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Monitoring Top- £ Query in Wireless Sensor Networks
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Abstract
Monitoring top+4 query is important to many wireless Query Sensor Updatey

sensor applications. This paper exploits the semantics of 4 « - A .

top-k query and proposes a novel energy-efficient monitor- Result Fi'tffp Lrlgtg:tes

ing approach, called~ILA. The basic idea is to install a

filter at each sensor node to suppress unnecessary sensor

User Base Station Wireless Sensor Network

updates. The correctness of the topesult is ensured if
all sensor nodes perform updates according to their filters. Figure 1. The System Architecture

We propose detailed algorithms for filter setting and query

reevaluation with the objective of reducing network traffic [Environmental Monitoring] Consider an environment-
and prolonging network lifetime. We also extend the algo- monitoring sensor network. A tapquery is issued to find
rithms to two variants of tog-query, i.e., order-insensitive ~ out the nodes and their corresponding areas with the high-
and approximate tog- monitoring. The performance of est pollution indexes for the purpose of pollution control o
the proposed FILA approach is extensively evaluated usingresearch study.

both synthetic and real traces. The results show that FILA
outperforms the existing TAG-based approach by an order
of magnitude under various network configurations.

[Network Management] Power supply is critical for the
operation of a wireless sensor network. Thus, akapsery

may be issued to continuously monitor the sensor nodes
with the lowest residual energy so that these sensor nodes
) can be instructed to adapt themselves (e.g., reducing sam-
1 Introduction pling rates) to extend network lifetime.

Owing to the rapid advances in sensing and wire- How to energy-efficiently answer topgueries is a great
less communication technologies, wireless sensor neswvork challenge to wireless sensor networks. The sensor nodes
have been available for use in a wide rangmefitusensing ~ usually operate in an unattended manner and are battery
applications, such as habitat monitoring, wild-fire preven powered; replacing the batteries is not only costly but also
tion, and environmental monitoring [23]. A wireless sensor impossible in many situations (e.g., in a hard-to-reachjare
network typically consists of a base station and a group of If a certain portion of the nodes run out of their power and
sensor nodes (see Figure 1). The base station serves asl@se their coverage, the whole network will be down. Thus,
gateway for the sensor network to exchange data with ex-in addition to reducing network traffic, a distinguished re-
ternal users. The sensor nodes, on the other hand, are requirement for wireless sensor networks is to balance the en-
sponsible for sensing and collecting data from their local €rgy consumption at the sensor nodes to prolong network
environments. They are also capable of processing sensedifetime [14, 30].
data and communicating with their neighbors and the base A basic implementation of monitoring top-query
station. would be to use a centralized approach where all sensor

Monitoring of aggregate functions is important to many readings are collected by the base station, which then com-
sensor applications and has drawn a lot of research attenputes the tope result set. In order to reduce network traf-
tion [6, 7, 16, 24, 25]. Among those aggregates, a/op- fic for data collection, ain-network data aggregatiotech-
guery continuously retrieves the setiofensor nodes with  nique, known aFAG, has been proposed [16]. Specifically,
the highest (or lowest) readings. For example: a routing tree rooted at the base station is first established



and the data is then aggregated and collected along the way

Base Station Base Station

to the base station through the routing tree. Consider a sim- @ probe node C
ple example shown in Figure 2a, where sensor notes, 1 35 i 35 @[ 4g
and C form a routing tree. The readings of these sensor [#2 #2 @82
nodes at three successive sampling instances are shown |n#3 @ [20, 39)
the tables of Figure 2a. Suppose we are monitoring atop-1 43 / N\ %Yy /7 N
query. Employing TAG, at each sampling instance, nodes / \- @-/ X@ L
B andC send their current readings to the parent (i.e., node [4]
A), which aggregates the data received with its own read- [39.47) . @ [47.80)
ing and sends the highest (i.e., the readings from ridde #1 43 #1 51
this example)_to the base station. The top-1 result is alwa_ys zg jg zg gg zg jg ig gg
nodeC, but nine update messages (three at each sampling

(@) TAG (b) FILA

instance) are used. As such, this approach incurs unneces-
sary updates in the network and, hence, is not energy effi-
cient.

In this paper, we exploit the semantics of tbguery
and propose a novelfidr based monitoring approach called
FILA. The basic idea is to install a filter at each sensor node
to suppress unnecessary sensor updates. The base station
also keeps a copy of the filter setting to maintaiview of
each node’s reading. A sensor node reports the reading up-
date to the base station only when it passes the filter. The
correctness of the top+esult is ensured if all sensor nodes
perform updates according to their filters. Figure 2b shows
an example, where the base station has collected the initial
sensor readings and installed three filters [20, 39), [38, 47
and [47, 80) at sensor nodds B, andC, respectively. At
sampling instances 1 and 2, no updates are reported since all
updates are filtered out by the nodes’ respective filters. At
instance 3, the updated reading of ndel€i.e., 48) passes
its filter [39, 47). Hence, nodB sends the reading 48 to the
base station via nodé (step). Since 48 lies in the filter-
ing window of nodeC (i.e., [47, 80)), the top-1 result be-
comes undecided as either nd@er C can have the highest
reading. In this case, we probe noddor its current read-
ing to resolve the ambiguity (stefpsand). Thus, a total
of four update messages and one probe message is incurred
in this approach. Compared with the aforementioned TAG-

based aggregation approach, five update messages are saved

at the cost of one probe message. Obviously, this approach
achieves a better performance than the TAG approach.

Yet, in order to make FILA to work efficiently, two fun-
damental issues arising at the base station server have to be
addressed:

Figure 2. An Example of Top- & Monitoring

e Upon receiving an update from a sensor node, how to
reevaluate the tog-result and how to update the af-
fected filters?

We answer in this paper the above two questions with the

objective of reducing network traffic and prolonging net-
work lifetime. In particular, this paper makes the follogin
contrlbutlons

e To the best of our knowledge, this is the first effort ded-
icated to investigating the problem of monitoring top-
k query in wireless sensor networks. Different from
monitoring topk query in traditional distributed net-
works, our main objective is to extend network life-
time.

e We propose a novel approach called FILA for moni-
toring top4 query (and its variants) in wireless sen-
sor networks. We examine in detail the critical issues
of filter setting and query reevaluation under this ap-
proach. Two filter setting schemes (i.aniform and
skewedl and two filter updating strategies (i.eager
andlazy) are proposed.

e Extensive experiments are conducted to evaluate the
performance of the proposed FILA approach using
both synthetic and real traces. The results provide a
number of insightful observations and show that FILA
outperforms TAG by an order of magnitude under var-
ious network configurations.

The remainder of this paper proceeds as follows. Section

e How to set the filter for each sensor node in a coordi- 2 reviews the related work on processing fopueries in
nated manner such that the tbpesult setis correctly  distributed environments. Section 3 presents our proposed
returned if all nodes perform updates according to their approach, FILA, and discusses how to set the filter for each
filters? The filter setting is critical to the performance sensor node and how to reevaluate the koguery result
of FILA. In the above example, if nodds andC' have  when updates occur. We extend FILA to handle approxi-
the filters set to [39, 50) and [50, 80), respectively, N0 mate and order-insensitive tdpgueries in Section 4. The
updates need to be reported for all three samplings.  performance of the FILA approach is evaluated in Section

1For simplicity, the overhead for initial data collection diitér setting S.

Finally, we conclude this paper and present some future

is not shown here, but counted in our experiments. research plans in Section 6.



2 Related Work network aggregation techniques [6, 25] can be applied to
reduce network traffic. Taking a different angle, this pa-
per exploits the semantics of tdpguery and proposes a
new method to reduce network traffic and prolong network
lifetime. Data storage and query processing for one-shot
queries in sensor networks have also been studied in the
literature (e.g., [3, 8, 10, 15, 17, 29]), which focused on ap
plications different from this paper.

Evaluating topk queries in distributed networks has
been extensively studied in the literature (e.g., [4, 5,19, 1
27, 31]). A typical assumption is that the ranking score of
an object should be aggregated from a number of attribute
values which are stored at distributed data sources (feymal
calledvertically partitioned datase}s The best known al-
gorithm is the threshold algorithm (TA) [9, 11, 19]. While o
the TA algorithm requires data sources to support sorted ac3  Top-k Monitoring
cess, Bruncet al. [4] proposed the Upper algorithm for
sources that support random access only. Cao and Wang We first describe the system model and give a formal
[5] developed a three-phase uniform threshold (TPUT) al- problem definition in Section 3.1. Then, Section 3.2 pro-
gorithm that significantly reduces remote access in largevides an overview of the proposed FILA monitoring ap-
networks. In [27], Theobal@t al. further extended the proach. Finally, the query reevaluation and filter settig i
TA algorithm by introducing a family of approximate vari- sues are discussed in Sections 3.3 and 3.4, respectively.
ables based on probabilistic arguments to reduce runtime
costs. Michelet al. [18] proposed a flexible framework 3.1  System Model and Problem Definition
for distributed topk algorithms that allows for trading-off
efficiency versus result quality and bandwidth savings ver-  \we consider a wireless sensor network as depicted in
sus number of communication phases. More recentlyktop- Figure 1. It is assumed that the base station has continu-
processing algorithms have been developed for peer-to-peeq s power supply and its radio strength is strong enough to
networks [2] and private databases [28]._However, all thesecqver all sensor nodes. In other words, a probe message
studies have focused ame-shotop-k queries, whereas we  praqdcast by the base station can reach all sensor nodes in
are interested in monitoring continuous toprueries inthis 5 gingle hop. In contrast, the sensor nodes are powered
paper. As pointed out in [1], while continuous monitor- py pattery. Their radio coverage is constrained to a local

ing could be simulated by repeatedly executing a one-shotarea. When the base station is beyond a sensor node’s radio
guery, many queries would be executed in vain if the answercoverage, an underlying routing infrastructure (e.g., &TA
remains unchanged, hence being cost inefficient. Moreover e [16]) is used to route data to the base station.

it is difficult to determine the optimal frequency of repehte Each sensor nodé measures the local physical phe-

query execution. _ _ nomenonw; (e.g., pollution index, temperature, or residual
Babcock and Olston [1] performed a pioneering researchenergy, etc.) at a fixed sampling rate. Without loss of gener-

on monitoring continuous top-queries over distributed  3ity, we consider tog monitoring query that continuously

data sources, which is the most similar work to this paper. retrieves the set of sensor nod@swith the highest read-
Their idea is to add an adjustment factor to each source tojngs; i.e.,

ensure that the local topdist aligns to the global tog:list
maintained at the coordinator. However, as their work tar- R = {ny,ng,--- ,nx | Vn; < nj,vn, > vp,3V0 ¢ Rovp < vy }
gets on vertically partitioned datasets, their proposgd-al
rithm is not effective to our scenario where data objects are The monitoring result is maintained by the base station and
not partitioned. More specifically, their algorithm maina ~ disseminated to the user. To produce continuous query re-
an invariant that the adjustment factors allocated to diffe  sults, the proposed monitoring approach controls when and
ent sources for each data object sum to zero. This mean$1ow to collect sensor reading updates to the base station.
each object is allocated with an adjustment factor of zero  For simplicity, we assume the sensor updates arrive at
when generalizing it to non-partitioned data, which is in- the base station sequentially. That is, no sensor updates
deed similar to the basic approach discussed the Introductake place during the processing of another sensor update.
tion. Furthermore, their work is limited to order-inseinait  Although this is not a prerequisite for the proposed FILA
top-k£ monitoring; the more challenging order-sensitive top- approach, this assumption simplifies our discussion.
k monitoring was not studied.

Monitoring of aggregation functions (such as average, 3.2 FILA Overview
sum, count, min, and max) in sensor networks has been in-
vestigated in the past few years. However, the main focus Initially, the base station collects the readings from all
has been on how to establish the routing architecture forsensors. It then sorts the sensor readings and obtains the
continuous data collection [7, 12, 13, 16, 24] such that in- initial top-k result set. Next, the base station computes a



filter (represented by a window of;[ u;)) for each sensor  readings is too costly to be desirable, such approximate in-
nodei and sends it to the node for installation. At the next formation is useful yet sufficient to many applications. We
sensor sampling instance, if the new reading of sensor nodawill measure the level of approximation using trace-driven
1 is within [l;, u;), no update to the base station is heeded. simulation in Section 5.
Otherwise, if the new reading goes beyond the filtering win-
dow and passes the filter, meaning the toprder mightbe 3.3 Query Reevaluation
violated, an update is sent to the base station. The base
station will then reevaluate the tdpresult and adjust the We now discuss the query reevaluation algorithm. Un-
filter setting(s) for some sensor node(s) if necessary. Theder the proposed FILA monitoring approach, a sensor node
query reevaluation algorithm will be discussed in detail in sends an update to the base station only when its reading
Section 3.3. passes the filter. In this case, if the new reading overlaps

As can be seen, the purpose of using filters is to filter out with the filtering window of any other sensor node, the top-
some local sensor updates and hence suppressing the traffic result becomes undecided. Hence, the base station will
in the network. The correctness of the tbpesult must be  have to probe the corresponding sensor(s) to reevaluate the
guaranteed provided that all sensor nodes perform updatesop-k result. Let's call the lower bound of the tdgih node’s
according to their filters. Thus, the filter settings have to filter thecritical bound e.g.,/5 in Figure 3. We discuss the
be carefully planned in a coordinated manner. Denote thequery reevaluation algorithm for three scenarios: 1) the up
current reading of nodéeby v;. Without loss of generality,  date is originated from a top-node and jumps over the
we number the sensor nodes in decreasing order of theircritical bound (see Figure 4a); 2) the update is originated
sensor readings, i.eu; > vy > --- > vy, WhereN is the from a non-topk node and jumps over the critical bound
number of sensor nodes under monitoring. Intuitively, to (see Figure 5a); 3) the update is from a fopede but does
maintain the monitoring correctness, the filters assigned t not jump over the critical bound (see Figure 6a). For the
the nodes in the top-result set should cover their current first two scenarios, the node may leave or join the koget
readings but not overlap with each other. On the other hand respectively; for the third scenario, two tépnodes may
the nodes in the non-top-set could share the same filter need to swap their positions in the téfset.
setting. Thus, we consider the filter settings only for the
top-k+1 nodes. Aeasiblefilter setting scheme, represented 331  Scenario 1
as{[l;,u;) | i =1, .-,k + 1}, must satisfy the following
conditions: -

descending order

Uy > V1;
Vir1 < uipr <l <y, (1<i<k); 1) % Y% ¥ k ¥
lkr1 < on.
B A
Il Us=Ugsly usl, u= I, Uy
descending order (a) Updating ofvo
\/
}—o—o—o—'—o °
=1, U=ugzlg usl, us=l, u, =1, it u3=‘I2 uz\: , U‘l
Figure 3. Filter Settings for Top-3 Monitoring (b) Sensor readings after probing andvs
Figure 3 shows a feasible filter setting for top-3 monitor- % Va Vs Yz‘ V2 | Vi |
ing, where nodes 4 and 5 share a filter setting and is ‘ 14 ‘ 1 |
set equal td; for 1 < ¢ < 3 in order to maximize the filter- I5=I, u=u=l;  ugsl, u=13 Uy
partitioning of the data spaceA formal discussion on filter _ -
setting is to be presented in Section 3.4. Figure 4. A Top- k Node Jumps over Critical

We here make a remark before we go further into the ~ Bound
details of the FILA approach. The FILA approach makes
use of filters to keep track of the ordered list of tbgen- As shown in Figure 4a, the new reading of the origi-
sor nodes. A side product is that FILA also returns for nal top-2nd node falls in the filtering window of non-top-
each node an approximate reading bounded by a filtering3 nodes (i.e., [, u4)). To determine which among nodes
window. While dynamically maintaining the exact sensor 2, 4, and 5 is the new top-3rd node, we have to probe the



non-top-3 nodes 4 and 5 to update their current readings. follows the query reevaluation algorithm discussed in

Assuming their new reading$, andvs, are as illustrated this section to recompute the tépresult and update

in Figure 4b; the node 4 is the new top-3rd node. For clar- the filter settings.

ity of presentation, we re-number them«gsthroughvf as

shown in Figure 4c. Whether the eager or lazy approach would perform bet-

Note that the probing cost would be high for a small ter depends on the reading changing pattern. Consider two
value ofk given a large number of sensor nodes. By tak- extreme cases. If the next update jumps out of the new filter
ing advantage of the architecture of wireless sensor n&wor [I;,;), the lazy approach can help save a filter updating
(i.e., hierarchical routing and message broadcast), two en message. Otherwise if the next update is withina;),
hancements are proposed to reduce the probing cost. Firsit does not help save any filter updating message but in-
when a sensor’s new reading (denotedypasses the fil-  curs an additional data update message. We will investigate
ter, it propagates up the routing tree towards the base statheir performance using trace-driven simulation (see Sec-
tion. If an intermediate node is a non-téprode and its  tion 5.2).
current reading is higher thari, the reading of this inter- There is a subtle point to note here. For a sensor node
mediate node will be propagated to the base station insteadvhich has not updated with the base station, its new filter
since only this node can possibly be the #dh-node. Sec-  overlaps with the current one (e.g., the filters éérandvs
ond, instead of probing all non-tdpnodes, we include the in Figure 4). It is possible that the actual sensor reading
newly updated sensor reading (denoted:lyin the probe  is beyond the new filter (e.g., at poinf). Nevertheless,
message and, thus, only the sensor nodes with current readn this case, the sensor node does not need to immediately
ings higher tham”” have a chance to be the téfh node and  report an update after the new filter is received. This is be-
will respond the probe. In the above example, only node 4 cause the order of;, andvj is still preserved as the cur-
will report its current reading to the base station in resgon  rent update is originated from, and hencey, (originally
to the probe. v3) must lie in 5, u3) andv} (originally vy) lie in [ly, ug).

In order to adjust the filter settings, we propose to re- However, if the next sampled reading is beyond the new
compute the settings for all nodes based on their readingdilter, an update will be reported. This point is valid to all
stored at the base station (see Section 3.4 for how to com+three scenarios.
pute filter settings). Consider a node We discuss two
approaches for filter updating: 3.3.2 Scenario 2

e Eager Filter Updating:  With this eager approach,

B

if a new filtering window [}, ) is different from the descending order
current one [, u;), the new filter [}, «}) is immedi-
ately sent to the node to repladg ;). In the example % Y ¥ ¥ ¥

shown in Figure 4, all nodes will be updated with their

new filters. }—Q—Q—I/\—. } ° } ° }

e Lazy Filter Updating:  With the lazy approach, if ‘s Uil .UTIZ vl =
a new filtering window [}, »}) is wider than the cur- (&) Updating ot
rent one [;, u;), i.e., [l;,u;) C [l},u}) (e.g., the filters v, & A v v
for v; andv] in Figure 4), we delay the filter updat- | PS | PY |
ing until when the filter is violated. During this period, | | |
the sensor node will continue to use the current filter

[1;,u;) to filter out sensor updates. It is easy to verify

I, U=Uglg ugsl, u= I, u,

(b) Sensor readings after probing

that the validity of the topk order is still guaranteed ¥ooou % | V2 | Vi |
with such aconservativdilter setting. The advantage [ L 0—|—0 T * |
of this approach is that we can avoid unnecessary fil- 157l UsUgsly usl, o=y U
ter updates. On the other hand, the narrower filtering (c) Updated order and new filter settings

window may make the filter violation (i.e., updating
with the base station) to occur earlier. At the next up-
date, the new reading; must be out of [;, u;) since

it passes the filter. I8, is within [}, u}), this filtering
window will then be passed to the sensor node, which  Now suppose that the update is originated from a non-
is all the base station needs to do. Otherwisés out top-k node and jumps over the critical bound (see Fig-

of [1},u}), it will be treated as a normal update, which ure 5a). In this case, the updating node will have a chance

)

Figure 5. A Non-top- k£ Node Jumps over Criti-
cal Bound



to join the topk set. Similar to Scenario 1, probe is needed
to resolve the ambiguity. However, we only need to probe
the node whose filtering window covers the updated read-
ing (i.e., node 3 in Figure 5a). In addition, if the node to be

probed happens to be on the routing path from the updating 2:

sensor node to the base station, its reading will be piggy-

backed during the update propagation. Thus, the probe is 3:
not needed. In any case, as a next step, the base station

determines the new top-order and re-computes the filter-
ing window for each affected node (i.e., nodes 3, 4, and 5),
as illustrated in Figure 5c¢. The filter updates will be per-
formed according to the approach employed. If the eager
approach is used, the new filters for nodes 3 through 5 will
be propagated right away; if the lazy approach is employed,
the propagation of filters for nodes 4 and 5 will be delayed
as discussed in the last subsection.

3.3.3 Scenario 3

B

descending order

v Y Y Y ¥
L el o |
Iy, U=Ugzlg ugz‘l2 u2‘= I, u‘l
(a) Updating ofvs
% Y, v 44
L . | I T
‘I5:I4 U=Uglg usz‘l2 u, =1y u;
(b) Sensor readings after probing
¥ v % o¥ou
| o R |
| 51y Us= '-'Ifls ugl,  uFl Uy

(c) Updated order and new filter settings

Figure 6. Update within Top- & Set

Finally, we consider the case in which a thprode up-

Algorithm 1 Query Reevaluation Algorithm (Performed at
Base Station)
1: while receiving a sensor-initiated update from a sensor
nodedo
if the update is originated from a tdpnode and
jumps over the critical bountthen
probe all non-tops nodes that have a reading
higher than the updated value

4. else

5: probe the node whose filtering window covers the
updated value

6: endif

7:  re-compute the top-set

8: adjust the filter settings if necessary

9: end while

tion, we first discuss the settings for all nodes except the
upper bound of the top-1st's filter (i.eu;) and the lower
bound of non-topt node’s filter (i.e.lx+1). The intuitive
way is to set the filter bound at the midpoint of two sensor
readings, i.e.:
Vi + Vit1
5 @

Obviously, this is a feasible filter setting satisfying (1),
and we call ituniformfilter setting. It is simple and favor-
able in the case where the sensor readings from all sensor
nodes follow a similar changing pattern. On the other hand,
the uniform setting fails to consider the changing patterns
of sensor readings. If the reading changing patterns dif-
fer dramatically among the sensor nodes, the uniform set-
ting might result in unbalanced energy consumption. Next,
we develop askewedilter setting algorithm by taking into
account the reading changing pattern. Our objective is to
balance the energy consumption between the “neighboring”
nodes (with close sensor readings).

Suppose the average time for the reading of notke
go beyondj is known asf;(4). Thus, the node update rate
(with the base station) is given % In order to balance

)

dates its reading but the new reading does not go beyondhe energy consumption of nodés 1 andi, we should

the critical bound (see Figure 6a). The handling of this case
is similar to that for Scenario 2 except that here only the
top-k list might be re-ordered while in Scenario 2 the mem-
bership of topk set might be changed as well. Figure 6b
shows an example whefg takes the top-1st position after
updating. Algorithm 1 outlines the algorithm that the base
station uses to handle sensor-initiated updates and teeval
ate topk query.

3.4 Filter Setting

As mentioned, another crucial issue in the FILA ap-

proach is the filter setting for each sensor node. In this sec-

choose propert;+; andl; such that their update rates are
equal: . .
fiv1(uipr —vigr)  filvi = 1) )

In practice, it is usually difficult to know in advance
how the sensor readings evolve dynamically and to estimate
fi(8). One approach is to use the historical sensor readings
to predictf;(5). However, this approach is costly as the base
station has to collect all changes of sensor readings (with
base station performing prediction) or periodically refre
the detailed functions from the sensor nodes (with sensor
node performing prediction). We propose a practical low-
cost approach by assuming the readings change follow a




well-known random walk model [12, 22, 29]. Under the 4.1 Order-Insensitive Top4 Monitoring
random walk model, the value changes in steps. At each
step, the value increases or decreases by an amouht of
Denote the inter-step interval By The average time for the
value to go beyond can be expressed as follows [29]:

The order-sensitive algorithm discussed in Section 3 is
also applicable to order-insensitive tépnonitoring. Nev-
ertheless, since we now do not care the exact order of sensor

5 readings in the top:-set, the updates within the tdpread-
f(o) = (3)2 -1, 4) ings do not have to be reported. Therefore, we only need to
set a critical bound between the témodes and the non-

We let every node measure the average delta chalhge, top-k nodes, as shown in Figure 7.
of their sensor readings at a fixed rate. When the sensor
node reports an update to the base station, it will piggyback descending order
the measured value @f. Let L be the time interval cho- \ v, v, Y, v
sen to measure the average delta change. Thery; the
function can be approximated by: I=l, UsUgzlsl=l UFUSU

Figure 7. Filter Settings for Order-Insensitive

2
)" L. ®) Top- k& Monitoring

Substituting (5) into (3), we obtain ) ) .
Only the updates jumping over the critical bound need

dit1 V2L = ( d; /L to be reported. When this happens, we will have to probe
o ‘ all the nodes in the topg-list or those in non-toge list,
depending on where the update is originated. The query
reevaluation algorithm is similar to what was discussed in
it — i1 it Section 3.3, and the two enhancements (Section 3.3.1) can
= . be used to reduce the probing cost.

Ui41 — Vit1 v; — 1

Solving this equation, we get:

V; — ll di
Lettingu; 1 = ;, we have 4.2  Approximate Top-k Monitoring
di 1
Uit1 =l = vip1 + ﬁtiﬂ - (vi = vig), We now consider approximate tgpmonitoring assum-
(1<i<k) ©) ing a certaindegree of approximatiors acceptable. An ap-

proximate topt query retrieves the sensor node with the
We now discuss the settings for the upper bound of the Nighestreading; such that/v; (j # i), v; < vi-+e, wheree

top-1st’s filter (i.e.,u;) and the lower bound of non-top- 'S the appr_ox_imatiqn degree. Int_uitively, if two sensordea
k node’s filter (i.e.,lx+1). Theoretically,u; can be set at Ngs are within a difference af either one can be taken as

+oo. However, in this case, the node will not trigger an the top-1 result. It is straightforward to extend this defini
update even if its reading has gone up remarkably. To adjust!on 1o & topk query.
the filter setting for such cases (hence giving other nodes a

chance to increase their filters’ upper bounds and reducing Ve €= ¥
update rates), we sat to 2 - vy, i.e., twice of its current — e —
readingv;. Similarly, I, 1 is set to“, i.e., half of the
lowest sensor reading. i U

Figure 8. Filter Settings for Approximate Top-
4 Extensions % Monitoring

So far we have focused on order-sensitive exactop- A feasiblefilter setting scheme for approximate tép-
monitoring. However, the ordering information may not be monitoring, represented g§l;,u;) | i = 1,--- ,k + 1}
’ 1y Y - ) ? ’

needed in the top-set for all applications. Moreover, a  gnouId satisfy the following conditions:

certain degree of data approximation may be tolerable by

some applications to trade for energy efficiency. Motivated

by these observations, in this section, we extend FILA t0 (¢, > vq;

handle order-insensitive topmonitoring and approximate Vie1 < Uiy, Uir1 <Li+e ;i <wvy (1<i<k);

top-k£ monitoring. lk+1 < vp.



This means that it allows an overlap obetween two
neighboring filters (see Figure 8 for an illustration). Beft
e = 0 degenerates approximate top-k monitoring to exact
top-k monitoring.

The filter settings should be revised accordingly. Under
theuniformfilter setting, for each < i < k,

_ vitviti1te,
ui+1 - 2 )
1. = ViFViy1—€
i = p) .

Under theskewedilter setting, for each < < k,

Uiyl = Vi1 + T J;;;l (Vi — vip1 +€);
l; Vig1 + €).

= v — g - (i
5 Performance Evaluation
5.1 Simulation Setup

We have developed a simulator based on ns-2 (version
2.26) [20] and NRL's sensor network extension [21] to eval-
uate the proposed FILA approach. The simulator includes
the detailed models of the MAC and physical layers for
wireless sensor networks. The sensor nodes can operate in
one of three modes: sending message, receiving message,
and sleeping. These modes differ in energy consumption.
The energy consumption for sending a message is deter-
mined by a cost functions - (o + 3 - d9), wheres is the
message sizey is a distance-independent terfhis the co-
efficient for a distance-dependent terris the component
for the distance-dependent term, athds the distance of
message transmission. We set50 nJ/b,3=100 pJ/b/m,
andg¢=2 in the simulation. The energy consumption for re-
ceiving a message is given by -, wherey is set at 50 nJ/b.

The power consumption in sleeping mode is set at 0.016
mW. For simplicity, the energy overhead of mode switching

is ignored. We set the size of a data update message and the
size of a filter update message both at 8 bytes, and the size
of a probe message at 4 bytes. The initial energy budget at
each sensor node was set at 0.01 Joule.

We simulated a single-hop network of 10 sensor nodes
and a multi-hop network of 120 sensor nodes. Their layouts
are shown in Figures 9a and 9b. The sensor readings are
simulated using both synthetic and real traces.

e Synthetic traces (RAN) The readings of each sen-

O0—=0—-=0—-=0—-0—=0<—0<=—0<=—0=—0=—0

N tﬁ)a station

O0—0—0—0—0 <—0O<=—0<—0=—"0

O—0—0—=0 g
g b
O%/{i g g g o O=—0
ALTITITITN

(b) Multi-hop network

O0<—0<—0=—0

g —0=—0

SN

O—0—0—

Figure 9. Network Layouts

e Realtraces (SEA/SUB)The real traces are provided

by the Tropical Atmosphere Ocean (TAO) project [26],

in which real-time oceanographic and meteorological
data are collected from a wide range of monitoring
sites for improved detection, understanding, and pre-
diction of El Nino and La Nina. We selected the traces
during 1 Jan. 199931 Dec. 2000 from a subset of the
sites and mapped them to the sensor nodes in our net-
works at random. We used the sea surface temperature
(SEA) and sea subsurface temperature (SUB) data in
our experiments. The data of different sites are simi-
lar in magnitude. Figure 10 shows some representative
segments of the SEA and SUB data traces. In general,
the SEA data fluctuate more widely than the SUB data.
We modified the sensor sampling interval to simulate
two different workloads. In the homogeneous (HM)
setting, the sampling interval for all sensors is set at 1
time unit; in the heterogeneous (HT) setting, the sam-
pling interval for half sensors is set at 1 time unit and
that for the other half is set at 5 time units.

sor node change following a one-dimensional random  We used the real traces, SEA and SUB, for the single-
walk model [12, 22, 29]. Specifically, the reading up- hop network configuration (Figure 9a) and the synthetic

dates in regular steps with an inter-step duratioAt

trace, RAN, for the multi-hop network configuration (Fig-

each step, the reading changes by an amount (calledure 9b). The default values df are set at 3 and 10 for

step sizgwhich is randomly assigned from a uniform
distribution over{—d, §], whered is the maximum step
size. We set at 10 time units and at 0.5-1.0 in the
simulation.

these two configurations, respectively. In the following, w
first compare the two filter updating strategies (i.e., eager
and lazy) with the proposed FILA approach. We then eval-
uate FILA (with two different filter setting schemes, i.e.,



This set of experiments compares the eager and lazy fil-
ter updating strategies (discussed in Section 3.3). The uni

2 30 o

§ e A form filter setting is employed. As shown in Figure 11a,
8 SuB these two approaches achieve a very similar network life-
g 21 SEA ] time for the SEA and SUB traces. Yet the lazy approach
g performs much better in terms of average energy consump-
§ 28| o 4 tion, as plotted in Figure 11b. The energy saving is about
£

o

e 25%-28%. Based on the discussions in Section 3.3.1, this
implies that most sensor reading changes have a magnitude

2 200 1000 1500 wider than the new filtering windows and the lazy approach
Time Unit helps save the filter update messages, which contributes to a
Figure 10. Sample Real Data Traces significant portion of the overall traffic (more than 40% for

the eager approach as observed in the experiments). There-
fore, the lazy approach is considered having a better dveral
performance than the eager approach. Similar performance
trends are obtained for the RAN data trace; the result is not
shown here due to space limitations. In the following ex-
periments, we employ the lazy as the default filter updating
strategy working with FILA.

uniform and skewed) against the TAG-based periodic ag-
gregation approach (or TAG for short, which was illustrated
in the Introduction). The following metrics are used in the

comparison:

e Network Lifetime: As in the previous work [14, 30],
the network lifetime is defined as the time duration be-
fore the first sensor node runs out of power. It serves
as the primary metric in the performance evaluation.

