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Abstract

Recent applications including the Semantic Web, Web
ontology and XML have sparked a renewed interest on
graph-structured databases. Among others, twig queries
have been a popular tool for retrieving subgraphs from
graph-structured databases. To optimize twig queries, se-
lectivity estimation has been a crucial and classical step.
However, the majority of existing works on selectivity esti-
mation focuses on relational and tree data. In this paper, we
investigate selectivity estimation of twig queries on possi-
bly cyclic graph data. To facilitate selectivity estimation on
cyclic graphs, we propose a matrix representation of graphs
derived from prime labeling — a scheme for reachability
queries on directed acyclic graphs. With this representa-
tion, we exploit the consecutive ones property (C1P) of ma-
trices. As a consequence, a node is mapped to a point in a
two-dimensional space whereas a query is mapped to mul-
tiple points. We adopt histograms for scalable selectivity
estimation. We perform an extensive experimental evalua-
tion on the proposed technique and show that our technique
controls the estimation error under 1.3% on XMARK and
DBLP, which is more accurate than previous techniques.
On TREEBANK, we produce RMSE and NRMSE 6.8 times
smaller than previous techniques.

1 Introduction

Graph-structured databases have a wide range of emerg-
ing applications, e.g., the Semantic Web, eXtensible
Markup Language (XML), biological databases and network
topologies. Up-to-date, there has already been voluminous
real-world (possibly cyclic) graph-structured data [3]. To
retrieve subgraphs from a large graph-structured database
efficiently, various query optimization techniques have been
proposed. Among others, selectivity estimation of queries
has been a crucial support for query optimization technique
in databases. In particular, selectivity estimation has been
built into the query optimizer of all commercial relational
databases. In a nutshell, given a query, we want to deter-
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Figure 1. An example graph of auction infor-
mation (XMARK) with its prime labeling

mine the number of results of the query, without invoking
potentially costly query evaluation. However, the majority
of previous research on selectivity estimation, with a few
exceptions (see Section 2), focuses on relational and tree-
structured data. In this paper, we propose histogram-based
selectivity estimation of twig queries for possibly cyclic
graphs.

Twig queries have been a popular and classical tool for
retrieving subgraphs from a graph-structured database. To
facilitate our technical discussions, let us consider a twig
query over a simplified XMARK (cyclic) graph [18]. The
graph (Fig. 1) encodes auction information, where peo-
ple watch over auctions and bidders bid items. Consider
a sample query //person[//open auction//person],
which selects the persons who watch some auctions
that are still open and related to some other persons.
Note that the twig query is recursive, where the
query selects persons that have some person descen-
dants. In XMARK with a scaling factor 1.0, there are
25,500, 12,000, and 13,192 persons, open auctions and
open auction//persons, respectively. Based on selec-
tivity information, a query optimizer should produce a
plan that evaluates //open auction//person prior to
//person, to minimize intermediate result size.

Recently, there have been studies on selectivity estima-
tion of XML data, a.k.a. tree data, and twig queries. In
particular, Wu et al. [24] propose to adopt histograms for



selectivity estimation of XML queries. An advantage of this
technique is that histograms are by far the most popular
technique for query result estimation. The proposed tech-
nique relies on an interval representation of nodes, which
presumes tree data. That is, each node of a tree is associated
with one interval. The challenge in adopting the interval
representation to cyclic graphs (and even directed acyclic
graphs) is that multiple intervals may be associated with a
node [2], as there may be muliple paths between any two
nodes. Thus, the storage requirement of this technique on
cyclic graphs can be prohibitive. In addition, it does not ap-
pear straightfoward to extend the existing estimation frame-
work [24] to support multiple interval representation either.

Regarding cyclic graphs, there has been a work, namely
XSKETCH [16], that exploits (local) minimal bisimulation
of a graph for selectivity estimation of path queries. When
compared to the histogram approach, bisimulation is not yet
available in any commercial database and there has not been
a de facto external representation of bisimulation graphs.
Another drawback of local bisimulation is that the estima-
tion accuracy relies on a strong statistical assumption (uni-
form distribution) of data.

In this paper, we propose a novel selectivity estimation
technique for twig queries on cyclic graphs. The novelties
of the technique are twofold. First, different from [16],
we undertake a histogram approach to conduct selectivity
estimation; we use auxiliary histograms to tackle possibly
skewed data and do not make any assumption on the data
distribution. To facilitate summarization of data, we pro-
pose a prime number labeling scheme (or simply prime la-
beling) to represent (cyclic) graph data, which was origi-
nally proposed for tree data [23]. (We defer the discus-
sion on the drawbacks of other alternative representations
to Section 2.) With prime labeling, the checking of the
descendant-ancestor relationship among nodes of graphs
and (later) estimation methods become very simple. Specif-
ically, previous prime labeling scheme essentially asso-
ciates each node with an exclusive prime number and labels
each node with the product of its children’s labels and its
own prime number. Reachability between nodes is simply
mapped to divisibility test of labels. Unlike previous works,
our prime labeling requires fewer prime numbers for label-
ing and is therefore smaller in size.

A known issue of prime labeling is that it often results
in very large integers. The second novelty lies in a new bi-
nary matrix representation of prime labeling, which further
reduces the labeling size. In this way, we bridge selectivity
estimation to the work on matrices. In particular, we trans-
form a cyclic graph into a matrix with the Consecutive Ones
Property (C1P). Subsequently, a node of a cyclic graph can
be represented as an interval of column IDs, (start, end).1

1Our interval represents the column IDs of a C1P matrix. In contrast,
the multiple intervals of nodes in [2] represents the preorder and postorder

Querying is then done by logical operations on the matrix.
Nodes are essentially summarized in a two-dimensional his-
togram. In matrix transformations, new columns are often
introduced. We store mappings between equivalent column
IDs in a compressed form. Given a query, we translate it into
multiple equivalent queries (intervals) with the compressed
mappings. Such interval representations of data and queries
make histograms a feasible solution for summarization.

The contributions of this paper are as follows.

• To the best of our knowledge, this is the first work on
selectivity estimation of twig queries on cyclic graphs.
Previous works focus on either twig queries or cyclic
graphs but not both.

• We propose a prime labeling scheme to represent
cyclic graphs and a binary matrix representation of
prime labeling (Section 5). We transform the matrix
in order to map a node of a graph to an interval and in
runtime, a query to possibly multiple intervals. A two-
dimensional histogram is used to summarize the ma-
trix (Section 6). We propose an estimation algorithm
with the histograms (Section 7).

• We perform a performance evaluation (Section 8) that
verifies our technique controls the estimation error un-
der 1.3% for XMARK and DBLP datasets . In com-
parison, the previous work XSKETCH/TREESKETCH
[16, 17] reports that it controls the error under 5%.
On TREEBANK dataset, our implementation produces
RMSE and NRMSE that are at least 6.8 times smaller
than XSEED’s [25].

