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Visible-Infrared Person Re-Identification via
Homogeneous Augmented Tri-Modal Learning

Mang Ye, Jianbing Shen, Senior Member, IEEE and Ling Shao

Abstract—Matching person images between the daytime vis-
ible modality and night-time infrared modality (VI-ReID) is a
challenging cross-modality pedestrian retrieval problem. Existing
methods usually learn the multi-modality features in raw image
space, ignoring the image-level discrepancy. Some methods apply
GAN technique to generate the cross-modality images, but it
destroys the local structure and introduces unavoidable noise.
In this paper, we propose a Homogeneous Augmented Tri-
Modal (HAT) learning method for VI-ReID, where an auxiliary
grayscale modality is generated from their homogeneous visible
images, without additional training process. It preserves the
structure information of visible images and approximates the
image style of infrared modality. Learning with the grayscale
visible images enforces the network to mine structure relations
across multiple modalities, making it robust to color variations.
Specifically, we solve the tri-modal feature learning from both
multi-modal classification and multi-view retrieval perspectives.
For multi-modal classification, we learn a multi-modality sharing
identity classifier with a parameter-sharing network, trained with
a homogeneous and heterogeneous identification loss. For multi-
view retrieval, we develop a weighted tri-directional ranking
loss to optimize the relative distance across multiple modalities.
Incorporated with two invariant regularizers, HAT simultane-
ously minimizes multiple modality variations. In-depth analysis
demonstrates the homogeneous grayscale augmentation signifi-
cantly improves the VI-ReID performance, outperforming the
current state-of-the-art by a large margin. It provides a simple
but effective strategy for future research in this task.

I. INTRODUCTION

Person re-identification (Re-ID) has been widely studied as
a specific pedestrian retrieval problem by retrieving person
images across multiple non-overlapping surveillance cameras
[1], [2]. With the advancement of deep neural networks,
inspiring performance has been obtained in both image-based
[3]–[5] and video-based person Re-ID tasks [6]–[8], where
all the person images/videos are usually captured by visi-
ble cameras in the daytime [9]. However, visible cameras
cannot capture enough discriminative information under poor
lighting conditions, e.g., at night [10]. This property limits
the applicability of the single-modality person Re-ID for real
surveillance scenarios. In contrast, this paper studies the cross-
modality visible infrared person re-identification (VI-ReID)
problem. This task aims at matching the daytime person
images (captured by visible cameras) and nighttime infrared
person images (either infrared [10] or thermal [11] cameras),
which is imperative for night-time surveillance applications.
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Fig. 1. Illustration of VI-ReID. There is a large domain gap between
the visible and infrared images. This paper proposes to utilize the
homogeneously augmented grayscale images to enhance the robust-
ness against color variations. These augmented images preserves the
structure information of the visible images.

The person images in VI-ReID are captured by cameras
with different light spectrums under long time stamp. Different
wavelengths result in large visual difference between the
collected images from two modalities. Meanwhile, different
viewpoints, poses variations and self-occlusions add additional
difficulties. Thus, it is an extremely challenging cross-modality
pedestrian retrieval problem with large domain gap and un-
constrained variations, as shown in Fig. 1. The paradigm of
VI-ReID is closely related to the widely-studied VIS-NIR face
recognition [19]–[21], i.e., matching between visible and near-
infrared images. However, the visual variations of the person
images are usually much larger than that of face images, which
makes their methods incapable for VI-ReID task [10].

Bridging the modality gap is critical for modality invariant
feature learning in VI-ReID, existing methods fall into three
categories (Fig. 2): a) Grayscale-grayscale Solution: Since the
infrared images do not contain the color information, all the
person images are transformed into single-modality grayscale
images to eliminate the color effects [10]. Wu et al. proposed a
feature learning framework with a deep zero-padding network
[10]. This strategy ignores the important color information
in visible images. b) RGB-grayscale Solution: This approach
directly learns the multi-modality representation using the
original color channels in visible and infrared images, either by
adversarial training [15] or feature alignment [14], [17]. They
prove that the color information is beneficial for the VI-ReID.
However, they ignore the large pixel-level gap between the
3-channel visible and 1-channel infrared images [12], i.e., the
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(a) Grayscale-Grayscale Solution [10]
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(c) GAN-based Generation Solution [12], [13]
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(b) RGB-Grayscale Solution [14]–[18]
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(d) Our Tri-Modal Solution
Fig. 2. Illustration of four different solutions for VI-ReID. (a) Grayscale-Grayscale Solution [10]: All input images from both modalities are transformed
into single-channel grayscale images. (b) RGB-Grayscale Solution [14]–[18]: All input images are kept with the original channels. (c) GAN-based Generation
Solution: These methods generate cross-modality images before being fed into the network. (d) Our Tri-Modal Solution: The model is trained with two original
(Visible and Infrared) modalities, and one homogeneous augmented grayscale images. All the single-channel (grayscale) images are expanded three times in
channel dimension before feeding into the network for dimension consistency.

distributions of the pixel values are totally different. c) GAN-
based Generation Solution: Two recent methods [12], [13]
propose to generate the cross-modality images to eliminate
the modality gap in pixel level. Nevertheless, training the
image generator requires expensive computational cost and
the important structural information for VI-ReID is easily
destroyed by the unavoidable noise.

To address the above limitations, this paper presents a
novel Homogeneous Augmented Tri-modal (HAT) learning
solution, where an auxiliary grasycale modality is generated
from the homogeneous visible images, as shown in Fig. 2 (d).
These generated grayscale images preserve structure infor-
mation of the visible images and approximate the infrared
image style. The advantage of using homogeneous augmented
grayscale images can be summarized as two folds: 1) The
grayscale images preserve the structure information of visible
images, and the structure information is crucial for cross-
modality matching since the infrared images do not contain
any color information. To approximate the image style of
cross-modality images, existing GAN-based methods try to
learn visible to infrared image generator, but the image gen-
eration process might introduce additional noise. In contrast,
our homogeneous generation does not introduce any noise, and
performs much better than existing methods. 2) Minimizing
the modality gap between the grayscale visible images and
infrared images can enforce the network to mine the structure
relations between these two modalities, thereby making it
robust to color variations and improving the visible-infrared
matching performance. We solve the tri-modal feature learning
from both multi-modal classification and multi-view retrieval
perspectives. For multi-modal classification, a homogeneous
and heterogeneous identification loss is designed by learning
a multi-modality sharing identity classifier with a parameter-
sharing network, achieving identity-invariant representation
with sharable information mining. For multi-view retrieval, a
weighted tri-directional ranking loss is developed to optimize
the relative distance across multiple modalities. To further
enhance the robustness, we propose two regularizers, enforcing

the augmentation and cross-modality positive pair invariance.
With in-depth analysis, we demonstrate that the homogeneous
grayscale augmentation greatly improves the performance.