5.3 Performance Comparison against TAG

6000

e Average Energy Consumption It is defined as the
total amount of energy consumed in the network aver-
aged for all sensor nodes over time.

5000 +

4000
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3000 BFILA-U
OFILA-S

2000

Lifetime (Time Units)

5.2 Eager vs. Lazy Filter Updating
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3 22: Figure 12. Performance Comparison with TAG

R Bloy (Single-Hop, k=3)

3 15

s o In this section, we evaluate the performance of FILA
& o : , [ against TAG. We denote the FILA approach with uniform

SUB/HM SUB/HT SEA/HM SEA/HT

filter setting as-ILA-U and the FILA approach with skewed
filter setting aF~ILA-S.

Figure 12 shows the results for the SUB and SEA traces
Figure 11. Eager vs. Lazy Updating ( k=3) under the single-hop network configuration, whéris set

(b) Average energy consumption
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Hop)

k (Single- Figure 14. Performance Comparison with TAG

(RAN, Multi-Hop)

) ) _ are obtained for SUB / HM and SEA / HT. Again, FILA-U
at 3. Several observations are obtained. First, both FILA- 544 Fi| A-S significantly outperform TAG for all cases ex-
U and FILA-S improve the network lifetime over TAG by amined. For SEA / HM (Figure 13a), for a similar reason
an order of magnitude while achieving a much lower av- expjained in the last paragraph, FILA-U achieves a simi-
erage energy consumptloq. ThISIFESUH IS consistent acrossy, or slightly longer lifetime than FILA-S. For SUB / HT
all data traces examined, indicating the great performancerigyre 13b), it is observed that FILA-S improves the net-
advantage of our proposed approach. Second, when comyor |ifetime over FILA-U by 5%-18%, and in general, the
paring FILA-U and FILA-S, FILA-U slightly outperforms iy 5r0vement increases with increasihg
FILA-S for the homogeneous (HM) sampling scenario but e next examine the performance under the multi-hop
FILA-S gets a longer lifetime for the heterogeneous (HT) network configuration. To do so, ten sets of random traces
sampling scenario. This can be explained as follows. In thefo|owing the random walk model were generated for ten
HM scenario, all sensors have a similar reading changingsjmylation runs. Figure 14 plots the average results over
pattern such that the uniform filter setting performs good the ten runs. Similar to the single-hop configuration, FILA-
enough. However, as FILA-S incurs overhead in collecting (y and FILA-S gain a much better performance than TAG
changing patterns, its overall performance is slightlyseor iy terms of both network lifetime and average energy con-
than that of FILA-U. On the other hand, in the HT scenario, symption. It was observed that neither of them dominates
FILA-S takes into consideration the changing patterns andne other for all traces tested. On average, FILA-U performs

thus obtains a better performance. Third, we observed i”slightly better than FILA-S for a small value &f whereas
the experiments that the average size of topedes’ fil- FILA-S is better for a large value df

tering windows (except those for the top-1st node) is 0.26
degree Celsius. This confirms our argument in Section 3.25 4 Approximate Top-k Monitoring
that FILA not only returns the tog-result set, but also pro-
vides a tightly bounded approximation for each of the kop-

sensor readings. mate topk monitoring. We vary the approximation degree
Figure 13 shows the network lifetime as a functiorkof ¢ from 0.0 to 0.1 for SEA / HM and SEA / HT under the
for SEA / HM and SUB / HT; similar performance trends single network configuration and from 0.0 to 0.8 for RAN

This section investigates the performance of approxi-

10



8000 ‘ 2 times. Even under the multi-hop network configuration

7000 FILAY - E (Figure 15c), the network lifetime is improved by at least
7 6000 7 65% with the FILA approaches as the approximation de-
% 5000 - A i gree is increased from 0.0 to 0.8.
£ a000} ,& § . - o
g ool ] 5.5 Order-Insensitive Top+ Monitoring
% 2000 B
1000l | Finally, in this section, we evaluate the performance
oL : : : of order-insensitive tof- monitoring. Figure 16 shows
0.00 0.02 0.05 0.10 the results under the default system settings (keset at
Approximation Degree 3 and 10 for SEA / SUB and RAN, respectively). For
(2) SEA/HM, Single-hopk=3) order-insensitive tof- monitoring, only the critical bound
is maintained as the filter by all sensors; hence, the filter se
16000 " T ting does not have a very high impact on the performance.
14000 FULAY —ox T As a result, FILA-U and FILA-S perform similarly in most
g 12000 . cases. The network lifetime for SEA / HT is dramatically
g 10000 - T X T improved from order-sensitive monitoring. As observed in
£ 8000 T 1 the experiments, this is because the order-sensitive orenit
£ 000 - X R ing extends the network lifetime and the trace after an ex-
R S 7 tended time point becomes more stable than before. Hence,
2000 F , FILA makes use of the filters and runs a longer lifetime.
o L i i i
0.00 0.02 0.05 0.10
Approximation Degree 80000
(b) SEA/HT, Single-hopk=3) g
5 60000
12000 ‘ E 20000 ariau
ool ":__IILLK\SS ;g ] g OFILAS
0 20000
é sooor G- ’g,:;:,:_:,,‘Q::f»/’/“’é{:c 1 —
E 60007*'—//»— B D’SUB/HM SUB/HT SEA/HM SEA/HT‘ RAN
£
g 4oo0r ) Figure 16. Order-Insensitive Monitoring
2000 B
; ; ; ; ; 6 Conclusions
0 0.00 0.10 0.20 0.40 0.80
Approximation Degree This paper has performed a comprehensive study on
(c) RAN, Multi-hop (:=10) monitoring topk query in wireless sensor networks. Dif-
Figure 15. Approximate Top_ k Monitoring ferent from eXiSting Work fOCUSing on in—netWOI’k data ag'

gregation techniques, we exploited the semantics ofktop-

under the multi-hop network Configuration. The valueg of query and proposed a novel energy-efﬁcient monitoring ap-
are setat 3 and 10 for these two configurations, respectivelyproach, called FILA. We presented detailed algorithms to
As can be seen in Figure 15, FILA-U and FILA-S consis- address two critical issues under the FILA approach, i.e.,
tently outperforms TAG by an order of magnitude. Similar filter setting and query reevaluation. Two filter setting al-
to the observations made for exact tbpaonitoring, FILA-  gorithms (i.e., uniform and skewed) and two filter updating
S gets a similar or slightly worse performance than FILA-U strategies (i.e., eager and lazy) were proposed. We have als
for the homogeneous (HM) sampling scenario but performs extended the algorithms to two variants of toguery, i.e.,
better (with 10%-29% of improvement) for the heteroge- order-insensitive and approximate tbpronitoring.
neous (HT) scenario under the single-hop configuration. A series of simulation experiments has been conducted

Itis interesting to observe that for all traces, the network to evaluate the performance of the proposed FILA approach
lifetime can be noticeably extended with a small degree of based on both synthetic and real traces. The following re-
approximation allowed. For example, with an approxima- sults were obtained: 1) FILA consistently outperforms the
tion degree of 0.1 in Figures 15a and 15b, using FILA-U existing TAG-based approach by an order of magnitude un-
or FILA-S, the network lifetime is prolonged by more than der various network configurations; 2) FILA can also pro-
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vide a tightly bounded approximation for each of the top-
sensor readings, in addition to returning the fogesult set;
3) the lazy filter updating approach obtains a better overall

performance than the eager approach for the traces exam{14]

ined; 4) the uniform filter setting performs slightly better
than the skewed filter setting for the homogeneous sam-
pling scenario, whereas the skewed filter setting is better f
the heterogeneous sampling scenarios; 5) their relatie pe
formance under the multi-hop network configuration varies
with the application scenarios, depending on the factors
such as value of, approximation degree, and order insensi-

tiveness; 6) using FILA, a small degree of approximation in [17]

the top+4 order improves the network lifetime substantially.
As for future work, we plan to extend the proposed mon-

itoring approach to other aggregate functions such as kNN, [18]

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed

(18]

diffusion: A scalable and robust communication paradigm
for sensor networks. IRroc. ACM MobiComAugust 2000.

I. Kang and R. Poovendran. Maximizing network lifetime
of broadcast over wireless stationary ad hoc networks. To
appear il\CM/Kluwer J. Mobile Networks and Applications
(MONET) 11(2), April 2006.

Y. Kotidis. Snapshot queries: Towards data-centric sensor
networks. InProc. IEEE ICDE April 2005.

] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

average, and sum. We are going to build a prototype based
on Motes and measure the performance in real environ-

ments. We are also interested in monitoring spatial queries[

in object-tracking sensor networks.
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Abstract same data to be satisfied by a single transmission of the data
through a common channel.

This paper presents a performance study on various There are basically two broadcast mechanismshed
broadcast algorithms and caching strategies for on-time de- broadcast determines the broadcast program based on
livery of data in a Real-Time Information Dispatch System. collected statistics without user interventioan-demand
The objective of the study is not just aiming at on-time deliv- broadcastschedules items to be broadcast based on the
ery, but to improve the response time on the data requestscurrent client requests that are submitted through an up-
We propose and perform a series of simulation experimentslink channel. While pushed broadcast is useful for cer-
using real traffic data from the access log of the official web tain situations (e.g., small database, stable access pat-
site for FIFA 2002 World Cup. Simulation results show tern), on-demand broadcast is considered a more promising
that our proposed broadcast algorithm not only succeeds technique for dynamic and large-scale data dissemination.
in providing good on-time delivery of data but at the same Hence, this paper focuses on on-demand broadcast.
time provides 2 to 3 times of improvement in response time  The scheduling algorithm employed to select items
over traditional scheduling algorithms like First-In-First- among outstanding requests to broadcast is a key design
Out (FIFO) and Earliest-Deadline-First (EDF). The simu-  of an on-demand broadcast system. Extensive studies have
lation results also show that our proposed caching strategy peen carried out to develop on-demand scheduling algo-
provides further improvement in percentage of requests fin-(ithms in the literature (e.g., [1, 2, 11, 20]). However, all of
ished in time over traditional caching strategy like Least {hese existing studies ignored the existence of timing con-
Recently Used (LRU). straints associated with data requests. Indeed, in many situ-

ations, a user request is associated witteadline A typ-

ical example is considering a traffic information server and
1 Introduction a driver who, at some point a}head in the road, ngeds to take

one of two possible routes in order to get to his/her des-

tination [10, 13]. Clearly, it is necessary for the server to

With the recent advances in wireless communications, provide the driver with the desired traffic information (for
satellite and cellular phone networks [19] have been deve|'example, one of the routes is congesteeforethe decision

oped and deployed to provide broadband access to the Inpoint is reached; otherwise the information is of no value to
ternet for mobile users. The supportlwbadcastis a dis- the driver.

tinguished feature of these new delivery technologies over

tr%d'i'oqal wired tnbe two(;kga In”cczntrast _:?;C?St whﬁrel_ ; real-time systems and pushed broadcast systems. Unfor-
a data item must be individually transmitted to each clien tunately, they are inapplicable or ineffective to the on-

that requests it, broadcast allows many users requesting th%emand broadcast scenario. In [23], there is a schedul-
*The work is supported in part by the RGC Earmarked Research GrantIng algorithm SINe for time-critical on-temand broadcast.

from the HKSAR Government under the grant number: RGC HKBU However, [23] considers f?xed'.Size d_ata .ObjeCtS only. This
2174/03E paper based on our previous investigation for on-demand

Scheduling algorithms have also been investigated for

13



broadcasting[24] and develops an improved scheduling al-sense that it meets all deadlines whenever it is feasible to
gorithm for variable-size data objects which aims at not just do so [9]. In overload conditions, not all tasks can be com-
to deliver the data objects on time but to improve the perfor- pleted by their deadlines. If the task service times are not
mance by reducing the response time and the introductionavailable, EDF performs very poorly because it gives the
of cache on the mobile client side. highest priority to tasks that are close to missing their dead-
The rest of the paper is organized as follows. In Sec- lines. As a consequence, the scheduled tasks are more likely
tion 2, we present the related work and in Section 3, we to miss their deadlines during execution and further cause
discuss about the system model. We describe a number o&ll subsequent tasks to miss their deadlines, thereby result-
scheduling algorithms and propose our algorithm with its ing in the “domino effect.” Two categories of techniques
improved variations in Section 4. We discuss the traditional have been proposed to deal with this situation [@liar-
caching strategy and our proposed caching strategy in Secanteedalgorithms, characterized by an admission control
tion 5. In Section 6, we discuss the simulation setup, the ex-policy, androbustalgorithms, characterized by a more so-
periments and present the results of the performance evalphisticated rejection strategy and a reclaiming mechanism.
uation. Finally, in Section 7, we summarize our research Unfortunately, all the existing scheduling algorithms are de-

findings and discuss some possible future work. signed for aunicastenvironment where a newly arrived task
cannot join any existing tasks. In contrast, this paper fo-
2 Related Work cuses on a broadcast environment where a new request can

join an existing outstanding request when they request the

same item and later they are served by a single process. This
fundamental difference in system models motivates us to

‘develop new scheduling algorithms.

Another related work is probably value-deadline task
scheduling in real-time systems, where each task is char-
acterized an importance value and the scheduling aims to
maximize the cumulative value gained on a task set, i.e.,
the sum of the values of those tasks that completed by their
deadlines [7]. At a first glance, our problem resembles the
value-deadline scheduling if the number of requests posed
on an item is thought of as the value of the item. This
is however, not true as the number of requests on an item

p:ied a:_cess par:ter_n. In f[22]’ Xgan :ttal. evalu?teqtie(;/erzlmay change over time due to new arrivals and deadline ex-
aternative mechanisms for serving data requests with dea piration, but the value in value-deadline scheduling is al-

lines through broadcast channels, including: pushed broad-

. . : ways a constant. Due to this difference, the best policy,
cast, unicast with EDF scheduling, on-demand broadcasi'value_Olensity schedulin@nalogous to the MRF algorithm

\évith dEDFtscr_:_(;dL_Jling, Iant;l_ hybrid FI)tUShﬁd ar:jdtﬂn;dtimandm our case), for value-deadline scheduling as observed in
roadcast. eir evaluation resuits showe at the On'[7], shows a poor performance in on-demand scheduling, as

demand broadcast with the EDF policy achieves good Per- e will see in Section 6.3.

formance. In [10], Femandez and Ramamritham studied Other related work concerning on-demand broadcast in-

an adaptive hybrid broadcast system that takes into accounEIu des data staging [3], energy-efficient retrieval [8], client

dynamic user access patt_erns ar?d deadline constraints. Unéache management [21], and fault-tolerant broadcast [4].
fortunately, no attempts in the literature have been made

. . : X These studies complement to our work in different aspects.
for scheduling algorithms to exploit the properties of on-

demand broadcast systems, where a transmission of a single
data item may satisfy a number of pending requests. 3 System Model
A closely related area is task scheduling in real-time sys-
tems and databases. Many basic algorithms and theoreti- Figure 1 shows the overall architecture for a typical on-
cal results have been developed [5, 7, 15, 16, 17]. The ob-demand broadcast system for real-time data dissemination.
jective of these scheduling algorithms is often to minimize In this architecture, a large group of clients retrieve data
the number of deadlines missed, or to maximize the effec-items (e.g., web data objects) maintained by a database
tive processor utilization when the service times are variable(e.g., a web server). If a client cannot find the requested
during execution. data object in the cache or the data object in the cache is
One of the most classical scheduling algorithms is the expired, the client sends a request to the server through an
Earliest Deadline First (EDF) algorithm [14], which offers uplink channel. Each request is characterized by a 3-tuple:
the optimal performance under various conditions in the < data_id, atime, dline > wheredata_id is the unique

Scheduling algorithms, as a critical design issue in on-
demand broadcast, have been extensively studied in the lit
erature [20]. W, LTSF, MAX are among a number of
recently proposed on-demand scheduling algorithms [1, 2].
However, none of the existing algorithms considers timing
constraints in making the scheduling decision.

While there are a few studies on developing periodic
broadcast programs with timing constraints [6, 12], the only
two studies on on-demand broadcast with timing constraints
are [22] and [10], which differ from the former in that the
scheduling relies on current queue status instead of precom
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identifier of the requested data objegetime is the time of

request, andiline being the relative deadline for the re- max_data_id
guest. Hence, the absolute deadline of the request is given
by atime + dline, beyond which the reception of the re- Figure 2. Common Data Structure used

quested data object will be of no use to the client. The  among our Algorithms
client, on the other hand, monitors a downlink broadcast

channel for the requested data objects until the lifetime of

the request expires. We made an assumption that the uplink

and downlmk. c.hannels are mdependen.t. . gorithm that serves the data object with the most requests
_ Upon receiving arequest, the server inserts itinto the Sel-t6 the Most-Request-Served (MRS) [24] algorithm which
vice queue to wait for broadcast. An outstanding requestiSqe e the data object with percentage of requests satisfied
said to benctive at timet if its lifetime has not expired. An - .0 o0 ot the same time produces the lowest average
active request is calledeasible at timet if it is still pos- response time. With these algorithms as references, we
sible to be transmitted before its deadline. Otherwise, theproposed two new algorithm - Most-Request-Served with
active request is calle@kgenerated, that is, it cannot meet ess object size(MRS-LOS) and Most-Request-Served with
its timing constraints. Degenerated requests are remove level (MRS-2Level). MRS-LOS shows that it is indeed
from the service queues when they are expired. ACVe re- g oy arong algorithm that achieves a good performance

qtuests Tﬁ”:ja'” '3 the ser\tn(zje quJ]_el;]es unttllktheyl are serl\_/e n terms of percentage of requests satisfied on time and at
(transmitted) or degenerated, whichever takes place ear '®lthe same time produces the lowest average response time.

All data objects are maintained by a database in the
server. All data objects will be updated periodically. The In the following sections, we will present each of the
server broadcasts data objects chosen from feasible reques@lgorithms we have explored and discuss their scheduling
based on the data scheduler. These selected data objecf®mPplexity using the data structure we have constructed in
are broadcasted to the clients through the downlink channelPuUr simulation experiments.
with the corresponding requests removed from the service  Figure 2 shows the common data structure we have
queues. adopted in our performance study. We used the same data
We assumed a non-preemptive broadcast system, i.e.structure among our scheduling algorithms. This data struc-
when a request is being served, it is allowed to completeture is basically an array df ServiceQueues wherekK is

without interruption by request arrivals. the maximum number of data objects to be served in the
system. Each service queue is in turn serving a data object
4 Scheduling Algorithms & Their Complex- identified by adata_id. As indicated in Figure 2, each ar-
ity ray element of the Service Queues contains three attributes
keeping track of the number of requesté«m Request),

the size of the data objecDataObjSize) , and a pointer
We have explored a number of broadcast/scheduling al-pointing to a list ofRequest (Request Ptr). This list of re-
gorithms, ranging from the fairness algorithm, i.e., the First- quests refers to each distinct request for the data object un-
In-First-Out (FIFO) algorithm, the most commonly adopted der the samdata_id and each node contains the following
Earliest-Deadline-First (EDF) for real-time computing, the information about the uniqu&equestID, its arrival time
Most-Request-First (MRF) algorithm which is a greedy al- (ArrivalTime), and itsDeadline.
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4.1 First-In-First-Out & Earliest-Deadline-First some effects on the performance, we propose a new al-
gorithm for the data scheduler that incorporates these at-
The most natural or the fairness algorithm for the broad- tributes into our design.
cast strategy is First-In-First-Out (FIFO). Every request ar-  Intuitively, the amount of slack time reflects the urgency
rived at the system will be served according to its arrival when a data object has to be transmittetlackTime =
time, or in our case, since we give every request an uniqueDeadline — (CurrentTime+ 2229bi5ic) Now, instead
RequestI D, the smallesRequestI D will be served first. of making use of slack time, we determine the latest time
On the other hand, the Earliest-Deadline-First (EDF) a request has to be servedlastestStartTime, which is
strategy is most common for real-time system. With EDF, defined aDeadline — Zxa0bisize,
the request that has the earliest deadline will be served next. Knowing theDeadline, the LatestStartT'ime, and the
Since we assumed a non-preemptive broadcast system, thaVum Request, i.e., the number of request, for each data ob-
it, when a request is being served, it is allowed to finish ject requested, we can calculate a score which reflects how
without any interruption even though another request which good it is if this data object is broadcasted at this moment.
has an earlier deadline had arrived. With the same relativeln other words, the score predicts how much one gains and
deadline for all requests, the EDF algorithm is the same ashow much one loses if data objects broadcasted at this
the FIFO algorithm. moment. This can be translated into the followings: At
As for scheduling complexity, for the FIFO algorithm, the current time¢, for each active request of data object
we just search for the smalleequestID. Hence, we i, if it is broadcasted, then at timg = ¢ + DelaObisize:
have O(NN) for building the data structure as indicated in NumRequest; clients will be served. But at the same time,
Figure 2, whereN is the total number of requests cur- for all active data objec§ such thatj # 4, and that if
rently in the system. We then ne€@{N) for the search of  t; > LatestStartTime;, one or more of the clients that
VN | min(RequestID;), andO(N) for removing allthere- ~ request the data objegtwill miss their deadlines. Adding

quests with the saméita_id from the data structure. Thus, how many requests will be served and how many requests

the complexity of FIFO i€ (V). will be missed, we come up with a score for each active data
On the other hand, for EDF, we need to search for objectrequested in the database. And we chose to broadcast

the smallestDeadline. Hence, again we hav@(N)  the data object that produces the highest score.

for building the data structureQ(K) for the search of We can still make use of the common data structure to

VX | min(Deadline;), where K is the number of distinct ~ implement this algorithm, namely the Most-Request-Served
data objects within the system (i.exaz_data_id). Wethen ~ (MRS) algorithm. For the scheduling complexity, we again

still needO(NN) for removing all the requests with the same NneedO(N) to build the data structure. With the search of

data_id from the data structure. Thus, the complexity of the data objectthat produces the highest score as indicated
EDF is alsoO(N) sinceN > K. below:

K
4.2 Most-Request-First v | max(NumRequest; + Zf(imj))
j=1
The approach of the Most-Request-First (MRF) algo- with ’
rithm is simple. It is a greedy algorithm that serves the
data object with the most requests. Although not taking the o 0 ifi=j
size of the data object and the deadline into consideration, ij) = { fN'umRequestf; Otherwise
this scheduling algorithm is simple to implement and in fact !

produced very reasonable results in terms of response timeWhereNumRequest;; is the number ofRequest; that will
Since we just need to search for the maximum number of pjss its deadline by timg.

requests, that i&//* | max(NumRequest;), the complex- We then need a®(K?2) algorithm to do this search,

ity of such a search i©/(K). Together with the)(N) for  \hereK is the number of data objects in the database. Then

building the data structure and thig ') for removing all e still needO(N) for removing all the requests with the

the requests with the sardeta_id from the data structure.  gamedata_id from the data structure. Thus, the complexity

Thus, the complexity of MRF is alsO (V) sinceN > K. of MRS isO(K2 + N).

4.3 Most-Request-Served & Its Variations Most-Request-Served with Less Object Size (MRS-
LOS)

Observing that a simple greedy algorithm like MRF al-
ready yields reasonably good results, and that the size of Inthe course of calculating the score for each data object
the data object and its corresponding deadlines should haveequested, there is a chance to have more than one data ob-
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jects that produce the same highest score. With that in mind,

We then need ai®(K?) algorithm to do this search,

we propose a second attribute to be used as a tie-breakewhereK is the number of data objects in the database. Then

when the scores are the same. With the same score for bot
data objects&;j, we can break the tie by giving preference
to whoever that has a smaller object size (MRS-LOS). We
will conduct experiments to see if the second attributes will
have any effect on the performance of MRS. As for the com-
putation complexity, since we can use a variable to store this

fve still needO (V) for removing all the requests with the
samedata_id from the data structure. Thus, the complex-
ity of MRS-2Level isO(K? + N). Since we used dynamic
programming for the implementation of the MRS-2Level
algorithm the runtime is still reasonable for practical use.

extra attribute to be the tie-breaker, it does not impose any\Most-Request-Served with 3 Levels and beyond

extra computation complexity on the algorithm, hence, the
scheduling complexity remair@(K? + N).

Most-Request-Served with 2 Levels

MRS calculates a score which reflects how much on
gains and how much one loses if data objdéstbroadcasted
at the scheduling instance. By looking one step further, we
calculate a score which reflects how good it is if this data
object is broadcasted along with another data object. This
can be translated into the followings: At the current time,
t, for each active request of data objéctf it is broad-
casted along with data objetsuch thatj # i, then at time

/ _ DataO DataObjSize; ]
ti+j =1+ Servi ServiceRate ' (NumRequeStl +

(NumRequest; - NumRequest;;)) clients will be served

e

bjSize; +

ceRate

whereN umRequestt-; is the number oRRequest; that will
miss its deadline by timé. But at the same time, for all
active data object such thatt # i andk # j, and that if

t;ﬂ» > LatestStartTimey, NumRequestZ”j will miss

their deadlines. Adding how many requests will be served
and how many requests will miss their deadlines, we come
up with a score for each group of active data object re-
qguested in the database. And we chose to broadcast th

Formally speaking, the broadcast schedule problem can
be defined as:

At each scheduling instance of tinTg there exists an
optimal schedulé for the set of NV requests fo#< data ob-
jects with each Reque#t; having a deadlind; associated
with it. Our problem is to find the first element 6f i.e.,
the first data objeab in the optimal schedul§ and broad-
cast it through the broadcast channel. After the broadcast,
time is advanced t@" + 2449biSiz¢(0) \yith 5 set of N’
requests folX’ data objects with each Requést having a
deadlineD; associated with it. And at this scheduling in-
stance of time, i.e1 + %ﬁ;‘igj), we have to find the
optimal schedulé&’.

As we define optimality is on minimal number of re-
guests missing their deadlines, finding the optimal sched-
ule S for the given set of requests is NP-complete. It will be
too computation intensive to be useful if we find the optimal
solution, hence we should look for heuristics.

The search for the optimal sched$és analogous to the
search for the best move in a chess game. We can always do
an exhaustive search and find the best move. But for prac-

gcal purpose, people will cut the search short by searching

first data object of the grouped data objects that producesthe first few levels and then give each chess board a score

the highest score.

We can still make use of the common data structure to
implement this algorithm, namely the Most-Request-Served
with 2 Level(MRS-2Level) algorithm. For the scheduling
complexity, we again need(N) to build the data structure.
With the search of the data objedhat produces the highest
score as indicated below:

NumRequest;
+(NumRequest; — NumRequest;i)
+ 25:1 g(”’? j7 k)

Vi1V lj # i max

with
0 if k=1
9(i, 5. k) =4 0 , k=
—NumRequest;H’ Otherwise

whereNumRequestZi“ is the number ofRequest;, that will
miss its deadline by timg, ;.
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and do a min-max decision. In search of the optimal broad-
cast strategy, as we perform the search for more levels, the
run-time increases exponentially. Thus, it is almost too long
to be practical for searching at Level 3 and beyond. Hence,
we just perform the search up to Level 2.

5 Caching Strategies

In this section, we examine the Least-Recently-Used
(LRU) caching strategy at the client side. Using this
algorithm as reference, we proposed two new strategies
- Least-Recently-Used-Minus-Expired (LRU-expire) and
Least-Slack-First (LSF). In the following sections, we will
present each of the algorithms we have studied on caching
strategies.

Figure 3 shows the common cache structure we have
adopted in our performance study. We used the same cache
structure among our caching strategies. This caching struc-
ture is a pointer array of'acheQueues. As indicated in



Cache . 5.3 Least-Slack-First

Queue

From our previous observation, the expiry time and the
size of the data object should have some effect on the per-
formance. Since every data object can be of different size,
we may as well take the transmission time of the data ob-
ject into consideration. Hence, we examine the slack time
for each request and defisdackTime as follows:

DatalD

ObjectSize
RecentlyUsedTime
ExpireTime

CachePtr

DataObjSize
ServiceRate

)

With SlackTime defined, we propose yet another
scheme - Least-Slack-First (LSF) as the caching strategy for
our system. The amount of slack time reflects the freshness
of a cache entry. When a new cache entry is brought into the
cache and there is not enough space for the new cache entry,
the cache entry with the leaStackTime will be replaced.