2 Related Work
There have been some recent works on selectivity esti-

mation for path or twig queries on trees or cyclic graphs.
The techniques can be roughly classified into two cat-
egories: graph-based approach and relational-based ap-
proach.

Graph-based approach. While graph-structured data
model has its root at network data model, it was revis-
ited in Tsimmis project, in which Object Exchange Model
(OEM) is proposed. DATAGUIDE [14] is proposed to sum-
marize the paths of OEM. Graphs are considered as NFA and
their DATAGUIDEs are DFA of the graphs. DATAGUIDE
has been extended to support approximate query process-
ing [8]. Straight-Line Grammar (STL) [6] is a special form
of context-free grammar, for summarizing a data graph. To
reduce the size of the grammar, [6] proposes to use a wild-
card to simplify some non-terminals in a production.

numbers of a traversal on the spanning tree of a DAG and the connectivity
due to non-tree edges.



Another graph-based approach [16, 17] (XSKETCH and
later TREESKETCH) is derived from bisimulation of graphs.
XSKETCH supports only path queries on cyclic graphs.
TREESKETCH, on the other hand, supports twig queries
on acyclic graphs only. In comparison, we support twig
queires on cyclic data. [16, 17] propose to adopt bisimula-
tion as the synopses of a data graph. To further reduce the
size of bisimulation, a notion of local bisimulation [10] has
been applied. To recover the path information from a local
bisimulation graph, graph stability is exploited and uniform
distribution of nodes is assumed. Unlike their techniques,
we do not assume the data exhibits uniform distribution but
use auxiliary histograms to summarize skewed data. A re-
cent survey shows that some popular graph (XML) bench-
marks contain highly skewed data [13]. Our overall tech-
nique adopts histogram, which is by far the most popular
selectivity estimation technique.

Correlated subpath tree (CST) [4] stores the count of
small twigs (branches) in data trees. It has been shown
by recent experiments that [16, 17] outperform [4]. XSEED
[25] initially derives a compact path summary (kernel) from
data trees and adaptively tunes memory budgets of sum-
maries based on query workload. Its experiment showed
XSEED outperforms TREESKETCH [17] when 1000 queries
are considered. In our experiments, we compare our tech-
niques with XSEED. STATIX [7] proposes to count subtrees
in XML, not cyclic graphs, with schema information. In
contrast, we do not assume schemas.

Relational-based approach. Histograms from relational
databases have been adapted to support selectivity estima-
tion of queries on graphs. [24] proposes an interval repre-
sentation of nodes of a tree. The start and end position of
the interval is used as the x and y coordinates of a point
in a two-dimensional plane. A two-dimensional histogram
and auxiliary histograms are used to summarize the points.
Bloom histograms [21], path trees and Markov tables [1,12]
have been proposed for path selectivity estimation for tree
data. However, it is not clear how these techniques support
cyclic graphs, which contain infinitely many paths, for se-
lectivity estimation.

Alternative representation of graphs. In this work, we
adopt prime labeling [22,23] as the representation of cyclic
graphs, due to its simplicity. In addition to the interval
representation discussed earlier, there have been alternative
representations. Transitive closure of the graph G consists
of an entry (u, v) if u can reach v in G. However, its stor-
age is prohibitive O(|G|2). Adjacency matrix has been a
classical representation of graphs. However, determining
the ancestor-descendant relationship in an adjacency matrix
is relatively complex, which requries taking self-products
of the matrix. There has been a host of ad-hoc indexes
for reachability queries on graphs, e.g., 2-hop labeling [5].
However, the structures of ad-hoc indexes are often com-

plex and their summarization does not seem to be straight-
forward.

3 Definitions and Preliminaries

We begin our technical discussions with the definitions
and notations used.

3.1 Data Model

In this paper, we study directed node-labeled rooted data
graphs, or simply graphs in the subsequent discussions. A
graph can be denoted as G = (V, E, r,Σ, λ, oid), where V
is a set of nodes and E: V × V is a set of edges, r ∈ V is a
root node, Σ is a set of tags and λ: V → Σ is a function that
returns the tag of a node and oid is a function that returns a
unique identifier of a node. For simplicity, we may denote
a graph as (V , E) when other components are irrelevant.

3.2 Twig Queries

Among the queries on graphs, XPATH has been studied
more extensively recently than others and it has been an
indispensable part of eXtensible Markup Language (XML)
— the de facto standard for electronic data exchange.
Hence, we consider a fragment of structural XPath — twig
queries. The syntax is given in BNF below:

p ::= ε | A | ∗ | // | p/p | p[q],

q ::= p | q ∧ q | q ∨ q,

where ε, A, ∗ and / denote the self-axis, a tag, a wildcard
and the child-axis, respectively; // stands for /descendant-
or-self::node()/; and q in p[q] is called a filter, in which ∧
and ∨ denote conjunction and disjunction, respectively. For
//, we abbreviate p1/ // as p1// and // /p2 as //p2. For
simplicity, our technical discussion focuses on // axes, while
the extension to / axes can be addressed by introducing an
index on the depth of nodes. We use r[|p|] to denote the
evaluation of the query p from the node r.

Problem statement. Let R be the set of nodes of the eval-
uation, where R = r[|p|]. In this paper, given p and r, we
want to determine |R| efficiently and accurately.

3.3 Consecutive Ones Property

Next, we provide the definition of the Consecutive Ones
Property (C1P), which is useful to summarize the ones
(non-zeros) in a matrix. In this paper, we represent a cyclic
graph with a binary matrix, denoted by M . The u-th row
is denoted as M [u]. The entry at the u-th row and the v-th
column, denoted as M [u][v], can be either ‘0’ or ‘1’.
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Definition 3.1: A matrix M has the weak Consecutive Ones
Property (C1P) if its columns can be permuted such that in
each row, the ones are adjacent. A matrix M has strong
C1P if the ones of each row are adjacent.

For simplicity, we call a matrix with strong C1P a CIP
matrix. Since the ones in a row of a C1P matrix are adjacent,
we can represent the ones in the row with a start and end
column number which can be considered as the x- and y-
coordinates of a data point. In subsequent discussions, we
may use the term intervals and data points interchangeably.

4 Overview

In this section, we provide an overview of the design of
our proposed technique to the selectivity estimation prob-
lem.

