
Secure Proximity Monitoring in Mobile Geo-Social Services

Li Hong Ping
Department of Computer Science

Hong Kong Baptist University
Kowloon Tong, Hong Kong

hpli@comp.hkbu.edu.hk

Abstract

Nowadays, Location Based Services (LBS) become more
and more popular. According to the influence of the social
network, users usually join social groups with their friend.
In some group, user may want to be notified, if the user is
geographically close to any users within the social group.
Proximity Detection enable us to attain the goal. However,
we are required to bear the risk of disclosure of location
information, while we are enjoying the LBS. This privacy
threat reduces the attractiveness of this kind of services.
Previously, some papers contribute ideas to deal with this
problem. Nevertheless, most of them assume that there is
a trusted central server within their system, which is im-
practical in the real world. The problem under our study is
to continuously monitor if any two mobile users in a social
group are within a distance of D. Meanwhile, the exact lo-
cation of a mobile user is not disclosed to any third party.
This paper propose a computationally feasible solution in
this problem, which only disclose the approximate location
of the user to the authorized party. Untrusted third party
(including centralized server) is not able to know the users’
location.

1 INTRODUCTION

As the technology advance, more and more mobile
phones and PDAs are equipped with geo-positioning ca-
pabilities (e.g. GPS). At the same time, the rise of social
networking sites to narrow the gap among people. Friend-
locator services (e.g., Google Latitude), which enable user
to know their friends’ locations, is also becoming popular.
Nevertheless, friend-locator services users usually expect
certain level of privacy protection rather than completely
expose their position to their friends.

The existing research work in proximity detection can
only protect users’ location privacy in a certain degree.
They are not enough to satisfy the requirement of requesting

completely location privacy.

In this paper, we can completely protect the users’ loca-
tion privacy, because we do not require any trusted third
party. Under the protection of secure communication,
server can just receive the hash value. By using those value
to judge where there is any user nearby each other. Server
only announces the users, when they are locating within a
pre-defined distance of another user. In general, users have
different location privacy requirement to other users accord-
ing to different social group. Such as user Alice allow her
family member to know her location when they are in the
same district and allow her friend to know her location only
when they are within (e.g. fifty meters) from each other.

The design of proposed solution gives three contribu-
tions at the same time. Firstly, it can preserve users’ lo-
cation privacy even there is no trusted third party. It out-
performs many of the previous solution, which requires the
existence of a centralized anonymity server. Secondly, us-
ing hash function with a set of time-varied salt gives us a
better protection, because it is pretty hard for us to find the
user location from the hashed value. We prevent unwanted
party to know where we are and let the permitted party to
know our approximate location. Thirdly, this solution em-
ployed grid base layered structure, which is similar to some
of the previous approach. The major different between pre-
vious solution and our solution, is previous solution always
quad-tree structured grid based layer and our solution use
a nona-tree structured grid based layer (see Figure 1). This
modification reduces the number of required layer.

Our solution not only gives a good protection in user lo-
cation privacy, but also requires a low communication cost,
which is directly proportional to the number of user. The pa-
per is organized as follows. We briefly review related work
in Section 2 and then give a problem definition in Section
3. System Operation is presented in Section 4. Section 5
presents the experimental results of our proposed solution.
At last, we conclude our paper in Section 6.

2 RELATED WORK

In this section, we review the development of the loca-
tion privacy technology and show the contribution of this
paper to this topic. In the literature, there are many research
efforts in this topic. Most of them adopt one of the three
techniques (including cloaking, dummies and encryption)
when handling the user location privacy problem.

The earliest proposal for location privacy protection is
spatial cloaking, which is proposed by Gruteser and Grun-
wald [1].

Figure 1. General Structure of Location Cloak-
ing

Instead of sending a single user’s exact location to the
server, spatial cloaking techniques collect k user locations
and send a corresponding minimum bounding region to
the server as the query parameter, see Figure 1. However
the quality of service is highly depend on the density of
users’ distribution. Also, it is time consuming for searching
nearby users to form a cloaking region.