SlackTime = ExpireTime—(CurrentTime+

Figure 3. Common Cache Structure used
among our Strategies

Figure 3, each array element of the Cache Queues con
tains five attributes keeping track of the Data IDdtal D),

the size of the data obje€ipjectSize), the time the data
object was last referenceli¢centiyUsedTime), the time 6 Performance Evaluation
that the data object no longer up-to-datecpireTime) and

a pointer pointing to the next elemefiigche Ptr). We have constructed and conducted a series of simu-
lation experiments to look into the performance of each
5.1 Least-Recently-Used scheduling algorithm as well as the caching strategies on

our broadcasting system. In the following sections, we
will discuss about the simulation setup, the workload being

The most common caching strategy is Least-Recently-ysed, performance metrics, and finally present our research
Used (LRU). Itis a scheme to select which cache entry to befindings in these experiments.

flushed. When a new cache entry is brought into the cache
and there is not enough space for the new cache entry, ong 1 Simulation Experiments
or more of the existing cache entry must be replaced. This
scheme is based on temporal locality - the observation i36.1.1 Setup
that, in general, the cache entry which has not been accessed
for the longest time is least likely to be accessed in the near We have written a simulator using C++ to simulate the
future. Each cache entry is associated with an expiry time,mobile transactions and the data dissemination and all the
If the client requests the data object in cache is expired, thesimulation experiments were executed on the Windows XP
cache will throw away that entry and the client will send a platform with an Intel 2.4GHz CPU. As indicated by Fig-
request to the server asking for the most up-to-date copy ofure 1, we simulate a server holding up all the data objects
the data object. in a database, and keep receiving requests from a number
of simulated clients through the uplink channel. The data
request traffic is actually straight from the data access log
for the FIFA 2002 World Cup web site which will be de-
scribed in detail below. When a request arrives at the server,
Since data objects are updated periodically at the it will be put to the corresponding Service Queue according
database, data objects in the client cache will expire andto theirdata_id, thus updating théVum Request for each
their values become invalid. As LRU did not handle the service queue. Before picking which request to be served
expired data objects, LRU will then have expired data ob- next, the system will check if any of the individual request
jects occupying a certain amount of space in the cache ands degenerated (that is, missed its deadline). The system
replace the least recently used data object. Base on thisill remove all those requests who had missed their dead-
observation, we propose a new scheme namely, the Leastlines and pass them to the statistic collector. With feasible
Recently-Used-Minus-Expired (LRU-expire). Before we requests in the service queues, the adopted scheduling algo-
insert a new cache entry, we remove all the expired data ob+ithm will have to choose a data object to be broadcasted
jects in the cache. If there is no expired data objects and notthrough the downlink channel. We assume here that the
enough space in the cache for the new cache entry, the dathroadcast is non- preemptive such that once the data object
object which has not been accessed for longest is replacedis chosen to be broadcasted, it will not be interrupted by any

5.2 Least-Recently-Used-Minus-Expired
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Items Values 1 - »

Total Number of RequestsV) 7,149,766

Total Number of Data Objecigk’) 23,904 05 1 e
Maximum Data Object Size 2,891,887 Byte os | mee o |
Average Data Object Size 5725.84 Byte MRS_LOS —=—
Average Inter-arrival Time 0.012084 second 085 |- 1
Average Bandwidth 3.615 Mbps

0.8 4

0.75 4

Table 1. A Summary on the Workload used in
our study 07| A

Percentage

0.65 4

i 0.6 q

recent request arrivals. After the broadcast, the correspond-
ing service queue will be emptied and served requests will

be forward to the statistic collector for analysis. 05 o5 ; 5 > pys s

Service Rate (Mbps)

6.1.2 Workload being used Figure 4. Service Rate vs. Percentage Fin-

In order to test our algorithm rigorously, we use real traf-  ished in Time
fic data from the log file of the FIFA 2002 World Cup web
site. The log we used was recorded on Day 38, which is

the date for the World Cup final. The log file is about 150 possible scenario is that a scheduling algorithm may
Mbyte in size and it basically contains three kinds of infor- provide a small average response time but in fact it has
mation that is needed for our simulation. It includes the ar- discarded a high percentage of requests for the trade

rival time, the data object identifier, and the size of the data off. Hence, we defined a way to calculate the Expected
object. Table 1 shows a summary on the data we used to Response Time by the following equation:
test our algorithms throughout the simulation experiments.

ity h(d)

Expected Response Time Y

6.2 Performance Metrics
whereM is the total number of requests in the system

In this study, we concern about the real-time perfor- and

mance on broadcast strategies. Since each request has its

own deadline to meet, the number of requests that can finish . _ | Deadline; if it misses its deadline
on time naturally becomes one of the performance indica- (0) = ResponseTime; otherwise

tor. Beside that, if we look from the users’ point of view,

response time is the critical performance indices. Hence, in6.3 Simulation Results

our simulation experiments, performance are measured by

the followings: 6.3.1 Effect of Different Service Rates
Percentage Finished in TimePercentage Finished in We will first look at the effect of different service rates.
Time indicates how many requests can be served The service rate is determined by the bandwidth of the
before their deadlines expired. Hence, broadcast channel. If there is enough bandwidth, then it
does not matter which algorithm is adopted, and the data
Percentage Finished in Time n requests can be served before their deadlines. Hence, it is

when the bandwidth is not enough, then the choice of algo-
rithm will make a difference.

In Figure 4, we varied the service rate from 64kbps to
3Mbps, and the percentage of data requests finished in time
Response TimeWe define response time as the time be- for different algorithms is shown. We fixed the deadline for'

tween the time of request and the time of receiving the €ach request at 30 seconds, cache size at 100 Kbyte with

data object requested. the LRU caching strategy and 10 seconds data freshness,

that is, a data object is updated every 10 seconds, and we

Expected Response TimeSince the system will remove assumed that all scheduling algorithms are non-preemptive.
the degenerated request from the service queues, averAll algorithms show the trend that when service rate is low,

age response time alone will then be misleading. Onethe percentage of requests finished in time is low, and when

n = Number of Requests Finished in Time

Where{ N = Total Number of Requests in the System
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Figure 5. Service Rate vs. Response Time Figure 6. Percentage Finished in Time

we increase the service rate, all algorithms show an increas&ection, we look into the effect of different cache size at a
in percentage of requests finished in time. Recall that wefixed service rate, deadline and data freshness.
fixed a constant deadline of 30 seconds for each requestand From our previous observation, the algorithms are
the broadcast algorithms are non-preemptive. Under thesenostly affected by a low service rate. Hence, we fixed
assumption, the schedule by FIFO and EDF are exactly thethe service rate at 64kbps, which is a comparable to the ac-
same. And in fact, EDF and FIFO perform the best in terms tyal transmission rate of GPRS and a reasonable rate for the
of percentage of requests finished in time. downlink channel, the deadline at 3 seconds and mean data
The MRF algorithm does not perform as well especially freshness at 10 seconds with a standard deviation of 2.0.
when the service rate is really low (i.e., at 64kbps). In  Figure 6 shows the percentage of requests finished in
the meantime, our proposed MRS-LOS perform reasonablytime. We varied the cache size from no cache to 200 Kbyte
close to the EDF and FIFO algorithm at both ends and is yjth a step increment of 10 Kbyte. At 64kbps, and with
better than MRS. the deadline set at 3 seconds and data freshness at 10 sec-
However, the percentage of requests finished in time isonds, all algorithms show a low percentage of requests fin-
just one of the performance measures of our concern. Whenshed in time. As we increase the cache size gradually from
we look at the average response time, a clearer picture cano Kbyte to 200 Kbyte, all algorithms show an increase in
be drawn. Figure 5 shows the average response time apercentage of request finished in time. We should notice
various service rates with different scheduling algorithms. that even when we set the cache size to 200 Kbyte, MRF
From Figure 5, we can observe that as we increase the sers still performing badly. On the other hand, MRS’s and
vice rate from 64kbps to 3Mbps, the average response timeViRS-LOS’s performance are better than that of FIFO and
decreases accordingly. EDF. We also exam the percentage of requests finished in
For FIFO and EDF, although they perform the best in time with deadline set at 15 seconds and 30 seconds. But
term of percentage finished in time, they are the ones of theit does not show any significant indications. Referring to
worst algorithms in terms of average response time. While Figure 6, we observe that there is not much performance
MRF is known to provide good response time at the ex- gain between MRS-LOS-2Level and MRS-LOS. We also
pense of some requests missing their deadlines, our propelieve that the performance will not be improved signifi-
posed MRS-LOS performs the best in terms of average re-cantly even if we seek for higher level search. Hence, we
sponse time and at the same time shows only a little sac-think that MRS-LOS is a good approximate algorithm for
rifice in terms of requests missing their deadlines. Thus, the optimal solution.

MRS-LOS is the best in terms of overall performance. Since performance should be a combination of response
time and percentage of requests finished in time, we try to
6.3.2 Effect of Different Cache Size merge these two factors together and come out with a good

comparison among the scheduling algorithms. Thus, we

In the previous section, we varied the service rates andemploy a performance measure callexbected Response
looked into the average response time and percentage finTime Since we set the deadline for each request, if the re-
ished in time with a fixed deadline of 30 seconds. In this quest misses its deadline, it will be given a response time
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of its deadline. This is like when the deadline is reached,
the system will "respond” to the user that his/her request is
removed from the system. 1900
Figure 7 shows the expected response time for each al-
gorithm with different cache size at a service rate of 64kbps, £
deadline at 3 seconds and mean data freshness at 10 secontﬁs
with a standard deviation of 2.0 . It shows that our proposed
algorithm - MRS-LOS, out performs all other algorithms.
In particular, with a cache size of 200 Kbyte, the expected
response times in seconds for MRF, FIFO, EDF, MRS and
MRS-LOS are 21, 26, 26, 16, and 15, respectively. MRS- "
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6.3.3 Effect of Different Cache Strategy Figure 9. Expected Response Time
In this section, we look into the effect of different cache
strategies at a fixed service rate, deadline and mean dat#lat. It is due to with larger cache size, most of the cache
freshness. entry in the cache is expired. Even the data object is in
From our previous observation, the algorithms are the cache, it will also be counted as a cache miss. When
mostly affected by a low service rate. Hence, we fixed the cache size is between 40 Kbyte and 100 Kbyte , our pro-
service rate at 64kbps, the deadline at 3 seconds and meaposed strategy LRU-expire performs better than LRU. Since
data freshness at 10 seconds with a standard deviation oERU only flush out the one with least reference, the one
2.0. with least reference may still be fresh and the expired cache
Figure 8 shows the percentage of requests finished inéntry may then be kept in the cache. LEF performs worst
time. We varied the cache size from no cache to 200 Kbyteall the time excepts when cache size is between 70 Kbyte
with a step increment of 10 Kbyte. At 64kbps, with the and 100 Kbyte. We also try LEF-LRU which flushes the
deadline set at 3 seconds and mean data freshness at 10 segache entry by LEF first, if there is no expired data objects
onds with a standard deviation of 2.0, all strategies show ain the cache, it flushes the cache entry according to LRU.
low percentage of requests finished in time. As we increaseHowever, in this case, the LEF-LRU’s performance make
the cache size gradually from 10 Kbyte to 100 Kbyte, all no different with LEF.
strategies show an increase in percentage of request finished Figure 9 shows the expected response time for each
in time. We should notice that when the cache size grad-strategies with different cache size at a service rate of
ually increase from 100K to 200K, all strategies becomes 64kbps, deadline at 3 seconds and mean data freshness at
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Algorithm ~ No Cache Cache

EDF 2726.695 2672.701
MRF 2613.739  2165.137
MRS 2005.561  1660.970

MRS-LOS 1972.171  1608.7618

Table 2. A Summary on the Expected Re-
sponse Time (in msec) with deadline at 3 Sec-
onds

Algorithm ~ No Cache  Cache

EDF 0.4257 0.5952
MRF 0.2286 0.4700
MRS 0.4449 0.6397

MRS-LOS  0.4475 0.6379

Table 3. A Summary on the Percentage Fin-
ished in Time

side. We will also look at sets of related data objects in-
volved in a transaction rather than independent data objects.
We are also interested in a mix of real-time data and non
real-time data in the database, and the use of multiple ver-
sions of the data to trade off between accuracy and trans-
actions meeting their deadlines. All these could be affected
by different broadcast algorithms.
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Abstract

Mobile location estimation is a crucial technology for
ubiquitous computing. A directional propagation model
- the Ellipse Propagation Model (EPM) is proposed by
our research group for locating a mobile station (MS)
within a radio cellular network with an accuracy that
can enable a number of location based services to re-
alize ubiquitous computing. EPM assumes the contour
line of signal strength resembles an ellipse with the base
station situates at one of the focus. By using a Geomet-
ric Algorithm, the location of the mobile station can be
estimated. However, since one parameter in our Geo-
metric Algorithm is fized, errors may be induced as the
surrounding environment changes. In view of this, we
would like to propose a new algorithm - the Iterative Al-
gorithm to estimate the location of mobile station based
on EPM. With the technical support of two local mobile
phone operators, we have conducted a series of exper-
iments using real data and experiment results showed
that the proposed Iterative Algorithm outperforms the
Geometric Algorithm by a good margin of 18% in terms
of average error.

1 Introduction

Recently, mobile location estimation is receiving
considerable attention in the field of wireless commu-
nications. Many positioning technologies have been
developed. The most famous location system is The
Global Positioning System (GPS) is one of the location
systems that is mature enough and commercially avail-
able [1, 2]. Other proposed location estimation meth-
ods include Time-Of-Arrival (TOA), Time Difference
Of Arrival (TDOA), Enhanced Observed Time Differ-
ence (E-OTD) and Angle-Of-Arrival (AOA) [3]. These
positioning technologies are based on timing informa-

24

tion or angular information. Time based methods, such
as, TOA, TDOA and E-OTD, calculate the distance
between the Mobile Station (MS) and the Base Station
(BS) by measuring the propagation time of the signal
and multiply it by the speed of light. By using trilat-
eration, the position of the MS can be estimated. On
the other hand, angular approaches, like AOA, mea-
sure the angle between the MS and the BS and then
estimated the location of the MS by using triangula-
tion. Although these positioning technologies are sim-
ple, these approaches are only applicable to CDMA
system since it can provide the timing or angular in-
formation. However, quite a number of countries have
adopted the GSM network instead of the CDMA net-
work. And the GSM network can only provide the loss
of signal strength due to signal attenuation [4].

Since the loss of signal strength is the common at-
tribute of all radio cellular network, thus location esti-
mation algorithms proposed here are applicable to all
radio cellular network for ubiquitous computing.

Our group has also proposed several location estima-
tion approaches based on the received signal strength
(RSS) [5, 6, 7]. However, these methods have not in-
cluded the directional properties of the antenna. From
our observations, we found that the BSs have direc-
tional properties. That is, BSs always transmit signal
in a direction. In view of that, our research group
has proposed an Ellipse Propagation Model (EPM)
in [8]. EPM is derived from the original propagation
model [3]. We observed that the antenna transmits the
signal in a direction. Thus, the contour line of signal
strength should not be a circle. We therefore modify
the original propagation model by considering the con-
tour line of signal strength as an ellipse with the BS
sitting at one of the focuses. Since the RSS is the only
attribute we have, therefore EPM focuses on the rela-
tionship between the MS-BS distance and the RSS. We
also proposed a Geometric Algorithm to estimate the
location of the MS based on EPM. Experiment results



have proven that EPM using the Geometric Algorithm
is very encouraging. However, one of the parameters
in the Geometric Algorithm is fixed. This may cause
some defects in the accuracy since the parameters may
vary in different environment. Moreover, the Geomet-
ric Algorithm does not have self-modification property,
namely, the estimation of the Geometric Algorithm is
unstable. In view of this, we would like to propose
a new approach to estimate the location of the MS
with EPM - the Iterative Algorithm. The Iterative Al-
gorithm has self-modification property. It chooses a
convergence value as the estimation. And our experi-
ment results have proven that the Iterative Algorithm
is superior to the Geometric Algorithm with a trade off
between accuracy and computational cost.

This paper is divided into five sections. In the fol-
lowing section, we will depict some location estimation
algorithms proposed by our group. In section 3, the
Iterative Algorithm will be presented. Afterwards, we
will discuss the simulation results of the Iterative Al-
gorithm using real data. And at last, the conclusion
and future work for our research will be presented.

2 Related Works

Previously, our group has proposed two algorithms
for location estimation, namely, the Center of Gravity
(CG) algorithm and the Circular Trilateraion (CT) al-
gorithm [5, 7]. Both CG and CT are making use of
the RSS for estimating the position of the MS. They
assumed the relationship between the MS-BS distance
(d) and the RSS (s) is s oc d~2 based on the inverse
square law [9]. However, due to the interference and
distortion by buildings, the relationship is remodelled
into s o« d~%, where « is a variable being related to the
environment.

We have also proposed an Ellipse Propagation
Model (EPM) and a Geometric Algorithm to provide
the location of the MS in [8]. The Ellipse Propaga-
tion Model (EPM) considers the antenna directional
transmission property and assumes the contour line of
the signal strength for one antenna as an ellipse which
the base station is on one of the focuses. While the
Geometric Algorithm is a simple and useful method
to provide the location of the MS; it is derived from
the CT algorithm and to reduce the defects of the CT
algorithm.
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2.1 Center of Gravity (CG)

The CG approach defines the location estimation
formula as,

xz15] “Fxas, “Hxzsy 4. Fwns,
—o —a = —o
51 “4sy T 48y “tsp @
—a Za —a —a
Y18 " +y28, " tysss +...F+yYns,
] Y Hsy Tsy s,

xTr =

(2.1)

y:

where (z,y) is the estimated location of the MS.
(x1,91), (2,Y2), -, (Tn,Yyn) are the locations of n re-
ceiving BSs. si,$9,...,s, are the corresponding RSS
from each BS [5].

Although the CG approach has proven its outstand-
ing performance in metropolitan area, it can only esti-
mate a mobile device inside the convex hull of the BSs
involved.

2.2 Circular Trilateration (CT)

The basic idea of the CT approach is to construct 3
circles with the RSS for 3 different BSs. By knowing
the location of the three BSs and the mapping between
RSS and MS-BS distance, the intersection of these 3
circles is the estimated location of the MS. Similar to
CG, CT models the relationship between the MS-BS
distance (d) and the RSS (s) as d < (N + s)~“, where
N is the normalization constant. By making use of this
relationship, we can constructed 3 circles as follows,

(@—21)°+(y—m) = (5=)?
(@ —22)° + (y—12)” = (5=)?
(@ —w3)” + (y — ys)” = (5%)2

(2.2)

where, s1, so and s3 are the RSSs from 3 receiving
BSs with their geographic locations as (z1,y1), (z2, y2)
and (z3,ys) respectively and k be a common scaling
factor. The location of the MS is then estimated as
the intersection point of these 3 circles [7].

Although CT does not have the convex hull prob-
lem, it does not always provide an estimation. This is
because intersection may not always appear due to sig-
nal fading. Moreover, the CG and the CT approaches
do not take the transmission direction of the BS into
account, which is not realistic. Thus, we have designed
a new approach, the EPM which is an improvement of
the CT algorithm.

2.3 The Ellipse Propagation Model

From our observations, we found that the BSs have
directional transmission property. The antenna trans-
mits the signal in some directions. That is, the an-
tenna transmits the largest power in one direction,
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Figure 1. The directional antenna

while transmits small or none power in other direc-
tions. We can plot the contour line of signal strength
around an antenna as Figure 1. As shown in the Fig-
ure 1, the contour line of the signal strength for the
directional antenna is not a circle, which violates the
assumption of the original propagation model in free
space.

We assume the contour line of the signal strength
as an ellipse instead of a circle based on our studies.
The EPM adopts a different relationship between the
MS-BS distance and the RSS. We can use the following
mathematical formula to depict the EPM.

d = k(so/s)"/*(1—¢€)/(1—ecos(h)) (2.3)

where

d is the distance between MS and BS;

k is the proportion constant;

So is the transmitting power of the BS;

s is the signal power received;

e is the eccentricity value of the ellipse, it
describes the figure of the signal strength contour line;

0 is the deviation between the ellipse principal
axis and the line of MS and BS;

« is called the path loss exponent.

We call this relationship as the Ellipse Propaga-
tion Model (EPM), where the contour line of the sig-
nal strength is an ellipse [8]. The Ellipse Propagation
Model (EPM) can be illustrated in Figure 2.

The EPM has four parameters: k, a , e and 6. We
consider the parameters of £ and « as the region pa-
rameters, and the parameter e is used to describe the
figure of the ellipse, while the deviation 6 is parameter
for each MS. We can use the field test data to find out
the values of these parameters, then translate the sig-
nal strength into two points distance. That is the main
idea of the EPM.
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Contour line of RSS

Figure 2. The Ellipse Propagation Model(EPM)

2.4 The Geometric Algorithm under EPM

The Geometric Algorithm is used to provide the es-
timation of the location of the MS. We choose the value
of deviation between the ellipse principal axis and the
line of the BS and the center (or the weighted center) of
the BSs locations as the estimation of . So the EPM
exactly has three parameters: k, o and e.

Suppose a MS receives RSS, s1, s2, s3 from three
BSs with locations, (z1,y1), (z2,y2), (v3,ys) respec-
tively. In addition, the distances between the MS and
the BSs are denoted by d(s1), d(sz2), d(s3), sometimes,
and they are simply denoted by dy,ds and d3. Thus, by
the formula of the two points distance in the 2-D Eu-
clidian space, we can form three circles formulas which
are shown as follows,

(z—21)*+ (y—1n)* =3
(x—2)* + (y — y2)* = d3
(x—a3)?+ (y—y3)? =d3

Basically, the geometric interpretation of this equa-
tion group means three circles in 2-D space, and the
solution is the intersection point of these circles. How-
ever, if an intersection point does not exist, we may
not be able to provide an estimation for the MS. In
order to solve this problem, the Geometric Algorithm
can not solve this equation group directly. Instead,
the Geometric Algorithm derives another three equa-
tion group from the equation group (2.4). As each new
equation group can provide a solution, thus, we will
have three solutions. The estimation of the MS will
then be the center of these three solutions [8].

(2.4)



The estimation of the Geometric Algorithm is:

= (2m(ys — y1) — 2n(y2 — y1))/|A|

y= (—2m(zs —21) + 2n(es — o)) /)4] D)

where

|A| = 4[(z2 — 21)(y3 —y1) — (3 — 21)(y2 — v1)];
m = [df — (27 +7)] — [d5 — (23 + v3));

n=[d} — (7 +y7)] — [df — (25 + v3));
(x1,91),(z2,y2) ,(x3,y3) are the BSs locations.

3 The Iterative Algorithm under EPM

In our previous research, we have proposed a EPM
and a Geometric Algorithm to provide the location of
the MS [8]. We based on these results to further de-
velop an Iterative Algorithm under EPM. The basic
idea of the Iterative Algorithm is to improve the Geo-
metric Algorithm to provide a more accurate and more
stable estimation.

The Geometric Algorithm based on EPM can al-
ways provide an estimation whenever the MS receives
three or more antenna signals. However, the devia-
tion between the major transmitting direction and the
line of MS-BS, 6, in the Geometric Algorithm is fixed
and is dependent on the location of the MS. Hence,
we present a self-modification method illumined by the
Iterative Algorithm to provide the location of the MS
and the value of deviation §. We name this method as
the Iterative Algorithm. Since the 6 in Geometric Al-
gorithm is an approximate value only, some error may
be induced in the estimation. Thus, the Iterative Algo-
rithm should have better accuracy than the Geometric
Algorithm by eliminating these errors.

The EPM with the Iterative Algorithm has four pa-
rameters: k, a, e and 0. k and « are the region param-
eters, and e is the parameter to describe the shape of
the contour lines. They all can be provided by training
with the field test data. Thus, parameter # and the
location of the MS can be calculated with the Iterative
Algorithm. In the Iterative Algorithm, we do not use a
constant value to estimate 6, but update the estimation
of 0 for each iteration. Since the value of # depends on
the location of the MS, the estimation of the location
of the MS can be used to calculate the value of 6.

We choose an initial value to calculate the value of 6.
Then, the distance between MS and BS is derived, and
a solution is calculated by the Geometric Algorithm.
This solution is a new location of the MS. For each
iterative computing, we update the values of 6 and the
location of the MS. If the series of the locations of the
MS have a convergence value, we choose the stabilized
convergence value as the estimation of the location of
the MS.
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3.1 Structure of the Iterative Algorithm

Let (z,y) be the coordinates of the location of the
MS, and z,y are two independent random variables.
We consider the estimation of the location of the MS as
a conditional expectation of the RSS and the locations
of BSs, denoted by,

(@', y)" = BE((z,y)" |70, yo; ;1)

where xy and g, are the location of the MS we want to
find; s is the information of RSS, and [ is the location
information of BSs; 2’ and 3’ are the estimation of the
location of the MS, and they are random variables too.

By rewriting the exact location of the MS with x
and y as two parts, we have,

x = f(xo,y0:5;1) + €
y = g(wo,y0;8;1) +1n

(3.1)

(3.2)

where f(xo,y0;s,1) and g(xo,yo;s,l) are the certain
terms; xg and yg are the estimations of x and y; € and
7 are random variables; f and ¢ are some functions
structures, which have first order and second order
derivatives. Furthermore, we assume that E(e) = 0,
E(n) = 0, var(e) = o2, var(n) = oy, cov(e,n) = 0
, o and gy are unbiased estimations of x and y.
Thus,E(z — z9) =0 ,E(y —yo) = 0.

We choose the certain terms as the estimation of the
location of the MS.

{ zo = f (0, Yo; 531)
Yo = 9(z0, Yo s;1)

Since xy and gy appear in both sides, the iterative
method can be considered to provide the solution. We
call the equation group (3.3) as the structure of the
Tterative Algorithm.

Therefore, by picking an initial value, for example,
the estimation from the CG algorithm (zcq,yoa), we
can provide the estimation of the MS if the iterative
formulas are convergent.

(3.3)

3.2 Using Geometric Algorithm with the Iterative
Algorithm

Suppose the MS, with location (z,y), received RSS,
$1, S2, s3 from three BSs at locations, Ij(a1,31),
la(ag, B2), l3(as, B3) and the output powers, 01, 02,03
respectively. In addition, the distances between the M'S
and the BSs are denoted by dy, ds, ds.

We depict the Iterative Algorithm by using the Ge-
ometric Algorithm structure based on EPM. We can
get the following formulas in [§]

{ = (2m(Bs — 1) — 2n(B2 — B1))/] Al

Y = (—2m(as — 1) + 2n(as — an))/|4] BY



Then we define the deviation 6; as

. 5 — bear; — arccos(m) ify > G
! % — bear; 4 arccos(—(—————)  if y < 3

(z—a)?+(y—51)*

where 6; is the deviation which contains the bearing
information; bear; is the bearing information; (x,y) is
the MS location; («ay, ;) is the BS location.

So the iterative formulas become,

Tntl = [(53*52)( () (of + /7))
+(B1 — Bs)((d3(n)) — (a§+ﬂ§))
+052 —51)(d§( ) — (o3 + 33))]/|A]
Ynr1 = 2[(az —az)(di(n) — (af + 67))
+(az — a1)((d3(n)) — (a3 + (3))
+(a1 — a2)(d3(n) — (o3 + 33))]/| A
Thus,

Tnt1 = f(Tn,Yni 51,52,53: 11,12, 13) (3.5)
Ynt1 = 9(Tn, Yn; S1, S2, 53311, l2,13) ’

Eq.(3.5) is called the iterative formulas. Given an
initial value, we can derive a series of (2, y,) from the
iterative formulas. If (x,,y,) converges to one point
(Z,9), then (Z, ) is considered to be the location esti-
mation of the MS.

3.3 Convergence of the Iterative algorithm

We define two distance functions for our discussion:
one is a distance based on EPM, the other is a common
distance in a 2-D Euclidean space, denoted by,

_ k(s0/8)"/*(1—e¢)
d(xa Y, a1, Biy Pepm, S0, s) = 1fe-cos((é(z,y,al,ﬁl,bearl))

d@((l?, Y, g, ﬁl) =

V@ (y— )2

where d(z,y, a4, 51, Pepm, S0, ) and de(z,y, ou, )
are two distance functions, and pepm = (k, a, e, 8).

To simplify our discussion, we fix one variable when
the other changes, for example, we fix y for x, then we
denote them as d(x) and de(x). We assume the esti-
mated distance between the MS and the i'* BS using
EPM is d;(x,y). If these three circles intersect at one
point, then d(x,y) = de(z,y). Otherwise, we assume
d(z,y) < de(z,y).

Theorem 3.1 If (a1, 1), (az2,52), (as,f3) are not

2
in the same line, and suppose that \de (Z?’;)) . d(ngly)) .
i sin(; .
1eejlélos(9))| < 1 |Oéz - a1| > 4, if |a1 - O‘j‘ # 0;

1B: — B;1 > 4, if |8i — 5| # 0; where i # j and
i,7=1,2,3. Then {x,} and {y,} converge.

Proof: For our convenience discussion. We assume
that a1 < az < as and B < 31 < (3. If a1 = a3, we

s Bi—=B2 ~ 1
add the condition, P <3

Set

2(B2 — B1) >
2(08s — f1)

| 2(ag —aq),

A= ez

(02 + B2)) — (d3 — (a3 + 32)) )
(a2 + B2)) — (d2 —

e
b= ( (d2 - (o2 + 2))

We rewrite the equation as the matrix formula,
AX = b, where X = (z,y)T.

Since (a1, £1),(ag, B2) ,(as, f3) are not in the same
straight line, so det(A) # 0. And the solution is
X = A~1'b. Then we rewrite it as an iterative formula,
Xor1 = A7(X,,).

Based on the definition of EPM,

k(oi/si)l/"% < di(n) < k(o;/s;)/*,i=1,2,3.

So both {z,,} and {y,} have bounds.

We fix y when z,, changes, and fix = when y,, changes
for our convenience discussion. In this paper, the con-
vergence of {z,} will be discussed in detail while {y,}
is a similar case.

Define

F(2) = (Bs—B2)d2 @)+ (Br— )3 () + (Bo— Br) ()
and f(z) is a continuous function, then we obtain:

(Tnt1 — xn)det(A)/2 = f(xn) = f(Tn-1)-

By the Lagrange Theory [10], f(x) has first
derivative, we have: f(z,) — f(zn_1) = f (2)(zn —
Zn—1), where z is between x,, and z,_.

f (=) _ [(53*52)"13(10)'(1/*51)'61 sin(61)
de:{’(x)(l—el cos(61))
+(51 Bs)-d3 (x)-(y—B2)-e2 sin(62)
de3 (z) (1—es cos(62))
Jr(ﬁz /51) -d5(x)-(y—PB3)-es Sln(os)]
dej(w) -(1—e3 cos(03))

Set K = 2f (z)/det(A), and
det(A) = (az—on)(B3—f1) —
If ag — a; # 0 then ag — g > 4.
By the theory condition,
|K| < (9‘23011) + 2 < . <1

Qa3—Q] T Qa3—Oo1 T

(0l3—011)(52—51)~

IfOég—Oq:O,
|K| < 2 <4 <1

(az—al)—(ag—al)ﬂi gz — az—a1 —
That is , |[K| < 1, and
(Tnt1 — Tn) = K(xp — Tp—1).
So {x,} converges. Similarly, {y,} converges too.
Q.E.D.

4 Simulation Results

With the technical support of two mobile operators
in Hong Kong, we have conducted an intensive field
test in many regions in Hong Kong in order to validate



our model. We have divided the data into two parts:
30% of the data for training the models, and 70% of
the data for estimating the location of the MS. We
choose the distance between the exact location and the
estimation location as the error criteria to describe the
estimation accuracy.

With divided our experiment in two phases: the first
phase is to train the model using 30% of the field test
data, and the second phase is to estimate the location
of the MS with the rest of the 70% of the field test
data. With the effect of signal attenuation, our method
sometimes provides an unreasonable solution. Hence,
we use an anchor point to select the estimation of the
location of the MS. If our estimation is not within a
radius of 1000 meter with respect to the anchor point,
we discard our solution and consider the our method
fail to provide the estimation of the location of the MS.
We choose the exact location of the MS as the anchor
point in our model training phase. And we choose a
weighted center of the locations of the BSs which we
received signal from as the anchor point for estimating
the location of the MS. So the missing ratio of our
method includes two cases: One case is the number of
BSs we received signal from is less than three, which
does not meet our model assumption; the other case is
the solution provided by our method is not within the
predefined area in radius.

The data we collected from the field test are first
used to provide the EPM parameters. These parame-
ters are then put into a Lookup Table which will be
used during the testing process. In the testing phase,
we apply the Geometric Algorithm and the Iterative
Algorithm to compute the field test data, then calcu-
late their errors for the MS estimation. Lastly, we com-
pared the results of the Iterative Algorithm with the
results of CG, CT and Geometric Algorithm.

4.1 Estimating the EPM parameters

We choose 30% of the field test data to find out the
parameters of EPM. For saving the computation cost,
we divide all types of BSs into three groups for each
region, which are denoted by Macro, Micro and others.
Since the environment condition is similar within the
same region, we assume the value of path loss exponent,
a, and the proportion value k are the same throughout
aregion. Thus, there will be five parameters need to be
trained in each region, ey, es, e3, k and «, where e1, e
and ez are the EPM parameters for Macro, Micro and
others respectively within one region. We set the step
of the eccentricity, e, es and e3 as 0.1, and the step
of path loss exponent, «a, is 0.1 , while the step of the
proportion value k is 0.05 for saving the computational

29

cost. As «is expected to be within a range as suggested
by [3], therefore, we choose « to vary within a range of
3 and 10 in order to meet the situation of Hong Kong
and the proportion value is between 0.5 and 1.5. While
the eccentricity of an ellipse has its natural limitation,
it can vary within a range of 0 and 1 only. We provide
the values of these parameters for each region. The
results are shown in the Lookup Table: Table 1.