Our main contributions are summarized as follows:
• We propose a novel Homogeneous Augmented Tri-Modal

(HAT) learning method for VI-ReID, which solves the
problem from a new perspective with homogeneous
grayscale augmentation to improve the performance.

• We introduce a Homo- and Heterogeneous Identification
(HHI) loss for multi-modality classification with identity
supervision. It enhances the discriminability with a ho-
mogeneous invariant regularizer.

• We develop a Weighted Tri-directional Ranking (WTDR)
loss for multi-view retrieval, explicitly optimizing the
cross-modality correlations across multiple modalities to
reduce the modality variations.

• We present an in-depth analysis to validate the effec-
tiveness of grayscale augmentation, and it also provides
an effective increment for future VI-ReID research. We
outperform the current state-of-the-arts by a large margin
on two public cross-modality VI-ReID datasets, which
sets a new baseline in this field.

II. RELATED WORK

Single-Modality Person Re-ID. Person re-identification
(a.k.a, pedestrian retrieval [22]) addresses the problem of
retrieving person images across different video surveillance
cameras [23], [24]. The primary challenges are large cross-
camera variations for each identity, caused by different camera
environments, poses changes and viewpoint variations [25]–
[31]. To address these issues, existing methods either fo-
cus on extracting robust feature representations [32]–[34] or
learning discriminative distance metrics [35]–[38]. With the
advancement of deep neural networks, existing methods have
achieved inspiring performance in single-modality person Re-
ID, outperforming the human-level retrieval performance on
the widely-used benchmarks [26], [39], [40]. However, these
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Fig. 3. The framework of the proposed HAT. Images from three modalities (visible, grayscale and infrared) are fed into the weights-
sharing CNN network to learn multi-modality sharable feature representation. We solve the tri-modal feature learning from both multi-modal
classification (HHI: homogeneous and heterogeneous identification loss) and multi-view retrieval (WTDR: weighted tri-directional ranking
loss) perspectives. The former learns identity-invariant features while the latter optimizes the relationship among images from triple modalities.

methods are usually designed for single visible modality, i.e.,
the person images are captured by general RGB cameras in
the daytime [41]. In contrast, the nighttime scenarios with
cross-modality images usually suffer from large modality
discrepancy. Thus, the methods designed for single-modality
person Re-ID are usually incapable of this task [10].

Cross-Modality Person Re-ID. It addresses person Re-ID
by matching person images across different types, such as
between visible and infrared images [10], [12], [42]. Some
works also investigate the cross-modality matching between
the images and non-visual text descriptions [43], [44].

For visible-infrared ReID (VI-ReID), a deep zero-padding
scheme is proposed in [10] to adaptively capture the modality-
specific information in a one-stream network, where the cross-
modality representation is learned with the identity super-
vision. All the input images are transformed into single-
grayscale images, this strategy avoids the interruption of
the color information. Ye et al. [14] designed a two-stream
network to learning the multi-modality sharable features, si-
multaneously handling the cross-modality and intra-modality
variations with dual-constrained top-ranking loss. Dai et al.
[15] introduced an adversarial learning framework to jointly
discriminate the identity and modality with an improved triplet
loss function. A hypersphere embedding with sharable feature
learning was developed in [17]. In addition, some methods
also leveraged the modality-specific classifiers to improve the
feature learning [16], [18]. These methods achieve good per-
formance by utilizing the original 3-channel color information
in the visible images, which prove that the color information
still improves the VI-ReID performance.

Two recent papers also investigated the GAN-generated
images to bridge the gap between visible-infrared modalities
[12], [13]. The reduce the modality gap in both feature-level
and pixel-level, achieving state-of-the-art performance. These
methods proved the effectiveness of pixel-level generation for
cross-modality Re-ID. However, training a reliable image gen-
erator requires intensive computational cost, and the generated
images usually contain unavoidable noise. In contrast, our
solution is quite efficient, and we do not need any additional
training for the image generation.

VI-ReID is also closely related to visible near-infrared
face recognition [19], [20], [45]–[48]. For face recognition,
multi-modal sharable features learning [20] or disentangled
representations learning are the popular approaches [21]. Some
works also studied the cross-modality matching models [49].
Compared to person Re-ID tasks, the visual difference is much
smaller in this face recognition task, which greatly limited the
applicability of their methods for VI-ReID task [42].

Image Generation in Person Re-ID. Generating person
images has been widely explored in the literature, address-
ing the pose variations [50]–[52], cross-domain/cross-camera
variations [53]–[55], or enriching the supervision [56], [57].
Generally, all of these methods adopt the generative adversar-
ial networks for image generator training, which introduces
additional pixel noise. In contrast, our generation can be
efficiently obtained by using the linear accumulation of three
RGB channels, and it preserves the structure information.

III. PROPOSED METHOD

This paper addresses the VI-ReID by leveraging an addi-
tional homogeneous augmented grayscale modality, which is
obtained by a simple linear accumulation of three RGB color
channels from visible images. An overview of the proposed
model is shown in Fig. 3. We will firstly introduce the weights-
sharing tri-modal feature learning in § III-A, and then the
homo- and heterogeneous multi-modal classification and the
weighted tri-directional ranking loss are presented in § III-B
and § III-C, respectively. Finally, a joint learning framework
with identity sample training strategy is provided in § III-D.