Later, location cloaking algorithms advanced from
cloaking of snapshot locations to continuous location up-
dates [3, 4]. The cloaking of snapshot locations is not secure
enough to prevent the leakage of location privacy, if an at-
tacker (e.g., the service provider) can collect the user’s his-
torical cloaked regions as well as the user’s mobility pattern
(e.g., users’ speed). Except the most common k-anonymity
cloaking, there are other types of cloaking method, such as
Hilbert curve [5] and Casper[6]. Both of Hilbert curve [5]
and Casper[6] employ grid-based cell as their cloaking re-
gion, which also the idea that this paper has employed. The
major advantage of grid-based cell is it requires less time
for us to locate ourselves, comparing with the k-anonymity
cloaking which require location of k nearest neighbor to find
out our cloaking region. Also, grid-based cell can have a
better resistant to path-tracking, as the locations of all cells
have been predefined by the system. A. Khoshgozaran and
C. Shahabi [5] guarantees the query anonymity even loca-
tion information is disclosed to the adversary.

However, each client needs to maintain complex data
structure and communication protocol as well as long range

communication among peers. Therefore additional compu-
tation and communication cost may be quite costly for prac-
tical use. For the Casper [6] solution, it blurs a user’s ex-
act location information into a grid-based cloaking spatial
region based on user specified privacy requirements. This
framework uses a quad-tree data structure that maps the lo-
cation information into grids with different levels and res-
olutions. Due to the limitations of the quad-tree structure,
the calculated cloaking region is often larger than required,
which may cause lower service quality.

Figure 2. Protect location privacy by using
faked dummies

On the other hand, [2] suggest that we can protect our
location information by faked dummies. Just like Fig. 2
show that when client X send his location service request
to the LBS server, he will also send out the k faked dum-
mies (Y,Z,....) simultaneously, so as to diversify the risk of
the discovery of his actual location. Although [2] has tried
to user some movement simulation technique, we cannot
prevent the threat of path tracking, because the exact loca-
tion must contain in the set of dummies. Therefore, it is
not difficult for us to find out the user location by using the
assistance of the data mining technique.

The previous solutions only provide some protection for
the location privacy. However, most of them require a
trusted third party (e.g. trust anonymity server) to process
the users’ location data. It is not practical for us to request
for a trusted third party in the real world.

Cryptography solution in location privacy can help us to
protect the location privacy, while without the existence of
the trusted third party. Yao’s [7, 8] present how to exchange
secret by using some comparison method. More recently,
G. Ghinita and P. Kalnis [9] use

Private Information Retrieval (PIR) implementation to
build up a location privacy protection framework which
does not require any anonymizers or collaborating trustwor-
thy users. However, the limitation of this implementation is
the cell contents have to match the query result that may
cause a high storage overhead because the server required
storing large amount of different content. Also, it is not
easy to find the optimal size of grid partition that makes the
computation and communication cost becomes huge.

2

Many papers have already been published for the topic
of finding k-nearest neighbor (kNN).

Except the research of finding kNN, proximity detection
is another important topic in location privacy application.
The defination of proximity detection is the capability of a
location-based service (LBS) to automatically detect when
a pair of targets approaches each other closer than a pre-
defined proximity distance. It is not efficient for us to do
the proximity detection, if we solely use the solution of
kNN. That may give us too (less/much) information when
the point of interest (POI) are unevenly distributed. Rup-
pel [10] applies a distance-preserving coordinate transfor-
mation. By using centralized proximity detection method
to detect the proximity among the transformed locations.
However, Liu et al. Liu [11] show that distance preserving
coordinate transformations is not safe enough, as it is easy
for attacker to derive the secret mapping function. Mascetti
present a solution - Hide&Crypt, presented in [12], is a pri-
vacy preserving solution which employs a filter-and-refine
paradigm. Server uses the specified thresholds and com-
puted distances to determine whether friends are in proxim-
ity. However users may need to directly communicate with
their friend to check their proximity status, if they are de-
fined as ”possibly in proximity”. Hide&Crypt use secure
multi-party computation (SMC) protocol, which can pro-
tect the users’ location privacy, but it also brings a choice
between the service quality and the communication cost.

More recently, FRIENDLOCATOR [13] and VICINITY-
LOCATOR [14] both track users in a sparse grid while they
are far away from their friends, in order to reduce the com-
munication cost. Changing to finer grid, only when they
come closer with their friend.

The limitation of the FRIENDLOCATOR is the proxim-
ity detection accuracy of it is low and uncontrollable. For
VICINITYLOCATOR [14] give a solution that allow user
to choose the ”area of interest”. In VICINITYLOCATOR,
client requires to find all granules contained in his vicinity.
We still have to make a tradeoff between the service qual-
ity and performance. It is because if the granule size is big,
the function of the granules will become meaningless and it
also scarifies the accuracy of the result. On the other hand, if
the granule size is small, the computation and computation
will be high. Also, VICINITYLOCATOR require disclos-
ing the encrypted location to server, because encryption is
revisable. So it still not a complete safe solution.