4.2 Results of the Iterative Algorithm

After obtaining the Lookup Table, Geometric Al-
gorithm and Iterative Algorithm are used to estimate
the location of the MS.

The Iterative Algorithm is used to estimate the
location of the MS. Results are shown in Table 2.
From Table 2, the estimation results using the Iter-
ative Algorithm have good performance in many re-
gions, such as Central, CheungShaWan, KwunTong,
Mongkok, PE-MK, PrinceEdward, ShamShuiPo and
SheungWan, where the averages of the estimating er-
rors are below 125 meters. And in some regions,
the 67% point values are below 125 meters, such as
Mongkok and ShamShuiPo. In general, the improve-
ment of the Iterative Algorithm over the Geometric
Algorithm is inspiring.

There exist some regions where both the Geomet-
ric Algorithm and the Iterative Algorithm are not per-
forming well, such as HungHum and LaiKing. We be-
lieve that these regions have special terrains and net-
work layouts which may not fit the EPM directly. For
example, in HungHum, we found that the MS always
received signals from other regions. Moreover, some ar-
eas, like LaiKing, have very serious signal fading prob-
lem on the grounds that these regions are in front of
the hills. In addition, we noticed that the RRS in these
regions did not follow the rule of path loss well. There-
fore, Some modifications may be required to readjust
the EPM in order to handle these special regions.

4.3 Compare among the CG, CT and Geometric
Algorithm

In this experiment, we compare our results with the
results of the CG , CT and Geometric Algorithm. We
present the mean, the standard deviation of the es-
timating errors and the success ratio of computing to
describe the quality of the estimations. And the results
are shown in Table 3.

The CG algorithm has the best success ratio for pro-
viding the estimation of the location of the MS, but its
estimation has the worst performance within these al-
gorithms. Since the CG estimation is just a weighted



Region e es es k « Region e eo e3 k «@

Aberdeen 0.4 0 0 1.5 7.3 | ShamShuiPo 0.4 | 0.6 0 0.55 | 8.4

CauseWayBay 0.4 | 0.9 0 1.45 | 4.5 | ShaTin 0.7 | 0.7 0 1.45 | 6.1

Central 0 0.2 0 1.45 7.2 ShekKipMeiPark | 0.6 0 0 1.5 6.6

CheungShaWan | 0.1 0 0 1.25 | 8.4 | SheungShui 0 0 0 1.5 8.1

FoTan 0.9 0 0 1.5 6.4 | SheungWan 0.4 | 0.9 0 1.45 | 8.4

Happy Valley 0.6 0 0 1.5 8.1 | TaiKooShing 0.9 0 0 0.55 | 4.9

HungHom 0 0 0.1 1.45 | 7.5 | TaiWai 0.3 | 0.4 0 0.55 | 5.6

KowloonBay 0.4 0.2 0.9 0.55 6.4 TaiWoHau 0.2 0 0 0.65 5.3

KowloonCity 0.6 | 0.3 | 0.5 1.5 6.7 | TinShuiWai 0.7 0 0 0.55 | 5.6

KowloonTong 0 0 0 1.5 7.8 TsingYi 0.1 0.1 0 1.5 7.7

KwaiFong 0.9 0 0 0.55 6.1 TsuenWan 0.9 0.5 0 0.55 8.4

KwunTong 0.9 0 0 1.4 7.5 TszWanShan 0.4 0 0 1.45 7.6

LaiChiKok 0 0.9 0 0.55 | 6.9 | TuenMun 0.3 0 0 1.5 7.3

LaiKing 0.7 | 0.9 | 0.7 | 0.55 | 5.7 | WanChai 0.2 0 0 1.5 7.4

MaOnShan 0.8 0 0 0.55 8.4 | WongTaiSin 0.9 0 0 1.5 7.7

Mongkok 0.6 0 0 1.5 6.7 | YauTong 0 0 0 1.5 7.1

PE-MK 0.6 | 0.9 0 1.5 7.8 | YauYatChuen 0.3 0 0 1.5 7.5

PrinceEdward 0.9 0.9 0.3 0.55 8.4 | YuenLong 0.9 0 0.9 1.5 5.9

Table 1. The Lookup Table

Region Ave. Tmp. Std. 67% 90% Region Ave. Tmp. Std. 67% 90%
Aberdeen 228.85 | 5.26% 135.40 | 226.30 483.61 ShamShuiPo 103.36 | 6.79% 55.17 119.61 193.02
CauseWayBay 258.62 28.42% 189.56 323.19 619.47 ShaTin 351.58 5.72% 172.12 401.61 577.97
Central 109.64 | 4.96% 64.37 143.96 201.92 ShekKipMeiPark 314.36 | 3.80% 170.07 | 379.47 | 570.76
CheungShaWan | 120.47 | 12.45% | 66.34 158.94 211.89 SheungShui 507.99 | -9.37% 333.80 | 798.05 | 1007.03
FoTan 280.15 | 8.16% 134.60 | 356.50 460.99 SheungWan 116.10 | 7.25% 58.98 144.56 | 190.77
Happy Valley 343.89 9.86% 222.31 430.83 714.78 TaiKooShing 250.84 36.26% 153.91 295.97 440.13
HungHom 934.48 -0.27% 528.76 1414.11 1838.55 TaiWai 226.03 3.20% 90.86 269.04 319.49
KowloonBay 199.82 | 14.3% 108.01 | 227.17 343.94 TaiWoHau 277.40 | -6.97% 144.96 | 356.22 | 508.62
KowloonCity 223.78 | 10.06% | 129.99 | 264.94 550.48 TinShuiWai 384.60 | -0.29% 197.60 | 513.49 | 779.81
KowloonTong 255.83 13.45% 153.84 209.41 499.45 TsingYi 554.74 -13.17% 262.30 674.04 931.13
KwaiFong 182.95 | 3.21% 94.83 224.52 318.17 TsuenWan 143.42 | 8.78% 60.28 138.80 | 236.72
KwunTong 115.05 | 8.78% 58.84 126.32 202.43 TszWanShan 232.29 | 11.86% 135.04 | 274.57 | 448.45
LaiChiKok 325.22 | 2.34% 175.28 | 214.62 617.10 TuenMun 319.73 | 5.05% 153.89 | 421.09 | 516.47
LaiKing 682.62 14.58% 249.34 996.45 1181.29 WanChai 166.92 16.64% 112.18 182.60 334.99
MaOnShan 353.11 | 7.27% 116.73 | 410.16 500.64 WongTaiSin 306.57 | -20.35% | 147.16 | 377.40 | 515.72
Mongkok 88.36 3.49% 50.04 111.08 150.08 YauTong 387.53 | 5.18% 321.40 | 484.65 | 1030.33
PE-MK 110.08 | 4.68% 62.25 134.99 202.64 YauYatChuen 227.77 | 1.8% 113.69 | 278.87 | 389.61
PrinceEdward 118.29 14.51% 69.91 138.67 214.91 YuenLong 267.59 18.29% 285.83 229.26 976.63

Table 2. Result with Iterative Algorithm and improvement over the Geometric Algorithm (Unit: meter)

Model Average Error | Improvement % Std. sample number | success ratio %
CG 495.76 27.08% 787.05 116354 96.93%
CT 470.99 23.24% 986.06 116354 76.28%
Geometric Algorithm 441.09 18.04% 721.12 116354 84.08 %
Iterative Algorithm 361.52 0% 541.87 116354 79.13%

Table 3. Compare among the CG, CT, Geometric and Iterative Algorithm and improvement(Unit: meter)

mean of the locations of the BSs which we received the
signal from, its recommendation is always within the
convex hull formed by these BSs locations, regardless
whether the exact location of the MS is inside or out-
side the convex hull!

The CT algorithm has been proposed to solve the
convex hull problem by trilateration. The CT estima-
tion has better performance than the CG estimation
does, but the CT algorithm discards some snapshots

information for the cost. The CT algorithm has the
least success ratio within these algorithms. Since the
CT algorithm uses three base stations information to
provide the location of the MS, it can not always pro-
vide a solution.

The Geometric Algorithm has derived from the CT
algorithm. The Geometric Algorithm yet again im-
proves the CT algorithm, since it can always provide a
solution for the estimation of the location to the MS.
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The results of the Geometric Algorithm has better per-
formance than the CT and CG algorithms based on the
average and the standard deviation of the estimation of
errors. The success ratio of the Geometric Algorithm
is better than that of the CT algorithm.

The Iterative Algorithm has improved the Geomet-
ric Algorithm. Since the Geometric Algorithm fixes a
parameter of EPM to provide the location of the MS,
it reduces the accuracy of estimation of the Geometric
Algorithm. Since the Iterative Algorithm needs more
extra conditions to guarantee to provide a convergence
solution for the estimation, the success ratio of the It-
erative Algorithm is some what lower than that of the
Geometric Algorithm. But the Iterative Algorithm has
the best performance in terms of the average and stan-
dard deviation of the estimating errors among these
algorithms. Hence, the Iterative Algorithm is the best
among these algorithms. However, the Iterative Algo-
rithm needs more computational cost to provide a bet-
ter estimation of the MS, and this is the trade between
computation cost and accuracy. As a whole, the Itera-
tive Algorithm provides an 18% (#41-09=361.52  100%)
of improvement in terms of average error over the Ge-
ometric Algorithm on locating the MS within a radio
cellular network.

5 Conclusions and Future work

In this paper, we present an iterative method to es-
timate the location of a MS under EPM. The Itera-
tive Algorithm is an improvement over the Geomet-
ric Algorithm. From our simulation results, we have
shown that the Iterative Algorithm has better accuracy
than the Geometric Algorithm. Furthermore, we have
proven that the Iterative Algorithm is superior to the
existing algorithms. However, the Iterative Algorithm
requires more computational cost for the implementa-
tion.

During this research, we found that signals do fluc-
tuate at the same place. Signal attenuation can be
affected by conditions, such as weather and car move-
ment. The fluctuating signals will induce more errors
in our estimation. As for our future work, we follow
two threads to go forward our research. We will try
to find out a filtering method to reduce the effect of
signal fluctuation. Moreover, we will extend EPM to
provide a more accuracy estimation. EPM is just a
simple relationship between the RSS and the MS-BS
distance. But it is a crude relationship for the RSS
and the distance between MS and BS. And we use the
same path loss exponent, «a, and proportion value k in
one region for saving computational cost, which may
increase more error of the estimation. On the other
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hand, since EPM is a 2-D model only, we should extend
it into a 3-D model to meet the real situation for lo-
cating the MS and to facilitate location based services.
So to provide a filter method to reduce the effect of the
signal fluctuation and to extend our EPM into a 3-D
model for providing a 3-D location estimation are our
future research work.
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A Fragile Watermarking Scheme for 3D Mesh Verification

Hao-Tian Wu
Department of Computer Science
Hong Kong Baptist University

Abstract to embed the fragile watermarks into 3D polygonal meshes
for authentication purpose. In [2], the first fragile water-
In this paper, a fragile watermarking scheme is presented marking of 3D objects is addressed by Yeo and Yeung, as
to detect the illegal tampering of 3D triangle mesh blindly. a 3D version of the approach proposed for 2D image wa-
We have proposed a fragile watermarking algorithm for 3D termarking. However, the distortion introduced by the en-
mesh before, which embeds a sequence of data bits intaoding process of their proposed algorithm has not been nu-
the mesh for authentication purpose. The proposed water-merically discussed in their paper. It seems that the water-
marking algorithm can be generalized to a scheme that en-marking strength in their proposed algorithm is not easy to
ables the tampering detection of 3D mesh by verifying its adjust. The adjustable watermarking strength is preferred to
integrity. To address the verification of the mesh integrity, satisfy different precisions of the 3D data, since relatively
the problem of mesh traversal, as well as the vulnerability, large error would make watermarking process meaningless.
robustness and reversibility of the embedded watermark isThe mesh traversal in their method is according to the se-
discussed. The optimal mesh traversal strategy is proposedjuence of the vertices due to the causality problem.

to maximize the capacity of the mesh and thus most suit- |, qur proposed method, a new geometrical configura-

able for the tampering detection. The implementation of o, js constructed to generate a host signal invariant to
the presented scheme has demonstrated that unauthorlzegangation, rotation and uniformly scaling and embed the

modifications on mesh models can be efficiently detected. \\atermark by modulating the generated signal so that the

embedded watermark is invariant to these transforms but

sensitive to other geometrical or topological processing [5]-
1 Introduction [6]. Our method is similar to one of the algorithms called

Vertex Flood Algorithm proposed in [3], which can also

With the wide use of 3D models, the polygonal meshes be used for'model authentication with certai.n toleranceg,
in particular, it has become a real need to verify the in- €9- trun_catlon _of mantls_s_as of verte_x coordlnates._ Bz_;\3|-
tegrity of 3D models, especially in the web environment. cally, their algorithm modifies the vertlc_es so that thelr_dls-
Traditional encryption algorithms can be used to restrict {ances to the center of mass of a designated start triangle
the access to the encrypted data, however, it cannot pro_encode the yvatermark bits. In contrast, our method mod-
vide further protection if the encrypted data is decrypted. In Ulates the distances from the mesh faces to the mesh cen-
other words, traditional encryption algorithms are indepen- troid using dither modulation technique [1]. Compared to
dent from the content of the protected data. As an effective the Vertex Flood Algorithm, the embedded watermark us-
measurement, digital watermarking has been proposed fofNd our method is more sensitive to modifications on the
multimedia works (e.g. digital images, 3D models, audio watermarked moq_el, while the integrity of the watermarked
and video streams) to give rise to some desired properties. Mesh can be verified.

In general, digital watermarking can be classified into It should be noted that a fragile watermarking scheme
robust watermarking and fragile one. In fragile watermark- for 3D triangle meshes is presented by Cayre et al. in
ing, the embedded watermark is vulnerable to a variety of [4] to embed a watermark with robustness against transla-
operations imposed on the watermarked object so that it will tion, rotation and scaling transforms. Their main goal to
change or disappear if the watermarked object is processedpresent a new steganographic system designed for 3D trian-
By comparing the extracted watermark with the original gle meshes and its performance in term of capacity, com-
one, fragile watermarking can be used for tampering detec-plexity, visibility and security is discussed. In case that the
tion and integrity verification of the watermarked object. originality of the mesh model need to be verified, trans-

Only a few watermarking algorithms have been proposed lation, rotation and scaling transforms should also be de-
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tected. To meet the requirement in this scenario, one ex{ e original
tension of our proposed scheme can detect and distinguis|  mesh

those transforms from other processing with a reference po-
sition. Another extension of our proposed scheme is to
make the encoding process reversible, i.e. the original mesh
can be recovered from the watermarked mesh with somgq Verfication

NC value
pl’iOfi knowledge result calculation
The rest of the paper is organized as follows. In Section

2, a new fragile watermarking scheme for 3D mesh is pro- Figure 1. The proposed procedure of verifying
posed in detail, including the encoding and decoding pro- 3D mesh

cess, the problem of mesh traversal, as well as the vulner-
ability and robustness of the embedded watermark. Then,
two extensions of the proposed scheme will be addressed
respectively in Section 3. The implementation of the pro- introduced by the watermark embedding on the mesh cen-
posed scheme and the experimental results are given ané0id position so that the geometrical configuration can be
discussed in Section 4. Finally, the conclusion is summa- recovered from the watermarked mesh to retrieve the em-

rized and some future work is pointed out in Section 5.  bedded watermark in the decoding process.

The watermarked
mesh

Watermark
embedding

The original watermark

Mesh centroid
restoration

A

The extracted Watermark
watermark extraction

2 A Fragile Watermarking Scheme for 3D  2.1.1 The Watermark Embedding

Mesh To extend dither modulation to the mesh, two things need to

) ) be specified. One is the host signal of the mesh model that

The watermarking process is performed on the polygo- i he modulated to embed the watermark, and the other
nal mesh, which is considered as the “lowest common de-ig the quantization step of the modulation. Since we aim to
nominator” of surface representations. It is easy to convertemped a fragile watermark which is sensitive to the modifi-

other representations of 3D models to meshes. For conveyations on the watermarked mesh, the host signal that is vul-

nience, we only deal with the manifold triangle mesh, in erapie to geometrical and topological modifications needs
which every edge belongs exactly to two adjacent triangles.y pe generated. Suppoke= {v1,- - -, v} is the set of

Let (C, V) presents the mesh geometry, whefepecifies ygtex positions infz?, the positiony,, of the mesh centroid
the connectivity of the mesh (i.e. the adjacency of the ver- ¢ yefined as

tices, edges, and faces), avid= {v1, - - -, v,,, } is the set of 1
vertex positions defining the shape of the mesRin ve=— Z vj. (1)
The general procedure of our proposed scheme includes i=1

the encoding process and the decoding process, as shown ifihe distance from a given triangle to the mesh centroid is
Fig. 1. In the encoding process, the watermark is embeddedefined as the Euclidean distance from the triangle centroid
into the mesh model and the watermarked mesh is generategh the mesh centroid. The ratios between the defined dis-
by restoring the position of the mesh centroid. Using some tances can be easily changed by those geometrical process-
priori knowledge, the watermark can be extracted from the jng other than translation, rotation and uniformly scaling.
watermarked mesh and compared with the original one toThe connectivity of vertices represented by the face indices
obtain the verification result in the decoding process. The || be modified by any topological processing meanwhile
security of the watermarking scheme is guaranteed by theihe ratios between the distances from the triangles to the
secret keyis, which is used as the seed to scramble the face mesh centroid will be scrambled. So the defined distance
indices of the mesh in both encoding and decoding processcan be chosen as the host signal to embed the watermark.

Furthermore, the centroid positien. of a given trianglef;

2.1 The Encoding Process is obtained by
3
In the watermark embedding, a special case of quan- Vie = 1 Z“U” )
tization index modulation (QIM) called dither modulation 3 j=1

[1] is used to embed a sequence of data bits into the mesh _ . e

model. We extend the dither modulation technique to the WNET€ij: J € {1,2,3} is the vertex position irf;. The
mesh model by constructing a geometrical configuration distancedy; from f; to v, can be calculated by

and modulating the host signal according to the bit value
of the watermark, as detailed in the following. The mesh dy; = \/(vm — Veg)? + (Viey — Vey)? + (Viez — Vez)?,
centroid restoration is performed to compensate the error 3)
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where{vicz, Vicy, Vicz } and{vez, vey, ve.} are the coordi-
nates of the face centroid and the mesh centroitinre-
spectively.

The distancel; from a vertex with the position; to the
mesh centroid is given by

d; = \/(Ui:r: — Vea)? + (Viy — Vey)? + (Viz — vez)?, (4)

where {v;,, viy, vi. } is the vertex coordinate if*. The
guantization step of the modulati¢his chosen as

S =D/N, )]

encoding operations, all vertex positions finshould not
be modified any more after the triangle centroid position is
adjusted.

In the watermark embedding, a secret K€yis used as
the seed of the random number generator to scramble the
face indicesl to generate the scrambled indicEs The
embedding process is conducted followiHgs the starting
triangle is the first triangle indexed b§. To ensure that
the modification made to each vertex position can be de-
tected by modulating the distances from the triangles to the
mesh centroid, the encoding process should traverse all the
vertices in the mesh and the optimal mesh traversal which
maximizes the capacity of the mesh needs to be found out

whereD is the distance from the first vertex in the starting 5,4 performed.
triangle to the mesh centroid and the value of the parameter

N can be specified with respect to the precision of the mesh

data.
With the specifieds, the integer quotier®); and the re-
mainderR; are calculated with the distandg; by

Qi = |dyi/S], (6)
R; = dg;%S. @)

To embed one watermark hit(i), we modify the centroid
position of f; so that the modulated integer quoti&pi is
an even value as (i) = 0, or an odd value as (i) = 1.
The distancel;, is modulated by

Qi x S+75 if Qi%2=mw()
/fi: QiXS*g |fQ,%2zw(z)&R1<§ + e,
QixS+3 fQ%2=w()&R; >3
8

wherew(i) = 1 — w(i) andd’}, is the modulated distance.

The componeng; is added in the formula to make the em-

bedded watermark statistically undetectable ané dis-

tributed within the interva(—%, 2). It can be concluded

from (8) that the modulated integer quotient

' Qi if Q%2 =w(i)
L= Q-1 Q%2 =w() &R, <
Qi+1

if Q;%2=w(i)& R; >
so thatQ;%2 = w(i). Consequently, the resulting, is

Q=1

SN

9)

2.1.2 The Mesh Centroid Restoration

The watermark embedding inevitably introduces the distor-
tion to the mesh geometry as some vertex coordinates are
modified. The distortion of the mesh geometry also changes
the position of the mesh centroid, although adjusting the
vertex position may counteract each other. So in the encod-
ing process, at least one vertex is needed to restore the posi-
tion of mesh centroid so that the same configuration can be
constructed to retrieve the embedded watermark in the de-
coding process. We refer to this operation as mesh centroid
restoration, which modifies the position of the last vertex
in the mesh traversal to compensate the error on the mesh
centroid.

The restoration begins with the calculation of the intro-
duced error by

m m
B=Y o=, e
j=1 j=1
wherem is the vertex number of the mesh mode},and
v’ are the vertex positions before and after the embedding
process, respectively. The last vertex in the mesh traversal
is moved by
(12)
wherev,s; andv;, ., are the positions of the last vertex
before and after the restoration. We further calculate the
distanceD’ from the last vertex after the restoration to the

/
Vigst = Vlast — E,

used to adjust the position of the triangle centroid. Only one mesh centroid using (4) and obtain the value of the parame-
vertex in the triangle is selected to move the face centroidter N’ by

to the desired position. Supposg of the position of the
selected vertex in the triang)g, whose centroid position is
Ve, the adjusted vertex position would be

d.. 3
vy = [e+ (vie —ve) x L1 x3- 3" wy, (10)
: dy; | L=
Jj=1,j#s

wherev;; is the vertex position in the fagg. To prevent the

N =D'/S. (13)
The value of N’ will be used to calculate the modulation

step in the decoding process. The encoding process ends as
the position of the mesh centroid is restored.

2.2 The Decoding Process

In the decoding process, only the original watermiafk

embedded bit value from being changed by the subsequenthe value of parametey¥’ and the secret kei( are required
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to verify the integrity of the watermarked mesh.

2.2.1 The Watermark Extraction

Similar to the encoding process, the centroid positipof

the watermarked mesh model can be obtained by (1). With
the secret keyk, the face indiced are scrambled to gen-
erate the scrambled indicds, which is followed to trace

the last vertex in the mesh traversal and its distaft¢o
the mesh centroid is calculated. The modulation stefs
calculated with the provided paramef€f by

S'=D'/N'. (14)

2.3 The Mesh Traversal

To ensure that the modification made to each vertex po-
sition can be detected, those triangles whose centroid po-
sitions have been adjusted to embed the watermark bits
should consist all the vertices in the mesh except that last
one, which is used for the mesh centroid restoration in the
encoding process and the calculation of the modulation step
in the decoding process. So in the encoding process, all
the vertices in the mesh should be traversed and all of them
except the last one should be contained in the adjusted tri-
angles.

The more triangles whose centroid positions hide the wa-

The embedded watermark bit is extracted from a triangle termark bits a vertex belongs to, the more sensitive the em-

position in the following way. The centroid positiat), of

the trianglef; is calculated by (2). Then, the modulated

distance!’;, from f/ to v}, is calculated by

/fi = \/(U'gca: - ’Uéx)2 + (Ugcy - ’Uéy)2 + (U;cz - ’U:;z)Q’

and the modulated integer quotiepf is obtained by (o)
Qi = dy,/5']. (16)
The watermark bitv’ (i) is extracted by
w'(i) = Q;%2. 17)

bedded watermark is to the vertex position. We wish to
embed as many as possible watermark bits into the mesh
model so that the average number of the adjusted triangles
each vertex belongs to is maximized. There exists the prob-
lem of finding out the optimal mesh traversal. The triangle
position can be adjusted by moving only one vertex in the
triangle, however, once one vertex in the triangle is selected
to modulate the distance from the triangle to the mesh cen-
troid, its adjusted position is determined by (8) and (10).
So adjusting one vertex position at most embeds one water-
mark bit. Because there are two vertices whose positions
are not modified in the starting triangle and the last visited
vertex is used for mesh centroid restoration, the maximum
number of the adjusted triangles in the watermark embed-

The same mesh traversal as in the encoding process will bejing is m — 3, supposingn is the vertex number of the

performed until all the watermark bits are extracted.

2.2.2 The NC Value Calculation

After the extraction process, the extracted waterni&rks

compared with the original waterma¥k using the follow-

ing cross-correlation function to measure the their correla-
tion. Supposing their lengths are both identicali{o the
normalized cross-correlation valléC' between the origi-

nal and the extracted watermarks is calculated by

U
NC = ?;I(w (1), w(1)), (18)

1 ifw'(i) = w(4)

I(w' (), w(@) { —1 otherwise (19)

If the watermarked mesh geometry is intact, tH€" will

mesh. In the following, we shall propose the optimal mesh
traversal strategy to achieve the maximum capacity.

As discussed above, the mesh traversal is intentionally
performed following the scrambled face indicEsto en-
hance the security of the watermarking scheme. At first, the
starting triangle which is firstly indexed by is picked and
its position is adjusted by modifying one vertex position.
After that, we always consider those triangles named as can-
didate triangles with two visited vertices and one unvisited
vertex. A simple way to find those candidate triangles is to
define a frontier [7], which is an imaginary polygon enclos-
ing all the visited vertices without any unvisited ones. We
define the visited edges as those edges contained in the tri-
angles with three visited vertices. And the frontier is formed
by those visited edges that are not enclosed by other visited
edges.

At first, the frontier includes three edges of the starting
triangle after its centroid position is adjusted. Based on the
current frontier, those triangles consist of exactly one edge

bel. Otherwise, if the watermarked mesh has gone throughin the frontier and one unvisited vertex are found out and
any geometrical or topological processing other than trans-the one firstly indexed by’ is chosen to embed the water-

lation, rotation and uniformly scaling, the resulting” will

mark bit. Each time a new triangle is traversed, the frontier

be less thari. We claim the mesh geometry as being tam- needs to be updated as some new visited edges are added

pered if the obtaine@ C from (19) is less than 1.

(the number may be more than two). At last, the watermark



embedding stops until the last vertex is left unvisited. the face indices to represent the connectivity of the ver-
Shall the mesh traversal visit all the vertices without tices. Furthermore, the kédy is used as the seed of pseudo-
blocking? Now we prove that the mesh traversal strategy random number generator to generate the scrambled indices
can traverse all the vertices of a manifold triangle mesh. I’ so that the security of the watermarking scheme is guar-
Since every edge in a manifold triangle mesh belongs ex-anteed. Since the mesh traversal is dependent’ othe
actly to two triangles, each edge in the frontier must belong extracted watermarkd’’ will be dramatically different from
to two triangles, one inside the frontier with three visited the original watermark? without the correcf’. If there is
vertices as in the definition of the visited edge, and the otherany change made to the mesh topology, such as mesh deci-
with an unvisited vertex outside the frontier (Otherwise, if mation, resampling or refinement, the face indif®sll be
the third vertex has also been visited, the edge will be en-modified so that the scrambled indicEswill not be cor-
closed by the other four visited edges in the two triangles, rectly generated. In other words, any modification on the
which contradicts with the definition of the frontier because mesh topology will lead”’ as well as¥’ to change. There-
all edges in the frontier are not enclosed by other visited fore the unauthorized modification on mesh topology can
edges). Therefore, new triangles with two visited vertices be detected.
and one unvisited vertex can be found out based on the fron-
tier until all the vertices are traversed. 3 Two Extensions of The Proposed Scheme
The complexity of choosing one candidate triangle to
embed one thermark bi§ ateach timeis as foIIovys. Firstly, The proposed scheme can be extended to various algo-
all th_e edge_s in the frontier are enumerated t(_) flnd_ all the rithms by assigning different meaningful values:tan (8)
candidate triangles and among them the one firstly indexedsq, that the desired properties can be achieved. To make the

by I’ is chosen. To update the frontier after each watermark empedded watermark statistically undetectableshould

bit is embedded, all the triangles that the latest traversedyg uniformly distributed withir{—, ). In practise, to re-
vertex belongs to need to be examined and if all three ver-qce the false alarm probability, the distribution range,of

tices have been visited, all three edges in the triangle will can pe a little smallef— 3£, 35) for example.
become or remain visited edges. Among all visited edge, 878
those belong to two visited triangles are enclosed by other3 1 Detecting Translation, Rotation and Uni-
visited edges, and those belong to exactly one visited tri- formly Scaling
angle and one unvisited triangle will form the new frontier.
The candidate triangle Whos.e'position will pe gdj.usted' o nour proposed scheme, the embedded watermark is in-
embed the next watermark bit is the one which is firstly in- \ariant to translation, rotation and uniformly scaling, but
dexed by/" among all the unvisited triangles that the edges ggnsitive to other processing. By using a reference position
in the frontier belong to. pr, the extended algorithm can detect those transforms.
In the encoding process, besides one unvisited vertex in
2.4 The Properties of The Embedded Watermark  the chosen trianglg; is adjusted to modulate the distance
from f; to the mesh centroid, another vertexfins chosen

The watermark embedded by (8) and (10) is invariant to as the reference vertex. The distance from the reference
translation, rotation and uniformly scaling because the ratio vertex to the reference positign is calculated by
between the distance from the triangle to the mesh centroid
and the quantization stef) which is proportional to the dis-  [vir—r| = \/(Um: — Pra)? + (Viry — Pry)? + (Vir: — pr2)?,
tance from the first vertex in the starting triangle to the mesh (20)
centroid, remains the same after the model is translated, rowherev;,. is the reference vertex position. Thenin (8) is
tated or uniformly scaled. Otherwise, if the mesh model assigned by
is processed by other operations that change the ratios, the 3o — pl%S — §/2
formula Q;%2 = w(i) will not stand and the embedded e; = (Jvir = pr|% / ). (21)
watermark will be changed. Since we need to detect a triv- 4
ial modification on the mesh model, the integer valde ~ Supposév;,. —p,|%S is uniformly distributed withir{0, S),
should be sensitive to the distance from the triangle to thee; is within the interval[—32, 35). Therefore, the adding
mesh centroid. It can be achieved by assign\hg proper of e; in (8) will not interfere the embedded watermark and
value to obtain a small value 6f with respect to the preci- it can be derived that; = d};; — Q; x S — S/2.
sion of 3D data. In the decoding process, the reference positiomeed

In [2], the mesh topology is denoted by the set of ad- to be provided. Firstly, the modulated distamt;g is cal-
jacent vertices whose indices are less than that of a givenculated using (15). Then the integer quoti€)jtcan be ob-
vertex plus the vertex itself. In contrast, our method usestained by (16) and the bit value’(7) is retrieved by (17).
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The distance from the reference vertexjro the reference 3.2 The Reversible Algorithm of The Proposed
positionp,. is calculated by (20) ane; is obtained by (21). Scheme

After that, the difference betweepandd’,, — Q; x S —S/2

is calculated. For each triangle that carries the watermark The proposed scheme can be used to detect the illegal
bit, if [d;; — Q] x S — S/2 — e;| < e and the extracted bit  tampering of the watermarked mesh, however, the origi-
w'(7) equals to the original watermark hit(7), the mesh  nal mesh is slighted changed once it is watermarked since
model is considered as not having been modified. nearly all vertex positions are modified. In case that the
original mesh needs to be recovered, the distortion intro-
duced by the encoding process requires to be compensated.
Since the mesh topology is not changed during the encod-
ing process, each vertex needs to be moved back to its orig-
inal position. By keeping the modulation information in the
watermarked mesh, the reverse process of the encoding pro-
cess can be performed to recover the original mesh.