A. Parameter-sharing Tri-modal Feature Learning

This subsection presents our weights-sharing feature learn-
ing network for three different modalities, including the
original visible and infrared modalities, and one generated
grayscale modality. The learning target of VI-ReID is that
the person images of the same person identity under different
modalities are invariant. We denote the original cross-modality
training set as T = {T v, T r}. In particular, T v = {xv

i |i =
1, 2, · · · , Nv} represents visible training set with Nv visible
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Fig. 4. Illustration of the modality-sharing classifier in Homogeneous
and Heterogeneous Identification (HHI) loss. The homogeneous
(visible-grayscale) and heterogeneous (visible-infrared) pair can be
both correctly classified with the weights-sharing identity classifiers.

images, where each visible image xv
i is associated with

identity label yi. T r = {xr
i |i = 1, 2, · · · , Nr} represents Nr

infrared training images, where each element xr
i is an infrared

image. Due to the light spectrums in different cameras, xv
i

usually has three different color channels, i.e., R, G and B, and
infrared image xr

i has single over-saturated grayscale channel.
Homogeneous Grayscale Modality Generation. Accord-

ing to the imagery capturing characteristic, there is a large
gap between the three color channel visible image and single-
channel infrared image. To address this issue, each visible
images is homogeneously transformed into single-channel
gray-scale image in to approximate the style of single-channel
infrared image. For each visible image xv

i , its homogeneous
grayscale modality image xg

i is generated by
L = g(R,G,B) (1)

where g(·) is a grayscale transform function to perform the
pixel-level accumulation of the original R, G and B channels.
This generation can be efficiently performed in the deep
learning platforms (e.g., Pytorch, Tensorflow). The generated
grayscale images provide self-supervision, and it is much more
efficient than the GAN-based methods [12], [13], which needs
complicated image reconstruction. Moreover, these GAN-
based methods destroyed the original spatial structure informa-
tion during the reconstruction process, introducing additional
pixel noise. In contrast, our point-to-point pixel-wise transfor-
mation keeps the original structural information. Empirically,
we show that these generated homogeneous grayscale images
significantly improve the cross-modality Re-ID performance.

Parameter-sharing Feature Learning. To learn the multi-
modality invariant features, we propose to apply a single
stream weights-sharing network f(·) for three different modal-
ities. In this manner, three different modalities are jointly
projected in a shared common feature space. Specifically, the
BNneck [58] designed for single-modality person Re-ID is
adopted as the backbone. The output of the pooling layer is
adopted as the feature representation and a batch normalization
layer is added before the final classification layer. The feature
representations for xv

i , xg
i and xr

i are denoted by
fvi = f(xv

i ), fgi = f(xg
i ), fri = f(xr

i ). (2)

The learning objective of VI-ReID is to narrow the gap
between fvi and frj when yi = yj . The generated grayscale
modality acts as a bridge between the visible and infrared

Homogeneous 

CNN

Feature Space

Fig. 5. Illustration of the homogeneous invariant regularizer in Homo-
geneous and Heterogeneous Identification (HHI) loss, i.e., the features
of the original visible image and its homogeneously augmented
grayscale image are close in the learned feature space.

modality. Grayscale modality is directly generated by the
linear accumulation of three color channels from the visible
images, thus it preserves important structure information of
the original visible image, while ignoring the color informa-
tion. We assume that the modality-specific information can
be automatically captured in the weights-sharing one-stream
framework with abundant network parameters [10], and the
single-stream is memory efficient compared to multiple-stream
networks. It has two primary advantages: 1) By minimizing
visible to grayscale variations with the weights-sharing net-
work, the learned representation is more robust to the color
variations by capturing the structure relations between the
visible and grayscale images. This property greatly improves
the visible-infrared person re-identification performance, since
the color information is also lost in the infrared person images.
2) By minimizing the discrepancy between the grayscale and
infrared images, the network can capture more discriminative
texture/shape cues in the single channel image.

We propose to minimize the visible-grayscale-infrared
modality variations in the following two different aspects:
• Multi-modal Classification It optimizes the network by

formulating the tri-modality person re-identification as a
multi-class classification problem in the training process,
i.e., images of the same identity from three different
modalities as the same class. It aims at learning multi-
modality identity invariant feature representations.

• Multi-view Retrieval: It learns the representation from
the instance retrieval across multiple views, optimizing
the relationship between different person images across
three modalities with a modified ranking loss.

B. Homo- and Heterogeneous Multi-modal Classification

With the Homogeneous and Heterogeneous Identification
(HHI) loss, both the homogeneous pair (visible-grayscale) and
heterogeneous pair (visible-infrared) can be correctly classified
with the learned sharing identity classifier. HHI loss contains
two main components: modality-sharing identity classifier
(Fig. 4) and homogeneous invariant regularizer (Fig. 5).

Modality-sharing Identity Classifier. It learns a shared
classifier θ0 for three different modalities. p(yi|xv

i ; θ0) rep-
resents the predicted probability output of a visible image xv

i

being recognized as its identity label yi using the classifier θ0.
Assuming that each training batch contains n visible images,
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Fig. 6. Illustration of Tri-Directional Ranking (TDR) loss for multi-
view retrieval. It aims at optimizing the relationship between visible-
infrared, visible-grayscale and infrared-grayscale modalities, incorpo-
rated with a modified triplet-mining ranking loss. We use the format
A-B-C to represent a triplet, where A represents the anchor modality,
B and C denote the positive and negative modality, respectively.
Specifically, 1© for visible-infrared-grayscale triplet, 2© for infrared-
grayscale-visible triplet, and 3© for grayscale-visible-infrared triplet.

n homogeneously generated grayscale images and n infrared
images, the HHI loss with softmax cross-entropy is represented
by

L0 =− 1

n

n∑
i=1

log(p(yi|xv
i ; θ0))− 1

n

n∑
i=1

log(p0(yi|xg
i ; θ0))

− 1

n

n∑
i=1

log(p(yi|xr
i ; θ0)).

(3)Homogeneous Invariant Regularizer. To enhance the ro-
bustness against modality variations, we incorporate a homo-
geneous invariant regularizer. The main idea is that the features
of the original visible image and homogeneously augmented
grayscale image are invariant through the feature extraction
network, i.e., fvi − fgi are minimized. Specifically, we adopt a
smooth L1 loss as the regularization

Lr =
∑
i∈B

{
0.5(fvi − fgi )2, |fvi − fgi | < 1

|fvi − fgi |, otherwise.
(4)

The overall HHI loss is the summarization of L0 and Lr,
denoted by

Lhhi = L0 + αLr, (5)

where α controls the contribution of the invariant regularizer.
The designed HHI loss has the following advantages: 1) The
modality-sharing identity classifier ensures that the network
optimization is conducted on the feature representations rather
than classifiers. 2) The invariant regularizer enhances the
robustness against color variations, making it discriminative
to single-channel infrared image.