Similar to FRIENDLOCATOR [13] and VICINITYLO-
CATOR [14], our solution employs an adaptive position-
update policy, which use different density layer, in order
to reduce the communication cost. Comparing with tradi-
tional grid layer structure, our solution use non-tree struc-
ture rather than quad-tree structure. Therefore our solution
requires less number of layers to solve the problem in some
resolution. Also, our solution use hash function instead of

encryption. Hash function is irreversible because there are
many different numbers map to the same value. At the same
time, because the weak collision probability of hash func-
tion, it is rare to find a pair of value, which has some hash
value. Furthermore, every time before our location infor-
mation undergo the hash function, it will combine will a
random generated salt. Users can refresh the random salt as
they wish. As a result, even users stay in the same place.
The message they send to the server is always different.
Moreover, comparing with proximity detection, proximity
monitoring is a continuous work, we are able to show when-
ever two users are nearby once the system gets started.

3 PROBLEM DEFINATION

This section describes the system model under our study.
We assume users within the social group have reached a
consensus on the acceptable distance of proximity detec-
tion. Figure 3. show us a sample of user have reached a
consensus with all users in different social group. This gives
system users flexibility to adjust the proximity distance, ac-
cording to their need. In our system, there are 2 types of

Figure 3. Table of acceptable distance of prox-
imity detection for different social group

entities, client and server. Client is the users within the peo-
ple within the same social group and server is just used for
comparison of hashed value. Figure 4 display our system
framework. The key idea to preserve the location privacy
is separating the information sharing into 2 parts. Tradi-
tional centralized anonymity server act as a system center,
which responsible for all client requests and analysis work.
Therefore, those solutions require making an assumption,
that the centralized server must be trusted. It is impracti-
cal to expect centralized server to be trusted, because the
users’ information is valuable. Even if centralized server is
non-colluded, nobody can guarantee it will not be broken in
by the attacker. Inspired by the solution of Yao’s million-
aire problem [7,8,15,16], our solution require users to share
some standard with the other users directly and the server
duty is to analyze the secret value.

Figure 4 show us the framework of our system. Firstly,
one of the users in that social group shares a data processing

3

Figure 4. System Framework

standard (e.g. the shifted location of different table, prox-
imity distance) with other group member. Then, all users
will transform their location information to a secret value,
according to the given standard. After the transformation
finish, all users will send their hashed location to the server.
Finally, server will check whether all user hashed location
to find whether they are within the proximity distance of
another user.

4 MECHANISM OF SYSTEM WORK

In this section, we give the detail explanation of our
system’s operation. Probably, our system workflow can
be divided into three stages. The first stage is initializa-
tion, which has mentioned in the previous section (Figure 5
step 1), group member establish a communication standard
among them in order to achieve the aim of secure multi-
party computation (SMC). The following stage is the sys-
tem operation, in this stage users require to send the hash
value to the server. Then server is able to determine whether
there is a positive result in detection. The previous stages
have already helped us to finish the proximity detection.
However, there is a room of improvement for us to minimize
the communication cost. In order to reduce the communica-
tion cost, we employed non-tree structured grid based layer
(see Figure 11). It helps us the filter out the higher proba-
bility candidate, eliminate all the unnecessary updates.

Figure 5. System Workflow

4.1 System Initialization

In the initialization stage (Figure 6), one of the users in
the social group generate the random salt and shifted data
and share them to other users within the group. The usage of

Figure 6. System Initialization

the salt is to make the hashed location become unpredictable
to the third party.

4.1.1 Use of Salt

If there is no random salt and system only hashes their loca-
tion directly, it may be suffer from the brute-for attack. On
the contrary, if we combine the location with a randomly
generated salt, the hashed location becomes unpredictable.

4.1.2 Use of Random Shifted Data

Our solution use grid based layer (cell size D2) as a foun-
dation, where D is a proximity distance of the social group.
Every user locates in different grid cells of the layer. After
that we can have proximity detection by checking whether
there are users in the same grid cell. If they are in the same
grid cell, we can sure their distance must be within the range
of D.