If the watermarked mesh model is processed by transla-
tion, rotation and uniformly scaling operations, the vertex
positions will be modified and the distance from the refer-
ence position to the reference vertexfinwill change, as
well as the ratio between; and the quantization ste§.
However, the ratio between the distantig and.S, as well
as the ratio betweedt,, — Q; x S — S/2 and S, remains
the same. If a relatively small valug/8 for example, is as-
signed ter, then|d’;, — Q) x S—S/2—e;| > €. Translation, ~ 3.2.1 Reversibly Embedding
rotation and uniformly scaling operations will be identified
if e; does not match’;; — Q; x .S —.5/2 while the extracted
watermark is the same as the original one. Although the
reference positiop,. can be arbitrarily chosen, it should be
chosen nearby the mesh centroid to make the ratio betweer§i =
e; andS more sensitive to those transforms. w with dy;, d; and Q7 provided in (3), (8)
@nd (9), respectively. ‘

Suppose there ard faces used to embed the water-
mark, to keep the modulation information in the water-
marked meshg; is defined as follows: fof = 3, - K,

d/f(i—l)_df(ifl)
4

andey, =

. & po—d
, While e; = =H %

In case that the watermarked mesh model is processe he detailed q ibl bed th
by other geometrical modification, there exists the triangle The detailed procedure to reversibly embed the water-

f; from which the distance’, to the mesh centroid is al- markis as follows: , ,
tered. So the ratio betweeif}i ~ QxS S/2andS is Step 1: Calculatdy; and@’ by (3) and (9), respectively,

changed. However, the ratio betwegnand S is not cer-  then obtaire; = W_andez € (-4, %){
tain to vary, depending on whether the reference vertex in ~ Step 2: Keepez in d’, using (8) and obtaires

fi is moved. Even if the ratio between and .S is also d/f2;df2 ande; € ( 58 5s>.

, - 16 16

changedld’fi f_Qi x S —5/2 — e;| will probably exceed. Step 3: Keepes in d’fg using (8), then obtair, =
Therefore, besides the embedded watermark, those processy, _q,, 015 918 o

ing other than translation, rotation and uniformly scaling — 7 andes € (=%, 57), and so on untik is kept

can be detected by compariagwith d’;;, — Q) x S — S/2. in d;c ande; = dlf“# is obtained;
Suppose there aif€ faces used to hide the watermark in- Step 4: Keep, in d}, using (8). S o
formation, we need to compaggwith d/;, — @/ x S — 5/2 It can be concluded that, is distributed within

for K times to verity the originality of the watermarked (—% %) from its definition together with (8), which im-
mesh model. To estimate the strength of tampering, the nor-Plies that the adding of; does not interfere the embedded

malized matching numbe¥ M betweere; andd’; — Q; x watermark. _ o

S — §/2 is obtained by The mesh centroid restoration is performed as the same
as in Section 2.

NM — % i m(i) 22) 3.2.2 Recovering the Original Mesh
i=1 To recover the original mesh, the modulation information,

e;, heeds to be retrieved from the modulated distadgge

where obtained from (15) and the modulated integer quot@ht
obtained from (16). For=1,2,---, K,

m(i):{ Loif|dy — Qi xS = 5/2—eif <e (23) ei=dy; — (Q) x S'+5/2). (24)
0 otherwise

According to the definition oé;, fori =2,---, K — 1, the

) ] ] _original distancel; is obtained by
The mesh model will be considered as being tampered ei-

ther NC'in (19) or N M in (22) is less than 1. dyi = dy; — eiy1 x 4, (25)
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while

dig = dfi — e x 4, (26) Table 1. THE MESH MODELS USED IN THE EXPER
and IMENTS
dp1=Q1 xS +5/2— ey x 4. (27) _ —
With d; provided by (24), (25) and (26), all the vertices Models | Vertices | Faces| Capacity(bits)
whose positions have been adjusted in the watermark em-
761 1317 751
bedding can be shifted back by dog 616 | 13176 519
wolf 8176 | 13992 7995
Vs = (0 + (vl — ) X Zfz:) xu— 3 o, (28) horse | 10316 | 18359| 10253
fi Pl raptor | 10853 | 14547 10218
wherev/; is the vertex position in the trianglf with v}, as cat | 11074 | 19093 10859
the adjusted position of the face centraigl, is the restored lion 20315 | 32094 19688

vertex position inf; andv’, is the mesh centroid position.

After we shift back the vertices used in the watermark
embedding, the next step is to move the last vertex used in _
the mesh centroid restoration to its former position. Firstly, 4.2 Capacity
the vectorE’ of the above shifting operations, which should

be the opposite of the error vectrintroduced by the wa- The capacity of the manifold triangle mesh to carry the
termark embedding, is calculated by watermark is the same using the two algorithms, since the
m m difference only takes place in the extensior.piin (8). The
E = Z”ﬁ' _ Z”;’ (29) maximum number of the embedded bits that can be carried
= = by each manifold triangle mesh is the vertex number minus

3. The bit number listed in Table 1 of each model is below
wherev; andv; are the vertex positions before and after the the maximum number is due to each model is a combination
reverse of the watermark embedding process, respectivelyof many manifold triangle meshes. To verify the integrity of
Subsequently, the vertex used in mesh centroid restorationhe mesh, the optimal mesh traversal maximizing the capac-
can be moved back by ity of the mesh is best suitable since it also maximizes the
(30) average number of the adjusted triangles that each vertex

belongs to so that the embedded watermark is sensitive to
where vy, iS the recovered position of;,.,. By this the tampering of every vertex position.
means, the original mesh is recovered from the water-

/ /
Ulast = Vjgst — E ;

marked mesh. 4.3 Imperceptibility

4 Implementation and Discussion To evaluate the imperceptibility of the embedded water-
mark, the Hausdorff Distance between the original mesh

4.1 Practical Implementation model and the watermarked mesh model normalized by

the largest dimension of the mesh, which is defined as the

Our proposed scheme is conducted in spatial domain andongest distance from the vertex to the mesh centroid, as
applicable to the manifold triangle mesh to verify its in- in [4], upon the fact that the mesh topology is unchanged.
tegrity without any special restriction. It can be extended The normalized Hausdorff Distance between the original
to other polygonal meshes with the corresponding meshand recovered mesh models was also calculated to test the
traversal strategy. In the implementation, the modulation reversible algorithm. Fig. 2 shows the amount of the dis-
stepS should be carefully selected with respect to the pre- tortion subject to the modulation stépusing the first al-
cision of 3D data, providing a trade-off between impercep- gorithm (the upper curve) and the reversible algorithm (the
tibility of the embedded watermark and false alarm prob- below curve), respectively, given that only one vertex was
ability. We have investigated two proposed algorithms on used in the mesh centroid restoration. From the experi-
several mesh models listed in Table 1. In case that the origi-mental results, it can be seen that the normalized Hausdorff
nality of the mesh model needs to be verified, the first algo- Distance between the original mesh and the watermarked
rithm is preferred since it can detect translation, rotation and mesh increases as increases. The reversibility mecha-
uniformly scaling; while the original mesh can be recovered nism significantly reduces the introduced distortion, since
using the reversible algorithm. A 2D binary image is chosen the difference between the original and recovered meshes
as the watermark, which can also be a hashed value. is much smaller than that between the original and water-
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marked meshes given the sae
4.4 Tampering Detection

Using the first algorithm, the watermarked mesh mod-
els went through translation, rotation and uniformly scal-
ing transforms, changing the positions of two vertices op-
positely (respectively by adding the vectdrsS, 25,25}
and{—2S, —25, —251}), modifying one vertex position by
adding the vectof 2.2, m2 D3 reducing one face from
the mesh, and adding Gaussian noise sigmal, n,,, n.}
with zero mean and standard deviatiSrto all the vertex
positions, respectively. The watermarks are extracted from
the processed mesh models with and without the Key
and the normalized cross-correlation vahi€’ between the

extracted and the original watermarks are calculated using[4]

(19). The normalized matching numbaiM betweene;
andd’;;%S" — 5’ /2 is also calculated by (22). The obtained
results of NC' and N M shew that the embedded watermark
is invariant to translation, rotation and uniformly scaling but
sensitive to other processing, while the normalized match-
ing number is sensitive to all those processing.

5 Concluding Remarks and Future Work

In this paper, we have proposed a new fragile watermark-
ing scheme for 3D manifold triangle mesh, which can em-
bed the position-rotation-size invariant watermark. The wa-
termarking strength is adjustable by properly choosing the
modulation step with respect to the precision of 3D data,
providing a good trade-off between the imperceptibility of
the watermark and false alarm probability. With some priori
knowledge, the integrity of the mesh can be verified by ex-
tracting and comparing the embedded watermark with the

to the modification made to each vertex position, the op-

timal mesh traversal strategy is proposed to maximize the
capacity of the mesh as well as the average number of the
adjusted triangles that each vertex belongs to.

Depending on the end applications, some desired prop-
erties can be achieved by assigning meaning values to the
plastic component in the proposed scheme. In this paper,
two detailed algorithms are proposed, one enables the de-
tection of translation, rotation and uniformly scaling and
the other recovers the original mesh from its watermarked
version. However, the constructed work is far from per-
fect. Future work is needed to make it useful in practice
for 3D mesh verification. A general model of false alarm
probability needs to be constructed to analyze the computa-
tional error due to the limited precision and the distribution
of plastic component.
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Abstract typical Adaboost algorithm starts from a set of weights over
the original training set, and constructs new training sets
Combining classifiers has shown proven performance through 1boosting by sampling or 1boosting by weighting.
benefits in many reported work. However, methods for se-In 1boosting by sampling, it constructs a new training set
lecting and combining multiple classifiers’ output are often by drawing examples (with replacement) from the original
heuristic in nature and does not have a well-defined objec- training set with probability proportional to their weights.
tive function. We propose the use of a linear prediction In 1boosting by weighting, it inputs the entire original train-
approach on the multiple classifiers’ output and optimize ing set and the weights into base algorithms which can ac-
the classification task with a hinge loss regularized objec- cept a weighted training set directly. The weights in Ad-
tive function. By observing the relationships of the regu- aboost are then adjusted after training a base classifier, by
larized functions with thé-2 SVM, the regularized objec- increasing the weights of misclassified examples, and de-
tive function is then solved via standard SVM approaches. creasing the ones of correctly classified examples.
We demonstrate how the linear prediction approach can be |t has been argued that diversity and accuracy of base
adopted to give different optimized combination strategies classifiers play an important role in obtaining a good en-
to guide the selection and combination of base classifiers.semble [15]. For bagging, it relies on unstable base clas-
Results on standard datasets shown improved performancesifiers sensitive to sampled training sets to achieve diverse
in all combination strategies. classifiers. For boosting, it doesn’t require the unstable con-
dition for base classifiers because it can realize the diver-
sity of base classifiers through re-weighting training sets.
1 Introduction Some other approaches many aiming at further diversify-
ing base classifiers are available, by inducing randomness

Ensemble is a useful technique where the outputs of ainto the learning algorithm [4], or manipulating the input
set of base learners are combined to form a unified predic-attributes [11], and the model outputs [3].
tion [19], e.g. neural network ensemble [10]. For classifi- ~ Ensemble learning typically adopts weighted or un-
cation tasks dealt with in this paper, typical ensemble learn-weighted voting for prediction combination [1, 22]. In the
ing is to construct a collection of individual classifiers, then unweighted majority(Plurality) voting, the class with the
obtain the class prediction by voting the outputs of the in- most votes from all base classifiers is regarded as the pre-
dividual classifiers in the ensemble. Many researchers havediction by the ensemble. In weighted voting, base classi-
demonstrated that ensembles generally outperform the besiiers may have different weights associated, their outputs
single classifier in the ensemble. Typical applications of are then weighted and linearly combined. Adaboost comes
ensembles includes face recognition [9], hand written word up with the set of weights for combination at the end of
recognition [8], medical diagnosis [28],etc. training all base classifiers, but other ensemble techniques

Bagging ("bootstrap aggregation”) [2] and, boosting like bagging do not produce such set of weights.
(e.g. Adaboost [6, 7]) are two major techniques for con-  Stacked generalization [26] is another scheme for com-
structing ensembles [16, 4]. Both techniques are thought tobining outputs of base classifiers. It learns an upper-level
generate different classifiers by training on different train- meta-classifier based on the predictions of all base clas-
ing sets [4]. In bagging, each training set is constructed by sifiers. A recent study [18] shows stacking enabled by
drawing a certain number of examples uniformly (with re- multi-response model trees performs better than selecting
placement) from the original training set. In boosting, the the best single classifier in the ensemble. The selective
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ensemble [27] has some common points with the stackingobtained through the updating of the weights to training ex-
approaches, it also reported better performance than typi-amples, that is, the weightsare indirectly learned from the
cal bagging and boosting approaches with majority voting. process of updating the weights to training examples. Note
The stacked generalization is even drawn relationship withthis two approaches do not have a clear objective function
meta-learning, which is about "learning to learn” [24]. This to quantify the goodness of thig a way thus is to formulate
ensemble schema also allows easy combination of heterogethe learning of thes into optimizing an objective function,
nous base learners, which usually means base learners am@nd solve the objective function in a systematic manner.
trained by several different learning algorithms, rather than  Assuming theY is known for the purpose of learning
a single learning algorithm typically used in bagging and the §. It is clear thel, SVM can be used here as the
boosting. objective function, that is, it is to learn a SVM model to
Other than the issue of (learning) how to combine base comply with the datasé¥I and their labelsY. Assuming
learners, choosing which set of base learners for the combi-f; = M; 8 + Gy whereM, as a row vector is the—th
nation is also important. Each base learner in an ensembleow of the prediction matriX@M. The g, is an offset con-
usually is not tuned to be the optimal single learner. On stant, which can also be forced to zero [12] in standard SVM
the other hand, some of base learners might be redundantraining. The objective function adopted by-SVM is
due to the large overlapping of training sets, or the stable .
performance of the base learning algorithms, etc. It is thus . 1 2
helpful to consider the selective combination of base learn- min ¢ Z max {1 = yifi, 0} + §||5H ’
ers. Along this direction of thought, some approaches can
be found, which deal with dynamically adding base learn-

ers [13], learning the optimal combination of neural net- The termmax {1 — v, ;,0} is also called hinge loss.

works [23] or doing selective ensemble [27]. . . .
. : From this perspective of defining such a loss term, the above
This paper focuses on the issue of how to select and com-

. . ) o jective function has the following variant [r
bine base learners. It will present the regularized obJectlveOIOJeCt e function has the following variant [ref],

i=1
This objective form can be efficiently solved by QP rou-
tines, or simply calling standard SVM packages.

form for base learner combination, together with possible n A
variants. And then the practical steps are briefly stated, in- min{) " max {1 -y, f;,0} + S 1811},
cluding the discussion of selecting base learners. After that i=1

it is the experimental section, which provides the compar- whereA = 1/C. This form can be regarded as minimiz-
isons between our approaches and the genetic algorithming both the hinge loss term and the penalty as measured
based ensemble (GASEN), and include a brief introduction by £||3||2. The rewritten form does not change the nature
to two projects which our ensemble approaches to be ap-of the objective, but has been regarded as one member of
plied to. At the end, there will be discussion and open prob- the family of regularization [5]. It actually hints many vari-

lem discussion. ants of the objective functions can be used to deal with the
problem of combining base classifiers.
2 Formulation and Solution To change the penalty terfis||? to ||3||° or || 3||*, zero

or one norm SVMs [25, 29] are formulated. They have the
property of forcing some entries gfto be zero, which im-
plies that by solving them, the way of combining learners
and the selection of learners can be simultaneously fulfilled
_ - with. This paper only presents the approaches of combin-
Given a set of, examplesX = {x;};_, to be classified  j g |earners through the way of two norm SVMs, but keeps
into the positive class or negative one, that is, a target outpupe study of selecting learners by zero or two norm svms
vectorY = {y;};_,, an ensemble ol base learners can  opgoing.
give N predictions to each example. This actually resultsin - There are some further adapted objective formulations.
a prediction matrixM with the size ofn x N. By taking the square logsY — MJ||?, and forcing a small
From the perspective of voting for or linearly combining  hound to the, of 3, the Least Absolute Shrinkage and Se-
the outputs of base classifiers, liking bagging or boosting, |ection Operator (LASSO) [21] is used, which also leads to
the following form is implied or approximated, some zeros entries for the resultig

2.1 The Regularized Combination of Base Learn-
ers

fiMB—Y, min|[Y — MBI, s8] < s
where3 € RY is a weighting vector. Majority vote alike ~wheres is a small constant. Furthermore, by using the pe-

combinationisto letalb; = % and then take theignfunc- nalization term||3||?, the Least Square SVM [20] is ob-
tion, while in Adaboost the weights to base learners are tained.
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2.2 The Implementation 3.2 Experimental Setup and Results

The current implementation of base classifier combina- We mainly follow the experimental settings for the
tion is very simple, mainly benefited from the standard GASEN in the selective ensemble paper [27]. The compari-
SVM implementation. The overall steps can be summarizedson is also performed to be with the GASEN approach only.
as follows: Note the GASEN has been shown outperforming other en-

semble approaches including bagging and boosting, hereby

e Train multiple base classifiers (e.g. Neural networks, the comparison results between our approaches and the pop-

SVMs or others, even their mixture) based on different ular voting bagging and boosting approaches are not listed.
data split, feature subsets and randomness injection. For each dataset, we use half of the randomly drawn ex-
amples to form the original training data set, on which ten

e For a separate set with labels known, take all the pre-ensembles of neural networks are trained by bootstrap sam-

dictions from all base classifiers, and trai,dinear pling. The remaining half of examples are then evenly di-
SVM upon the prediction matrix and the known labels vided into a separate validation set and a testing set. Tak-
(Possibly tuning the model parameter liketo ensure  ing the Credit(German) data of 1000 points as an example,
a good generalization ability. The weights to each base500 points with respect to the ratio of positive and nega-
learners can be calculated from the built SVM model. tive examples are randomly drawn out to form the original
training set. Based on the 500 points, ten neural networks
e For smallg; less than a preset threshdldtheir asso- are trained. Each neural network takes a subset (roughly
ciated base classifiers are deleted from the ensemble63%) points bootstrapped from the 500 points for training,
the weighting set is accordingly reduced and renor- Vvalidated by the remaining set of points (about 37%) [ref
malized. out-of-bag estimation].

For the remaining 500 points, 250 are taken as a vali-
dation set and 250 as a testing set. After training the ten
base neural networks, their prediction over the validation set
are then used to learn the selection and combination strat-

To test the performance of our approach, a set of exper-€dy. Thel2—SVM is selected for learning how to select
iments on real data are conducted. This section gives arand combine the ten base neural networks. As a compari-
introduction to datasets, experimental setup and results, toSon, the genetic algorithm for learning the weighted com-
gether with a brief and high-level introduction to two ongo- bination of base neural networks (GASEN) is compared, as
ing projects which has been adopting this approach, one iswell as some variants of these two approaches. Finally, the
siRNA efﬁcacy prediction, the other is the web query cate- base neural networks are combined to give a unified predic-
gorization task in KDD-CUP 2005. tion to the 250 testing points, and the classification error is
reported. The whole process is repeated ten times to get an
average error reporting.

Several variants of GASEN and our approach are imple-
mented. They are GASEN-w, GASEN-wa, SVM-w, SVM-

The first dataset is the numerical version of the Credit wa. GASEN-w uses the evolved weights by genetic algo-
(German) data from the UCI machine learning repository rithms to select the base neural networks, and combines the
[ref]. Itis a unbalance binary classification task. It has 700 predictions of the selected networks with the normalized
positive data points and 300 negative ones, each has 24 nuversion of their evolved weights. SVM-w similarly selects
merical features. base neural networks by the weights learned during forming

The second dataset is the chess data, also from the UCthe SVM model, and combines the predictions of selected
machine learning repository. It has 36 nominal features, networks with the normalized SVM weights associated with
1669 positive examples and 1527 negative ones. It becomeshese selected networks. GASEN-wa and SVM-wa do not
a numerical data matrix with the dimension of 38 after con- select the base neural networks, just do a weighted combi-
version. nation of the outputs of all base networks.

The third dataset is the waveform data. It has 4000 exam- From the Table 1, it can be shown when selecting base
ples and three classes. In our experiments we only use twdearners and combining them through majority voting, the
classes of data. The extension of SVMs to multiclass fea- SVM-guided learner selection is better than GASEN, with
ture/learner selection remains to be an unsolved issue. Buthe equal number of base classifiers selected. When the
the ECOC [14] would be helpful in dealing with the combi- weighted combination of selected base networks are con-
nation of base learners under the regularized framework. ducted, both the GASEN-w and SVM-w have reduced er-

3 Experiments

3.1 Datasets
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racy, the improvement to the combination should play an

Table 1. Selecting and Combining Base Clas- important role in increasing the overall accuracy. We study
sifiers by SVMs and Genetic Algorithms this task setup by KDDCUP2005, due to the collaboration
nature of this project and its large-scale, the way to com-
Credit(German)| Chess| Waveform bine the results from hybrid approaches needs some careful
GASEN 0.2813 0.0497| 0.0961 consideration.
SVM 0.2717 0.0465| 0.0885
GASEN-w 02470 [ 0.0247] 0.0825 4. Conclusion
SVM-w 0.2313 0.0192| 0.0813
GASEN-wa 0.2393 0.0224| 0.0823 This short paper presents the regularization framework
SVM-wa 0.2263 0.0179] 0.0823 for base learner selection and combination. This formula-

tion can result in better weights for selecting and combining
base learners. Results show the approach performs better
than the GASEN approach, which in turn has been verified
to be better than popular voting-based bagging and boosting
approaches.

In our current implementation, the standard2 SVM is

ror rates compared with the GASEN and SVM. It can be
noted that SVM-w still outperforms the GASEN in this

case. Finally, for the GASEN-wa and SVM-wa, they are
the weighted combination of all learners without any learner

selection, and have the lowest error rates, compared W'thused for the selection and combination. But other variants

the approach of the majority voting of all learners with- can be adapted to the learning of selecting and combining

out learner selection (Data not shown), and the GASEN 0r 1 <o ¢jassifiers. But standard SVMs do not solve multiclass
SVM, as well as the GASEN-w or SVM-w. Butithas been ,qy s very well, which will be a further study issue for learn-

pointed out [27] that the selection approach has the advan-

f sianif I duci h b tb | ing regularized classifier combination.
tage of significantly reducing the number of base leamers - ijy jitive that techniques for feature selection specific

in the final ensemble. In our experlme_nts, the number is for data analysis are most likely usable for the base learner
reduced fromi0 to the average of 5 for different datasets. selection. It is essential to investigate whether they are ex-
o actly the same.
3.3 Applications In ensemble study, the properties of base learners are in-
tensively studied, including their noise tolerance, complex-
We have two ongoing collaboration projects, on which ity, bias and variance error decomposition, etc. Can these
the SVM-guided ensemble approaches will be tested. Thestudies lead to better ways of selecting and combining base
first project is siRNA efficacy prediction [17]. It has been |earners, or has they already defined the limitation?
conjectured the 19 nucleotides of each siRNA determine its
efficacy in achieving gene silencing, but others argued that
sequence features of siRNA may not enough for knowing
the efficacy. Nevertheless, the current performance of pre-
dictors are not supportive enough for reliable siRNA de-
sign. ,Howev_er, current approac_hes are often_gt_Jlded by ex- Machine Learning36(1-2):105-139, 1999,
perts’ domain knowledge and |anIves heuristic or man- L. Breiman. Bagging predictors. Machine Learning
ually constructed rule-based predictors. These classifiers 24(2):123-140, 1996.
have been demonstrating not too bad performance on small (3] T. G. Dietterich. Ensemble methods in machine learning.
siRNA data sets while demonstrating diverse even conflict- Lecture Notes in Computer Sciend@57:1-15, 2000.
ing predictions when being compared. We are conducting [4] T. G. Dietterich. An experimental comparison of three
the study of combining these diverse predictors, based on a methods for constructing ensembles of decision trees: Bag-
moderately large siRNA data set collected and screened by ~ ging, boosting, and randomization.Machine Learning
our collaborators. 40(2):139-157, 2000. . o
The second applications ensemble learning can work on [ T Ell’ge”'(fl’“’ M. Ptontnl,tand T. :099'%'0559“'3”23“0” net-
: . : : WOrKS and support vector macnines, .
IS ng query categorization. Given a huge_set of usgr [6] Y. Freund andppR. E. Schapire. A decision-theoretic general-
queries !n ‘,’" less Iapelled man_ner, the ta§k is to predict ization of on-line learning and an application to boosting. In
the queries’ categories automatically. Prp\(lded that many European Conference on Computational Learning Theory
search engines can return query results, it is thus meaning- pages 23-37, 1995.
ful to Study the Combination Of the responses from multi' [7] Y. Freund and R. E. Schapire. Experiments with a new
ple search engines or related sources. Provided that single  boosting algorithm. Itinternational Conference on Machine
source may always have its hard-to-improve baseline accu- Learning pages 148-156, 1996.

References

[1] E.Bauer and R. Kohavi. An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants.

43



[8] S. Gunter and H. Bunke. An evaluation of ensemble meth- [26] D. H. Wolpert. Stacked generalizatiomMNeural Networks

9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

(24]

(25]

ods in handwritten word recognition based on feature se-
lection. InICPR '04: Proceedings of the Pattern Recogni-
tion, 17th International Conference on (ICPR’04) Volume 1

5:241-259, 1992.

[27] W.T. Z.-H. Zhou, J. Wu and Z.-Q. Chen. Selectively ensem-

bling neural classifiers, 2002.

pages 388-392, Washington, DC, USA, 2004. IEEE Com- [28] Z.-H. Zhou and Y. Jiang. Medical diagnosis with c4.5 rule

puter Society.

preceded by artificial neural network ensemble, 2003.

S. Gutta, J. Huang, B. Takacs, and H. Wechsler. Face recog-[29] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. norm support

nition using ensembles of networks, 1996.

L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Trans. Pattern Anal. Mach. Intell12(10):993-1001,
1990.

Y. Jiang and Z.-H. Zhou. Editing training data for knn clas-
sifiers with neural network ensemble, 2004.

T. Joachims. Making large-scale support vector machine
learning practical. In A. S. B. Scholkopf, C. Burges, edi-
tor, Advances in Kernel Methods: Support Vector Machines
MIT Press, Cambridge, MA, 1998.

J. Kolter and M. Maloof. Dynamic weighted majority: A
new ensemble method for tracking concept drift. Technical
Report CSTR-20030610-3, Department of Computer Sci-
ence, Georgetown University, Washington, DC, June 2003.
E. B. Kong and T. G. Dietterich. Error-correcting output
coding corrects bias and variance. liternational Confer-
ence on Machine Learningages 313—-321, 1995.

A. Krogh and J. Vedelsby. Neural network ensembles, cross
validation, and active learning. In G. Tesauro, D. Touretzky,
and T. Leen, editorsidvances in Neural Information Pro-
cessing Systemgolume 7, pages 231-238. The MIT Press,
1995.

D. Opitz and R. Maclin. Popular ensemble methods: An
empirical study.Journal of Artificial Intelligence Research
11:169-198, 1999.

S. 0. J. Saetrom P. A comparison of sirna efficacy predictors.
Biochem Biophys Res Commuti3(321):247-253, 2004.

B. Z. Saso Dzeroski. Is combining classifiers with stack-
ing better than selecting the best oné&®achine Learning
54(3):255-273, 2004.

P. Sollich and A. Krogh. Learning with ensembles: How
overfitting can be useful. In D. S. Touretzky, M. C. Mozer,
and M. E. Hasselmo, editor@Advances in Neural Infor-
mation Processing Systewwlume 8, pages 190-196. The
MIT Press, 1996.

J. A. K. Suykens and J. Vandewalle. Least squares sup-
port vector machine classifierdNeural Processing Letters
9(3):293-300, 1999.

R. Tibshirani. Regression shrinkage and selection via the
lasso, 1994.

G. Tsoumakas, L. Katakis, and I. Vlahavas. Effective Voting
of Heterogeneous Classifiers. The 15th European Confer-
ence on Machine Learning (ECML) and the 8th European
Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD)Pisa, Italy, September 2004.
N. Ueda. Optimal linear combination of neural networks for
improving classification performancéEEE Trans. Pattern
Anal. Mach. Intell, 22(2):207-215, 2000.

R. Vilalta and Y. Drissi. A perspective view and survey of
metalearning, 2002.

J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. The
use of zero-norm with linear models and kernel methods,
2002.

44

vector machines, 2003.