C. Weighted Tri-directional Ranking for Multi-view Retrieval

This subsection presents the designed Weighted Tri-
directional Ranking (TDR) loss for multi-view retrieval, which
optimizes the relationship with multi-view cross-modality
retrieval (visible-infrared-grayscale). Different from previous
triplets, each triplet consists mined samples with cross-view
retrieval from three different modalities.

Informative Triplet Mining. We firstly select the informa-
tive triplets with cross-view retrieval, avoiding the domination

of abundant easy triplets [59]–[61]. We denote the Euclidean
distance between two samples xv

i and xr
j as D(xv

i ,x
r
j), where

the subscripts {i, j, k} represent the image index and the
superscripts {v, r, g} denote the modality index. We firstly
consider visible modality as the anchor modality, and then
we search its positive from infrared modality and negative
from grayscale modality. Formally, let xv

i be an anchor visible
sample, a triplet {xv

i ,x
r
j ,x

g
k} is selected if it satisfies the

constraints:
Pv,r
i,j = max

∀yj=yi

D(xv
i ,x

r
j) (6)

N v,g
i,k = min

∀yk 6=yi

D(xv
i ,x

g
k) (7)

For each anchor xv
i , above strategy chooses the farthest

visible-infrared positive pair and selects the closest visible-
grayscale negative pair, formulating a mined informative triplet
{xv

i ,x
r+
j ,xg−

k } from cross-view ranking perspective. Gener-
ally, the triplet loss for visible-infrared-grayscale1 using a
margin parameter ρ is then defined by

Lv,r,g =
1

n

n∑
i=1

max[ρ+D(xv
i ,x

r+
j )−D(xv

i ,x
g−
k ), 0] (8)

Similarly, we could mine the informative triplets
for infrared-grayscale-visible relationship, denoted
by {xr

i ,x
g+
j ,xv−

k }ni=1, and grayscale-visible-infrared
relationship, represented by {xg

i ,x
v+
j ,xr−

k }ni=1 from ranking
perspective. An illustration of three different relationships
is shown in Fig. 6. Summarizing loss of three different
relationships, the tri-directional ranking (TDR) loss is

Ltdr =Lv,r,g + Lr,g,v + Lg,v,r

=
1

n

n∑
i=1

max[ρ+D(xv
i ,x

r+
j )−D(xv

i ,x
g−
k ), 0]

+
1

n

n∑
i=1

max[ρ+D(xr
i ,x

g+
j )−D(xr

i ,x
v−
k ), 0]

+
1

n

n∑
i=1

max[ρ+D(xg
i ,x

v+
j )−D(xg

i ,x
r−
k ), 0]

(9)

Above tri-directional ranking loss fully utilizes the cross-
modality triplet-wise relationship in different views. It min-
imizes the relative difference between the farthest cross-
modality positive pair distance and the closest negative pair
distance, improving the robustness against modality variations.
The informative triplet mining enhances the discriminability of
the learned cross-modality features.

Triplet Global Weighting. The TDR loss treats each anchor
sample equally, all the mined triplet contributes equally to
the overall loss. However, due to the sample variety, the
contribution of each triplet should be different, especially for
the hard triplets. This part presents a simple but effective
triplet weighting strategy, termed as triplet global weighting.
Specifically, we use wv

i represents the weight of the mined

1We use the format A-B-C to represent a triplet, where A represents
the anchor modality, B and C denote the positive and negative modality,
respectively.
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triplet{xv
i ,x

r+
j ,xg−

k }, which is calculated by an exponential
function of the relative difference,

wv
i = exp([ρ+D(xv

i ,x
r+
j )−D(xv

i ,x
g−
k )]+). (10)

where [·]+ = max(·, 0). The above weight calculation does
not introduce any additional pairwise comparison or hyper-
parameters [62], which can be seamlessly incorporated in the
original ranking loss. Similarly, we can calculate the triplet
weights {wr

i }ni=1 and {wg
i }ni=1, using the calculated distance

difference. To well balance the importance of each triplet in
the training batch, we apply a normalization to each triplet
weight, denoted by

w̄v
i =

3 ∗ wv
i∑n

i=1 w
v
i +

∑n
i=1 w

r
i +

∑n
i=1 w

g
i

. (11)

The normalized {w̄r
i }ni=1 and {w̄g

i }ni=1 can also be obtained
in a similar manner. The normalized triplet weight measures
the importance of each mined triplet to the overall learning
objective, where hard triplets will be assigned with large
weights. The calculated weights update dynamically along
with the network optimization. Meanwhile, this triplet weight
measures the relationship of each triplet to all the other mined
triplets, and it provides additional supervision of within triplet
similarity [63]. Therefore, it results in a global optimization
for each sampled batch. When w̄v

i = 1
n , w̄r

i = 1
n and w̄g

i = 1
n ,

the weighted TDR loss will be degenerated to the general tri-
directional ranking loss (Eq. 9). With the normalized triplet
weights, the weighted TDR loss is refined by

Lwtdr =
n∑

i=1

w̄v
i ·max[ρ+D(xv

i ,x
r+
j )−D(xv

i ,x
g−
k ), 0]

+
n∑
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i ·max[ρ+D(xr

i ,x
g+
j )−D(xr

i ,x
v−
k ), 0]

+
n∑

i=1

w̄g
i ·max[ρ+D(xg

i ,x
v+
j )−D(xg

i ,x
r−
k ), 0]

(12)

Cross-modality Positive Pair Regularizer. To further min-
imize the cross-modality variations, we add a positive pair
invariant regularizer to the WTDR loss. The main idea is to
explicitly minimize each sampled cross-modality positive pair
distance, which is formulated by

Lreg =
1

n

n∑
i=1

D(xv
i ,x

r+
j ) +D(xr

i ,x
g+
j ) +D(xg

i ,x
v+
j )

(13)
The regularization provides additional pairwise relationship
optimization to the triplet constraint. The main benefit is that
TDR loss optimizes the relative distance while this regularizer
explicitly minimizes the cross-modality variations of each
sampled positive pair. Indeed, an ideal case is that all the
triplets satisfy the triplet margin constraint and the distances of
all the cross-modality positive pairs are zero. But this condition
is actually hard to be true for a large scale scenario, espe-
cially for the applications with large cross-modality variations.
Therefore, a pairwise regularizer is essential to minimize the
cross-modality variation. Extensive experiments demonstrate
that this regularization improves the VI-ReID performance.