Consider a cyclic data graph G, as shown in Fig. 2. G
is first reduced into a DAG (G′), on which prime labeling
is applied. We design a prime labeling scheme that not
only facilitates simple query processing but also selectiv-
ity estimation of twig queries. Furthermore, we propose a
new binary matrix representation M of prime labeling. Its
advantages are twofold. First, prime labeling may require
large prime numbers for labeling large graphs since at least
each leaf node needs a unique prime number. Second, we
can adopt existing work from matrices, for summarization.
In particular, we transform the binary matrix M into a C1P
matrix M ′ and represent graph nodes with two-dimensional
data points. As a consequence, a well-known estimation
technique, two-dimensional histogram, can be used to sum-
marize the data points of each kind of tag, where the his-
togram’s cell size ρ can be tuned for space or estimation
accuracy.

Regarding estimating the selectivity of a twig query q,
we encounter a unique challenge that data points derived
from the C1P matrix M ′ are often highly skewed. When
developing the estimation algorithm, we observe that there
are sometimes few queries with large errors, which lead to
a poor overall accuracy. Hence, we propose additional aux-
iliary histograms for summarizing skewed data points and

do not opt to adopt [24] for selectivity estimation.
In what follows, we discuss the prime labelling and bi-

nary respresentation of cyclic graphs in Section 5, matrix
transformations in Section 6, and selectivity estimation of
twig queries in Section 7.

5 Representation of Cyclic Graphs

Most labeling techniques on descendant-or-self axis fo-
cus on tree data. It is not clear how these labelings can be
modified to support cyclic graphs. For example, path-based
labelings do not work in cyclic graphs as there are infinitely
many paths and the interval labeling [2] has a high space
requirement for cyclic graphs. In this section, we present a
new representation of cyclic graphs based on prime label-
ing [23], to efficiently estimate the descendant-or-self axis
on cyclic graphs.

5.1 The Original Prime Labeling

Prime labeling was originally proposed for indexing
trees. The main idea of prime labeling is that each node
is labeled with a product of prime numbers such that the
ancestor-descendant relationship between nodes could be
determined by using the division of the prime labels. A
node n1 is an ancestor of another node n2 if and only if the
label of n1 is divisible by that of n2. In [23], a unique prime
number is assigned to each leaf node. The prime label of an
internal node is the product of the prime labels of its chil-
dren. Such labeling works on trees only. To extend prime
labeling to DAGs, [22] requires a unique prime number per
node.

5.2 Prime Labeling for Cyclic Graphs

To support cyclic graphs, we follow the standard pre-
processing to reduce each SCC into a supernode and apply
prime labeling on the reduced graph. We propose two mod-
ifications on prime labeling: First, the previous work [22]
on prime labeling uses excessive prime numbers (one prime
number per node). We propose to use fewer number of
(unique) prime numbers needed for labeling and hence re-
duce the overall size of prime labeling. More specifically,
we require a new unique prime number for labeling a node n
in one of the following scenarios: (i) n is a leaf node; or (ii)
all the children of n have more than one parents. Regard-
ing the second scenario, if a new prime number is not used
for labeling n, then it is possible to have a node n′ whose
label is divisible by n’s label but n′ is not an ancestor of n,
since n′ can be an ancestor of other parents of n’s children.
Second, prime labeling needs to support possibly multiple
strongly connected components (SCCs) in cyclic graphs. By
definition, each node in an SCC can reach any other node in



the SCC. Therefore, the nodes in an SCC can be associated
with the same prime label.

Next, we present the definition of prime labeling for
cyclic graphs. Let get next() be a special function which
returns a prime number that has not been returned before.
Assume that a cyclic graph G has been preprocessed by
Tarjan’s algorithm [20], where each SCC is reduced to a su-
pernode. Denote the reduced graph to be G′(V ′, E′). Each
node n is associated with a prime label ` as defined below.

Definition 5.1: The prime label ` of a node n of the reduced
graph G′(V ′, E′) can be defined as follows:

1. If n is a leaf node, then n.` = get next().

2. If n is a non-leaf node and all the children of n have
multiple parents, then n.` = get next() × ∏

c∈C c.`,
where C is the set of n’s children.

3. Otherwise, n.` =
∏

c∈C c.`.

The prime labels of the nodes of a reduced graph G′

are assigned in a reverse-topological order, i.e., a bottom-up
traversal. The pseudo-code of the prime labeling construc-
tion (prime-construct in Fig. 3) can be readily dervied
from Definition 5.1. It assigns prime labels to the reduced
graph (G′). In Line 01, we apply Tarjan’s algorithm to re-
duce a cyclic graph G into a DAG G′, where an SCC is re-
duced to a supernode. We initalize the prime label of each
node to be 1 in Line 02. Then, we assign the prime labels
of nodes in a reverse-topological order (bottom-up traver-
sal). There are two possible cases. (1) If the node n is a
leaf node (Lines 04-05), we assign a new prime number to
the node. (2) If the node n is not a leaf node, the prime
labels of the node is set to the product of the prime labels
of its children in Lines 07-08. However, if all the children
of the node have multiple parents, we assign an additional
new prime number to the prime label of n (Lines 09-10), as
argued earlier.

While prime-construct and [22, 23] assign prime
numbers differently, querying with our prime labeling re-
mains simple. Assume that we have a set of A-nodes SA

and B-nodes SB . A naive way to determine the num-
ber of B-descendants in SB of the nodes in SA takes
O(|Sa|×|Sb|). With prime labeling, this can be done by first
computing the product of the prime labels of SA, denoted
by MA, and then check the divisibility between MA and the
prime label of each node in SB . This requires O(|Sa|+|Sb|)
only.
Example 5.1: Reconsider the XMARK graph shown in
Fig. 1. The prime label of each node is shown in the
square bracket. We show a strongly connected compo-
nent whose nodes have the same label 2×3×5×7×19, as
they can reach one another, by definition. The person

Input: A data graph G
Output: A data graph with prime labeling

01 G′ = tarjan(G)
02 initialize the prime label of nodes in G′ to 1

03 for each n in G′.V in reverse topological order
04 if n is a leaf node /* Definition 5.1 */
05 n.` = get next()
06 else
07 for each c in n.children
08 n.` = n.` × c.`
09 if ∀ n′ ∈ n.children. n′ has multiple parents
10 n.` = get next() × n.`

Figure 3. Prime labeling construction
prime-construct

with label 19 is both a seller and an author. We
use a new prime label for the author (2) and seller

(3). Since 2×19 and 3×19 are not divisible, author and
seller are not a descendant of each other. Furthermore,
to check the number of persons that are a descendant of
some open auctions, we can simply check the divisibil-
ity between the person’s label, e.g., 17, to the label of
open auctions, i.e., 2×3×5×7×11×13×19.

5.3 Matrix Representation of Cyclic Graphs

Given voluminous graph data, such as biology pathways,
social networks and XML, prime labeling may result in very
large integers. To address this issue, we propose a binary
matrix representation of prime labeling and map integer di-
visions simply to logical operators of vectors.

