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Introduction

: Recommender Performance:

- Quantitative methods collect numerical data and analyze it
using statistical methods - relying on precise measurement
outcome to yield conclusions

- Evaluation metrics: coverage and accuracy metrics
- precision, recall and F1-measure

- mean absolute error (MAE) and root mean sguare error
(RMSE)

- Sources of Uncertainty:

- dataset chosen for testing, and data sparseness due to new
users or few ratings (cold start)

- Input data representation
- similarity computation — several algorithms
- Custom transformations to traditional approaches
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... Sources of Uncertainty (cont’d)

on Social Recommenders
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Monte-Carlo Technique
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Summary Statistics: measures of Location, Dispersion, Shape, and Order
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Monte-Carlo Modellng
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Experimental Results

. Dataset

. Evaluation metrics and results — model robustness

- Summary Statistics: mean, deviation, kurtosis, skewedness,
Percentiles, quartiles, intervals, overall performance probability
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Conclusions

. Traditional Evaluation — Deterministic

. Monte Carlo Evaluation — Probabillistic

. Improved understanding, higher confidence, longer
lasting value, and better depiction of recommender
predictions — model robustness vs. performance

- Can be employed on any recommender
Implementation

. Future Work / Challenges

. extend the evaluation modeling strategy to account
for effects of data input representation, different
evaluation metrics, similarity calculation algorithms,
etc.
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Merci

.- Any questions or comments ?
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