Infrared Images Visible Images Augmented Grayscale Images

Fig. 7. Sampled images and the augmented grayscale images from
SYSU-MM01 dataset [10] (first two rows) and RegDB dataset [11]
(last row) . Each row represents the images of the same identity from
three different modalities.

D. Joint Training with Identity Sampling

The total loss Lhat is then defined by the combination of
Lhhi and Lwtdr,

Lhat = Lhhi + Lwtdr + βLreg, (14)

where β controls the contribution of the cross-modality pair
regularizer. The HHI loss Lhhi optimizes the parameter-
sharing network with the identity supervision, which learns
multi-modality identity-invariant feature. The WTDR loss
Lwtdr provides the supervision to optimize the relative dis-
tance from triple views for retrieval. These two components are
optimized jointly for the cross-modality Re-ID model learning.

Identity Sampling Strategy. To guarantee the informative
triplet mining, we design an identity sampling strategy for
training. At each training step, 8 identities are randomly
selected, and then 4 visible and 4 infrared images are sampled
for each identity, thus n = 32 in Eq. 3 and Eq. 9 in all
the settings. With the augmented grayscale images, the total
number of training images in each batch is 96. This strategy
provides rich well-mined the positive and negative samples.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Datasets and Settings. Two publicly VI-ReID datasets
(SYSU-MM01 [10] and RegDB [11]) are evaluated. The
infrared images are captured by near-infrared cameras for
SYSU-MM01 [10] and by thermal cameras for RegDB [11].
We also plot some example images from two datasets in Fig.
7, together with homogeneously augmented grayscale images.

SYSU-MM01 dataset [10] is a large-scale dataset collected
by 6 different cameras, including 4 general RGB cameras and
2 near-infrared cameras, captured in SYSU campus from both
indoor and outdoor environment. This dataset contains 395
training identities, including 22,258 visible and 11,909 near-
infrared images, where the images are captured in both indoor
and outdoor environments. The testing set contains another 95
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testing identities, with two different evaluation settings. In both
settings, the query set is the same, containing 3803 images
captured from two IR cameras. In all-search mode, the gallery
set contains all the visible images captured from all four RGB
cameras. In indoor-search mode, the gallery set only contains
the visible images captured by two indoor RGB cameras.
Generally, the all-search mode is more challenging than the
indoor-search mode. We exactly follow existing methods to
perform ten trials of the gallery set selection [12], [14], and the
report the average retrieval performance. Details description of
the evaluation protocol can be found in [10].

RegDB dataset [11] is a small-scale dataset captured by
a dual-camera (one visible and one thermal camera) system.
Thus, the visible and infrared images are quite similar, and it
is less challenging for cross-modality person re-identification.
Totally, this dataset contains 412 identities and each identity
has ten visible and ten thermal images. Following the eval-
uation protocol in [42], we randomly select 206 identities
(with 2,060 images) for training and the rest 206 identities
(with 2,060 images) are used for testing. We evaluate two
different retrieval settings, including both visible-thermal and
thermal-visible retrieval performance. The average accuracy of
ten randomly training/testing splits is reported [42].

Evaluation Metrics. Following existing works, Cumulative
Matching Characteristics (CMC) and mean Average Precision
(mAP) are aopdted as the evaluation metrics. CMC (Rank-k
accuracy) measures the probability of a correct cross-modality
person image occurs in the top-k retrieved results. mAP
measures the retrieval performance when multiple matching
images occur in the gallery set [64].

Implementation Details. The proposed algorithm is imple-
mented on PyTorch framework. Following existing person Re-
ID works, ResNet50 [65] is adopted as the backbone network
for fair comparison, and the pretrained ImageNet parameters
are adopted for the network initialization. Specifically, the
stride of the last convolutional block is set to 1 to obtain
fine-grained feature maps [58]. We adopt the default operation
(Grayscale(3)) in Pytorch to get the homogeneously aug-
mented grayscale image for each visible image. All the input
images from three modalities are firstly resized to 288× 144,
and random crop with zero-padding together with random
horizontal flipping are adopted for data argumentation. We
adopt the stochastic gradient descent (SGD) optimizer for
optimization, and the momentum parameter is set to 0.9.
We set the initial learning rate as 0.1 for both datasets. The
learning rate is decayed by 0.1 at 20 epoch and 0.01 at 50
epoch, with totally 60 training epochs on both datasets. We
set the margin parameter ρ in the TDR loss to 0.3. We set
α = 1 and β = 0.2 by default. We use the output of the batch
normalization (BN) layer for retrieval in the testing phase, and
use the original visible image for feature extraction.

B. Self Evaluation

Evaluation of Each Component. We first evaluate each
component in the proposed method on the large-scale SYSU-
MM01 dataset under both all-search and indoor-search modes.
Specifically, “B” represents the baseline performance by using
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Fig. 8. Evaluation of different α in Eq. 5 (left) and different β in
Eq. 14 (right) on SYSU-MM01 dataset, under the challenging indoor-
search mode. The dotted lines represent the baseline in each setting.
Rank-1 matching accuracy (%) and mAP (%) are reported.

the original 3-channel RGB visible images and 3-copied
infrared channel, which is trained with an identity loss.
“H0” represents the results by adding the homogeneously
augmented grayscale images, trained with a modality-sharing
identity classifier (Eq. 3). “HHI” represents the full version
of HHI loss (Eq. 5) together with the homogeneous invariant
regularizer. “TDR” represented the proposed tri-directional
ranking loss (Eq. 9). “WTDR” represented the TDR loss
with triplet global weighting (Eq. 12). “WTDRr” denotes
the performance when cross-modality positive pair regularizer
(Eq. 13) is aggregated. The results of adding/removing each
component are shown in Table I.