Definition 5.2: Suppose that the prime label ` of a node n
of a graph G is pi1 × pi2 × ...× pim

, where pij
is the ij-th

prime number. ` is then presented by a vector ~̀ where ~̀[ij]
= 1 if and only if pij

is a factor of `; and ~̀[ij] = 0 otherwise.
The size of the vector is the total number of prime numbers
used in labeling G.

A graph is represented as a set of binary vectors which
form a matrix. Here, we always discuss binary vectors and
matrices. For simplicity, we may omit the term “binary”.

With this representation, divisions and multiplications of
prime labels can be mapped into logical operators on the
vector representation of the prime labels.

Definition 5.3: Given two nodes n1 and n2, n1.` is divisible
by n2.` if and only if ¬(n1.~̀) ∧ n2.~̀ = ~0.

Definition 5.3 can be alternatively understood that the
vector ¬(n1.~̀) and n2.~̀ are orthogonal, where the product
of the two vectors is 0.



Definition 5.4: Given a set of nodes V and n2,
∏

n∈V n.`
is divisible by n2.` if and only if ¬(

∧
n∈V n.~̀) ∧ n2.~̀ = ~0.

To end this section, we remark that prime-construct
(presented in Fig. 3) can be used with minor modifications
to compute the binary matrix representation directly from
cyclic graphs.

6 Matrix transformations

In this section, we present the transformation of the bi-
nary matrix of prime labeling into a C1P matrix for simple
summarization. On one hand, a C1P matrix can be readily
summarized by a set of intervals, as discussed in Section 1.
On the other hand, converting a matrix into a C1P matrix
is intractable [19]. Worst still, there is no polynomial time
approximation scheme for determining a C1P submatrix in
a given matrix. Therefore, we propose (i) a heuristic algo-
rithm for converting a matrix into a C1P matrix and (ii) two
practical optimizations, namely, horizontal decomposition
on the matrix and extraction of the largest common subset
of non-zeros in the decomposed submatrices, to reduce the
size of the matrix passed to the heuristic algorithm.

6.1 Transforming to C1P Matrix

The heuristic algorithm uses a C1P detection algorithm
proposed by Hsu [9] as a component, which determines
if a matrix is C1P or not and has been known to have
simple implementations. The overall heuristic algorithm
heuristic c1p is presented in Fig. 4.

We assume that the rows of the input matrix M are as-
sumed to be sorted by the number of non-zeros in descend-
ing order. The heuristic algorithm is to first process the
rows that have more overlapping non-zeros with the first
row. The idea is that there may be a higher chance for such
rows to share more columns containing non-zeros. Subse-
quently, we may obtain a smaller C1P matrix.

The details of heuristic c1p are as follows. We first
compute the overlappings between the rows in M with the
first row — the row with the most number of non-zeros
(Lines 01-03). Then, we sort the rows by the amount of
overlappings (Line 04) and construct a new C1P submatrix
R (Line 05). We may merge a row M [i] into R if one of
the three conditions is satisfied (Lines 07-09): (i) Hsu’s al-
gorithm (denoted as c1p detect) reports that M [i] can be
merged to R to form a C1P matrix. (ii) M [i] does not over-
lap with R. (iii) M [i] is contained in some rows in R. We
remark that Conditions (ii) and (iii) do not arise in [9]. How-
ever, such a row can be readily merged into the C1P matrix
R.

In Line 11, column partition is the COLUMN-
PARTITION algorithm in [9] extended to handle Conditions

Procedure heuristic c1p
Input: A matrix representation of a cyclic graph M [ ][ ],

where the rows of M are sorted by # of non-zeros (descending)
Output: The C1P matrix from M

01 r = M [0] /* 1st row */
02 for each i in [1...m-1], where m is the number of rows of M
03 M [i].overlap = |{ j |M [i][j] ∧ r[j], j ∈ [1...n]}|
04 sort M by the overlap attribute of the rows
05 R = {r}
06 for each i in [1...m-1]
07 if (i) c1p detect(R ∪ {M [i]}) or /* [9]*/
08 (ii) M [i] ∧∧

R = ∅ or /* non-overlapping row*/
09 (iii) ∃ j s.t. M [i] ∧ R[j] = M [i] /* M [i] in R[j]*/
10 then
11 R = column partition(R, M [i]) /* Section 6.1 */

12 return R ⊕ heuristic c1p(M - R)

Figure 4. Heuristic C1P transformation

(ii) and (iii). In a nutshell, assuming that R and r form
a C1P matrix, column partition(R, r) reorganizes the
columns of R and r in partitions such that a C1P matrix can
be trivially generated from the partitions. Due to space con-
straints, we opt to present COLUMN-PARTITION as a black
box.

Finally, we recursively call heuristic c1p to pro-
cess the remaining rows, until the whole matrix is trans-
formed into a C1P matrix (Line 12). A subtle note is
that the C1P submatrix R constructed from each call of
heuristic c1p is often not mergable to each other. Oth-
erwise, these submatrices may be returned in a single call
of heuristic c1p. Hence, we append (denote as ⊕) the
submatrix, returned from recursive calls, to R.

The operator ⊕ is a special append operator. Suppose
R1 and R2 is a n1 by m1 matrix and n2 by m2 matrix, re-
spectively. R1 ⊕ R2 returns a (n1 + n2) by (m1 + m2)
matrix R′, where R1 and R2 are placed at the top-left and
bottom-right corner of R′, respectively. Fig. 5 illustrates
⊕ and the heuristics heuristic c1p with a sketch of the
run of heuristic c1p. (A real example of a C1P ma-
trix produced by heuristic c1p is presented in Fig. 7.)
heuristic c1p generates a C1P matrix recursively.

Mappings between columns and positions. In general, a
column of a matrix may be duplicated in multiple submatri-
ces returned by heuristic c1p. To avoid confusions, we
refer the columns of the C1P matrix to positions. Two map-
pings are needed to record the relationship between the col-
umn and its positions. In particular, we store the mappings
in two binary relations f and f−1, where f (vi) returns the
positions of vi in V and f−1(p) returns vi where p ∈ f (vi).

Analysis. The runtime of Hsu’s algorithm (c1p detect
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Figure 5. Schematics of heuristics
heuristic c1p

and column partition) is O(m+n+r), where m, n and
r are the number of rows, the number of columns and the
number of non-zeros. The loops (Lines 02 and 06) iterate
through the rows of a matrix. There are at most m recur-
sive calls. Thus, the time complexity of heuristic c1p is
O(m2×(m+n+r)).

6.2 Optimizing Matrix Transformation

This subsection presents two optimizations for matrix
transformation that are specific to our approach.

