Selective Presentation of Peer Commentary on Web Objects Through a Modeling of User Similarity and Reputability: Reducing Information Overload in Social Networks

John Champaign

July 17th, 2012

Outline of Talk

PhD work

10+5

Connect (and provide background) on ITS

Intelligent Tutoring Systems

Tutoring Systems (eLearning, Computer-Aided Instruction, On-line learning, computer-based instruction)

- Intelligent: Adaptive, Personalized
- Generative (problems, hint, help)
- **Student Modeling**
- Expert Modeling
- **Mixed Initiative**
- Interactive Learning
- Instructional Modeling (adaptive to student learning)
- Self-Improving (system's performance)

PhD Work

Ecological, Peer-Based Approach

Challenges

Which Learning Objects? Which Peers?

Example learning objects:

Books, web pages, research articles, videos

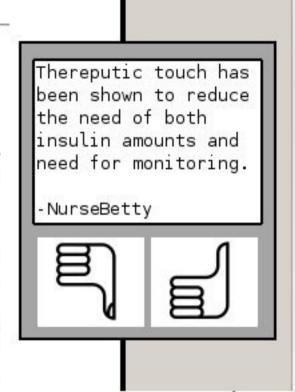
Annotations

Short text message, left by a student interacting with a learning object

Can be a question about content, some insight the student had connecting the concept with another part of the class, or a link to related material

Need to show worthwhile annotations and avoid showing bad annotations

Zhang's trust modeling approach


Example (Bad) Annotation

BRIGGS AND CORNELL

WHEN TO SMBG

The ADA recommends a minimum of once-daily monitoring for patients on insulin and sulfonylureas to assist in the prevention of hypoglycemia. The number of times per day a patient self-monitors is specific to the patient's needs and based on the practitioner's recommendations. However, to obtain optimal glucose control, it is necessary for a patient who uses insulin therapy to test a minimum of 3 times per day. Any patient who is experiencing stress, illness, or changes in medications should also test more often.^{3,9}

Patients currently on insulin therapy, including women with gestational diabetes mellitus, need to test SMBG more frequently than those who are on oral medication and/or medical nutritional therapy

Text is about insulin monitoring, while annotation suggests an alternative medicine treatment

Trust Based Decision Procedure for Showing Annotation

Algorithm 1: Student Reputation//Consider student as an annotatorcalStudentReputation (Student s)if num of annotations by s == 0 then| R(s) = 0.5; //Reputation of selse| R(s) = 0;| foreach annotation a of s do $| \lfloor R(s) += calcAnnRep(a);$ $\lfloor R(s) /= num of annotations by s;$ return R(s) $\in [0,1];$

Algorithm 2: Student Similarity Similarity (Student c, Student r) vS = 0; //num of voted same vD = 0; //num of voted different foreach annotation voted by both do | if current.vote == rater.vote then | vS += 1; | else |_ vD += 1; similarity = (vS - vD) / (vS + vD); return similarity $\in [-1,1]$;

Calculate student reputation and similarity between students

Trust Based Decision Procedure for Showing Annotation

Algorithm 3: Annotation Reputation	Algorithm 4: Specific Annotation Rep
calAnnRep (Annotation a)	calAnnRepSpecific (Ann a, Student s)
foreach vote on annotation do	foreach vote on annotation do
if vote.for then	<pre>sim = similarity (s, voterStudent);</pre>
vF += 1;	if vote.for then
else	VF += 1 * sim;
$ _ _ vA += 1;$	else
return adjust(a.initRep, vF, vA);	$ _ _ vA += 1 * sim;$
	return adjust (a.initRep, vF, vA);

Calculate annotation reputation and adjust this for a specific student

Show most reputable annotations that brought benefit to similar students

Annotation Assignment

Random

Greedy God

Tally
$$pred - ben[a, current] = \frac{Rating_{for} - Rating_{against}}{Rating_{for} + Rating_{against}}$$