Solving Large-scale POMDP Problems Via Belief State Analysis
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Abstract of MDP with the addition of a finite set of observations and
a set of corresponding observation probabilities. The policy
Partially observable Markov decision process (POMDP) of a POMDP is nhow a mapping from histories of observa-
is commonly used to model a stochastic environment fortions to actions.
supporting optimal decision making. Computing the op-  For POMDPs, belief state is taken as a probability dis-
timal policy for a large-scale POMDP is known to be in- tribution over the unobservable real states as an effective
tractable. Belief compression, being an approximate solu- summary of the observation history and it is updated based
tion, reduces the belief state to be of low dimension and on the last action, the current observation, and the previous
has recently been shown to be both efficient and effective inbelief state using the Bayes rule. The policy of a POMDP
improving the problem tractability. In this paper, with the s thus a mapping from a belief state to an action. The com-
conjecture that temporally close belief states could be char- plexity of computing the optimal policy for a POMDP is
acterized by a lower intrinsic dimension, this paper pro- much higher than that of an MDP with finite states due to
poses to cluster belief states based on their spatial and tem+he continuous belief space. The best bound for obtaining
poral similarities, resulting in belief state clusters as sub- the exact solution is doubly exponential in the horizon (the
POMDPs of much lower intrinsic dimension and to be dis- time steps which the problem will iterated over) [3]. For
tributed to a set of agents for collaborative problem solving. |large-scale POMDP problems, it is computationally infea-
The proposed method has been tested using a synthesizegible even though it is known that the value function can be
navigation problem (Hallway2) and empirically shown to proven piecewise linear and convex (PWLC) over the inter-
be able to result in policies of superior long-term rewards nal state space [1].
when compared with those based on only belief compres- | the literature, there exist a number of different meth-
sion. Some future research directions for extending this be-gg proposed to solve large-scale POMDP problems effi-
lief state analysis approach are also included. ciently via different elegant approximation used, including
the witness algorithm [1], VDC algorithm [10], BFSC algo-
rithm [11], etc. Another orthogonal direction is to take the
1 Introduction divide-and-conquer approach so as to result in some scal-
able solutions. In addition, the problem decomposition ap-
Markov decision process (MDP) is commonly used to proach can further facilitate the problem solving to be con-
model a stochastic environment for supporting optimal de- ducted in a multi-agent setting. While there have been some
cision making. An MDP model consists of a finite set of previously work on automatic decomposition of POMDP,
states, a set of corresponding state transition probabilitiesefficient and effective paradigms to support POMDP de-
and a reward function. Solving an MDP problem means composition and distribution are still lacking.
finding an optimal policy which maps each state to an ac- In this paper, we are inspired by the recently proposed
tion so as to achieve the best long-term reward. One of thebelief compression approach for the fact that analyzing a
most important assumptions in MDP is that the state of the sample of belief states computed based observations could
environment is fully observable. This, however, is unfit to provide us a lot of hints for reducing the problem complex-
a lot of real-world problems. Partially observable Markov ity in a problem-specific manner. For example, based on
decision process (POMDP) generalizes MDP in which the the observation that belief states of POMDP can typically
decision process is based on incomplete information aboutbe characterized by a much lower dimensional state space,
the state. A POMDP model is essentially equivalent to that the belief compression approach uses dimension reduction
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techniques, like PCA and exponential PCA, to reduce theas each belief state is a probability distribution by itself.
problem complexity. With the conjecture that temporally However, the transformation is a non-linear one, making
close belief states could be characterized by a set of clusthe value function of the projected belief states no longer
ters, each with a further reduced intrinsic dimension, this piecewise linear. The consequence is that many existing al-
paper proposes to cluster belief states based on their spagorithms taking the advantage of the piecewise-linear value
tial (in the belief space) and temporal similarities, resulting function become not applicable together with belief com-
in belief state clusters as sub-POMDPs of much lower in- pression. As suggested in [7], those sampled belief states
trinsic dimension and to be distributed to a set of agentsin the projected space can be used as the states of a corre-
for collaborative problem solving. We have tested the pro- spondingly formed MDP. One can then compute the optimal
posed method using a synthesized navigation problem andolicy for that associated MDP.

showed that the belief state clustering approach can resultin

policies of superior long-term rewards when compared with . .

those based on standard belief compression. 3 Clusterl_n_g Belief States for POMDP De-

The remaining of this paper is organized as follows. Sec- ~ COMposition
tion 2 provides the background on belief compression. Sec-
tion 3 describes the proposed belief state clustering tech-3 1  General Ideas
nique. Section 4 provides the details for computing the sub-

POMDP policies and how they are used for solving the en- ) ,

tire POMDP as a whole. Experimental results are reported _R@ther than being yet another technique to address the

in Section 5 with possible extensions included in Section 6. POMDP's scalability issue, we perceive that the belief com-

Section 7 concludes the paper. pression approach in fact opens up a new d_|_men5|on for
tackling POMDP problems. That is the possibility to apply

) ) data analysis techniques to the belief state space, leading

2 Belief Compression to the possibilities of having more elegant problem solving
tricks.

Belief compression is a recently proposed paradigm [7],
which reduces the sparse high-dimensional belief space to
low-dimensional one via projection. The principle behind is
to explore the redundancy in computing the optimal policy
for the entire belief space which is typically sparse. Us-  Asmentioned in[7], the efficiency of belief compression
ing a sample of belief states computed based on observais owing to its strategy for tackling the high-dimensional be-
tions of a specific problem, data analysis techniques like lief state which is one of the main causes for the exponen-
exponential principal component analysis (EPCA) can be tial complexity. To further exploit the dimension reduction
adopted for characterizing the originally high-dimensional paradigm, we propose to decompose POMDP by analyzing
belief state space using a compact set of belief state baseghe manifold of a set of sampled belief states for clustering.
This paradigm has been found to be effective in making We anticipate that in those of the cases, there should exist
POMDP problems much more tractable. some clusterings which could result in more substantial di-

Let S denote the set of true staté®,denote the belief ~ mension reduction per cluster when compared with that of
state space of dimensidf|, b € B denote the belief state the overall belief states. In other words, the clustering cri-

%.2 Dimension Reduction Oriented Clustering

where itsj" elementh;(j) > 0 and>1°l b,(j) = 1, B terion that we are looking for is one that is formulated to
1 - ) — 1 - 1 . . . . .

denote &S| x n matrix defined a$b1|b2T_(|)b | wheren is maximize the with-in cluster problem regularity to account

the number of belief states in the training sample. for the further reduction. To contrast, most of the conven-

According to [7], one can apply EPCA and obtaifsax tional data clustering techniques try to identify data clusters

| transformation matrig/ which factorsB into the matrices  [0f maximizing the overall inter-cluster variance/distance
U7 and B such that while at the same time minimizing the overall intra-cluster

B UB 1) variance/distance.

B This idea can be intuitively interpreted as exploitation of
where each column oB equalsb ~ b" = eVt and the the structural modularization from the belief state perspec-
dimension ofB is | x n. As the main objective o/ is for tive. Thus, the proposed belief state clustering has some
dimension reduction, it is typical that<< |S]|. analogy with POMDP decomposition. However, in the lit-

To compare with some standard dimension reduction erature, most of the proposed POMDP decomposition tech-
techniques like PCA, EPCA is found to be more effective niques focus on analyzing the original states of the POMDP,
in dimension reduction. Also, EPCA can guarantee all the instead of based on the statistical properties of belief state
elements of a belief state to be positive, which is important occurrence as what being proposed in this paper.
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3.3 A Spatio-Temporal Criterion Function for For the original belief compression, the compression
Clustering is based on primarily one transformation mattixas de-
scribed in Section 2. Now, as the belief states are clustered,
In this paper, we propose to cluster the belief states basedhere will be several transformation matrices, each corre-
on both their euclidean distance as well as their temporalsponding to a particular cluster. Let the belief state sam-
difference, with the conjecture that regularities should be ple be partitioned intd® clusters{Cy, Cs, ...,Cp} and the
easier to identify for temporally close belief states. Among transformation matrix of the'”" clusterC, to beU,. The
all the clustering algorithms, the-means algorithm [6] is  reconstructed belief states associated'jacan then be ap-
here chosen just for the simplicity reason. It bases on a func-proximated a$™“» = eUr®  To measure the dimension re-
tion defined for measuring the distance between the clus-duction effectiveness via the clustering, the KL divergence
ter means and each data item. Data found to be closest tger cluster is to be computed, given as
one of the cluster means will contribute to the update of

that mean in the next iteration. The whole process will re- L Y co KL(bj||bT.’C”)

peat until it converges. For clustering belief states with the KL(Cp) = ——* oA : (5)
dimension-reduction objective, we define a spatio-temporal P

distance function between two belief states, given as Before proceeding to the next section for computing the

policy, we would like to highlight the fact that clustering the
belief states can result not only in reducing the overall com-
plexity for solving the original POMDP problem, but also
\/||b- bl )\”i -7 2 @ that for perform_ing the EPCA_ for belief (_:(_)mpression and
v n|S| that for computing the transition probabilities of the pro-
jected belief states. This computational gain is achieved at
where ) is a trade-off parameter for controlling the rela- the expense of the clustering overhead as well as the opti-
tive contribution of the first (spatial) term and the second mality of the resulting policy that we may sacrifice after the
(temporal) termn|.S| is introduced to normalize the second problem decomposition. Fortunately, the clustering over-
term to be within0, %]. If \is too large, it will dominate  head is found to be not significant when compared with the
the first term and thé-means clustering results will essen- overall complexity. For the resulting policy’s optimality, the
tially be cutting the belief state sample into some consecu-results we obtained so far are very positive.
tive parts according to the belief state appearance sequence
in the_ sample. Also, the value &f i.e., the number of (;Ius— 4 Computing POMDP Policy
ters, is another parameter that one can tune for optimal be-
lief state dimension reduction. To determine the values of ) ) ) o o
A andk, we only used an empirical procedure in this paper ~AS mentioned in Section 2, those existing efficient ex-
to be explained in the subsequent section. It is in fact pos-act algorithms (e.g. Witness algorithm [1]) no longer fit to
sible to replace thé-means clustering with methods like Sclve the POMDP problem with reduced dimension due to
mixture of Gaussians so that the data partition becomes softn€ non-linear projection due to EPCA. As in [7], we use the
instead of hard and the analytical derivation of optimal ~MDP value iteration method on the low-dimensional sam-
could be possible. This part will further be pursued due to Pled belief states to get an approximate policy, which has
the promising empirical results we obtained in this paper. P€en proven to be a bounded-error approximation in [4].
As just mentioned, the optimality df and\ should be While we do not have major contribution in this part, re-
defined based on some criterion function which measureslated formulations are still repeated here for completeness.
the difference between the original belief states and the re- Let B denote the set of belief state clusters, each being
constructed belief states after belief compression is applied.2ssociated with a different transformation mafrix Thus,
As each belief state is a probability distribution, Kullback- We have
Leibler (KL) divergence could be used for evaluating the _ o _
discrepancy between the original belief states and the re- B={B“,B%, .., B} (6)
constructed belief states, as given in Eq.(3).

diSt(bia bj) = diStspatial(bh bj) + AdiSttemporal (bu b])

where
KI(B) = Siet KLY - B = {blb; € Ci). @)
n The approximate value iteration algorithm uses the fol-
S| lowing rule to compute a-step lookahead value function
KL®:i|5) =Y bi(s;) In (llj:((Z;) _ (4) ;/; from a(t—1)-step lookahead value functidfi —!, given
j=1 g
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computed as

VEOER) = maw, (R (bS*, a) 15|
+y YT, a,b5%) - VI (BSF)(8) p(zlsi) = ;p(aiISz)p(Z\ai, s1) (12)

3o -
with p(a;[s1) = Taziznsr @ndp(zlai, s1) is the given ob-

where RC* and TC are the approximate reward and
transition functions in the corresponding partitioned low-
dimensional space.

servation probability. FobC™ (s;) in Eq.(11), it denotes the
expected belief and can be computed as

IS

4.1 Computing the Reward Function bO* (1) = ZT(SJ" a, s1)bC* (s;) (13)
The reward functiorR(s;, a) denotes an immediate re- =

ward if taking an actiom at states;. Naturally, an imme- . It is updated only by executing an action instead of using

diate reward after taking an actianat belief stateb; or b both action and observation.

should be the expected value over the all true states. See Generally speaking, constraining the transitions within

following equation: clusters will bring some reward information loss and

weaken the policy quality accordingly. However, the spatio-
~c. temporal clustering we adopted is essentially geared to re-
RY (bja) = Z R(si, a)b;(s:) ©) ducg the lossto a gertain exEc)ent since it is bagegd on the con-
=t jecture that belief state visited within a short period will
Note that in some problems, there is another form of re- try to be clustered as far as possible based on the spatio-
ward functionk(s;, a, s;) which means the immediate re-  temporal notion. In other words, good clustering results
ward is also relative to the state to be reached. Also, we carshould benefit not only dimension reduction, but also the

S|

get the expecte®(s;, a) from R(s;, a, s;), accuracy of the subsequently computed policy.
S| . . .
Rlsi,a) = ZR(si,a,sj)T(si,a,sj) (10) 4.3 Vglug Function Computation and Policy Ap-
et : plication
4.2 Computing the Transition Function The final step is to compute the value function for each

cluster to get the policy tables corresponding to the clusters

Computing the transition function of the projected be- Using the reward and transition functions computed accord-
lief states is a bit more complicated. One should first recur ing to the previous two subsections. Based on Eq.( 8), the
to the transition trajectory of the high-dimensional space conventional MDP value iteration algorithm can be used,
based on the Bayes rules. It is a process in and out ofwhich will stop when the value at time steg- 1 is mathe-
the high-dimensional and low-dimensional space to accom-matically close to the value at time step
plish the beliefs’ evolvement, projection, reconstructionand 10 apply the policy in a multi-agent setting, the com-
matching, as described in [7]. For our proposed method, wePuted policy tables will be distributed to different agents
only consider pairs of low-dimensional beliefs in the same and a coordinating agent is needed with the role of select-
cluster, regardless of the possible transitions between clusing which agents to forward a new observation to based on
ters. Thus, we get the transition functid (6", a7’g§?k)_ comparing the correspondmg h!gh—dlmen5|qnal belief state
as the sum of(z, j|i, a) over all observations, i.e, with the sampled beliefs. Our implementation selects the

nearest one which is indexed with the corresponding agent

o~ |51 for taking the next step action based on the agent’s policy
p(z, jli,a) = w®SF V%) D p(zls)bd* (s1)  (11)  taple.
=1

whereb'“* is the low-dimensional belief projected froma 5 Experimental Results

high-dimensional belief“* of a clusterC;,, which is up-

dated after executing an action and receiving an observas 1 The Hallway2 Problem

tion from the high-dimensional reconstruction if* us-

ing b = UV WSk H) = 1 as we usek- The Hallway2 Problem which is defined with a specific
nearest-neighbor for approximate discretization on the low- maze is commonly used to test the scalability of algorithms
dimensional belief space. Alsp(z|s;) in Eq.(11) can be  for solving POMDP problems (see also [1]). The problem is
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to find the goals in the maze with 92 states (4 being the goal
states), and contains 5 actions and 17 types of observations.
Reaching one of the goal states will yield+d reward and
then the next state will be set to a random non-goal state.
In addition, it is assumed that all the non-goal states of the
problem are equally likely to be the initial state location and
thus the starting belief statelis = (g5, ..., 55)7 . Also, the
discount factor used is 0.95. In this paper, all the experi-
mental results reported are based on this problem setting.

5.2 Belief State Sampling

The process of belief compression is operated on a belief
state sample generated via simulation. During the simula-
tion for sample generation, two levels of random numbers
are used to select an action, and the Bayes rules are used to
evolve the belief states. When one random number is found
to be less than the threshold defined as 0.5, another random
number will be generated to decide the next action. Oth- Figure 1. The best parameter settings with
erwise, it will sum up all the beliefs generated so far and R > 0.95.
take the state with the maximal sum of probabilities as the
current state. Then, an MDP solver will be called to get the
corresponding policy table to choose the next action for its
‘current state’. P

The belief states in consecutive time steps often have gy ; p) — 1/p+y" (KLy(A 1, Cp) — KLy, (A1, Cyp))
similar shape with the same number of modes. These = KLy(\ L, Cy)

“structural” similar belief states could have them repre- (14)
sented at a much lower dimension. That's why the belief where KLy(\1,C,) stands for the KL-divergence be-
state space is often considered to be sparse. tween the original belief states in thé" cluster and the
corresponding reconstructed belief states based onlénly
(original EPCA), andK L3 (A, 1, Cp) stands for the KL-
divergence between the original belief states inffteclus-

ter and the corresponding reconstructed belief states based

The first experiment focuses on evaluating the effective- on U, (resulted from applying EPCA to the cluster).
ness of the proposed spatio-temporal clustering scheme for In Figure 1, those solid points show the parameter set-
overall dimension reduction. We enumerated a set of dif- tings which result in having? > 0.95. Among them, the
ferent values for the trade-off parameterand evaluated operation pointR(3, 3, 4) was chosen. This point is equiv-
the corresponding dimension reduction performance. Foralent to the situation that the belief state sample is parti-
performance measurement, we contrasted the values of th&oned into 4 clusters, its dimension is reduced to 3, and the
KL-divergence between the set of original belief states and trade-off parametex is 3. Figure 2 shows a particular belief
the ones reconstructed based on the conventional belief statetate and two reconstruction using the conventional EPCA
compression (i.e., without clustering) and the one we pro- (the upper diagram) and the proposed clustered EPCA (the
posed in this paper with belief state clustering. Figure 1 lower diagram). The latter one’s reconstruction can almost
shows a cube with three axes being reduced dimension, theompletely overlap the original belief state, which is a more
number of clusters and KL-divergence. We only plot the accurate reconstruction than the former one. Also, Figure
dots where the averaged KL divergence of the clusters is3 shows the temporal sequence of the belief states in each
less than the averaged KL divergence using the conventionatluster. It is noted that in some clusters (e.g., Cluster 1,
belief compression. According to Figure 1, itis noted that a 3), the belief states under them are only partially ordered,
number of settings can result in better overall dimension re-which is consistent to the spatio-temporal criterion function
duction. Among those settings, we set a filter and highlight used.
those with high reduction. The filtering is based on aratio  Table 1 tabulates the performance measures for compar-
R, defined as ing the KL divergence given the belief state dimension is

the number of clusters

5.3 Performance of Belief State Clustering
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Original  Proposed| Comp.
1 # ltems || EPCA Method|| Cost (sec.)
‘ —— Orginalbelef Clusterl 96 || 1.3997 0.0024 | 1.84
ul | —— Recarsucled bl | Cluster2 16 || 0.4998 0.0004 || 0.34
“ Cluster3 36 || 0.1893 0.0003|| 0.49
» 051 Clusterd 352 || 4.2596 0.4938 || 69.27
2o
3
9047 .
= Table 1. Performance comparison between
0 the conventional EPCA for belief compres-
' sion and the proposed method, where the
e am A e e number of clusters is 4, the reduced dimen-
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Figure 2. Reconstructed belief states using
the conventional EPCA and the proposed
method.

reduced to three. Obviously, the values of the KL diver-
gence obtained using the proposed spatio-temporal cluster-
ing were much lower than the case using only EPCA. Figure
4 shows the changes of the average KL-divergence at dif-
ferent reduced dimensions using EPCA. Note that the KL-
divergence values in the figure are much bigger than those
reported in Table 1. In addition, as reported in the last col-
umn of Table 1, our proposed method took 71.94 seconds
while the conventional EPCA took 153.08 seconds.

5.4 Policy Quality with Spatio-Temporal Cluster-
ing Introduced

In terms of those operation points, [, P) (could be in-
terpreted as model configurations) with significant intrinsic
KL-Divergence reduction, we compute the policy for each
cluster and test the policy. The comparison of policy per-

50

20 200
beliefs in cluster3 beliefs in cluster4

Figure 3. Temporal sequence of the belief
states in the four clusters.
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Figure 4. Average KL Divergence for conven-
tional EPCA.



avg. reward avg. rewarg
003 T without clustering:  with clustering
Original E-PCA Scheme Operarion Point
0.028} o - Spatio-temporal Clustering Scheme (@1.5.4)
atl atO-Point|| A I P || R\, P)
o6l Operation Point | 0.0191| 11 2 2] 01781
. 022 operarion 0.0180 00211]| 13 2 2 0.3646
%0-024* e Operaror 0.0182| 19 2 2| 0.2167
° " Point 0.0180| 3 2 41 0.7857
€ 0022 Operation Point o4 1 0.0180 00161 13 2 4| 0.5229
< (13:2:2) 0.0149( 21 2 4| 0.4954
0.02 N * 1 0.0258] 19 5 4| 0.6387
0.0199 0.0284( 21 5 4| 0.7044
o018y * - 1 0.0224][3 6 4] 0.7857
0.0174 0.0214| 17 6 4| 0.5229
0.018, 2 s 4 5 6 0.0185( 19 6 4| 0.4954
Dimension
Table 2. Performance comparision for differ-
Figure 5. A comparison of policy performance ent parameter settings.
using different schemes, different number of
clusters P and different reduced dimensions
| for average reward over 1000 trials. The op- consistent with what we have discussed in the previous sec-
eration point is labelled as (A, 1, P). tion and show that the reward loss do not affect much the
overall performance given good spatio-temporal clustering

results.

formance occurs between the computing policy via dimen- ) )

sion reduction directly and computing policies via spatio- 6 Discussion and Future Works

temporal clustering using different numbers of bases. For

each operation point, we execute 1000 trails. Each trail This paper mainly demonstrates the possibility of clus-

is a trajectory with maximal 251 steps before any one of tering the belief states in a spatio-temporal manner for

the objective states is reached. The trajectory is evolved byachieving further belief state compression and good policy

executing the computed policies. Our experimental resultsperformance. We are currently working on several exten-

show that nearly half of these operation points result in the sions of this work as depicted as follows.

policy quality enhancement, and some of them help increase

the average reward greatly. 6.1 Towards Optimal Spatio-Temporal Cluster-
According to Figure 5, we can see obvious performance ing

enhancement over the conventional belief compression. For

the Hallway2 problem with 500 sampling beliefs, it also While the criterion function used in this paper has shown

shows that using four clusters is a generally better strategy.to be effective empirically, it is by no means an optimal
Table 2 lists out the detailed parameter settings of choice. In addition, we still lack automatic mechanisms

some operation points selected for performance compar-other than exhaustive search) for setting the parameters to

sion. Generally speaking, those settings with relatively govern the clustering. We believe that this is an immediate

higher R()\, [, P) ratio induces a better average reward, and important research direction to be pursued in the future.

which is consistent to our conjecture that a clustering with

a better dimension reduction power should also result in a6.2 Hierarchical POMDP Decomposition

policy of higher quality. It is also noted that it is hard to set

a threshold of getting a good setiodnd P as the value of Hierarchical POMDP (HPOMDP) Decomposition has
the ratioR (), [, P) for resulting in better policy varies quite  recently been proposed for decomposing a POMDP prob-
a lot given different set afand P. lem into a hierarchy of related POMDP models of reduced

As being discussed before, the performance enhancesize. PoICA [9] is a representative example where the de-
ment is induced by the much more accurate low- composition is resulting from the decomposability of the
dimensional representation, though some rewards amongction domain. The limitation of HPOMDP is that the de-
clusters are lost inevitablely. Our experimental results are composition is not fully automatic, where the underlying
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hierarchy of actions requires knowledge of domain experts. References

In other words, this is domain-specific. Also, the decom-

position is not based on the belief states. It would be inter- [1] A.Cassandra.Exact and approximate algorithms for par-

ested to see if the notion of hierarchical decomposition can
be incorporated in the proposed spatio-temporal clustering
framework with further performance gain.

6.3 The Multi-Agent Consideration

In this paper, we distribute each sub-POMDP to a prob-
lem solving agent. The agents are basically independent to
each other, except to be coordinated by the brokering agent.
As the decomposition based on the proposed belief state
clustering may not result in a set of sub-POMDP problems
which are equivalent to the original POMDP problems, in-
teraction between those agents for achieving the overall op-
timal policy is an important research issue. Nash Equilib-
rium is an important concept commonly used in multi-agent
learning [5] for solving decentralized MDP [2] and POMDP
problems [8]. Our research agenda also includes how to
apply this paradigm to the our decomposition scheme for
further performance boosting. The basic idea is that every
agent would conjecture other agents’ behaviors and give the
best response to other agents from its local view. A Nash
equilibrium usually would not deduce the optimal policy.
However, it should be able to guarantee a not-too-bad sub-
optimal one.

What being described so far assumes that the whole
model of the decision process is known. That is, we have
the perfect knowledge about the reward function, transition
function and observation function. Solving the correspond-
ing POMDP problems is an off-line process. Itis also inter-
ested to see how the multi-agent approach can be extend to
support online learning (e.g., Q-learning [12]) for POMDP
under partial observation scenarios.

(11]

7 Conclusion

This paper extends the recently proposed belief compres
sion by introducing a spatio-temporal belief state clustering
for addressing large-scale POMDP problems. It was found
that the proposed spatio-temporal method can further com-
press the belief states in each cluster to a much lower di-
mension while maintaining similar belief state reconstruc-
tion accuracy and thus a better policy. Also, each cluster of
belief states can naturely been distributed to different agents
for collaborative problem solving. Future research direc-
tions include at least further enhancement in automatic de-
termination of clustering parameters, hierarchical clustering
of the belief states and the integration of the proposed belief
state clustering and the multi-agent paradigm as a unified
solution for solving large-scale POMDP problems.
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Abstract

Mining distributed data for global knowledge is getting
more attention recently. The problemisespecially challeng-
ing when data sharing is prohibited due to local constraints
like limited bandwidth and data privacy. In this paper, we
investigate, in particular, how to derive the intrinsic mani-
fold (asa 2-D map) for a set of horizontally partitioned data
which cannot be shared directly. The proposed methodol-
ogy is a model-based one. It first computes hierarchical
local data abstractions, then aggregates the abstractions,
and finally learns a global generative model — generative
topographic mapping (GTM) based on the aggregated data
abstraction. We applied the proposed method to both syn-
thetic and real datasets. The experimental results show that
the derived manifold is found to be comparable to that of
the original GTM without the local abstraction introduced.

1. Introduction

Recent progress in automatic data collection, data stor-
age and networking technologies has resulted in high ac-
cessability of distributed and massive data for application
domains like e-Science and e-Commerce. Thisin turn trig-
gered the need of performing data mining in a distributed
environment. The distributed data mining problem is chal-
lenging as data sharing is in many cases prohibited due to
local constraints like limited bandwidth and data privacy.
The former limitation is faced when the distributed data
are of high volume. The latter limitation happens when
the local data owners indicate high privacy concern, even
though they still prefer to have some degree of personalized
e-services. Distributed data mining [13] has found applica-
tionsin financial dataanalysis, personal transaction records
analysis. medical data analysis, intrusion detection, etc.

Distributed data mining typically involves two steps —
first performing local data analysis and followed by com-
bining thelocal resultsto formaglobal one. For example, in
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[16], a meta-learning process was proposed for combining
a set of locally learned classifiers (decision trees in partic-
ular) to achieve high classification accuracy. A related im-
plementation has been realized on a Grid platform known as
the Knowledge Grid [5]. In[13], Kargupta et al. proposed
collective data mining where the distributed data sources
possess different sets of features (also known as vertical
data partition [19]). They considered each source as an or-
thogonal basis, and then combine them to form the overall
result. This method has been applied to learning Bayesian
Networks for Web log analysis [6]. In addition, distributed
association rules mining algorithms with privacy preserva-
tion capability has been proposed in[1, 2].

An inevitable limitation of the af orementioned method-
ology is that aggregating local analysis results could result
in the loss of information which is essentia for the subse-
quent global pattern discovery. One possible remedy is to
allow partial information exchange among the data sources
during the local data analysis step [21]. An alternative ap-
proach for minimizing the chance of losing important local
information is to adopt a flexible statistical moddl for ab-
stracting the local data. The mode flexibility allows the
local data granularity, and thus the extent of information
loss, to be controlled. A model with high complexity usu-
ally can retain more details when compared with one of low
complexity The use of the model-based approach for dis-
tributed data mining was first proposed in [15, 14, 20]. In
[20], Zhang et al. demonstrated how a global cluster model
can effectively be learned based on local data abstractions.

In this paper, the distributed model-based approach was
extended to derive the intrinsic manifold of a set of dis-
tributed data. Generative topographic mapping (GTM),
which is an effective nonlinear mapping tool for visualiz-
ing high dimensional data sets, was chosen to be the global
model dueto its generative nature. Gaussian mixture model
(GMM) [12] was chosen for the local data abstraction as it
isgenerally considered to be auniversal approximator (thus
flexible) for arbitrary data distributions [3]. From the per-
spective of data privacy control, a data set represented by



a GMM with fewer components provides coarser informa-
tion (i.e., higher level of privacy) than one with more com-
ponents. In the extreme case, a GMM with only one single
component provides the coarsest information about the data
set but at the highest privacy level. The model accuracy in-
creases (and thus the privacy decreases) as the number of
the GMM’s components increases. This kind of represen-
tation flexibility of GMM makes it an excellent candidate
to meet the diverse data privacy requirement of each dis-
jointed local source. From the perspective of bandwidth
requirement for data sharing, a GMM with a single com-
ponent requires the lowest while a GMM with its number
of components equal to that of the datal is the highest.

To learn the global model (in our case GTM), the con-
ventional approach of regenerating virtual data by apply-
ing, say, Monte Carlo Markov Chain (MCMC) sampling
[10] to the aggregated local data abstraction can be adopted
[15]. While it has the advantage that most of the existing
data mining and machine learning techniques can be used
directly for the global analysis, the resampling step could
be computationally expensive. Also, a sufficiently large set
of virtual data hasto be generated in order to result in an ac-
curate global model, which in turn will lead to long global
model training time. In this paper, we propose a modi-
fied EM-like algorithm for learning a global GTM directly
from the aggregated local data abstraction. We applied the
proposed method to both synthetic datasets (S-curve?, oil
data[4]) aswell asreal dataset (WebKB?) for intrinsic data
manifold visualization. The experimenta results showed
that the proposed distributed learning approach can achieve
comparably good visualization results and at the same time
satisfy the limited bandwidth and data privacy requirements
of the local sourcesin acontrolled manner.

It may be worth mentioning that the distributed datamin-
ing problem concerned here is different from some related
fields, e.g., distributed query processing and parallel clus-
tering. Distributed query processing [8] mainly concerns
query optimization in a distributed environment instead of
data analysis. Parallel clustering [18] mostly assumes that
the data partitioning can be under the user’s control for fa-
cilitating the global analysis/processing objective. Instead,
we consider that the local dataare by default distributed and
cannot be partitioned purposely.

The rest of the paper is organized as follow. Section
2 describes in detail the problem formulation and a novel
EM-like algorithm for learning a global GTM from a set
loca GMMs aggregated as the local data abstraction. De-
tails about the experiment design as well as the correspond-

1In that case, one GMM component is supposed to represent one data
item.

2The S-curve is downloadable at
" http://www.cs.toronto.edu/ roweis/lle/code.html”

SThe WebKB dataset can be downloaded at ”http://www-
2.cs.cmu.edu/af/'cs.cmu.edu/project/theo- 11/ www/wwkb/”

ing results demonstrating the feasibility and effectiveness of
the proposed method can be found in Section 3. Section 4
concludes the paper.

2 Problem Formulation
2.1 Local Data Abstraction

Local data abstraction is here defined as the process of
representing a given set of data by its statistics forming an
abstraction. Viathe abstractions, the statistical information
of the data can be shared, instead of the datathemselves. As
discussed in Section 1, we need the abstraction which can
provide ahandlefor sharing local dataaswell as controlling
dynamically the degree of data privacy and the bandwidth
required in a distributed environment like the Internet. We
formulate this abstraction process as parametric density es-
timation and GMMs with different numbers of components
are adopted to support sharing local data details at different
granularity levels.

Assume that there are totally L distributed data sources.
Let t; € R¢ denote the i*" observed data item of dimen-
sion d, #; denote the set of parameters of the local model
(GMM) as the abstraction of the I** source, ;; denote the
jth component’s parameters of the I** local model (includ-
ing the component’s mean y;; and covariance matrix ;;),
«j; denote the mixing proportion of the ;%" component in
the I** local model. The probability density function (pdf)
of the I*" local model pjocqr(t:]6;) with K; components is
given as,

Plocal (tz ‘el)

K
> ajip;(til6i)
=1

K
E a;; = 1
j=1

_d _1 1 _
pj(til6h;) = (2m) "2 [y 2 eXp{—§(ti — ) "5 (b — ) }-

The local GMM parameters (abstractions) extracted
from each of the sources, i.e,, {61, 65, ...,01}, can then be
sent to aglobal server to learn aglobal datamodel. Figure 1
is an illustration of the problem we are addressing. There
arethreedistributed local data sources (Figure 1 (a)-(c)) and
the objective isto identify data clustersin the global sense.
As shown in Figure 1 (d)-(f), the local GMMS' parameters
{61, 02,05} arefirst derived as the abstractions of the dis-
tributed local data by applying some model-based cluster-
ing algorithm to each of the local data sets. By aggregating
the local GMMS' parameters to form an aggregated local



model, our goal is to acquire the global model, i.e., to esti-
mate the global model parameters directly from the aggre-
gated local model, as shown in Figure 1(g). In principle, the
global model can be any generative model. In this paper, we
show the details about how a global generative topographic
mapping can be learned.

To compute the local data abstraction, a fast algorithm
with the ability to derive a family of GMMs with differ-
ent number of components for representing the local data at
different granularity levels is generally needed. Instead of
using the conventional Expectation and Maximization (EM)
algorithm [7] to derive thelocal GMMs parameters, we used
in this experiment first the agglomerative hierarchical al-
gorithm (AGH) which is one of the most commonly used
bottom-up method for hierarchical data clustering. Each
cluster at the bottom level of the dendrogram derived by
AGH is an original data item, and a big cluster including
all the data items lies on the top of AGH hierarchical tree.
Levels in-between reflect different levels of data clustering
details. Given a particular level of clustering (say chosen
based on an individua’s privacy concern), each cluster can
form alocal Gaussian component by computing the mean
and covariance matrix of the data within the cluster. Fig-
ure 2 illustrates how the hierarchy of local data abstraction
is built up.