We make two observations on the matrix representation
of a cyclic graph, constructed as in Section 5. First, the
prime labels are assigned essentially bottom-up, where the
rows (the nodes) near the root have relatively more non-
zeros. That is, the number of non-zeros of the rows (the
nodes) near the root is often very different from those near
the leaf nodes. Second, since the nodes in an SCC can reach
one another, the rows of an SCC are identical. Hence, we
propose two matrix manipulations to reduce the size of the
matrix passed to heuristic c1p.

6.2.1 Horizontal Matrix Decomposition

The patterns in the rows with many non-zeros are often dif-
ferent from those with few non-zeros. We propose a sim-
ple decomposition to separate these rows of a matrix M
and summarize them separately. First, note that the order
of rows does not carry any information. We sort the rows
by the number of non-zeros, in descending order. Denote
by M̄ and σ, respectively, the mean and standard deviation
of the number of non-zeros for all rows of M . Second, we
scan the sorted matrix. Let R be the rows scanned thus far
and r be the next row in the scan. If the number of non-
zeros of r is beyond R̄ − cσ, where c is a constant, e.g., 3,
this indicates the remaining rows in the matrix are signifi-
cantly different from those in R. Hence, we decompose the
matrix at r and then continue the scan.

6.2.2 Common Pattern Extraction

A pattern that appears in all rows of a matrix contains lit-
tle information. Therefore, we extract the largest common

Figure 6. Matrix representation of XMARK

Figure 7. C1P matrix representation of XMARK

pattern of a matrix in a scan of the matrix, which can be
incorporated with the decomposition discussed above. In
the scan, we maintain the current common pattern P of the
scanned rows. Assume r is the next row in the scan. The
next largest common pattern is simply defined as P ∧ r.
Example 6.1: In Fig. 6, we show the matrix representation
of XMARK (with the scaling factor 0.01) after sorting the
rows by the number of non-zeros (prime numbers). A dot ’.’
and a blank space ’ ’ represent a non-zero and zero, respec-
tively. The figure shows that there are three distinguishable
submatrices with different non-zero densities. The dotted
lines show the decomposition when R̄ − 3σ is used. Most
of the non-zeros of the matrix occur in the topmost sub-
matrix. After we locate the common pattern in the subma-
trix, we extract it out from the submatrix. We find that the
topmost submatrix has a large common pattern, containing
10,684 non-zeros. Finally, we apply heuristic c1p on
the decomposed matrices to obtain a C1P matrix shown in
Fig. 7. The number of positions needed for 13,372 columns
is 53,998.

7 Selectivity Estimation

This section presents the details of using two-
dimensional histograms to summarize the C1P matrix de-
rived in Section 6 and perform selectivity estimation. We
first discuss our data structures associated with the his-
tograms (Section 7.1) and the overall estimation algorithm
(Section 7.2) and then highlight its technical details (Sec-
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x−histograms
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,

(b) Cell structure

(a) 2−dimensional space (c) Query (case II)

,

Q

Q’

Figure 8. (a) Two-dimensional histogram; (b)
Cell structure; and (c) Intermediate query

tions 7.3).

7.1 Two-dimensional Histograms

As discussed in Section 3.3, a C1P matrix can be rep-
resented by a set of (two-dimensional) data points (x, y)’s,
where x and y are the start and end columns of 1’s. We
use a two-dimensional histogram for summarizing the data
points of each kind of tag. The two-dimensional space is
covered by a grid, which consists of non-overlapping cells.
An example is shown in Fig. 8(a). The cell size is controlled
by a parameter ρ. A data point (x, y), where x ≤ y, resides
in the upper diagonal area of the grid. To reduce space, we
only consider the cells with data point(s).

Through our experiments, we found that the data points
of our benchmark datasets are not evenly distributed on the
two-dimensional space. First, the data points are skewed
towards the diagonal line. Such phenonmenon has also
been found in the data points of the interval approach [24],
though the definition of their interval is different from ours.
Second, the estimation rules in [24] assume data points are
uniformly distributed along the diagonal line, which essen-
tially integrate the area of possible regions containing some
answer. In contrast, we associate three auxiliary data sum-
maries to each cell to tackle skewed data points. An exam-
ple of the cell structure is shown in Fig. 8(b). The auxiliary
summaries are discussed below.

1. We introduce a tight bounding rectangle, defined by
(xmin, ymax), of the data points of a cell, where xmin

is the smallest x-coordinate and ymax is the largest y-
coordinate of the data points in the cell.

2. We build equi-depth histograms based on the x-
coordinate, where the depth of the histograms can be
specified by a parameter ϕ. In addition, we keep the

Procedure top down
Input: A twig query p, a set of query points Q, a data graph G
Output: the count of p in G

01 case of p:
02 (i) //A/p′ /* A is a tag */
03 Q′ = estimate intermediate(//A, Q) /*Sec. 7.3.1*/
04 return top down(p′, equiv(Q′), G)

05 (ii) //A
06 return estimate count(//A, Q) /* Sec. 7.3.2 */

07 (iii) //A[q]/p′

08 Cq = bottom up(q, G, G)
09 Q′ = estimate intermediate(//A, Q)
10 Q′ = {g | g ∈ Q′ ∧ at right bottom(g, Cq)}
11 return top down(p′, equiv(Q′), G)

12 (iv) //A[q]
13 Cq = bottom up(q, G, G)
14 return estimate count with Qf(//A, Q, Cq)

Figure 9. The overall estimation algorithm
top down

largest and smallest x and y values for each bin of the
equi-depth x-histogram.

3. For the cells on the diagonal line, we further keep their
data points, for partial query evaluation.

7.2 The Overall Estimation Algorithm

The estimation exploits a property of data points, which
can be readily derived from Definition 5.4. A node v is
a descendant of another node u if and only if the interval
of v is contained in that of u. This is equivalent to say
that v is a descendant of u if and only if the data point
of v is at the bottom-right region of the data point of u.
Fig. 8(a) shows the region containing the descendants of a
query point. While the region is divided into five cases as
in [24], our detailed esitmation exploits the auxilary struc-
tures to handle skewed data points each of the region.

With the above, we are now ready to present the over-
all estimation algorithm top down, shown in Fig. 9. In
a nutshell, top down estimates the path of the twig query
top down and invokes bottom up to estimate the filters
(branches) in the query. Some important technical details
of top down are given in Section 7.3.