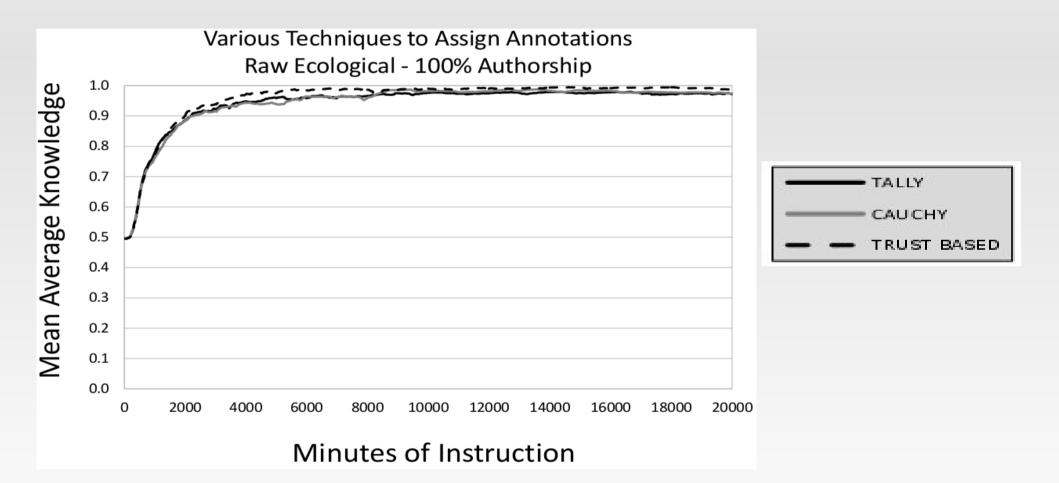
$$pred-ben[a, current] = \frac{1}{\pi} \arctan(\frac{(vF^a - vA^a) + T_q}{\gamma}) + \frac{1}{2}$$

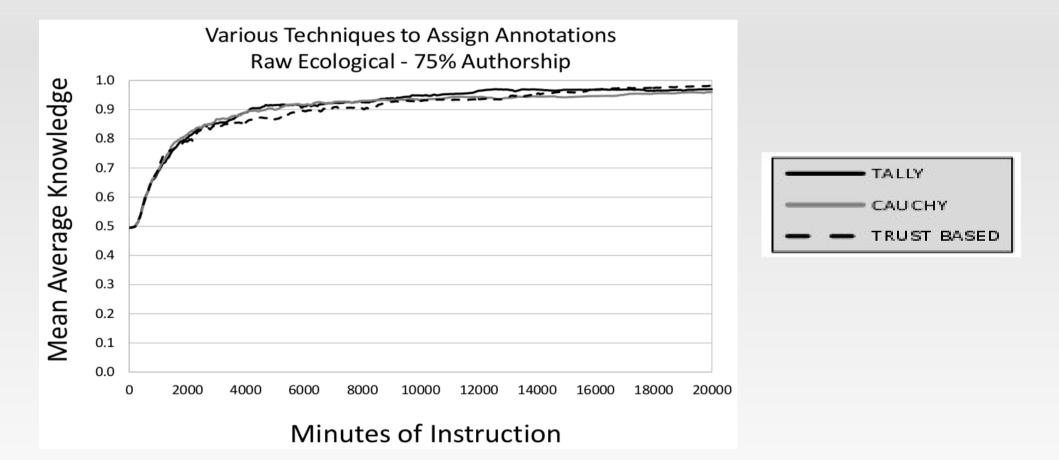
 $\text{pred-ben}[a_i, current] = min(1, \frac{|R^{a_i}|}{N_{min}}) \frac{\sum_{j=1}^{|R^{a_i}|} r_j^{a_i}}{|R^{a_i}|} + max(0, (1 - \frac{|R^{a_i}|}{N_{min}})) \frac{\sum_{i=1}^{|A_q|} V^{a_i}}{|A_q|}$