6
a
2
o

-2

o 2 B 6 s
(9) global model (doted ines) learmed based on the local modits

Figure 1. Originated from three local data
sources with 1, 2 and 3 data clusters respec-
tively (i.e., altogether 6 aggregated local com-
ponents), the proposed methodology learns
the global model by aggregating the abstrac-
tions from the local sources.

2.2 Learning A Global GTM

Generative topographic mapping (GTM) [4] is a prob-
abilistic non-linear latent variable model which can be
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Figure 2. A hierarchy of data abstractions,
Dy, ..., D5, where a higher level of abstraction
is acquired by merging two nearest data sub-
groups at the next layer and of finer data de-
tails. For instance, Dy contains four sets of
means and covariance matrices to be shared
for global analysis.

used to explore the intrinsic manifold of a set of high-
dimensional data. GTM assumes that the data are generated
due to a set of latent variables in a low-dimensional (usu-
aly 2D) latent space via a non-linear mapping that maps
alattice in the latent space to the observed data in the data
space, with the original datatopology preserved in the latent
space, as shown in Figure 3. Visualizing the latent space
with the original high-dimensiona data projected back to
it can result in a map (for the 2D case) as an “unfolded”
version of the intrinsic data manifold. The unfolded man-
ifold, in many cases, can help understanding the structure
and organization of the data. In the literature, there also ex-
ist other nonlinear manifold learning methods, for instance,
locally linear embedding (LLE) [17] and isometric feature
fapping (ISOMAP) [11]. They can also find a 2D embed-
ding of image expression for the purpose of data visualiza-
tion. Both of them work well on capturing theintrinsic non-
linear structure presented in the high dimensional data space
by preserving local linear combination among data items or
finding the geometric shortest distance between data items.
Similar to GTM, these methods also assume the data to be
fully observed, which is sometimes not the case. GTM is
chosen in this paper instead of the others mainly because of
its generative nature. It will be interesting to see if mod-
els related to ISOMAP and LLE can have some generative
interpretations so that the proposed method can also be ap-
plied.

2.2.1 GTM Formulation

Lett; € R denote theit” observed dataitem in data space,
2z, € R denote the k" lattice point (altogether M) de-
fined in the latent space. y(z; W) := W¥(z) mapsin an



a uniform distribution, as shown in Figure 4 (b), over the
3.0 Data Space 20 Latent Space data items corresponding to a particular GMM component
iy A which is now to be shared instead of the data.
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Figure 3. An illustration of GTM. @ Rig- (b) Riy.

Figure 4. lllustration of approximating R;j
non-linear fashion a point z in the latent space onto a corre- with R;,. Regions A, B and C correspond to
sponding point y in the data space, with the mapping gov- the inaccuracy resulted due to the approxi-
erned by a generalized linear regression model ¥ weighted mation.

by W. Thus, alattice pre-defined in the latent space would
be mapped onto an L dimensional non-Euclidean manifold
in the data space. A multivariate Gaussian distribution in Assume that R;; is now an indicator for the " loca
the data space is assumed in GTM for ¢; given z;, given as component* with its underlying data to be generated by the
k" global component. That is, the likelihood of the subset
. of the data generated by the k" component of the global
p(tilze, W, B) = (27) "2 3% exp{——ll( —y(ze; W%} model isassumed to be approximated by an overall estimate
(1) of the corresponding I*" local component being generated
where 3 isthe reciprocal of the data variance. by the same component of the global model. By approxi-
The overall log likelihood function for GTM is given as mating R;; as

N M ~ Ziel‘hsource R
S > pltilae 9) @ N (5)
o _ and defining
Where N isthe total number of data items. Ry — Z R ©)
The EM agorithm is typically used for estimating the 1k - ik
parameters W and 3. The E-step for the original GTM is i€l source
given as where N; denotes the number of data from the [ source.
To estimate R;;, which is now an indicator of a local
Rit(Woid, Bota) = P(z|ti, W, 3) = ﬁ(t'|z’f7 Wotd; Pold)  Gaussian component being generated by a global Gaussian

> j=1P(til2j, Woud, Bora) component, the Kullback Leibler (KL) divergence between

. _ o global and local components is used with the formulation
where Ry, is the estimated indicator for the k" latent lat- given as

tice point of the global model generating the *" data item

and W, and 3,4 are the current estimates of the GTM's Ry = exp{—D(procat (t|01)|[Pgtm (t|2K, W, 8)) }

parameters. The M-step is then given as Z]' 1 €xp{—D(Procai (t|01)||pgem (t|2;, W, 5)) }
N M . . (7)
Z Z Rit(Wods Bota) [Wiew ¥ (21) — t: 10 (z1)T =0 (3) where the K L-divergence D (piocai||pgim) €an be derived
i=1 k=1 &

1 N M i 67% ﬂ
Brow N_ ;kzz: Wotd, Botad) ||[Whew ¥ (21) — ti||> (4) In o n 5157"(21)
2.2.2 Learning from Local Data Abstraction +%(ﬁ(y(3k§W) — 1) (y (2 W) — ) — d). (8)
Incrder o sm et GTM o perarsesdirecy BT 2 S S
from local GMM parameters, we first approximate the orig- index “1” to refer to one of the local components of the aggregated local

inal estimated indicators R;, as shown in Figure 4 (a), by model.
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When the local GMM is reduced back to a data item, the
first two terms of Eq.(8) will become constant with respect
tothelocal dataand thusonly thethird term will bein effect.
Eq.(8) is then degenerated back to the original GTM’s E-
step.

Accordingly, the new M-step can be derived as

DD R

=1 k=1

Wold7 ﬁold){Wnew\I/(zk‘) - Ml}\Ij(Zk>T

M L

1
8 - N— Z Z RitWoids Bota) (S0 + pupi))
new l 1

g

7 (W W) ZRM (10)

k=1

2.2.3 GTM Initialization Based on L ocal Abstraction

Given the aggregated local model, the initialization of the
global GTM can be obtained as equivalent to that of the
origina GTM. Original GTM uses principle component
analysis (PCA) for initializing 5 and 1. For the proposed
method, origina data are lacking for computing the global
data covariance matrix, and thus the PCA. Fortunately, one
can easily show that the global covariance matrix can ana-
Iytically be derived based on the covariance matrices of the
local data, given as

L
i N
Hglobal = =y
L
> XL N ) T
global — N — Hglobal Hgiobal-

3 Experiments on Distributed Data Visual-
ization

To evaluate the effectiveness of the proposed approach of
visualizing distributed data using GTM, experiments were
performed based on two synthetic datasets (oil flow dataand
S-curve data) and one real dataset (WebKB). In each ex-
periment, the dataset was first horizontally partitioned in a
random manner into three equal parts aslocal data sources.
Then, global GTMs were to be learned in each experiment
for comparison. Both the origind GTM learned directly
from the original dataset and the new GTM learned from
the aggregated local model were tested.

For the experiments on the oil flow and S-curve datasets,
1600 latent lattice points were chosen as the global GTM
parameters. For the experiments on the WebK B dataset, 400
latent |attice points were selected instead as the dataset con-
sists of less dataitemsin comparison with the two synthetic
ones.

-0 (9
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3.1 Visualizing Oil Flow Data

The oil flow dataset was originaly used in [4] for mim-
icking the measurements of oil flows mixed with gas and
water along multi-phase pipelines. The 12-dimensional
data set consists of 1000 instances evenly distributed among
three different geometrical configurations— stratified, annu-
lar and homogeneous.

In this experiments, 100, 200 and 300 local components
were tested for the abstraction of each local data source.
The global GTM learned from the local model parameters
were compared with the GTM learned directly from the oil
flow data. We expected that if each local data item isto
be represented by one local Gaussian component (the ex-
treme case), the performance of the proposed approach will
be equivalent to that of the original GTM. If lesslocal com-
ponents are assumed, the visualization results may start to
degrade.

(a) 100 loca componentsin each lo- (b) 200 local componentsin each lo-
cal source. cal source.

mew GTM: Document=000; noL1s=1600, noBsn=s1
@

(c) 3001oca componentsin each lo- (d) The visualization of the original
cal source. GTM.

Figure 5. The visualization of the oil flow
data in the latent space using GTMs with
1600 latent variables. The posterior means
of the projected data of the three different
configurations, namely homogeneous, annu-
lar and stratified, are labelled as red circles,
blue triangles and green asterisks, respec-
tively. Their posterior modes are all shown as
crosses. Three equally weighted distributed
local sources are assumed.

The visualization results obtained are shown in Figure 5.
Figure 5(d) reveals the oil flow data manifold obtained via
the GTM learned from the original dataset. Figure 5(a-c)



show the visualization results obtained using the proposed
method but with different numbers of local components,
and thus different data granularity levels. It was observed
that the visualization map obtained using 300 local compo-
nents for each source was comparable to that of the origi-
nal GTM, as shown in Figure 5(d). The visualization result
degraded gracefully when the number of local components
was dropped to 200 and then to 100. Thisis consistent to
what being anticipated.

3.2 Visualizing S-curve Data

S-curve is another commonly used dataset adopted by
many nonlinear manifold learning algorithmsfor testing the
algorithms' capability to unfold itsintrinsic 2-D plane hid-
denina3-D dataspace of which the shape likesthe a phabet
‘S'. For the purpose of visualization, the 2000 dataitemsin
the dataset were labelled. We first divided the dataset into
six continuous parts along the data instrinsic 2D manifold.
They were then labelled as blue, red, green, yellow, ma-
genta and cyan circles respectively. 30, 60, 90, 120 and
1500 local components were chosen for the abstractions of
each local source. And the visualization results were shown
in Figure 6.

Figure 6(f) revealstheintrinsic manifold unfolded by the
origina GTM learned directly from the data. Those ob-
tained using the proposed GTM based on different numbers
of local components are shown in Figure 6(a-€). The man-
ifold in Figure 6(a) was obtained according to the situation
with only 30 local components per source and found to be
the worst when compared with the other maps using more
local components. In the top region of the map, it can been
seen that the blue circlestangled up with the red ones which
means that it fails to unfold the top part of the origina S-
curve data well. A similar situation was observed for the
bottom part. In Figure 6(b-d), the aforementioned two un-
folded areas, i.e. the top and bottom parts, started to be
folded up and were finally completely unfolded as the num-
ber of local components per source was increased from 30
to 60, 90 and 120. When the number of local components
was close to the number of data items, as shown in Fig-
ure 6(€), the visualization results was found to be almost
equivalent to that of the original one shown in Figure 6(f).

3.21 Visualizing WebKB Dataset

The original WebKB dataset contains 8275 university Web
pages of 7 pre-defined categories, including course, depart-
ment, project, faculty, etc. To evaluate the effectiveness of
the proposed approach for unfolding the manifold of this
real dataset, we prepared a subset from the WebKB with
182 Web pages from 3 categories of WebKB: course, de-
partment and faculty, and labelled the subset in yellow, ma-
genta and cyan circles respectively. Some pre-processing
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new GTM: Document=30, noLts=1600, noBsn=81

new GTM: Document=60, noLts=1600, noBsn=81
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(a) 30local components. (b) 60 local components.

(e) 1500 local components.

(f) Theorigina GTM.

Figure 6. The visualization of the S-Curve
data which was partitioned into three equally
weighted distributed local sources for this ex-
periment.

steps including the removal of stop words, stemming and
merging were performed. Finally, each Web page was rep-
resented as a feature vector with the conventional tf-idf> of
a set of globaly indexed terms computed as its elements.
The dimension of the feature vector used in this experiment
was 551, each corresponds to one distinct term.

In this experiment, 30, 90 and 300 local components
were chosen as the abstraction of each local source. Then,
the manifolds of the WebKB unfolded by the original GTM
and the modified GTM were shown in Figure 7. It was ob-
served that when lesslocal componentswere used, as shown
in Figure 7(a), the projected feature vectors were sparsely
spread over the map and it was hard to tell how the three
categories of data are distributed based on the visualiza-
tion. When the number of local components increases, Fig-

5:tf stands for term frequency which counts the term’s occurrence in
a document. “idf” stands for inverse document frequency which counts
the reciprocal of the term’s occurrence in the whole document population.
tf-idf isaproduct of the two.
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(a) 301local components. (b) 90 local components.

Document=300, noLs=400, noBsn=81

(c) 300 local components. (d) Original result.
Figure 7. The visualization of a subset of
the WebKB dataset which was partitioned
into three equally weighted distributed local
sources for this experiment.

ure 7(b) shows three separated clusters more clearly, except
that some red and blue circles are overlapping withe each
other on the left side of the map. Figure 7(c) shows the set-
ting with 300 local components per sources and the result
was comparable to that of the originad GTM (Figure 7(d)).

4 Conclusions and Future Work

In this paper, we propose the use of the model-based ap-
proach for visualizing distributed data with the constraint
that the distributed local data cannot be shared directly.
Gaussian mixture models (GMM) are adopted for local data
abstraction and generative topological mapping (GTM) is
chosen as the global model for high-dimensional data visu-
alization. A novel EM-like algorithm is proposed for learn-
ing the global GTM solely based on the aggregated local
GMM. The effectiveness of the proposed method was rig-
orously evaluated using a number of datasets with promis-
ing results. Gracefully degrading global visualization re-
sults were obtained as the granularity level of the local data
became finer. We believe that the positive results we ob-
tained and the formal steps we used in this paper hints the
potential of the proposed method to form a principled way
to tackle the mining of highly distributed high-dimensional
datain a networked environment with limited bandwidth or
high data privacy concern.

As mentioned in the paper, the flexible local abstraction
provides amechanism to control the level of local datagran-
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ularity. The control can then be based on some quantitative
measures indicating individual’s privacy concern or band-
width requirement. Thiswill be related to data privacy man-
agement and thiswork should lay atechnical foundation for
enabling the related management systems to be devel oped.
One important research issueisto find aformal framework,
say based on information theoretic, to quantify data privacy
level. In addition, it will also be interesting to see how the
global model inaccuracy can be related to the local data un-
certainty (say caused by local data privacy concern). Based
on the relation, the global and the local servers can “ne-
gotiate” in a self-organized manner to achieve the highest
global model accuracy with less local data privacy further
compromised. Such an active and collaborative data min-
ing problem can easily be seen to be a natural extension of
this work, which we will further pursue in the future.
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Abstract

Handwriting-based writer identification is a hot re-
search top in the field of pattern recognition. Nowa-
days, on-line handwriting-based writer identification is
steadily growing toward its maturity. On the contrary,
off-line handwriting-based writer identification still re-
mains as a challenging problem because writing fea-
tures only can be extracted from the handwriting im-
age in this situation. As a result, plenty of dynamic
writing information, which is very valuable for writer
identification, is lost. In this paper, we focus on the
writer identification based on off-line Chinese hand-
writing and present a new contourlet-based GGD (Gen-
eralized Gaussian Density) method. Shown in our ex-
periments, this novel method achieves good experiment
results.

1 Introduction

Even in such a highly developed society, handwrit-
ing has still continued to persist as a main means of
communication and recording information in daily life
because it is the most nature and easiest way for com-
munication and recording. Given its ubiquity in human
transactions, automated writer identification of hand-
writing has practical significance in document authen-
tication, cheque verification, access control, and etc.

We can classify handwriting-based writer identifi-
cation in several ways. However, the most straight-
forward one is to distinguish between on-line and off-
line writer identification by input method [1] [3]. The
former assumes that a transducer device is connected
to the computer, which can convert writing move-
ment into a sequence of signals and then send the
information to the computer. Off-line handwriting-
based writer identification usually deals with hand-
writing materials scanned into a computer in two-
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dimensional image representation. Since information
on the time order and dynamics of the writing pro-
cess which is captured by the transducer device con-
tains many useful writing features of the writer, on-
line handwriting-based writer identification, compared
with off-line handwriting-based writer identification, is
easier to deal with and achieve a higher accuracy. But
unfortunately, on-line system is inapplicable in many
cases, thus developing techniques on off-line writer
identification is an urgent task.

Further, the off-line writer identification can also
be divided into two parts: text-dependent and text-
independent [1] [3]. Text-dependent methods refer to
the study of one or a limited group of characters, so
that they require the writers to write the same text.
While text-independent approaches look at a feature
set whose components describe global statistical fea-
tures extracted from the entire image of a text [3].
Generally, text-dependent methods have better perfor-
mances on writer identification, however they are inap-
plicable in many practical applications because of their
strict requirement on same writing content. In this pa-
per, we focuses on the off-line, text-independent writer
identification based on handwriting.

2 Relative work

Writer identification is a process of confirming a
writers identity by comparing some specific attributes
of his handwriting with those of all the writers enrolled
in a reference database. Commonly, writer identifica-
tion is regarded as a typical problem of pattern recog-
nition and contains basically 3 steps: pre-processing,
feature extraction, feature matching.

Nowadays, writer identification is an active research
field, and more and more researchers have touched on
this field and some attempts have been presented [2].
For text-independent writer identification, Duverony
has reported that the most important variation of the
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Figure 1. Flow chart of automatic writer
identification, (a)original handwriting image,
(b)image after pre-processing

writers transfer is reflected in the low-frequency band
of Fourier spectrum of the handwriting images. And
he aslo has designed a hybrid optical-digital image pro-
cessing system to extract features from Fourier spec-
tra of handwritten text [3]. Similarly, Kuckuck has
used Fourier transform techniques to process hand-
written text as texture. The feature sets extracted
in this study were either composed of a sequence of
spectrum mean values per bandwidth, or polynomial
fitting coefficients or linear transform of these coeffi-
cients [3]. Inspired by the idea of multichannel spatial
filtering technique, Said, Tan and Baker propose a tex-
ture analysis approach based on multichannel filters [1].
In this method, they regard the handwriting as an im-
age containing some special textures and apply a well-
established 2-D Gabor filtering technique to extract
feature of such textures. Besides the methods based on
frequency-domain analysis, other type approaches are
also presented on the text-independent writer identi-
fication. In 2000, Schrihari and Cha extract twelve
shape features from the handwriting text lines to rep-
resent personal handwriting style. The features mainly
contain visible characteristics of the handwriting, such
as width, slant and height of the main writing zones
[4]. Some other papers also adopte multiple features
integration to writer identification [4] [5].

3 Pre-processing

The origin handwriting image contains characters
of different sizes, spaces between text lines and even

noises. So before feature extraction, origin image
should be processed to facilitate the feature extraction
step followed . In our application, we design a pre-
processing method which produces texture image for
text-independent writer identification and fixed charac-
ter images for text-dependent writer identification both
from original handwriting image. Since some papers
have discussed pre-processing [1][2], and this problem
is not our focus in this paper, we do not introduce our
methods on pre-processing in details.

4 Text-independent method

In reference [1], a well-designed 2-D Gabor filters
is proposed for text-independent writer identification.
Following this paper, reference [2] also applies the same
technique on Chinese text-independent writer identifi-
cation. Both of the two papers show good results are
achieved in their experiments. And the academia also
widely acknowledges that Gabor method is an effec-
tive method on text-independent writer identification.
In this paper, to display the advantage of our new algo-
rithm, we will contrast our method with the 2-D Gabor
method. While at first, we will introduce the Gabor
method briefly.

4.1 Gabor algorithm

The Gabor function is the name given to a Gaussian
weighted sinusoid. The function is named after Den-
nis Gabor who used this function in the 1940s. Later,
Daugman proposed the function to describe the spatial
response of cells in visual stimuli experiments [9].The
preprocessing of images by Gabor function is chosen for
its biological relevance and technical properties. The
Gabor function is of similar shape as the receptive fields
of simple cells in the primary visual cortex. It is local-
ized in both space and frequency domains and has the
shape of plane waves restricted by a Gaussian function.

The spatial frequency responses of 2-D Gabor func-
tions used in [1] [2] are

[H1(u,v) + H(u,v)]

H(u,v) = 5 (1)

Hy(u,v) — Ha(u,v)]
5 @

where H, and H, denote the so-called even- and
odd- symetric Gabor filter, 7 = v/—1 and

H,(u,v) = [

Hi(u,v) = exp{—2720%[(u — f cos0)* + (v — fsin)?]}

Hy(u,v) = exp{—2720%[(u+ f cos 8)* + (v + f cos 0)?]}



Figure 2. Tiling of the frequency plane by 2-D
Gabor

Here, f,0, 0 are the spatial frequency, orientation, and
space constant of the Gabor envelope, separately. For
a given input image, he(z,y) and h,(x,y) will combine
to provide different channel outputs of the input image
with different f,6 and o.

The mean values(M) and the standard deviation(S)
of the channel outputs are used to represent writer
global feature for writer identification. If J orientations
and L frequencies for each orientation are selected for
Gabor filter, a total of JxL features will be obtained
from a given handwriting image, as form a feature vec-
tor with JxL elements.

After extracting the writing features, Weighted Eu-
cliden Distance(WED) is applied for feature matching.

N

WED(k) =

i=1

(Mi B Mzk)Q (3)
5F

where M; denotes the ith mean feature of the hand-
writing image whose writer is unknown, M and §¥
denote the ith mean feature and its standard deviation
of the handwriting written by writer K separately, and
N denotes the total number of mean values.

4.2 Contourlet-based GGD algorithm

Though references [1] [2] both show 2-D Gabor fil-
ters is an effective method in handwriting-based writer
identification, this method still suffers from some dis-
advantages as greatly limit its practicability. One of
the most serious disadvantages is its intensively com-
putational cost, because the 2-D Gabor filters have to
convolute the whole image at each orientation and each
frequency.

Contrast to the Gabor filters, 2-D wavelet can de-
compose the image into subbands with different fre-
quency and orientation. So, we only need to deal with
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the specified wavelet subbands according the selected
values at frequency and orientation. In [6], we have
present a new wavelet-based method for writer iden-
tification, which improves the identification accuracy
and greatly reduces the computational cost as well.

However, wavelet is still not a ideal representation
of 2-D image because of its limited ability in captur-
ing directional information, which is very valuable in
image analysis and pattern recognition. To address
this problem, some multiscale and directional repre-
sentations have been presented to efficiently capture
the image’s geometrical structures such as edges or
contours. These representation methods include steer-
able pyramid , brushlets, complex wavelets, and the
curvelet transform [7]. Particularly, the curvelet trans-
form, firstly proposed by Candes and Donoho, was
shown to achieve essentially optimal approximation in
a certain sense for functions in the continuous domain
with curved singularities. Inspired by curvelets, Do
and Vetterli developed the contourlet transform based
on an efficient two-dimensional multiscale and direc-
tional filter bank that can deal effectively with images
having smooth contours [8]. Contourlets not only pos-
sess the main features of wavelets (namely, multiscale
and timefrequency localization), but also offer a high
degree of directionality and anisotropy. The main dif-
ference between contourlets and other multiscale direc-
tional systems is that the contourlet transform allows
for different and flexible number of directions at each
scale, while achieving nearly critical sampling. In addi-
tion, the contourlet transform uses iterated filter banks,
which makes it computationally efficient [7].

The contourlet transform is implemented via a dou-
ble filter bank named pyramidal directional filter bank
(PDFB), where the Laplacian pyramid is first used to
decompose images into multiscale, then followed by a
directional filter bank to decompose multiscale image
into directional subbands. Fig 3 shows the PDFB as a
cascade of a Laplacian pyramid and a directional filter
bank at each scale. The directional filter bank is a crit-
ically sampled filter bank that can decompose images
into any power of twos number of directions. Due to
this cascade structure, multiscale and directional de-
composition stages in the contourlet transform are in-
dependent of each other. One can decompose each scale
into any arbitrary power of twos number of directions,
and different scales can be decomposed into different
numbers of directions [7].

Here, we also assume the contourlet coefficients sat-
isfy the General Gaussian Density (GGD) model.

The Generalized Gaussian Density(GGD) model is
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Figure 3. Pyramidal directional filter bank that
implements a discrete contourlet transform,
this figure is quoted from [8]

given as

S
= —————€exp

2aT(1/8)

where I'(+) is the Gamma function, i.e.,

—1(jz|/a)?

p(z;a, )

oo
INQ)] :/ exp it Ndt, Z > 0.
0

The parameter > 0, called scale parameter, de-
scribes the standard deviation and § > 0, called shape
parameter, is inversely proportional to the decreasing
rate of the peak. The basic idea of GGD model is
to use the GGD model to approximate the statistical
distribution of the contourlet coefficients in one con-
tourlet subband and then take the parameter couple
{a, 8} of GGD model as the features to represent con-
tourlet subband. There are varied methods to estimate
«, (3, here we adopt the maximum-likelihood estima-
tor(MLE). The following is how to use MLE for GGD.

The likelihood function of the data vector x
(z1,...,x1) (here we should convert the sub-band im-
age s into a multi-dimensional vector z) having inde-
pendent component can be defined as

L
L(z; 0, 8) = log | [ p(ai; a, B)

=1

(5)

And using MLE, «, (8 can be deduced as the roots of
following likelyhood equations [10]:

L |Ba—B

OL(z;a,8) L Bla;
e = + Z e

da
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We ignore the deduction process to solve the equati(()ris
above. For more details, please refer to reference [10].
To replace the typical norm-based distance (e.g. Eu-
clidean distance), we use Kullback-Leibler Distance
(KLD) for feature matching. The Kullback-Leibler

Distance (KLD) between two sub-bands is as

where U(.) is the digamma function, i.e. ¥(z) =

: . _ Bral’(1/62)
D(p(s01,5)lp(; 02, 62)) = log( 5 ZLe 20
(e lBr /) 1

I'(1/p1) B1

and the KLD between two handwriting image is the
sum of all the distances across all selected wavelet sub-
bands.

Q2

5 Experiment

In our experiments, all handwriting are scanned into
computer with a resolution of 300 dpi. Then via the
pre-processing procedure mentioned in section 3, we
produce the handwriting texture images from the orig-
inal scanned images, as shown in fig 4. Experiments
show the size of handwriting texture image should be
suitable, since large size image leads to high computa-
tional cost and small size image reduces the identifica-
tion accuracy. In our experiment, we select size as 512
pixels.

20 Chinese handwritings written by 10 persons have
been carried out in this experiment, with one training
handwriting and one testing handwriting for each per-
son. We produce one handwriting texture image from
each handwriting, and thus a total of 20 handwriting
texture image are obtained. The training and testing
texture image consisting of 64 Chinese characters with
size 64 x 64 pixels, as is shown in fig 4. In Gabor
method, 4 spatial frequencies are used: 32, 54, 128,
256, and for each spatial frequency, we select 0, 45, 90
and 135 degree as orientations, because both reference
[1] and [2] say that the highest accuracy is obtained in
this case. In wavelet-based method, we firstly decom-
pose the handwriting image via db4 wavelet transform
at 3 levels, and then apply GGD model on the sub-
bands produced in wavelet decomposition expecting for
the HH subband at the finest scale. In contourlet-based
method, we first decompose the handwriting image into
4 scales using 9-7 filter bank, then each of the 3 fine
scales are analyzed into 4 directional subbands, at last
we model each subband using GGD model.

A testing handwriting texture image is matched
with all training handwriting texture images. Then
we sort the matching results in an ascending order to



produce a list. And the position of writer of the testing
handwriting in the list is regarded as the experiment
result to evaluate algorithm accuracy.
if the matching result between the training handwrit-
ing and testing handwriting, both of which are written
by the same writer, is minimum in the list and con-
sequently occupies the position 1, we say the position
of real writer is top 1; in other words, the topper the
position of one writer is, the more possibility of being
the real writer of the testing handwriting the writer
has).The experiment result is in the table 1. The ta-
ble shows that contourlet-based GGD method is better
than wavelet-based GGD method, which is superior to

Gabor method.

(For example,

Table 1. COMPARISON OF EXPERIMENT RE-

SULTS
Method name Top 1 | Top 2
Gabor 70% 30%
Wavelet-based GGD 80% 20%
Contourlet-based GGD | 90% 10%
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Figure 4. Some samples of texture image
used in our experiments. "A Training" refers
to training sample of writer A, and "A Testing"
refers to testing sample of writer A.

6 Conclusion

In this paper, we presented a new contourlet-based
GGD method on off-line text-independent handwrit-
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ing identification.