The input of top down is a twig query p, a set of query
points Q and a data graph G. Initially, Q contains the root
node, at where the evaluation starts. top down proceeds
according to the structural form of the query as follows (We
omitted ∧ and ∨ for presentation simplicity):
(i) If the query is //A/p′ (Lines 02-04), where //A is an in-
termediate query, we compute the next queries (i.e., points)



Procedure bottom up
Input: A filter query q, a set of query points P , a data graph G
Output: the points that have some data points that satisfy q
01 case of q:
02 (i) //A
03 return estimate intermediate reverse(//A, P , G)

04 (ii) /p′//A
05 P ′ = estimate intermediate reverse(//A, P , G)
06 return bottom up(p′, equiv(P ′), G)

07 (iii) //A[q′]
08 P ′ = bottom up(q′, P , G)
09 P = {p | p ∈ P ∧ ∃ p′ ∈ P ′ p′ is a descendant of p}
10 return estimate intermediate reverse(//A, P , G)

11 (iv) /q′//A[q′′]
12 P ′ = bottom up(q′′, P , G)
13 P = {p | p ∈ P ∧ ∃ p′ ∈ P ′ p′ is a descendant of p}
14 P ′′ = estimate intermediate reverse(//A, P , G)
15 return bottom up(//q′, equiv(P ′′), G)

Figure 10. Auxiliary procedure for handling
filters bottom up

Q′ from Q with estimate intermediate (to be detailed
in Section 7.3.1). Then, we proceed to estimate p′. Since
columns may be represented by multiple positions, we need
to process all the equivalent query points of Q′ determined
by equiv (to be detailed in Section 7.3.1).

(ii) If the query is the last step (Lines 05-06), we generate
the selectivity count with estimate count (to be detailed
in Section 7.3.2).

(iii) Suppose the query contains a filter q (//A[q]/p′)
(Lines 07-11). We determine the points Cq whose bottom-
right region contains some points satisfying q (Line 08). In
a nutshell, bottom up is mostly symmetric to top down

and returns a set of points that satisfy the filter q. (Its details
will be presented in the next subsection.) Then, we esti-
mate the next query points Q′ (Line 09) as in Case (i) but
we only keep the query points that have some points in Cq

in their bottom-right region (Line 10). Next, we estimate p′

recursively, as in Case (i).

(iv) If the filter occurs in the last step (//A[q]), we need to
generate the selectivity count, similar to Case (ii). However,
we invoke bottom up to find the query points Cq, similar
to Case (iii). The difference between Line 06 and Line 14 is
that when we generate the count, we only include the points
that have some points in Cq in their bottom-right region.
Example 7.1: A partial run of top down on an example
query //a//b//c is shown in Fig. 11. The estimation starts
with the root node (Fig. 11(a)). The root node becomes
a query point that searches for a-descendant nodes, with
estimate intermediate. The shaded cells illustrate the
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est: //a... est: //a//b... est: //a//b//c

(a) (b) (c)

query: //a//b//c

a b−node

estimate_intermediateestimate_intermediate
an a−node an b−query
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Figure 11. A schematics of the overall estima-
tion algorithm

cells that contain some a-nodes. The selected a-nodes be-
come the next query points — b-queries. In Fig. 11(b),
we show one b-query. Similarly, we determine the cells
that contain some b-descendant nodes and subsequently c-
queries. In Fig. 11(c), we show one c-query. Since //c

is the last step, estimate count is invoked to count the
number of c-descendant nodes in the shaded cells.

7.2.1 Details of bottom-up

This subsection provides the details of the handling of fil-
ters in the overall estimation algorithm top down (Fig. 9).
The filters are handled by Algorithm bottom up shown in
Fig. 10. The input of bottom up is a filter q specified in
the form of twig query, a set of intermediate query points P
and a data graph G.

We first discuss estimate intermediate reverse,
which is used in bottom up. We skip its
pseudo-code because it is straightforward.
estimate intermediate reverse(q, P , G) returns a
set of points that satisfy q in a graph G and has a point p ∈
P in its bottom-right region.

Next, we focus on the structural recursion in bottom up.

(i) If the filter query is //A, i.e., the last step (Lines 02-03),
we simply return the set of points (of cells) that contain
some A-nodes which have some p ∈ P in their bottom-right
region.

(ii) If the filter query is not the last step (//p′//A), we first
determine the points that satisfy //A (Line 05). Then, we
recursively determine the points that satisfy //p′ based on
the result of //A (Line 06).

(iii) If the filter query contains yet another filter query q′, we
invoke bottom up recursively to first determine the points
P ′ that satisfy q′ first (Line 08). We keep only the points
in P that have some points in P ′ in their bottom-right re-
gion (Line 09). Then, we determine the points of //A as in
Case (i) (Line 10).



(iv) This case (Lines 11-15) is similar to Case (iii). The dif-
ference is that after we determine the points P ′′ for //A[q′],
we use P ′′ to determine the points for //p′ recursively.
Example 7.2: Recall from Algorithm top down that
bottom up is invoked as bottom up(q, G, G) (at Lines 08
and 13) and consider an example where q = //a//b. Note
that bottom up processes q bottom-up. Initially, we en-
counter Case (ii). We determine the nodes that satisfy //b

and has a descendant in G. Hence, we obtain a set of all
B-nodes in G as P ′ (Line 05). Next, we evaluate //a with
all B-nodes (Case (i)). We obtain a set of A-nodes that have
some B-descendant nodes. These nodes will be returned to
top down to filter query points.

7.3 Estimation Details with Histograms

This subsection provides the technical details of the
overall algorithm, specifically, estimate intermediate,
estimate count and equiv.

7.3.1 Generation of Intermediate Queries

Given a query point, estimate intermediate generates
a set of next query points from five distinguishable cases in
the bottom-right region of the query point. The five cases
are visualized in Fig. 8(a).

To illustrate how estimate intermediate works,
we present the estimation details with an example query
a//b//.... Suppose the query point in Fig. 8(a) is an
a-query and the histogram summarizes b-nodes. With ref-
erence to Fig. 8(a), we present the generation of b-queries
below:

• Cases I, II and III. Suppose an a-query point is (xq, yq)
and (xmin, ymax) represents the bounding rectangle of
a cell of these cases. The b-query point is (max(xq,
xmin), min(yq, ymax)).

• Cases IV and V. The b-query point is simply (xmin,
ymax) of a cell of these cases.

7.3.2 Generation of Result Count

estimate count generates a count from the histogram.
Similarly, assume that the query dot in Fig. 8(a) is an a-
query (generated from estimate intermediate) and the
histogram summarizes b-nodes. We present the generation
of the count of b-nodes of the query a//b as follows:

• Cases I. The count of the result points of a query point
(xq, yq) in the cell is estimated to be the the sum of
the count of the bins that contain data points with an
x-coordinate larger than xq and a y-coordinate smaller
than yq. We illustrate this with Fig. 12(a). The esti-
mated count is 10 (from B2 and B3).

B1 B2 B3
B4

q,x yq

(a) Est. with x-histograms in
grid

0
q

(b) Query point generation

Figure 12. Estimation with x-histograms and
query point generation

• Case II. The count is estimated to be the sum of
the count of the bins with some data point whose x-
coordinate is larger than xq.

