Discriminability and Reliability Indexes: Two New Measures to Enhance Multiimage Face Recognition

Student : W W ZOU Supervisor: Prof. Pong C. YUEN Date: Aug 31st 2009

Dept. of Computer Science

Outlines

- Multi-image Face Recognition and its problems
- The Current State of Art
- Proposed Method: Discriminability and Reliability Indexes
- Experiments and Analysis
- Conclusion and Future Work

Multi-image Face Recognition and its Problems

Proposed Method: Discriminability and Reliability Indexes Experiments and Analysis Conclusion and Further Works

Starting with Face Recognition

- A Face Recognition (FR) system
 - Automatically recognize the identity from the input face image
 - Challenging problems
 - Lighting
 - Pose variance
 - Expression
 - Occlusion
 - Aging, make up, etc
 - Making use of multi-images (video) instead of single image
 - View based (pose)
 - Pose manifold (pose)
 - etc
 - Is every face image useful for FR?

Problems in Multi-image Face Recognition (MFR)

- is that all the face images are suitable for use in FR system?
 - Researchers found that the face images are not equally good for FR
 - Fontal view face always get good recognition result
 - Good quality non-frontal view also provide good features
 - [X. Liu et al. CVPR06]: profile view get better result than frontal view
 - [C.H.Liu et al. Cognition02]: the optimal view for recognition is 3/4 view
 - To make use of different face images better, images should be estimated

Department c

Computer Science

計算機科學系

Reference:

X. Liu, J.Rittscher and T. Chen. Optimal Pose for Face Recognition. Proceedings of IEEE International Conference on CVPR,vol:2, pp:1439-1446, 2006. C.H Liu and A. Chaudhuri. Reassessing the 3/4 view effect in face recognition. Cognition vol:83 pp:31–48, 2002. Multi-image Face Recognition and its Problems The Current State of Art Proposed Method: Discriminability and Reliability Indexes

Department of

Experiments and Analysis Conclusion and Further Works

Computer Science

香港浸會大學 HONG KONG BAPTIST UNIVERSITY

B

計算機科學系

The Current State of Art

Select face images from image set

- Kruger et al. select face images from video by clustering
- Hadid et al. select representative face images which minimize the error

Assign weights to face images

- Zhang et al. assigned weights to images based on pose and expression
- Thomas et al. weighted different images by a measurement called Faceness

Short comes

- not designed for recognition perspective
- not consider the discriminative features

Proposed measures: Discriminability and Reliability Indexes (DI, RI)

Reference:

- V. Kruger and S. Zhou. Exemplar-based face recognition from video . In Proceedings of IEEE International Conference on AFGR, pages 175 180, 2002.
- A. Hadid and M. Pietikainen. From still image to video-based face recognition: an experimental analysis. In Proceedings of IEEE International Conference on AFGR, pages 813–818, 2004.

epartment o

Computer Science

計算機科學

- Y. Zhang and A. Mart'inez. A weighted probabilistic approach to face recognition from multiple images and video sequences. Image and Vision Computing, 24(6):626–638, 2006.
- D. Thomas, K. W. Bowyer, and P. J. Flynn. Multiframe approaches to improve face recognition. In Proceedings of IEEE Workshop on Motion and Video Computing, pages 19–19, 2007.

Discriminability Index (DI) and Reliability Index (RI)

Discriminability Index (DI)

- Measure how much discriminative the reference image is
- High DI means
 - image distinguishes from other classes' images
 - and close to images from the same class
- DI is related to not only images from the same class, but also, images from different classes.

Computer Science

計算機科學系

Reliability Index (RI)

- Measure how reliable the testing image is
- High RI means
 - image has high matching quality
 - that means testing images has short distance from its own class (good match)
 - FR system has high confidence to classify such a testing image

Illustration of Discriminability and Reliability

Illustration of Discriminability

Illustration of Reliability

Note: Images of fruits are obtained by Google Image from internet.

Estimation of Discriminability of reference images

- x_1, x_2 are from same class ω_1
- x_2 has high discriminability than x_1
 - x_1 locates near the boundary
 - while x_2 locates in the center
- define gap function $gap(x_i) = P(x_i|\omega_1) - P(x_i|\omega_2)$
- higher the discriminability is, larger the gap is