1) Effectiveness of grayscale homogeneous augmentation:
Compared to the baseline model (B), the performance with
the grayscale augmented images is grealty improved, i.e., the
rank-1 accuracy changed from 45.30% to 47.80%. This exper-
iment demonstrates the effectiveness of the grayscale image
augmentation for cross-modality person re-identification. 2)
Effectiveness of homogeneous invariant regularizer Lr: When
we further intergrate with the invariant regurlarizer, the perfor-
mance in both settings is further improved. This verifies that
minimizing the homogeneously visible-grayscale variations
can mine the useful information from color channels with
single-channel grayscale image, improving the performance
for visible-infrared person re-identification. 3) Effectiveness of
TDR loss: Integrating with the tri-directional ranking loss, the
retrieval performance is greatly improved, which demonstrates
the multi-view cross-modality ranking loss provides strong
supervision to enhance the discriminability in the testing
retrieval phase. 4) Effectiveness of triplet weighting: When we
re-weight the triplets according to the distance difference, the
performance is slightly improved, which adaptively re-weight
each mined triplet. 5) Effectiveness of cross-modality positive
pair regularizer Lreg: this terms explicitly minimizes the
cross-modality distances of the positive pair, which reinforces
the robustness against the cross-modality variations for each
mined hard positive pair. It complements the triplet constraint
with relative distance optimization.

Evaluation of Regularization Parameters. We evaluate
the effect of two hyperparameters in the proposed method, α
in Eq. 5 and β in Eq. 14. The results on SYSU-MM01 dataset
under indoor-search mode are shown in Fig. 8.
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TABLE I
EVALUATION OF EACH COMPONENT IN OUR PROPOSED METHOD ON THE LARGE-SCALE SYSU-MM01 DATASET, INCLUDING BOTH ALL-SEARCH AND

INDOOR-SEARCH MODES. RANK AT r MATCHING ACCURACY(%) AND MAP (%) ARE REPORTED.

Datasets All Search Indoor Search
Methods r = 1 r = 5 r = 10 r = 20 mAP r = 1 r = 5 r = 10 r = 20 mAP
B 45.30 73.47 83.52 92.29 44.82 48.85 79.23 90.18 96.87 57.84
B + H0 47.80 76.29 86.56 94.12 45.99 51.24 82.18 91.52 97.26 59.64
B + HHI 48.23 77.05 87.26 94.79 46.18 51.93 82.53 92.25 98.26 60.42
B + HHI + TDR 54.99 83.08 91.25 96.41 53.26 60.01 88.45 95.13 98.45 67.44
B + HHI + WTDR 54.72 83.28 91.58 96.54 53.64 60.42 88.75 95.33 98.59 67.94
B + HHI + WTDRr 55.29 83.74 92.14 97.36 53.89 62.10 89.35 95.75 99.20 69.37
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(d) HAT Test
Fig. 9. Visualization of Baseline (trained with identity+triplet loss, in the first row) and the proposed HAT method (second row). The x
axis represents the cosine similarity score between two samples (positive or negative cross-modality matching pair), y axis is the statistical
value for each cosine similarity score. Both strategies perform well in separating the infrared and RGB visible images (R-V positive and
negative pair) in the training set. However, the proposed HAT performs much better than baseline in the testing set by incorporating with
the homogeneously augmented grayscale images.

1) Effect of α: It controls the contribution of the invariant
regularizer in the HHI loss. Results shown in Fig. 8 (a)
demonstrate the this term consistently improves the perfor-
mance when α ∈ [0, 1]. This benefit is brought by mining
the underlying structure relationship between the three-channel
visible image and homogeneously augmented single-channel
grayscale image. 2) Effect of β: It provides additional pairwise
constraint to the triplet relative distance optimization, which
enhances the robustness against the cross-modality variations.
Empirically, we set β = 0.2 in all our experiments.

C. In-depth Analysis

Evaluation of Grayscale Augmentation. We evaluate the
grayscale augmentation with four different training strate-
gies, as shown in Table II. In addition, we also evaluate
the performance of using other pixel-to-pixel wise transform
filters used in [66] for comparison, including the DoG filter,
CSDN filter and Gaussian smoothing filter. All these strategies
are trained with a modality-sharing identity classifier. Most
existing methods adopt RGB-Infrared training strategy [14],
[15], [17], where the original three RGB channels of the visible
image are fed into the network. The performance is lower than
the proposed tri-modal learning strategy. Even these grayscale
images are just linear accumulation of the original RGB
channels, the augmented grayscale images greatly improve the

TABLE II
EVALUATION OF GRAYSCALE AUGMENTATION WITH DIFFERENT TRAINING

STRATEGIES, INCLUDING RGB-INFRARED, GRAYSCALE-INFARERD,
MIXTURE-INFARED, TI-MODAL TRAINING. WE ALSO EVALUATE THE

PIXEL-TO-PIXEL TRANSFORM FILTERS USED IN [66] FOR COMPARISON.
RANK-1 ACCURACY (%) AND MAP (%) ON THE LARGE-SCALE

SYSU-MM01 DATASET ARE REPORTED.
All Search Indoor Search

Strategy r = 1 mAP r = 1 mAP
RGB-Infrared 45.30 44.82 48.85 57.84
Grayscale-Infarerd 43.76 43.12 46.56 55.98
Mixture-Infarerd 47.23 45.83 50.23 58.72
DoG [66] 46.28 45.23 49.62 58.42
CSDN [66] 45.82 45.12 50.12 58.02
Gaussian [66] 45.43 45.02 49.82 58.36
Tri-modal (Ours) 47.80 45.99 51.24 59.64
Tri-modal (Learn) 48.12 46.53 51.86 60.12

performance. When applied with the single-channel grayscale-
infrared training strategy [10], the performance drops slightly.
This experiment proves the effectiveness of the color infor-
mation for visible-infrared person re-identification. Mixture-
infrared represents the training with RandomGrayscale(0.5),
this strategy randomly optimizes the grayscale-infrared and
visible-infrared relationships. This experiment provides a good
suggestion for future visible-infrared person re-identification
research by applying this augmentation operation.