• Case III. This is similar to the above case except that
we check the y-coordinates and yq.

• Case IV. We simply return the count of the cell.

• Case V.I. If the query point is not in the diagonal cell,
we simply return the count of the cell.

• Case V.II. If the query point is in the diagonal cell,
we check the bins with some data point whose x-
coordinate is larger than xq as follows: (i) If the bin’s
largest y is smaller than yq, we simply include the
count of the bin. (ii) If the bin’s smallest y is larger
than yq, we skip the bin. (iii) Otherwise, we evalu-
ate the query with the bin. Evaluation is invoked be-
cause as (xq, yq) approaches the diagonal line, there
are fewer data points in the bottom-right region, where
the error introduced can be relatively large. Suppose
Fig. 12(a) is a diagonal cell. The estimated count is 5
(from B2) + 4 (from B3) = 9.

estimate count with Qf is similar to
estimate count except that it considers a set of points
Cq, which satisfy a filter q. In addition to checking the bins
and data points with (xq, yq), estimate count with Qf

includes the bins and points in estimation only if there are
some nodes in Cq in their bottom-right region.

7.3.3 Generation of Equivalent Query Points

A query point (xq, yq) in general has many equivalent query
points in the two dimensional space, since a column may
be mapped to multiple positions (at the end of Section 6.1)
with equiv. We now discuss the details of equiv. The
equivalent query points are generated in two steps. First,
we determine the set of column IDs that involve the query
point:

C = {c | i ∈ [xq, yq], f−1(i) = c} (1)



Second, we compute the intervals that can be constructed
by the column IDs:

Q = {(x′, y′) | ∀j ∈ [x′, y′]. ∃j = f(c), c ∈ C}. (2)

To optimize the generation of query points, i.e., Q, we
propose to skip generating query points that have empty re-
sults. The main idea is illustrated with Fig. 12(b). First
we assume that the positions of a column ID are sorted in
ascending order offline. We sort C obtained from Equa-
tion (1). We scan through the positions of C in parallel.
When we obtain a query q0: (x0, y0) that has empty result,
we probe the histogram to obtain the grid that contains the
data point with the next xmin, where @x. x0 < x < xmin

and (x, y) is a data point. Finally, we skip all positions of
columns in C that are smaller than xmin.
Compression of mappings between columns and posi-
tions. The mappings f and f−1 between column IDs and
positions can be potentially large. In query point generation,
the mappings are scanned, as just discussed. We compress
the mappings such that the scan can be efficiently supported
in the compressed domain. In essence, instead of storing the
equivalent positions of column IDs, we store the difference
(delta) between each pair of adjacent positions. We replace
repetitive deltas with an ID and their occurrence. For ex-
ample, the positions (2,3,4,6,8,10,12,14) are compressed to
(2,#1×2 ,#2×5), where #1=1 and #2=2. The positions can
be trivially regenerated in a scan through the compressed
deltas.
Offline equiv computation. The next optimization on f
and f−1 is to precompute equiv for all data points and use
histograms to summarize the equivalent points, as opposed
to computing equiv on-the-fly. It is possible because f and
f−1 depend only on the data graph, not query workloads.
In this case, a node is represented by multiple intervals.

8 Experimental Evaluation

In this section, we present an extensive experimen-
tal evaluation that verifies the accuracy of our proposed
technique and the effectiveness of proposed optimizations.
We performed an experimental comparison with XSEED
[25] on tree data. Since the implementation of XS-
KETCH/TREESKETCH [16, 17] is not supported by recent
operating systems, we perform an indirect comparison with
them.
Experimental settings. We ran our experiments on a server
with a Dual 4-core 2.93GHz CPU and 30GB memory run-
ning SOLARIS OS (CENTOS release 5.4). Our implementa-
tion was written in Java JDK 1.6. We implemented equi-
depth histograms for grid cells. The default value of the
depth of a bin is 10% of the points in a grid cell. We tested
equi-width histograms as well but they exhibited a similar

Table 1. XMARK Characteristics
XMARK s.f. 0.1 0.4 0.7 1.0 DBLP TREEBANK

Avg. bindings 3.1k 14.1k 22.9k 35.4k 338k 3k

performance to equi-depth histograms in our preliminary
experiments.

Benchmark datasets. We used XMARK [18], DBLP [15]
and TREEBANK [11] to obtain a set of large graphs for eval-
uation. The scaling factor (s.f.) of XMARK was ranged
from 0.4 to 1.0. We set the default s.f. value at 1.0. The
DBLP used contains 3.3 million nodes. We note that XSEED
supports TREEBANK by extracting up to 5-percentile ver-
tices and hence we followed such an extraction. In addition,
since XSEED supports trees only, we ignore the IDREFs in
XMARK for the experimental comparisons with XSEED

The definition of metrics. In our experiments, we used the
error metrics used in [16] and [25]. The definitions of these
metrics can be described as follows. Let n be the number
of positive queries, a be the real result count of a query and
e be the estimation value. The estimation error is defined to
be (

∑n
i=1

|ai−ei|
ei

)/n. Similar to [16], we applied a sanity
bound s to avoid high percentages of low-count queries. We
set s to 10-percentile as in [16]. Two alternative error defi-
nitions, root mean square deviation (RMSE) and normalized
RMSE (NRMSE), were also adopted [25]. RMSE is defined as√

(
∑n

i=1(ei − ai)2)/n and NRMSE is defined as RMSE/ā,
where ā is (

∑n
i=1 ai)/n.

Query workload. We implemented a query generator
based on the description in Polyzotis et al. [17]. However,
since our proposed technique does not involve the synopses
of XSKETCH/TREESKETCH, our query generator generates
twig queries by sampling the data graph, as opposed to the
synopses. On the XMARK, DBLP and TREEBANK datasets,
we generated 1,000 positive twig queries, where the query
results are larger than 0. The twig queries have one branch
on average. The length of the main path ranges from 2 to
5. The number of branches ranges from 1 to 3. This work-
load is similar to the CP workload reported in [25]. Some
characteristics of query workloads are shown in Table 1.

8.1 Experiments on overall performance

Scalability tests. The estimation errors of the queries on
various XMARK graphs are shown in Figs. 13(a)-(e). The
x-axis of Figs. 13(a)-(c) is the cell size. From Fig. 13(a),
we note that the estimation error increases as the cell size
increases (from 0% to 0.7%), as fewer details are captured
by larger cells. Our technique is less accurate in DBLP and
TREEBANK but the error is still lower than 1.3% and 6%,
respectively. Fig. 13(b) shows that RMSE of our implemen-
tation increases with the data graph size. However, the nor-
malized RMSE of our implementation is roughly a constant
as the data graph size increases, shown in Fig. 13(c). This
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Figure 13. Performance results on synthetic dataset (XMARK) and real datasets (DBLP and TREEBANK)



is because the absolute result counts are larger in XMARK
datasets with larger s.f.’s.