 $DI_x = gap(x) = P(x|x \in \omega) - max P(x|x \notin \omega_i)$

Computer Science

Calculation of DI

Session 3 Page 12

Computer Science The State of the State of

Algorithm 1: DI Calculation

Algorithm 1 DI Calculation

Input: Reference images $\mathcal{G} = \{x_{ij}\}$, threshold for termination th, number of neighbors n, number of images to be selected N**Output**: DI of each image in \mathcal{G} Initial: $DI_{ij} \leftarrow 0, DI'_{ij} \leftarrow 0, DI^*_{ij} \leftarrow \phi;$ repeat $\mathrm{DI}'_{ij} \leftarrow \mathrm{DI}_{ij}$ for each x_{ij} do randomly select N reference images from each class, denote as ω'_k search the n-nearest neighbors in each ω'_k , denote as $\mathcal{N}^k_{x_{ij}}$ $DI_{ij} \leftarrow DI_{ij}^* \bigcup \{\frac{1}{n} \min_k \sum_{j=1}^n (\|x_{ij} - y_j^i\| - \|x_{ij} - y_j^i\|)\}$ $y_{i}^{k} \|) \}$ end for $DI_{ij} \leftarrow avg(DI_{ij}^*)$ until $|\mathrm{DI}'_{ij} - \mathrm{DI}_{ij}| < th$ Output DI_{*ii*}

Computer Science 計算機科學系

1 香港浸會大學 HONG KONG BAPTIST UNIVERSITY

Estimation of Reliability of testing images

Discriminability → **Reliability** ?

- High DI → Image Close to images from same class far away from images in other classes
- \rightarrow Reliable for testing \rightarrow High RI
- However label information of testing is not available

Calculate RI by outlier detection

Estimate the RI by consider the distance distributions, give a testing image p

$$D = \{d_i = d(p, y_i)\}$$

- Image has High RI iff. image has unique significant short distance -
 - There are two kinds of distances, when matching an image to the references
 - one distance between images in same class $D_w = \{d | d = x' x''\}$
 - other distances between images in different classes $D_b = \{d|d = x' y'\}$
 - High RI \rightarrow { close to images from same class $\rightarrow d \in D_w$ is an outlier
 - Low RI \rightarrow has similar distance to every image $\rightarrow d \in D_w$ is not an outlier

Computer Science 計算機科學系

Estimate RI by calculate the level of $d \in D_w$ being an outlier -

Determine the RI by outlier testing

- Calculate RI by Q-test
 - Advantages: quick, effective, for extremer outlier testing (only one outlier)
 - RI is calculated as:

$$RI_p = Q\text{-value} = \frac{d_{min} - \min\{d \neq d_{min}\}}{d_{min} - d_{max}}$$

Computer Science

Algorithm 2: RI Calculation

Algorithm 2 RI Calculation

Input: Reference images $\{x_{kj}\}_{k=1}^C$, testing image y_i **Output**: RI_i

for each class k do $d_k \leftarrow ||y_i - x_{kj}||$ end for Calculate the Q-value $Q \leftarrow$ by Eq.[8] output RI_i = Q-value

Multi-image Face Recognition and its Problems The Current State of Art Proposed Method: Discriminability and Reliability Indexes Experiments and Analysis Concernments and Analysis

Methodology: Comparative Experiment

Department of

Computer Science

Usage:

- DI: assigned weights

$$v = \frac{1 + DI}{2}$$

- RI: select images with high RI

90% confidence level

- FR engines:
 - Eigenface
 - Kernal PCA
- Combining classifiers

計算機科學系

Sum rule (SUM), Majority voting (MV), Product rule (PROD)

HONG KONG BAPTIST UNIVERSITY

Experiment settings and the database

Table II Experiment settings					
database	C	N_t	N_r	N_p	variations
CMU-PIE	68	50	10	$15 \sim 55$	pose, illumination
YaleB	38	32	4	$15 \sim 32$	illumination
FRGC	311	20	4	$15 \sim 30$	illumination, expression, mild pose

Table 1 Experiment settings

Results 1 on CMU PIE : Accuracy

Department of

Computer Science

計算機科學系

浸 曾 大 學

HONG KONG BAPTIST UNIVERSITY

Results 1 on CMU PIE : Robustness

Results 2 on CMU PIE

Results 2 on CMU PIE

Results on YaleB and FRGC

Department of

Computer Science

HES計算機科學系 IIII 香港浸會大學 HONG KONG BAPTIST UNIVERSITY Multi-image Face Recognition and its Problems The Current State of Art Proposed Method: Discriminability and Reliability Indexes Experiments and Analysis Conclusion and Karlysis

Conclusions

Advantages:

- Estimate the discriminative features of images
- DI and RI improve the recognition performance. the accuracy can be improved with 4% to 30%
- More robust performance
- DI and RI can be easily integrate with existing face recognition

Disadvantages:

- Introduce extra computation
- Cannot handle new enrolled reference data

Department o

Future works

- extended the DI RI to handle new enrolled data
- how to make use of temporal information to enhance recognition performance
- enhance face quality in video
- solve the variance, such as pose, illumination in video

THANK YOU

Q & A

PresentationPoint www.presentationpoint.com

Thank you Page 28