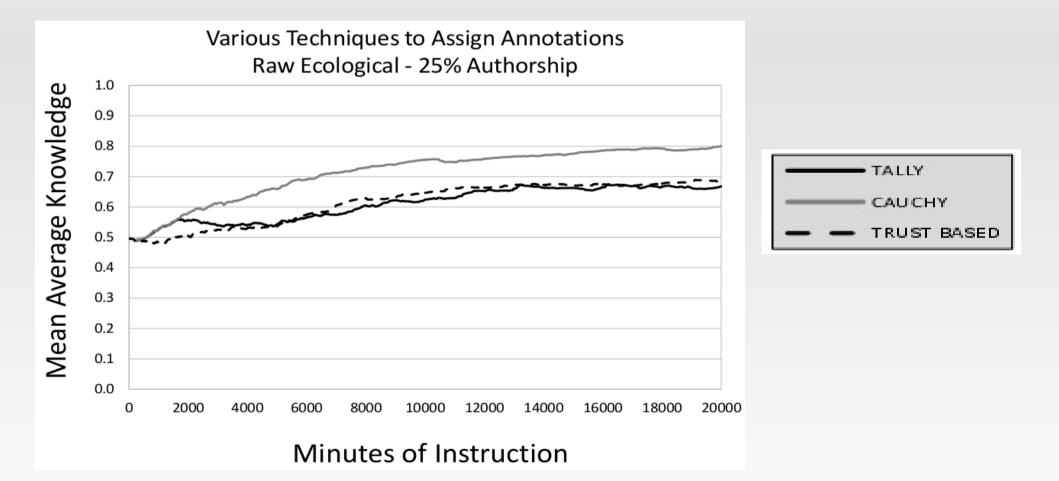
Trust Based

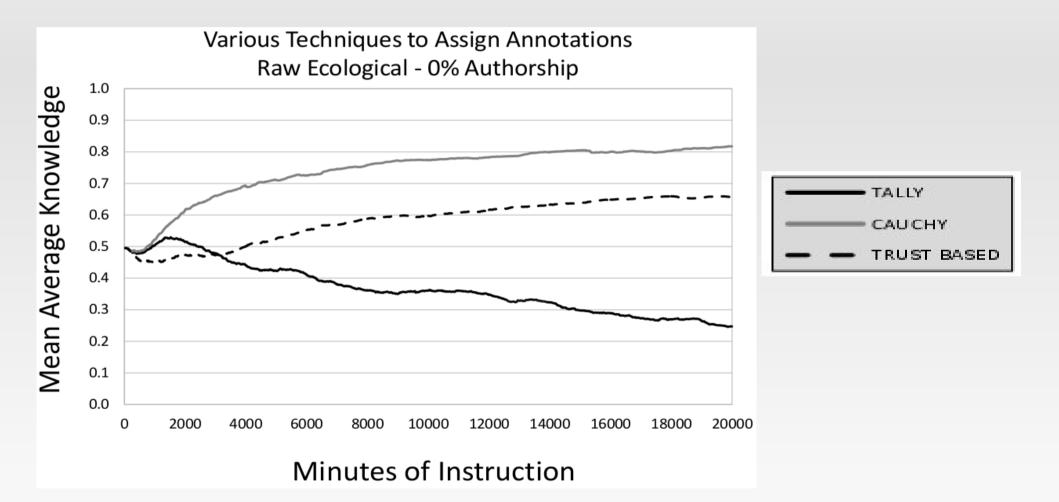
Cauchy

9 / 19


During the simulated "course of instruction" simulated students matched with variety of LO


Simulated Learning occurs


The results of these interactions are used to reason about which students to match with which learning objects in the future


Simulation Design Decisions

- 3 annotations per learning objects
- Evaluated using average knowledge for all students
- 100 learning objects, 20 students, 20 iterations
- Learning objects ranged in length from 30 to 480 minutes
- Each student has a 20% chance of leaving a new annotation on a learning object they experienced

Future Work

Real World Repository

Clustering

Additional Simulations

Additional Human Studies

Incentive to Participate

Possible criticism that students won't leave annotations or author LOs to help other students

Participatory culture (1%, 0.1%, 0.001%)

Possible approaches:

- Unlocking system
- Social capital perspective, intrinsic reward
- COMTELLA style incentive mechanisms
- Leaderboard
- World of Warcraft style achievements
- Domain of instruction
- Pay them! \$\$\$

Contributions

- McCalla's ecological approach realized in a comprehensive framework
- Beyond other peer-based ITS to leverage past experiences
- Annotations
 - supporting commentary
 - reasoning about what to show
 - avoiding poor annotations
- Framework for simulated student learning
 - of value for validating ITS

Comments?

Concerns?