Next, we set the cell size to 800 and use XMARK s.f.
1.0, unless otherwise specified.

We ran the query workload with our implementation and
XSEED’s. The results given in the two error metrics are pre-
sented in Figs. 13(d)-(e). Regarding XMARK, our method’s
RMSE and NRMSE are more accurate than XSEED’s by a
factor of 7.1 and 6.9, respectively. On TREEBANK, our
method is roughly 6.8 times more accurate than XSEED,
in terms of both RMSE and NRMSE. XSEED’s evaluation
does not finish on DBLP, which is needed for computing
XSEED’s errors. Our implementation gives a large RMSE
on DBLP since the average number of bindings of DBLP is
relatively large (Table 1).

Experiment on estimation time. Figs. 13(f)-(g) show the
estimation time with and without evaluation on diagonal
cells. In any case, the estimation time is less than 0.12 sec-
onds. On average, the estimation with evaluation on diago-
nal cells is (on average) 2.8 times slower than the estimation
without evaluation. However, due to evaluation on diagonal
cells, the estimation error reduces from 5% to 0.3% when
the cell size is 300 (Fig. 13(h)). In Figs. 13(f) and (g), we
did not include the time for equiv as it is the same for both
methods. For example, the time for equiv on XMARK
s.f. 1.0 was approximately 0.01 seconds among various cell
sizes.

8.2 Experiments on optimizations

Optimizations on diagonal cells. In Fig. 13(h), the error
reduction due to evaluation on diagonal cells is large. In
this experiment, we analyze how much evaluation is there
in the overall estimation. We computed the ratio between
the number of points involved in evaluation and those in es-
timation. Fig. 13(j) shows the ratio is smaller than 1%. The
reasons are that most of the points involved in estimation
are not in diagonal cells and the evaluation is not performed
on the entire diagonal cell, due to x-histograms.

Experiment on evaluation vs estimation ratio. To sup-
port the argument that the x-histograms in diagonal cells
effectively reduce the amount of evaluation, we tested the
ratio between the number of points involved in evaluation
and that in estimation when the x-histograms in cells are
not even used. The result is shown in Fig. 13(i). Without
the x-histograms, the ratio reaches 16%, when the cell size
is 300. In comparison, Fig. 13(j) shows that the ratio does
not reach 1% when x-histograms in cells are used.

Matrix transformations. We tested the size of the
C1P matrix obtained from the transformation proposed in
Section 6.1 with and without the optimizations in Sec-
tions 6.2.1-6.2.2. With the optimizations, Fig. 13(k) shows

that the ratio of the increase of the matrix size is approxi-
mately 4.1 as s.f. increases. While the size of the matrix in-
creases by a constant factor, the C1P matrix is much simpler
(recall Figs. 6-7). In contrast, without optimizations, the ra-
tio increases linearly with the s.f. as shown in Fig. 13(l).
Query point generation. We determined the ratio between
the number of query points in estimation with and without
the query point optimization proposed in Section 7.3.3. The
result is shown in Fig. 13(m). It shows that we reduce the
number of query points generated by a factor over 100. That
is, given a query, there are many equivalent query points that
do not contribute the result counts.
Compression of f and f−1. Next, we tested the compres-
sion performance presented in Section 7.3.3. The size of
f and f−1 is important to estimation time as each genera-
tion of equivalent query points requires a scan on the com-
pressed f and f−1. The result is plotted in Fig. 13(n). The
figure shows that the compression ratio is roughly 3.1 for
various s.f.’s.
The depth of the bin in x-histograms. In previous exper-
iment, we set the depth to be 10% of the number of dots
of a cell. To show the effect of the depth of x-histograms
on the estimation accuracy, we performed an experiment by
varying the bin’s depth from 10% to 100%. The cell size is
800. The results are shown in Figs. 13(o)-(p). As expected,
when the depth increases, the estimation error and NRMSE
gradually increase. Due to space constraints, we skip the
results on RMSE as we observed a similar trend.

8.3 Indirect comparison with XSketch and
TreeSketch

Although the implementation of XS-
KETCH/TREESKETCH [16, 17] has been available, it
was developed on a legacy gcc, which is no longer
supported. Some gcc libraries used have no longer been
available. Therefore, we could only compare the numbers
reported from [16, 17]. We compared the estimation error
of XSKETCH/TREESKETCH and ours on XMARK dataset
s.f. 1.0.

As discussed, XSKETCH supports path queries only for
cyclic graphs. XSKETCH generates queries based on the
popularity of tags in their synopses, which is absent in our
method. Hence, we generated path queries based on the
popularity of tags in data graphs. As shown in Fig. 13(q),
our estimation error has not reached 2% when the cell size
is smaller than 800. When the cell size is smaller than 200,
our estimation error has been controlled under 1%. In com-
parison, the estimation error of XSKETCH reported in [16]
is well-controlled under 10%.

Next, we compared the results reported from
TREESKETCH [17]. TREESKETCH estimates the se-
lectivity of twig queries but on acyclic graphs only. As in



TREESKETCH, we did not consider IDREF in XMARK.
The twig queries were generated as described in the begin-
ning of this section. Fig. 13(r) shows that our technique
controls the estimation error around 1.6%. In comparison,
TREESKETCH controls the estimation errors of twig
queries on XMARK tree under 5%.

9 Conclusion

In this paper, we propose a histogram-based selectivity
estimation of twig queries on cyclic graphs. To the best of
our knowledge, previous works only focus on either twig
queries or cyclic graphs but not both. Specifically, we pro-
pose a new matrix representation of cyclic graphs by our
prime labeling scheme. Next, we derive a heuristic transfor-
mation of the matrix to a C1P matrix for summarization. As
a result, a data node is represented by an interval and subse-
quently a two-dimensional data point. A query is then rep-
resented by multiple points in runtime. Two-dimensional
histograms are used to summarize data points and auxiliary
structures are introduced to tackle skewed data points. We
present a selectivity estimation algorithm on the histograms.
Our experiments with XMARK and DBLP show that the
estimation error is well-controlled under 1.3%, which is
more accurate than XSKETCH/TREESKETCH and XSEED.
On TREEBANK, we produce RMSE and NRMSE 6.8 times
smaller than XSEED’s.

As for future works, (i) we are incorporating this tech-
nique with queries with filters on data values; and (ii) we
are investigating graph partitioning to optimize the compu-
tation of the binary matrix, which is currently maintained in
the main memory.
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