Compared with methods via 2-

D Gabor filter and wavelet, contourlet-based method
achieves a higher accuracy because contourlet trans-
form has capacity to capture comparatively richer di-
rectional information, which is important feature to
represent the writing style of a handwriting. Because
text-independent methods do not care about the writ-
ing content, the text-independent methods discussed
in this paper are also available for English, Korean,
Japanese and Latin Language, etc.
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Abstract based authentication systems have been widely applied in
different domains, including fingerprint, iris, face and so
Biometric security has been largely regarded and mn.
searched within the latest 20 years. However, researcheng's very important to protect the security of biometric
focus in face recognition have not paid enough attentispstems. From last 20 years this issue is largely and ade-
to the security of face biometric data. We propose a cryguately considered by different researcherg[2]. How-
tography algorithm to protect face recognition processer, most of the researchers only concern themselves
against attack, which uses the Reed-Solomon code. Whgih security of biometric systems using fingerprint or
the feature vectors are extracted with PCA or LDA algixis, especially fingerprint. The security of face recogni-
rithms in registration, they are encoded by Reed-Solomgaen system receives very little attention. In this paper we
code with a key and stored. The user presents his faeepose a method to protect face recognition systems us-
image to authentication system to decode the stored datg,PCA or LDA methods, with a “fuzzy vault” proposed
then gets a new key. A decision is gotten by comparing A. Juels and M. Sudan([4].
this two key. The "fuzzy vault” scheme proposed by A. Juels and M.
Sudan[4] gives a method to embed message into a set to
) protect it. Suppose Alice wants to protect message
1 Introduction She hide the messagein the coefficients of a polyno-
mial f, and offers a seA. She computes the evaluations of
Reliable user authentication has become more and mbom each elements in s& gets some points whose ab-
important. Various methods have been implementsdissas are the elements and Y-coordinates are the evalua-
to enhance user authentication security, including patiens. these points constitutes a etSome chaff points
words, PINs, and biometrics. Comparing with passwordse generated semi-randomly and inserted to th& get
and PINs, biometric is much more convenience and g$rild the fuzzy vaull. As a resultV contains information
cure. The information contained in biometric can rangdout the original message in the useful points, with
from several hundred bytes to over a million bytes, quiteseless chaff points included. If person Bob wants to ex-
larger than the information contained in passwords tact the message from he has to offer a new sBtwhich
PINs. And biometrics are physical characters which averlaps enough witlh to decode the fuzzy vau¥t, us-
highly linked with people. So biometrics-based authentirg the Reed-Solomon decoding[3].Bfoverlaps enough
cation system enhance higher security than passwordsvith A, Bob compareB with V to choose the useful points
PINs. On the other hand, biometric is very convenienoet, with a few error points. With these points the poly-
because it just exits on human’s body. Various biometriasamialf is reconstructed by Reed-Solomon decoding][3].
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Then Bob can get the message from coefficienfsin it in our scheme. Assume the secret we want to
Clancy et al]6] applied this method to fingerprintencode is polynomialf and we use a vector =
authentication system and proposed a fingerprint va(i, ve, vs, . .., v, ), the codeword of original polynomial
scheme. In the scheme a secret kdg hide in a poly- would be (f(v1), f(v2), f(vs),..., f(v,)). If someone
nomialf, and the sef is constructed with minutiae in thewant to decode the codeword and resume the polynomial,
user’s fingerprint. The fingerprint of user is scannedNorhe should offer another vectot = (v}, v}, vj,
times and\ images of the fingerprint are gotten. Each fea-., v},). If v’ is nearly the same with, then he could
ture of each image is proceeded. If the distance betwesse the Reed-Solomon decoding algorithm to resume the
the feature and any feature in #eis larger than threshold original dataf. Suppose the degree of polynomjais k,
T, it's stored in a seA. If the distance between the featurand the vector length is, the vector’ can have at most
and some feature in satis no larger thaiT, the feature is (n—k—1)/2 dimensions different from the corresponding
considered to be overlapped with that onéirCompute dimensions irv.
the overlapping times of each featurefinand discardthe Because in our scheme some chaff points
ones whose overlapping times are smaller than threshisld inserted, the method should be modi-
a. After these operations the sitis treated as the lock-fied a little. The codeword should not be
ing set, which is used to hide the secret key. The set(i§v1), f(v2), f(vs),..., f(v,)) but a set of points
encoded with a polynomidlwhose coefficients hide the{(v1, f(v1)), (va, f(v2)), (vs, f(v3)), ..., (Vn, f(vn))}.
secret key, and corresponding points are computed dnme chaff points such as
Some chaff points are inserted between these points &nd y1), (z2,y2), - - -, (Tram, Yram) are inserted in
they all constitute a locked s& with each chaff point the set and change it to
at least distance between any real points. The locke
set and secret key is stored in a smartcard. In authegﬁiq-’l’ f01)) s (Wns f(on)s (@1,90)s -5 (@rams Yram ) }

cation, the user presents his smartcard and scans his\{jRich is called encoded set. If someone want to de-
gerprint. The fingerprint is used to decode the locked $&j4e the codeword and resume the polynomial, he should
and a new secret is computed with Reed-Solomon deCBPe'sents a vector’ which is nearly the same as and

ing .algorithm. Compare the two secrets and a deCiSiorbiﬁnpare each dimension of with x-coordinates of the
derived. points in the encoded set to choose out the real points in
In our scheme we apply Clancy’s method to face recogre set. When the real points have been chosen out with
nition which uses PCA or LDA. When the face image ig few fault ones (becausé may be not the same with
transformed to a vector using PCA or LDA algorithm, thg) the y-coordinates of these points are used for Reed-

vector is considered as a set consisting of the dimensi@iomon decoding, and a new secret is extracted.
and encoded with the Reed-Solomon algorithm. In au-

thentication the encoded data is transmitted to the syst; .

with a secret key. The user also presents his face im?g% System structure design

and the system uses it to decode the data, as thus geAsilost common structure of authentication system is

new secret key. Compare this two keys and the decisigfartcard system. Smartcard structure removes the need

is derived. of database, so the attacks which aim at the database or
the transmission from database to matcher will not work.
The card structure design is as bellows:

2 REVIEW

1. The user’s name, which is denoted/dsi M E.

2.1 Reed-Solomon codes 2. The user’s privilege and other attributes, denoted as

. : . . ATTR.
The coding algorithm used in our method is a gen-

eralized Reed-Solomon code[3]. It's used to encode. The encrypted biometric data, which is denoted as
a polynomial with a set or vector and we simplified  En(data).
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4. The Signature of the authorization officer, denotadnce betweem’ andT is smaller than a threshotj then
asSIGN(Hash(NAME, ATTR,k)), in whichk C’ will equal toC. Compare the hash @ andC and a
is the secret. decision will be derived. This scheme has some disad-
vantages. The effect of data various is not clear and the

When the user presents his smartcard to the syst@fiihor could not explain how the system will deal with
the sensor scans his biometric information and extrag{ordered feature representation.

the feature data. This feature data is used to decode thﬁ] our scheme we apply and modify Claney al’s

encrypted biometric dat&n(data) and a new secrét’  meod(s]. After the system transforms the input face im-
is gotten. Compar§IGN (Hash(NAME, ATTR,k))  age into a feature vector using PCA or LDA, the vector is

with o encoded with Reed-Solomon codes.
SIGN(Hash(NAME,ATTR, k")), a decision could

be derived. Because the biometric data is encrypted and

the secrek is hashed and signed, it certainly enhances t

ooty of sy, ¥ OUR PROPOSED SCHEME
BASED ON CLANCY'S

2.3 Cryptography algorithm SCHEME

While users’ biometric templates are stored in identifi%rgfore encoding, there are some problems which need to

cardsl, I unld not beltgecure _bega;;si the stora?e tCEH Dvercome. First, the coding algorithm which we apply
are always Insecure. 1t 1s required that Some protectiong, o,.qges integer vectors, as the feature vector can be

are added to the stored templates. This would be n ?fy real number. Second, the computation of decoding

essary v;/rr:eg _the catrd IS sr:oleg or_dI;Lst.l ;’he most ;o ocess highly depends on the length of vector, and the
mon method is cryptography. Davidet, al{2] propose length of feature vector is too large. Third, the variation of

an error-correcting f:qde ut|I_|z|ng scheme. n enrol!mer}&ce feature vectors are much larger than fingerprint fea-
it transforms the orlgmaIK t.)'ts b|om_etr|c data ta\ bits tures. In Barrakt al’s fingerprint biometric system[1] ,

co_d_ewords, whose firsk bits remains the same as th'§ystem only chooses some points of the fingerprint image
original data and the lasv — K bits is a check vector, and uses the positions and angles of these points, while in

which is derived by multiplying & by N-K matrix to the PCA or LDA algorithms such as Turkt al’s eigenface

biometric data. The codeword is hashed and stored in g]Sorithm[?] the face feature vector is derived from the

smartcard with the check vector. - In aqthenuganon, tk}ﬁ\ole image. Light or face angle will severely affect the
system use the check vector and the biometric data PLe

then a decision will come out. The computation of th|| ms, some modifications of Clana@t al’s method[6]
scheme is small and it can certainly enhance some Seéi’i’éuid be made '

rity. However, the error correcting ability of this scheme
is weak, and it results in some data leakage, because the
check vector stored in the smartcard is undefended. 3 1  \/griation problem

Juels and Wattenberg improved Davidaet al's
method[2]. They use a error correcting code. In enrolfo overcome the variation problem, we apply the bounded
ment, they compute the distance between the original ddistance decoding algorithm to transform the original face
T and the codeword. The hash of the codewor@ is feature vector into a new one, which would be closer to
stored with the distanc&-C. In authentication, the usereach other. Suppose there aresers in the system, each
presents his biometric data. Computel” minusT-Cand user hagnface images in database, and the length of each
the result isC+(T'-T). A Bounded distance decoding alfeature vector extracted from each face imagé is-or
gorithm is used to transform the result@. If the dis- userA, there aren face feature vectors representing him,
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which is shown as follows: the length of vector may not be multiple éfwe have

11 o1 r31 T41 Lo.In = qd +r (7” < d)

12 €T22 T32 X492 ‘e T2 i i i
in which! is the length of the composed vector for person

A. Suppose the composed vector is
Tim T2m T3m Tam --- Tim
C1,€2,€C3,...,Cd;Cd+1,---5,C2dy---,C3d5---Cqdy - -+ Cqdtr
A composed vector is computed from thesevectors . . .
to represent persod. In dimensioni of the 10 vec- A residue vector is used and combined to the composed

tors, there are 10 elemenis,, zi2, T3, Tid, ...Tim. A VECIOL. The dimensions of the residue vector is the head
minimal range|a;, b;] is found which contains exactly Partof the composed vector, and its lengthi is+, which
subjects of the 10 elements. It means that in elemeiftghown as follows:

i1, Tin, Ti3, Tia, ... Lin there are exactly subjects (rep-
resented ag) which satisfy the condition; > = > a;.
Then, the dimension of the composed vector would becombine these two vectors together, and a new comple-
a;/(b; — a;). this process would be done for each dimefnent vector is derived:

sion, and a composed vector with lendtls computed.

This composed vector would be stored in the database as C1,€2,C35 -, CadtrsCl, €2, - - Cdr

a representation of persoh When a new applicant who

claims he is person A, an eigenface-vector is computb® 1ength of derived vector igy + 1)d, which is just
from his face image, representeciasus, us, w., q + 1) times ofd. So it could be divided spang into
us, ...u,. The dimension of this eigenface-vectou; is ¢ + 1 parts, each part has a lengthdfEach part of the
divided/byb- — a;, in which [a;, b;] is the corresponding vector would be encoded with Reed-Solomon algorithm

range for dimension i of person A. After this process ¥'d Stored together in the database.

new vector is derived and compared with the stored com-

posed vector. 3.3 Integer vector problem

[a;; (1;: Eez?]git? .raggﬁé’ fﬁ]stggzg dge (gual/ étb an CZZL] ecodlo overcome this problem, we transform the complement
ing algorithm can help decrease the distance of differevlsﬁcm.rc Into two vectors. an integer yect@z and an
features extracted from the same person. Because ra‘rﬁr&alned vectorr. The integer veciori has the same

[a;, b;] containg subjects of tha0 elements in dimensionThg{rz:];?emdplggsjg;’fhcéar a”F’ I'f’] ;rgi?jr_rr:ly gr((a)r;irsz;ted.
i, so the probability ofu; belongs to rangéui, bi] would inedv ' c—ct. Ing p '

be high whert nears 10. Then, most dimensions of thtg.e integer part of the complement vectoris gncoded
ith Reed-Solomon algorithm, and the remained part

transformed new vector would near the correspondin &1 . ; ) .
P 9 mained. The remained vector is stored in the database

mensions of stored vector, except for a few ones. For eé%r[ﬁ . .
P with the encoded integer part. Of cause, the integer vector

user there arérange numbers: should be divided intq + 1 parts first.

C1,C2,C3,...,Cd—r

bl_alabQ_a27b3_a‘37"'7bl_a‘l;

4 DESIGN OF OUR SYSTEM
3.2 Length problem

_ 4.1 Basic design of our secure system
In our experiment, we can see the length of the vector

should not be larger than 70. To overcome the lengihking above measures the three problems are solved, and
problem, we divide each vector into some parts, encadithe finally system design is shown in figure 1.

each part separately and then combine all the parts toin enroliment, the sensor extracts each user’s face im-
gether. Suppose the length of each pard.isBecause age form times andn face images are gotten. After face
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(v1,v9,...,v;). Take out the range numbers stored in
the smartcard and use it to transform the feature vector
into another one by divide each dimension with the corre-

Feature sponding range humber:
Vector

ﬁ"ﬁ?“m“ (v1/(b1—a1),v2/(b2—az2),v3/(bs—a3),...,v/(bi—ar));
Composed [ Toteger After this process, the vector is combined with a residue
Vector "l Vector vector to get the complement vectar, such as the pro-
ba key cess in enroliment. The remained vecteris taken up
e Number) ﬁzg‘i’ézd“’““" from the smartcard. We computé— cr. We can see the
+ + distance betweet! — cr andci is
Remained Encoded
Vector Data U/ —cr —ci =
(Ul/<b1 — al),vg/(bg —az),... ,’Ul/(bl — al))
_ﬂ r Data]r:lase ‘ _(a‘l/(bl_al)aa2/(b2_a2 7-~~7al/(b[—al))
=1 —a1/(b1 —a1),...,(vy —a;) /(b — a;))

If v; belongs to rangéu;, b;), then0 < (v; — a;/(b; —
a;) < 1. It means that the distance between ttth di-
mension ofv’ — ¢r andci is smaller than 1. If all the di-
mensions satisfy this condition, we can transfafm- cr
to ¢i by a floor function. However, there may be some
v; which do not satisfy the condition. So the vector after
floor function would not be completeby, but different in
a few dimensions. Assume the vector after floor function
onv’' — cris ci’, thenci’ would be close ta: but a little
different. ¢i’ is used to decode the encodedaken out
from the card using Reed-Solomon decoding algorithm,
feature extracting process such as some PCA or LDA ghq a new secret key is derived. If the differences be-
gorithm, m feature vectors are gotten. A bounded digyeenci’ andci is enough few, the derived key would be
tance decoding algorithm is used to transform these Vgga same as the stored one. Compare hash of the new key

tors into one composed vector, and deriveanges. The and the stored hash of the original one and then a decision
composed vector is combined with a residue vector apdyotten.

a complement vectoe is derived. Dividec into two

parts: the integer vectari and the remained vecter, 42 A dified desi f t
and encode: with the Reed-Solomon algorithm using a™ maodified design of our secure sysiem

secret key. Store the hashed secret key/ tta@ge num- |n our method to solve the variation problem, we use a
bers derived by bounded distance decoding algorithm, esnge number to divide the corresponding dimension of
coded integer vectdr'n(ci) and the remained vector in - original feature vector. If the corresponding dimension
smartcard as the representation of the corresponding usgfengs to the range, we treat this dimension of the vec-
as shown in figure 1. tor as the legitimate one. If most of the dimensions in
In authentication process, the applicant presents ttig feature vector belong to the corresponding ranges, we
smartcard to the system and the sensor extracts titeat the vector as the legitimate one representing a user.
applicant’s face image. After face feature extractingowever, because the ranges are computed from just 10
process the image is transformed into a feature vectmages of one user, it would not be very exact. There

Figure 1: Flow chart for enroliment process.
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is another method to solve the variation problem and \@ad choose the first 100 dimensions of the computed vec-
use it to improve my original work. We use eigenface[brs as the feature vectors. The parameter of our algorithm
method for example. should be chosen carefully. Suppose the degree of the
While the system uses eigenface algorithm to compelynomial which hides the secretis and each divided
pute out the feature vectors of each face image, a part of the vector has a lengih then the Reed-Solomon
ries of eigenvalues are computed out too, representedie can correctd — k — 1)/2 errors. As description
as A\, Ao, ..., A, In original eigenface algorithm, thein paragraph 3.1, in our bounded distance decoding al-
authentication process uses the nearest neighbor clagsiithm the system computes the range which contains
fier and the threshold of this algorithm #%. If vector justt dimensions of all 10. It means t/10 elements in the
¢ = (c1,c2,...,¢)andvectowy, va, ..., v represent the 10 vectors would near the corresponding dimensions after
same person, then we have: transformation, so in average each vector would has a rate
of t/10 dimensions near the corresponding one, and each
(1 = v1)? + (ca = v2)® + -+ (a —w)® < th*; (1) vector would have a rate of (10-t)/10 errors in average.
So, when the transformed vector is divided intg- 1

Because the weights of each dimension in the feature Vgg_rts, each part will havél0 — £)d/10 errors. Therk

tor are their eigenvalues;, Ao, . .., \;, then we have: should be less thad — (10 — £)d/5, which is equal o
cL—vi_Ca—v2 __a—u _ N @) (t/5 — 1)d. Then we have:
A A2 Al
k< (t/5—1)d (6)
From (1) and (2) we have:
(A 423+ + AP)a? < th? 3) =5 "
In our experiment it shows that the divided part length
la] < th/\//\f + M+ + AN =0 (4) should not be larger than 70, or the computation of de-

. coding process would take much time (much more than
lei — il = Aila] < AiB(i=1,2,....1) ©) one second each time). In our experiment, we choose 2
Then we have rudely estimated the variation d&#ngths: 20 and 50. The finite fielél, which is used for
each dimension of the feature vector, which athe Reed-Solomon code is choseryas 251. And the
MG, A28, AnB. parametet is chosen as 9. The number of chaff points
Use these numbers as the range numbers of correspavitich are used to insert into the coded sets are chosen 40
ing dimensions instead of the original ranges, do bounded each part when the length of divided part is 20 and 100
distance decoding algorithm. The other process of tiwien the length of divided part is 50.
system remains the same. In experiment for algorithm 2 is chosen 20 and
there is another parameter This parameter is used for
bounded distance decoding. When the original feature

5 EXPERIMENT RESULTS vector is transformed into composed vector, it is divided
by scales. This operation is in order to adjust the errorin
5.1 Database transformation. Actually, the eduction from (1) to (5) is

The face image database we use is the orl database, wiidRrOXimate because equation (2) is not exactly tenable.
has 40 people and each person 10 images. The Sizé{Vgruse a scale to modify the error in the range estima-
each image is 92*112. tion.

5.2 Parameter choosing 5.3 Results and figures

In our experiment we choose the eigenface method pho-our experiment for algorithm 1, each face image will
posed by Turlet al[7] as the feature extracting algorithmplay the role of applicant and claim to be any person
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d k FAR FRR Computation
20 11 34.96% 1.00% - .
20 12 13.01%  4.50% - S—

20 13 12.96%  3.25% - E
20 14 29.66%  2.75% - s
50 36 2.88% 2.75% 29532.731000

50 36 2.97% 2.50% 29417.234000

50 37 1.08% 4.50% 30400.031000 :
50 37 1.21% 6.50% 30013.536000 )
50 38 1.08% 5.00% 29485.093000
50 38 1.09% 5.75% 30035.797000
50 38 1.15% 6.00% 29913.318000
50 40 0.33% 12.00%  29920.766000
50 40 0.35% 12.00% -

50 42 0.05% 23.00% -

Figure 3: Figure for algorithm1.

Figure 2: The experiment result of algorithm 1.~ ¥ 5 FAR FRR Computation
14 1 28.15% 29% 9651.094000
15 1.5 37.99% 24.75%  9124.047000

recorded in database. So the system will be tested fdr 2 70'512/" 8'002/0 8999.360000
400*40=16000 times. The result is shown in figure 2,3. 15 2.5 89.38%  2.25% 8931.453000

0, 0,
The experiment result in figure 2 and 3 shows that th‘i? ;'5 2543§£/ g;go//o ggggg;gggg
algorithm 1 works nicely. It can achieve a low error rate of D 7 '

. 25 51.87%  13.25%  8932.110000
about2.8% in both FAR and FRR when the parameters of19 5 0.849% 28.50¢ 9104.938000
the algorithm is carefully chosen. The computation time O 70 -
of this system is nearly 2 seconds each time. The perfor-

mance of authentication is not weakened much.
Figure 4 shows that the improved algorithm 2 doesn't
work well. The FAR and FRR of this algorithm reach &on is
high rate 0f29% when they get trade-off. Zd (d) (,2.)

Figure 4: The experiment result of algorithm 2.

(")

)‘1

5.4 Security analysis in which z equals to the minimal integer which is no less
than(d + k + 1)/2. While d = 50, k = 36, p = 100,

The security of this algorithm depends on how hard thee havepr ~ 2710, It means that the computation the

attacker can find the right points in the stored set. In oattacker should pay '¢°.

algorithm, there arg+ 1 divided parts to encode and each

part has a lengtid. Suppose the number of chaff points

inserted to each part js Because the Reed-Solomondd® CONCLUSION

coding algorithm can correct at mggt— & — 1) /2 errors,

the attacker needs only to pick out— (d — k —1)/2) = It can be seen that the first scheme proposed in this pa-

(d+k+1)/2 real points. It means that for each part, whewer works well. The error rate of the original authenti-

the attacker pickd points out from the whole set whichcation system has not been affected much, and the com-

containsd + p points, if there are at leagtl + k£ + 1)/2 putation of it is acceptable. The security, which we want

points in them, the attacker can get the information b@enhance, is largely strengthened. The modified scheme

wants. The probability that the attacker gets the informdees not work as well as the first one. The error rate of it
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reaches a severe value. There is still work to do to sollReferences

the variation problem.
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Enhancements of Generalized Hough Transform for Improving Object
Recognition

Ho Fai Wong
Department of Computer Science
Hong Kong Baptist University, Hong Kong
hfwong@comp.hkbu.edu.hk

Abstract 9

We propose a new method in object recognition based -
on the Generalized Hough Transform (GHT). Differ from
using the tangent of the edge as the feature in the GHT, the
new method uses the internal angular information at any
3 points along the edges of the object, with the help of the
radii, to recognize the recognizing objects from the model
objects. The new method is flexible, efficient and fast in
recognition deformed objects. It can assist the traditional
GHT for object recognition to enhance the recognition of ] )
deformed objects, as well as use it independently. Figure 1. Arbitrary Shaped-Model

1 Introduction that, prepares a 2-D accumulator arvhyFor each pair of
parameter sefr., ) retrieved from the R-table using the

Generalized Hough Transform (GHT) [2] is an effec- tangentf. as the index, estimates the coordinate of refer-

tive object recognition method in recognizing 2-D arbitrary €nce point(z., y.) of the recognizing object by using the

shaped objects. [5] Resembled from standard Hough Transcurrent coordinates of the edge pofat, y. ), the retrieved

form [3], GHT uses the edges of the arbitrary objects, as information from the R-table, as well as the rotating factor

well as a reference point (or the centre) to measure the fea and scaling factos, i.e.,

ture of the objects. Retrieves the angular information of any

point lying on the edges with respect to the reference point

such that these parameters can be used as the features of the @' = recos(ac)

object. GHT is robust in scaling and rotation. There are 2 Yy = resin(ae)

stages in GHT, an offline model preprocessing stage, and an

online recognition step. For each preprocessing stage, each / ;.

point p laid on the edge of the objects are extracted, and its T, = x— (2'cos(¢) —y'sin(¢))s Q)

parameters are used as a feature vector. These parameters Yo = Ye— (2'sin(p) +y cos(p))s (2

such as tangemt, radiusr and the gradient of the radius

are used. A lookup table, namely, R-table, is used to store

the angular information, indexed by the tangént.e. for

each tuple,

At the accumulator array, gives a vote at the point corre-
sponding to the estimated reference point of the recogniz-
ing object, i.e.A[y.|[z.] + +. Till the end of the iterations,
searches the accumulator array to locate the local maxima.

0{(r1, 1), (r2, a2)...} If there is no sign'ificant local maxima p'o?nt in t'he accu-
mulator array, which means the recognizing object is not

In the recognition, finds the tangeftof each point ly- similar to the preprocessed model.
ing on the edge of the recognizing object, retrieves the en-  Although the GHT is robust to scaling and rotating ob-
try from the R-table by using the as the indices. After ject, it provides little robustness to slightly deformed objects
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[6]. For a larger degree of deformation, GHT seems not de-
tecting correctly. The probably reasons are:

e Edge point only provides local angular information
with respect to the shape of the objects, it does not
provide any global information about the structure of
the object.

e For the deformed part of the recognizing object, the
edge points are displaced with respect to the model ob-
jects, therefore the angular informatiohgnd ) are
altered. As the tangent is used as the index for search-
ing the entry from the R-table, the deviated tanggént
will retrieve wrong angular information.

Figure 2. Model of Using Curvature Informa-
To tackle the weakness of the GHT, we proposed a mod-  tion
ified algorithm, based on the idea of the original GHT, to
provide the global information about the recognizing ob-
ject [4] [1]. The newly proposed method makes uses of the
global skeleton information about the object, rather than the
local edge information, providing a macroscopic view of the
object. Similar to the traditional GHT, A new lookup table
is used to store the global angular information. In the recog-
nition step, retrieves the records from the lookup table, and

plot the vote on the accumulator array. . . vature angles is formed, which stores the curvature infor-
The newly proposed method has the following desirable mation of the arbitrary object. Curvature information shows
features: the structure of the arbitrary object. Rather than using the
e Instead of using any point of the edges, it evaluates tangent of any edge point of the object, it is more represen-
3 points and extracts the feature of these points, thetative in describing the shape of the object. As the object is
global perspective of the object are preserved. deformed, the tangent of the point in the deformed area has
been deviated as well. In the recognition of traditional GHT,
deviated tangent results in retrieving the inconsistent entries
from the R-table, probing to a wrong area of interests.
Curvature information of deformed areas of the object
are altered as well, the degree of deviation depends on
e The accuracy, efficiency can be adjusted according tothe deformability and the precision of the curvature sam-
the user target, therefore, the new method is flexible to pling. For the preciseness of the sampling, it depends on
recognition. the sampling distance of different edge points. The points
The new algorithm is desirable in recognizing de- &' closer, the deviations are larger in deformed areas. De-

formable arbitrary object. Especially when the deformed viations are relatively small if these curvature points are dis-

areas are distributed into different small parts throughout ©2nCe- To tackle this problem, we can perform some treat-

the objects. ments in both training (preprocessing) and testing (recogni-
The Paper is divided into the following parts: Section tlon).pr-\ases. N )

2 discusses the basic idea of the new method, explains the Similar to traditional GHT, there are 2 phases in pro-

steps in preprocessing and that in recognition. Section 3P°Sed methodPreprocessingandRecognition In prepro--

shows some experimental results of the newly purposedcessSing, we select a (set of) potential model(s) for training.

method, and compares the results with that in traditional In recognition, arbitrary objects are fed into the algorithms,
GHT. and match the objects with the models.

recognizing a deformable arbitrary objects. Instead of us-
ing any point laid on the edges of the object, the curvature
information of 3 distinct points from the edges are used (see
Figure 2). Together with the reference potrit a quadri-
lateral is formed. For any 3 edge poinf3,, P, P., a cur-

e The enhancement procedures are similar to the tradi-
tional GHT, both algorithms train a set of models in
preprocessing stages in offline manners. It is not diffi-
cult to implement with respect to GHT.

2 Generalized Hough Transform with Cur- 2.1 Preprocessing

vature Information
Similar to the traditional GHT, a lookup table is built for
The improved Generalized Hough Transform makes usestoring the models feature vectolstgble). The steps of
of the curvature nature of the shape and it is desirable forpreprocessing are shown below (see Figure 2):
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1. Selects any 3 point®,, P,, P. lying on the edge. After calculated the distance, we can estimate the refer-
Refers the reference poidt, retrieves the curvature ence point:
angle, ¢, and the side angles}, and 3., which are
intercepted by the lines in the reference point to both ,
point P, and P, respectively. o = xe—(a')s ®)
= — 4
2. Retrieves the radiuB, andR,. ve ve = (t/)s )

) ) ) wheres is a scaling factor of the model and
3. Using the curvature angl¢ as an index, inserts the

feature vector representing these 3 points into the I- o, ex Yy €Y
table, i.e. ] ) o )
Si{[(Baiy 7o) (Bets 7ei)] To find the referenc_e point of the recognizing object,
searches the local maxima at the accumulator array.
4. Repeats step 1 - 3 with another set of points For recognizing the deformable arbitrary object, the cur-

vature angle deviated from the original model. One of the

Mentioned in above, the curvature information of the de- method of increasing probabilities is relaxing the search-
formed areas are easily be altered. To improve the possiing criteria from the I-table. Despite of exact matches of
bilities of the deformed recognizing objects can be success-the curvature angle, we introduce some thresholdvhen
fully hashed the entries from the I-table, we can perform 2 searching from I-table, i.e., retrieves the records ranged
improvement steps: 1) Random sampling and 2) repeatedly® =+ ¢.
sampling with different distance between the points. Ran-
domly sampling reduces the uncertainty of deformation, in- 3 Experiments
creases the probability of successfully find the match model.
Repeatedly sampling of points with different distance can  Traditional Generalized Hough Transform and the curva-
increase the accuracy in recognition. ture Hough Transform are compared. Both tests use a same

N set of training models, as well as recognizing objects.
2.2 Recognition
3.1 Experiment 1 - Recognition of Star

Recognition performs similar steps that are performed in
preprocessing part. At the beginning, prepares a clear 2-D A star-shaped object is selected as a training model (see
accumulator array for seeking the reference point. SamplesFigure 3), and a set of recognizing objects are used (see
with any 3 points, and finds the curvature angleSimilar Figure 4) by adding some noise to the original star and per-
to GHT, after retrieving theé, uses it as an index to retrieve  formed some rotations. In the experiment, we would like to
the records from the I-table, and plots the votes into the ac-test the robustness of the algorithms by adding some noise

cumulator array. to the arbitrary object.
For any 3 pointsPy;, P, Pei, and their curvature angle Figure 5 shows the recognizing result by using the tra-
¢;, retrieves the records from I-table, i.e. ditional GHT and figure 6 shows the accumulator array.
The brighter areas mean that the GHT was taking votes on
Gi{[(Ba1sTa1)(Ber, me1)], - [(Bajy Tag) (BejsTej)] } there. As figure 5 shows that there are only 2 deformed stars

_ _ _ are successfully recognized by the traditional Generalized
Atthe pointsPy;(Tai, Yai) aNAPei (i, yei ), find the dis-  Hough Transform. From the vote sheet (Figure 6), it found

tance from the reference point$ to point P%,; and ; re- - that only the bottom right star has the significant votes on
SpeCUVG|)_/- the estimated reference point. Due to the greater degree of
For point A, deformation and rotation occurred, the others have highly

distributed votes, therefore the traditional GHT estimated
their reference points wrongly.

Toi = Tajc08(faj + aa) Figure 7 shows the recognizing result by using the cur-

Yoi = Tajsin(Bej + q) vature information and figure 8 shows the accumulator

array. The brighter areas mean that the GHT was taking

For point C, votes on there. In the recognition stage, we set a thresh-

old such that the curvature angle search the records ranged
from ¢ £+ 0.005 (in radian), the threshold of the curvature
To; = Tejeos(Be — ac) angle is small but the improvement of the result is signif-
Yoi = Tejsin(Be; — ae) icant. As figure 7 shows that 4 of them are successfully
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Algorithm | Recognition| Threshold| No of Images
(GHT) Time (sec) | ofindices | Recognized

(in radian)
Traditional 90.88 0 2
Curvature 49.46 0.005 4

Table 1. Summary of Recognizing Deformed
Stars

Figure 4. A Set of Deformed Stars

50 100 150 200 250 300

Figure 3. A Star as an Training Model

recognized. From the vote sheet (Figure 8),it shows that
the votes are concentrated on the particular areas, giving
precise estimated reference points. Due the the rotation in-
variance nature by using the curvature templates, so even
the recognizing objects are rotated, but the recognizing re-
sults are still good.

3.2 Experiment 2 - Recognition of Leaves

In this experiment, we selected some leaves for testing
the modified algorithms. Because of larger degree of de-
formation, we need to increase threshold by 0.005, i.e. the
curvature angle retrieve the records ranged frofh 0.01.

As we can see, the shape of the leaves are similar, but if
we only evaluate the tangent of the edges, we may not suc-
cessfully recognizing all the leaves (see Figure 11), there-
fore, it is desirable to use the modified algorithm to find the
leaves. Better recognizing results are found (see Figure 13).

4 Summary

Figure 5. Traditional GHT Results of Star
Our proposed algorithm can be acted as an auxiliary tool -

in deformable object recognition. The basic idea is using

the curvature nature of the edges, preserving the structural oo m

information of the object, to enhance the accuracy of the

object recognition. For medical imaging, Hough Trans-  Figure 6. The Accumulator Array of Using Tra-

form are widely adopted due to its fast and efficient nature.  ditional GHT

The new algorithm can enhance the efficiency of the Hough

Transform to improve the medical imaging recognition.
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50 100 150 200 250 300

Figure 7. Curvature GHT’s Results of Star

- Figure T

Figure 8. The Accumulator Array of Using
Curvature GHT

Algorithm | Recognition| Threshold | No of Images
(GHT) Time (sec) | ofindices | Recognized

¢

(in radian) e e T e e
Traditional 325.21 0 3
Curvature 338.31 0.01 4 Figure 11. Traditional GHT Results of Leaves

Table 2. Summary of Recognizing Deformed
Leaves

50 100 150 200 250 300 350 400 450 500

Figure 12. The Accumulator Array of Using

Traditional GHT
Figure 9. A Leaf as an Training Model
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Figure 13. Curvature GHT’s Results of Leaves

Figure 14. The Accumulator Array of Using
Curvature GHT
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