Figure 7. Single Grid Layer vs Multi-Grid Layer

However, if we only use one table to check the distance,
we miss too many positive results even they are within a
distance D. In Figure 7a, ”O”, ”X”, ”@” pairs are within
distance D with each other. However only ”@” is allo-
cated in the same cell, other pairs locate near the edge of
the cell. Therefore even their distance between each other
is less than D; they are still treated as unqualified candidate
in proximity monitoring. The solution of this problem is
add more same size grid based layer and shift randomly to
any direction within distance D. The randomly shifted data

4

is only a set of simple random numbers, which range is be-
tween -(cell length) to (cell length). That mean if the grid
layer is in Layer 0, the range of randomly shifted data is
between -D to D. For Layer 1, the range is -3D to 3D, etc.
Figure 7b show that after adding more layers ”O” pair fall
in the gray color grid cell and ”X” pair fall in the black color
grid cell. In order to simply the demonstration, after we add
gray color layer and black color layer we find that ”O” and
”X” are also within distance D from each other. In fact if
we just solely add a few layers is not enough for us to stable
our service quality.

Figure 8. Original Table and Shifted Table

Figure 8. show us how randomly shifted cell can help
us to solve the problem of missing case. As we can see
even there are 2 dots (represent 2 users) in the original table,
which are very close to each other. They have not fallen in
the same cell.After add a shifted table, which shift to the
left up direction. Both users fall in the same cell again and
they will be treated as distance D beside his friend.

P = (0.75)N (1)

No. of Mappings(N) Prob. of missing report(P)
1 75%
2 56.25%
3 42.19%
4 31.64%
5 23.73%

10 5.63%
15 1.34%
20 0.32%

Table 1. Relationship between the probability
of missing report and number of layers

Table 1 shows us the relationship between the probability
of missing report and number of layers. For a user who
require for distance D proximity monitoring, its coverage
area of its D distance will be (2D)2. For one cell size (D)2

only cover 25% of the coverage area. That’s mean there
have 75% chance of missing report. However, the missing
rate can be reduced by adding more randomly shifted layer.
As we can see when there are 20 layers, the rate of missing
is only 0.3% which is only a very small chance.

As a result, we see the usage of the randomly shifted
data, which solve the problem of missing report by using
only one grid cell.

4.2 System Operation

After the standard is shared, the next step is using those
data to achieve our major purpose - secure proximity moni-
toring. For the ease of illustration, we use only one table for
the explanation, which is one of the tables from the bottom
grid layer.

Figure 9. Workflow of System Operation

In Figure 9, we can see there is 5 users A,B,C,D,E. Af-
ter A share the salt and random shifted data (x = 0.5, y =
-0.5) in the initialization stage (Figure 7), other users are
able to use those information to find cell ID and hide their
location under the same standard. As the cell size is (D*D),
if two users fall in the same cell, they must be the positive
candidate in the proximity monitoring. Then, all user find
the cell ID they belong to. The following step users are go-
ing to combine their cell ID and the shared salt and undergo
the hash function (e.g. SHA1). Finally, all users send their
hash value to the server. Then, server checks whether there
is same hash value among users. In this case, server find
user A,B and user D,E are in the same cell. So server an-
nounce user A, B they are nearby each other and hide the
location of other users, because they are outside the bound

5

of proximity monitoring. User D,E will also have the same
arrangement as user A,B.

4.3 System Update (Minimize Communication
Cost)

It is sure that we finish our work by using one layer of
hash values. Nevertheless, we need to check all users hash
value frequently, which consume much more resource than
we actually require.

Figure 10. Sample of D2 Layer

In the Figure 10, we show an example to explain the rea-
son of frequent update, when only one layer has been used.
In this figure, it shows us the distance between user A and B
is 1.1 D. Although they are quite nearby each other, it is im-
possible for them to fall into the same grid cell. Therefore
they are treated as away from each other. In this case, the
problem come if A and B do not update frequently. It is be-
cause when there is no immediate reaction when user A and
B come within distance, that show the service quality of sys-
tem is not good enough. On the other hand, other users also
require updating frequently, even they are far away from
each other. We need some efficient update approach to im-
prove quality of service and reduce communication cost.

There are some solutions [6, 11] suggest to create the
layer based map, so as to reduce the communication by in-
cluding the sparse layer. However, there are some differ-
ences between our solution and existing solution.

In existing solutions they use quad-tree structure fixed
location lay, our solution use non-tree structured randomly-
shifted layers. Attackers are more difficult to find the exact
location of the users. Also, our solution hash the location
into hash value, rather than directly transfer the grid based
location to server.

