Sentiment-Enhanced Explanation of Product

Recommendations

Li Chen and Feng Wang

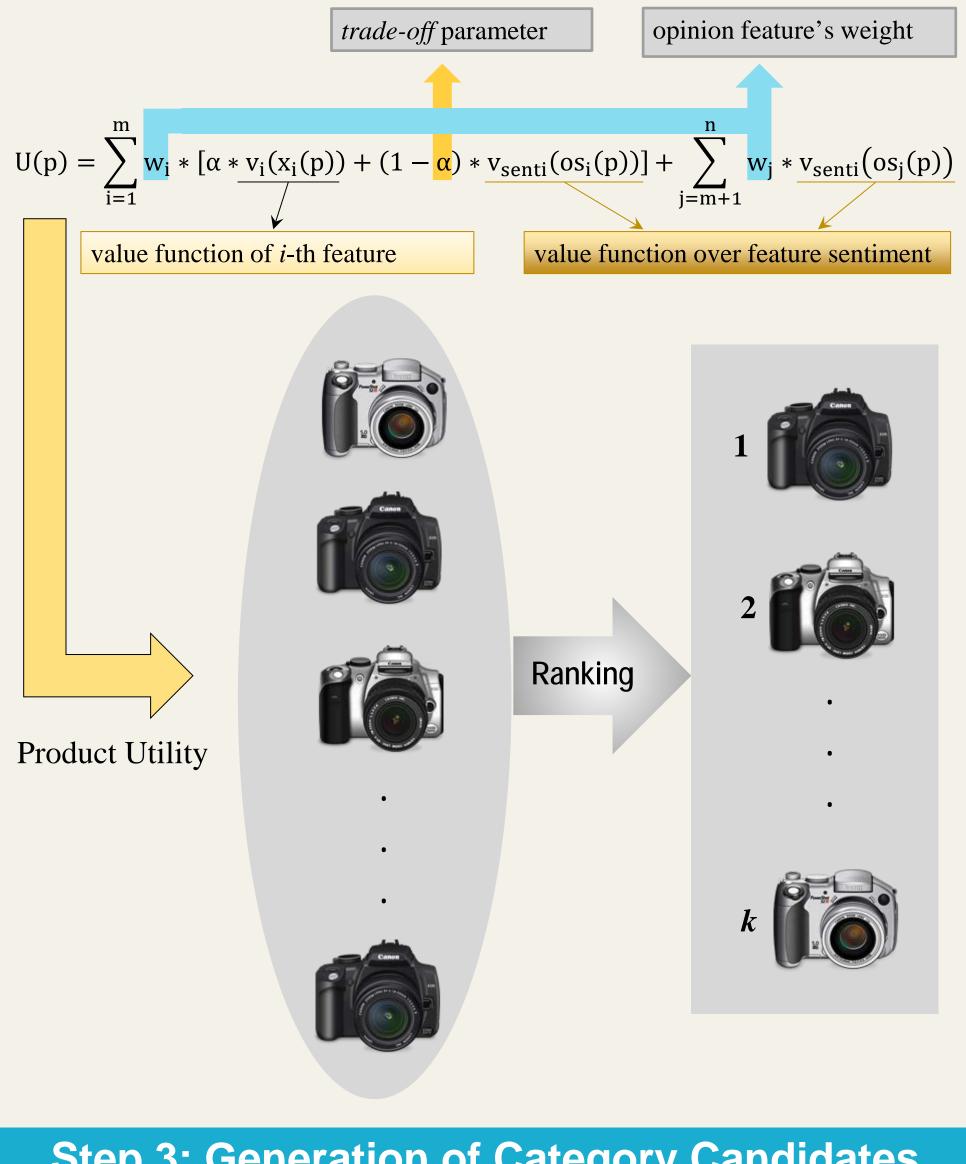
Department of Computer Science, Hong Kong Baptist University, China

{lichen,fwang}@comp.hkbu.edu.hk

Our Contribution

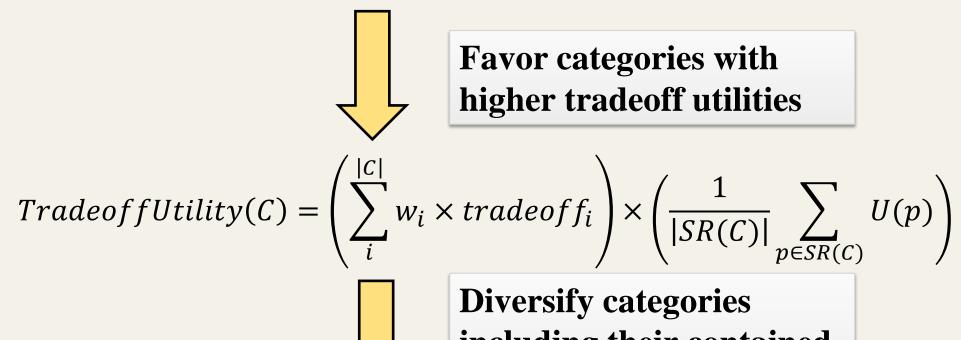
A novel explanation interface that particularly fuses the *feature sentiments* as extracted from reviews into explaining recommendations: *sentiment-enhanced organization interface*.

