
this dataset, TItemKNN and TUserKNN have close results,
and there is a gain of 25.37% over TItemKNN from TPRW,
and 34.46% from MS-IPF. It is worth noting that, on STG,
TPRW outperforms TUserKNN on both datasets, while on
the user-item graph without temporal data, UserKNN out-
performs personalPR instead, this strongly proves that STG
is effective for incorporating temporal data into the graph.
Moreover, MS-IPF outperforms all the other temporal algo-
rithms proves that IPF is effective to balance users’ long-
term and short-term preferences for accurate recommenda-
tion.

Finally, comparing MS-IPF with SS-IPF, MS-IPF achieves
26.87% improvement over SS-IPF on CiteULike dataset, and
achieves 25.88% improvement on Delicious dataset. This
proves that time factors play an important role in improving
recommendation accuracy, and our STG-based algorithm,
MS-IPF, is effective in leveraging temporal dynamics for rec-
ommendation.

730

Method Hit Ratio Improvement

TItemKNN 12.85% –
TUserKNN 11.63% -9.49%

TPRW 13.46% 4.75%
MS-IPF 14.78% 15.02%

Table 4: Best results of different temporal recom-
mendation algorithms on CiteULike dataset

Method Hit Ratio Improvement

TItemKNN 7.49% –
TUserKNN 7.58% 1.2%

TPRW 9.39% 25.37%
MS-IPF 10.07% 34.45%

Table 5: Best results of different temporal recom-
mendation algorithms on Delicious dataset

6. CONCLUSION
User preferences often exhibit long-term and short-term

factors. Tracking and leveraging these factors for temporal
recommendation poses great challenges. In this paper, we
propose a simple graph-based model named Session-based
Temporal Graph (STG) to efficiently capture the long-term
and short-term factors over time. Based on the STG frame-
work, we propose an online method, Injected Preference Fu-
sion (IPF) for temporal recommendation. In addition, we
extend the personalized Random Walk for temporal recom-
mendation based on STG. The extensive experiments on real
datasets confirm the effectiveness of the proposed method
over other existing ones. Future work includes the exten-
sion of STG using user clusters and multiple time windows,
as well as a more flexible approach in determining time win-
dow size and selecting relevant session nodes. We also plan
to explore other applications for STG beyond recommenda-
tion, such as user characterization.

7. REFERENCES
[1] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,

S. Kumar, D. Ravichandran, and M. Aly. Video
suggestion and discovery for youtube: taking random
walks through the view graph. In WWW ’08, pages
895–904, 2008.

[2] Y. Ding and X. Li. Time weight collaborative filtering.
In CIKM ’05, pages 485–492, 2005.

[3] M. Gori and A. Pucci. Research paper recommender
systems: A random-walk based approach. In WI ’06,
pages 778–781, 2006.

[4] T. H. Haveliwala. Topic-sensitive pagerank. In WWW
’02, pages 517–526, 2002.

[5] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM ’08,
pages 263–272, 2008.

[6] Z. Huang, W. Chung, and H. Chen. A graph model for
e-commerce recommender systems. J. Am. Soc. Inf.
Sci. Technol., 55(3):259–274, 2004.

[7] M. Jamali and M. Ester. Trustwalker: a random walk
model for combining trust-based and item-based
recommendation. In KDD ’09, pages 397–406, 2009.

[8] R. Jäschke, L. Marinho, A. Hotho,
L. Schmidt-Thieme, and G. Stumme. Tag
recommendations in social bookmarking systems. AI
Commun., 21(4):231–247, 2008.

[9] G. Karypis. Evaluation of item-based top-n
recommendation algorithms. In CIKM ’01, pages
247–254, 2001.

[10] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09, pages 447–456, 2009.

[11] N. Lathia, S. Hailes, and L. Capra. Temporal
collaborative filtering with adaptive neighbourhoods.
In SIGIR ’09, pages 796–797, 2009.

[12] M. Li, B. M. Dias, I. Jarman, W. El-Deredy, and P. J.
Lisboa. Grocery shopping recommendations based on
basket-sensitive random walk. In KDD ’09, pages
1215–1224, 2009.

[13] Y. Li and J. Tang. Expertise search in a time-varying
social network. In WAIM ’08, pages 293–300, 2008.

[14] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[15] N. N. Liu and Q. Yang. Eigenrank: a ranking-oriented
approach to collaborative filtering. In SIGIR ’08,
pages 83–90, 2008.

[16] D. Oard and J. Kim. Implicit feedback for
recommender systems. In AAAI Workshop on
Recommender Systems, 1998.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, 1998.

[18] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In CSCW ’94, pages
175–186, 1994.

[19] F. Ricci and Q. N. Nguyen. Acquiring and revising
preferences in a critique-based mobile recommender
system. IEEE Intelligent Systems, 22(3):22–29, 2007.

[20] J. Schlimmer and R. Granger. Beyond incremental
processing: Tracking concept drift. Proc. 5th National
Conference on Artificial Intelligence, pages 502–507,
1986.

[21] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In KDD ’07, pages 687–696,
2007.

[22] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In KDD ’06, pages
374–383, 2006.

[23] A. Töscher and M. Jahrer. The bigchaos solution to
the netflix prize 2008. Technical report, 2008.

[24] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Mach. Learn.,
23(1):69–101, 1996.

[25] A. Zimdars, D. M. Chickering, and C. Meek. Using
temporal data for making recommendations. In UAI
’01, pages 580–588, 2001.

731