Compared to other image filters in [66], we find that these
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TABLE III
EVALUATION OF DIFFERENT RETRIEVAL STRATEGIES BY CHANGING THE

GALLERY IMAGES. RANK-1 ACCURACY (%) AND MAP (%) ON THE
SYSU-MM01 DATASET ARE REPORTED. QUERY SET CONTAINS THE

SINGLE-CHANNEL INFRARED IMAGES.
All Search Indoor Search

Gallery r = 1 mAP r = 1 mAP
RGB 55.29 53.89 62.10 69.37
Gray 53.89 52.24 61.06 68.35
RGB + Gray (Feat) 54.83 53.34 61.75 69.10
RGB + Gray (Dist) 54.96 53.37 61.88 69.13

image filters can also slightly improve the performance, but
the improvement is not significant as our proposed strategy.
The main reason might be that the image filters perform well
in the face recognition tasks, but they might not be directly
applied to the person re-identification task. In our future work,
we will explore how to design a more powerful transformation
strategy explicitly for the VI-ReID.

Compared to learnable linear transform, we also evaluate
the performance by learning a linear transformation function
for the grayscale image generation, termed as “Tri-modal
(Learn)”. We observe that the performance is slightly better
than a simple transformation baseline.

Visualization Analysis. We visualize the cosine similarity
distribution of positive/negative cross-modality matching pairs
on both training and testing set in Fig. 9. We evaluate the
proposed HAT and the baseline (trained identity + triplet loss,
a strong baseline in [58]). Both strategies perform well in
separating the infrared and RGB visible images (R-V positive
and negative) in the training set. However, the proposed HAT
performs much better than baseline in the testing set by
incorporating with the homogeneously augmented grayscale
images. Specifically, when the grayscale augmentation is used
for tri-modal learning, the infrared-visible positive/negative
difference of HAT is much larger than the baseline (R-V
Positive v.s. R-V Negative). This experiment demonstrates that
training with the homogeneously augmented grayscale images
improves the generalizability on the testing set to discriminate
the visible and infrared images. In terms of distinguishing
the infrared and grayscale images (R-G Positive v.s. R-G
Negative), HAT also shows stronger discriminability to dis-
criminate the grayscale and infrared images. This experiment
demonstrates that learning with the grayscale image results in
better robustness against the color variations, i.e., performing
better to distinguish the grayscale and infrared images.

In summary, learning with the grayscale augmented images
has two major advantages: 1) minimizing the grayscale-visible
variations enhances the robustness against color variations. 2)
minimizing the grayscale-infrared variations enforces the net-
work mines the discriminative sharable structure cues within
the person image, improving the discriminability for cross-
modality visible-infrared person re-identification.

t-SNE Analysis. We plot the t-SNE map of 10 randomly
selected identities on the SYSU-MM01 dataset in Fig. 10. We
plot the features distribution of grayscale, visible and infrared
images at the initial and the final stage. We observe that the
grayscale modality is closer to the infrared modality at the
initial stage than the original visible modality. And the features
of the visible (grayscale) images and the infrared images
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Fig. 10. t-SNE visualization of ten randomly selected identities on the
SYSU-MM01 dataset. Circle means visible modality, square means
the infrared modality, and cross means the augmented grayscale
modality. The color represents the identity. We observe that the
grayscale modality is closer to the infrared modality at the initial stage
than the original visible modality. With our proposed HAT method,
the features of each identity from three modalities are concentrated
together in the learned embedding space.

TABLE IV
COMPARISON WITH OTHER TRIPLET VARIANTS. RANK-1 ACCURACY (%)

AND MAP (%) ON SYSU-MM01 DATASET ARE REPORTED.

All Search Indoor Search
Strategy r = 1 mAP r = 1 mAP
Baseline 48.23 46.18 51.93 60.42
Triplet 51.33 49.32 56.82 63.18
Triplet(Hard) [36] 53.32 51.78 58.43 64.32
Ours 54.99 53.26 60.01 67.44

are located in two different areas. With our proposed HAT
method, the features of each identity from three modalities
are concentrated in the learned embedding space.

Evaluation of Different Retrieval Strategies. We also
evaluate different retrieval strategies, as shown in Table III.
By default, the single-channel grayscale images formulate the
query set. For the gallery images, we test the performance with
RGB, grayscale images and their combination. We observe
that the combination of RGB and grayscale does not improve
the performance. The main reason is that the proposed HAT
already learns the modality invariant features. Meanwhile, it
also demonstrates the importance of the color information for
visible-infrared person re-identification.

Retrieved Examples. We also plot some retrieved results
on SYSU-MM01 dataset, including both visible-infrared and
infrared to visible query settings. The retrieved results of
10 randomly selected query examples with the calculated
cosine similarity score are shown in Fig. 11. The results
demonstrate that HAT retrieve good results when the person
appearance preserves rich structure cues (e.g., bags or stripes).
Interestingly, some person images are even difficult for human,
but the proposed method can still retrieve the correct results.

Comparison with Other Triplet Variants. We now evalu-
ate the different triplet variants, as shown in IV. The baseline
represents the tri-modal learning with HHI loss. Consistent
improvements can be obtained by integrating with the triplet
loss, which provides the relative distance optimization. Com-
pared to the triplet loss with hard mining [36], the proposed
solution achieves higher performance by explicitly optimizing
the cross-modality relationships in different views.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 27,2020 at 08:58:48 UTC from IEEE Xplore.  Restrictions apply. 



1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3001665, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

0.416 0.349 0.341 0.311 0.272 0.258 0.258 0.253 0.240 0.232

0.396 0.374 0.358 0.340 0.315 0.304 0.299 0.296 0.291 0.279

0.370 0.326 0.317 0.313 0.219 0.217 0.203 0.199 0.190 0.190

0.370 0.326 0.322 0.292 0.284 0.280 0.252 0.247 0.245 0.239

0.459 0.441 0.347 0.335 0.303 0.275 0.264 0.261 0.256 0.251

(a) Infrared to Visible.
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Fig. 11. Ten randomly selected query examples and their top-ten retrieved results on the SYSU-MM01 dataset, including two different query
settings, visible to infrared and infrared to visible. Corrected retrieved samples are in green boxes and wrong results are in red boxes. Cosine
similarity score is reported for each image pair (best viewed in color.)