The top ranked camera according to your preferences



Sonv Cyber-shot DSC-U10 ***** (16 reviews) 344.0 · 1.0 inches · 1.2 megapixels · 1.0 x optical zoom

The other recommendations


Step 2: Modeling of User Preferences

A weighted additive form of value functions, grounded on the Multi-Attribute Utility Theory [2]:

Step 4: Selection of Categories

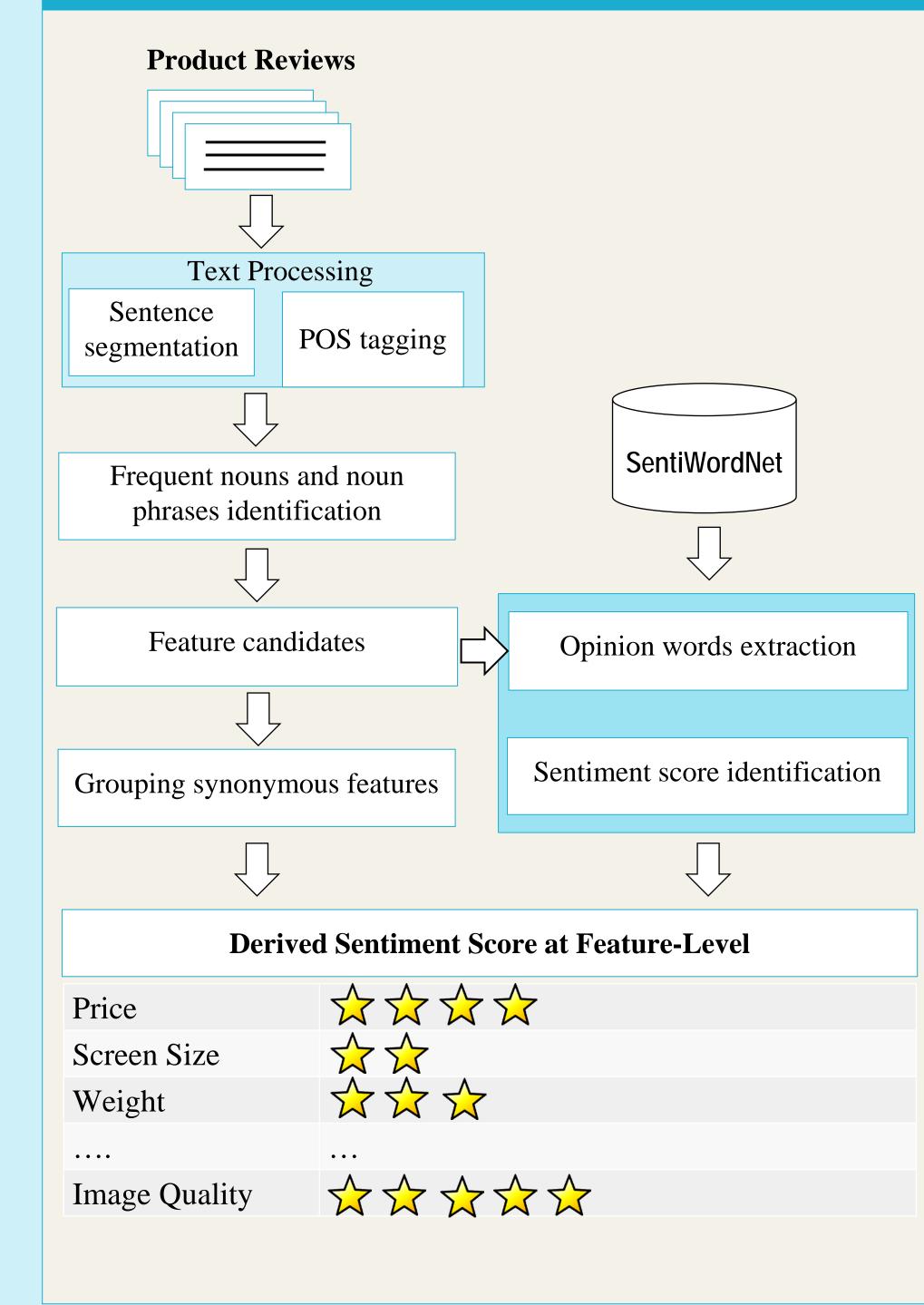
A large amount of category candidates produced by association rule mining tool

Design Guidelines [1]:

Step 3: Generation of Category Candidates

Among the *k* products, except the ranked 1st one is left as the top candidate, each of the others is converted into a *tradeoff vector*

including their contained products $Score(C) = TradeoffUtility(C) \times Diversity(C,SC)$ Top candidate **Organized recommendations (in categories)** {(price, \uparrow_v), (screen size, \uparrow_v), (resolution, \uparrow_o), (weight, \downarrow)} {(image quality, \uparrow_o), (resolution, \uparrow_o), (screen size, \uparrow_v), (price, \downarrow)} 2 {(video quality, \uparrow_o), (image quality, \uparrow_o), (resolution, \uparrow_o), (weight, \downarrow)} 3 {(video quality, \uparrow_o), (resolution, \uparrow_o), (optical zoom, \uparrow_v), (price, \downarrow)} 4 Senti-ORG The top ranked camera according to your preferences Sonv Cyber-shot DSC-U10 ★★★★★ (16 review) 44.0 · 1.0 inches · 1.2 megapixels · 1.0 x optical zoom


1. Each category title acts as the explanation, to show the pros and cons of the contained products against the top candidate;

2. Each category contains up to six products so as to avoid information overload;

3. The number of attributes accommodated in each explanation is controlled under five;

4. The explanations should be as diverse as possible since it is not informative to have two categories with similar titles.

Step 1: Feature-based Sentient Analysis

{(price, \uparrow_o), (resolution, \uparrow_v), (weight, \downarrow), (zoom, \downarrow)}

{(weight, \uparrow_o), (price, \uparrow_v), (zoom, \downarrow), (resolution, \downarrow)}

- \uparrow_{12} : improved attribute value than the one of the top candidate (e.g., cheaper);
 - \uparrow_o : improved feature sentiment (e.g., higher image quality);
 - : compromised (e.g., more expensive, heavier)

If *p*'s sentiment on f_i is negative ($os_i(p) < 3$)

```
(\uparrow_o, if \ 1 \le i \le m, x_i(p') \ge x_i(p) \text{ and } os_i(p') > os_i(p)
tradeoff(f_i, p', p) = {\uparrow_o, if m < i \le n, os_i(p') > os_i(p)
                                (\downarrow, \quad if \ 1 \le i \le m, x_i(p') \prec x_i(p))
```

```
Else (os_i(p) \ge 3)
```


 $\downarrow)\}$

.

```
tradeoff(f_i, p', p) = \begin{cases} \uparrow_v, if 1 \le i \le m, x_i(p') > x_i(p) \text{ and } os_i(p') \ge os_i(p) \\ \downarrow, if 1 \le i \le m, x_i(p') < x_i(p) \end{cases}
```

Association rule mining tool (Apriori algorithm) to discover the recurring and representative (*attribute*, *tradeoff*) patterns

The list of category candidates produced by the association rule mining tool

Hypotheses for User Evaluation

A prototype developed for two product domains: *digital camera* and *laptop*

	Digital Camera	Laptop
Number of products	194	139
Average number of static attributes per product	6	7
Average number of opinion features per product	3	4

1. {(price, \downarrow), (screen size, \uparrow_o), (weight, \uparrow_v)}

2. {(price, \uparrow_v), (optical zoom, \downarrow), (resolution, \downarrow)}

3. {(price, \downarrow), (screen size, \uparrow_v), (ease of use, \uparrow_o), (resolution,

4. {(price, \uparrow_o), (screen size, \downarrow), (weight, \downarrow), (image quality, $\uparrow_{o})\}$

5. {(screen size, \downarrow), (price , \downarrow), (optical zoom, \uparrow_v)} 6. {(weight, \downarrow), (price, \uparrow_o), (optical zoom, \uparrow_v) }

7. {(resolution, \downarrow), (optical zoom, \uparrow_o), (ease of use, \uparrow_o) }

8. {(price, \downarrow), (weight, \uparrow_{v}), (image quality, \uparrow_{o}) }

Hypotheses:

Hypothesis 1: the new interface (shorted as Senti-ORG) would be more *effective* than the original design (ORG [1]) in terms of aiding users to make accurate and confident decisions;

Hypothesis 2: Senti-ORG would be more trustworthy than ORG, so that users are more inclined to return to use it;

Hypothesis 3: Senti-ORG would be more *persuasive*, given that more users would be prepared to buy product chosen from it.

References

[1] Chen, L. and Pu, P. 2010. Experiments on the Preference-based Organization Interface in Recommender Systems. In TOCHI 17, 1, 1-33.

[2] Keeney, R. and Raiffa, H. 1976. *Decisions with Multiple* Objectives: Preferences and Value Tradeoffs. Cambridge University Press.