TABLE V
COMPARISON WITH THE STATE-OF-THE-ARTS ON SYSU-MM01 DATASET. RANK AT r ACCURACY (%) AND MAP (%) ARE REPORTED.

Settings All Search Indoor Search
Method Venue Type r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP
One-stream [10] ICCV17 (a) 12.04 49.68 66.74 13.67 16.94 63.55 82.10 22.95
Two-stream [10] ICCV17 (a) 11.65 47.99 65.50 12.85 15.60 61.18 81.02 21.49
Zero-Pad [10] ICCV17 (a) 14.80 54.12 71.33 15.95 20.58 68.38 85.79 26.92
TONE [42] AAAI18 (b) 12.52 50.72 68.60 14.42 20.82 68.86 84.46 26.38
HCML [42] AAAI18 (b) 14.32 53.16 69.17 16.16 24.52 73.25 86.73 30.08
cmGAN [15] IJCAI18 (b) 26.97 67.51 80.56 31.49 31.63 77.23 89.18 42.19
eBDTR [14] TIFS19 (b) 27.82 67.34 81.34 28.42 32.46 77.42 89.62 42.46
HSME [17] AAAI19 (b) 20.68 32.74 77.95 23.12 - - - -
D2RL [12] CVPR19 (c) 28.9 70.6 82.4 29.2 - - - -
MAC [18] MM19 (b) 33.26 79.04 90.09 36.22 36.43 62.36 71.63 37.03
MSR [16] TIP19 (b) 37.35 83.40 93.34 38.11 39.64 89.29 97.66 50.88
AlignGAN [13] ICCV19 (c) 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3
HPILN [67] arXiv19 (b) 41.36 84.78 94.31 42.95 45.77 91.82 98.46 56.52
LZM [68] arXiv19 (b) 45.00 89.06 - 45.94 49.66 92.47 - 59.81
HAT (Ours) - (d) 55.29 92.14 97.36 53.89 62.10 95.75 99.20 69.37

D. Comparison with State-of-the-Arts

This section conducts the comparison with the state-of-the-
art VI-ReID methods, including eBDTR [14], HSME [17],
D2RL [12], MAC [18], MSR [16] and AlignGAN [13].
These methods are published in recent two years. AlignGAN
[13], published in ICCV 2019, achieves the state-of-the-art
performance by aligning the cross-modality representation in
both the feature level and pixel level with GAN generated
images. In addition, some arXiv papers are also included for
comparison, including EDFL [69], HPILN [67] and LZM [68].
We also mark the method types (a, b, c and d) according to
the four different learning solutions in Fig. 2. The results on
two datasets are shown in Tables V and VI.

Results on two datsets demonstrate that the proposed
method outperforms the current state-of-the-art by a large
margin. We set a new baseline for this task, achieving
55.29%/53.89% rank-1 accuracy/mAP on the challenging

SYSU-MM01 dataset. Except for the type “a” solution in early
years, we observe that RGB-Grayscale (type “b”) and GAN-
generated (type “c”) are two most popular approaches, but the
former type ignores the image level discrepancy and the latter
type introduces unavoidable noise in the image generation
process. Compared to AlignGAN [13], our method achieves
much higher accuracy on both datasets, and doesn’t need the
complicated cross-modality image generation. In contrast, the
homogeneously augmented grayscale images in our method
can be efficiently generated with the linear accumulation of
three RGB channels. In addition, our method does not need
the adversarial training [12], [13], [15], which is hard to train.
Moreover, the single-stream network also contains much less
parameters compared to the two-stream network methods [14],
[18], which is more suitable for applications with limited data.
This experiment further verifies the advantage of our proposed
type “d” solution.
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ARTS ON REGDB DATASET. RANK

AT r ACCURACY (%) AND MAP (%) ARE REPORTED.

Method r = 1 r = 10 r = 20 mAP
Visible to Thermal
HCML [42] 24.44 47.53 56.78 20.08
Zero-Pad [10] 17.75 34.21 44.35 18.90
eBDTR [14] 34.62 58.96 68.72 33.46
HSME [17] 50.85 73.36 81.66 47.00
D2RL [12] 43.4 66.1 76.3 44.1
MAC [18] 36.43 62.36 71.63 37.03
MSR [16] 48.43 70.32 79.95 48.67
EDFL [69] 52.58 72.10 81.47 52.98
AlignGAN [13] 57.9 - - 53.6
HAT (Ours) 71.83 87.16 92.16 67.56

Thermal to Visible
HCML [42] 21.70 45.02 55.58 22.24
Zero-Pad [10] 16.63 34.68 44.25 17.82
eBDTR [14] 34.21 58.74 68.64 32.49
HSME [17] 50.15 72.40 81.07 46.16
MAC [18] 36.20 61.68 70.99 36.63
EDFL [69] 51.89 72.09 81.04 52.13
AlignGAN [13] 56.3 - - 53.4
HAT (Ours) 70.02 86.45 91.61 66.30

The experiment on RegDB dataset (Table VI) demon-
strates that HAT achieves the best performance in both query
settings, usually by a large margin, achieving rank-1/mAP
71.83%/67.56% for the visible to thermal query setting. This
experiment suggests that HAT can learn better cross-modality
sharing feature representations by leveraging the grayscale
images. The parameter-sharing one-stream network could well
capture the relationship across three modalities to learn multi-
modality sharing feature representations.

V. CONCLUSIONS

This paper presents a homogeneously augmented tri-modal
(HAT) learning for cross-modality person re-identification.
With the augmented grayscale images, we propose a ho-
mogeneous and heterogeneous identification loss to learn
a modality sharing classifier for three modalities, training
with a parameter sharing one-stream network. To mine the
structure information between the 3-channel color image and
the single-channel grayscale image, we design a homogeneous
invariant regularizer. Furthermore, we introduce a weighted tri-
directional ranking loss to optimize the relative distance across
cross-modality positive and negative triplets. This strategy
incorporates with an informative triplet mining scheme, ex-
plicitly optimizing the cross-modality relationships in different
views. Integrated with a cross-modality positive pair invariant
regularizer, the cross-modality re-identification performance is
further improved. Extensive experiments demonstrate that the
proposed method significantly outperforms the current state-
of-the-art, on both visible-infrared and visible-thermal person
re-identification tasks.
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