Figure 11 shows the vertical view of our vertical hash
structure. Our system is setup in a bottom-up manner,
which starts at the bottom layer (cell size D2) and end until
the whole map is covered by a single cell.

Max(L,W) = 3nD
That means the number of layer (n) in the system de-

pends on the proximity distance (D) and the lager one of
length (L) or width (W) of the map.

Figure 11. The Non-Tree Structured Grid
Based Layer

Figure 12. Sample of (3D)2 Layer

We use Figure 10 and 12 as an explanation model of our
work. In Figure 10, the distance between user A and B is
1.1 D, no matter how we shift the size D2 hashed table.
They never fall in the same hashed cell. Therefore, we can
at least ensure they are at least apart from each other more
than distance D. The similar concept can also be used in
Figure 12. , the distance between user A and B is 3.1 D,
no matter how we shift the size D2 hashed table. They will
never fall in the same hashed cell. Therefore, we can at
least ensure they are at least apart from each other more
than distance 3D. The concept of expand layer of Figure
10 and 12 can be expanded. As the cell width and length
expand a constant times per layer, so the size is also expand
9 times per layer. According to speed of expansion, a single
cell in upper layer can cover a large place. That mean player
require longer distance to escape the cell, thus less update
is needed.

4.4 System Update in 2 Users Situation

In order to facilitate explanation, we first illustrate the
system update of 2 users. After that, we will talk about the
system update in practical multiuser situation. Our system
do things in the initialization stage, so as to reduce the com-
munication cost in the later stage. Therefore, in the initial-

6

ization stage server collect all the hashed value from users
and users require to update only if necessary. In the fol-
lowing subsection, we will explain how our system work in
different situation when there is 2 users.

4.4.1 2 Users Nearby Initially

Figure 13. 2 users nearby each other

In this case, user A and B distance are less than D. That’s
mean they are overlap at the Level 0. So if they are required
to do update when they leave any of the mappings in level
0.

Figure 14. Different situation of 2 users in
Time 1

Figure 14 shows us 3 different situation user A and B
will face in later stage. Case (a) is user A and B remain
same mapping as before. We do not need to do anything
because nothing is changed. For the case (b), A and B move
away from each other when there is change in the mappings.
Update is required to be done, as the change of mapping for
both users is only occurring in Level 0. Therefore both user
just need to announce the server, there is change in certain
layer. Then, both users need to update all layers at or below
the certain layer. The solution of case C is similar to case
B. The major difference is only user A requires to send the
update information to the server. As user A quit the previous
mapping while user B is remaining unchange.

4.4.2 2 Users Away Form Each Other Initially

In this case, the distance between user A and B is 7.5 D.
That’s mean they only overlap in the higher level - level 2.
Both users do not require to update their mappings if there
is no change in Level 2. That’s mean even there is change
in level 1 and level 0 for both users, if the mapping in level

Figure 15. 2 users away from each other

Figure 16. Different situation of 2 users in
Time 1

2 is unchanged, no update is needed. So in case (a), both
user A and B do not require to do any update. In case (b),
both users quit their mappings in level 2, but not quit their
mapping in level 3. Therefore we only need to update the
mappings at or below level 2. After both users update their
mappings to server, server find that both users overlap in
a closer level - level 1. Then the server will focus on the
update of level 1 of both users just like what is done in level
2 previously. On the contrary, case (c), both users quit their
mappings in level 2 and no longer overlap in level 2. Server
find their minimum overlap level is level 3. After that server
will focus on the update of level 3, if there is no change in
mapping of level 3, no update is required.

4.5 System Update in Multiuser Situation

All users have undergone the update process since they
start the location monitoring. Multiuser solution is similar
to the 2 users version. They are both share all sets of map-
ping during the system initialization. The major difference
of two solutions is in the 2 users version update depend on
the minimum overlap level (MOL) of 2 users, while mul-
tiuser version focus on a few near neighbor which overlap
in lower level.

Figure 17. User Overlap Matrix

7

In the multiuser solution, we construct a user overlap ma-
trix in the server, in order to keep track with the change in
mappings. Figure 14 show us a user overlap matrix, if the
value in the matrix is 0 that mean that two users have some
hash table overlap at level 0 (cell size = D2), then they must
be their distance must within D. The level higher, the dis-
tance longer. Minimum overlap level (MOL) is the overlap
level of the nearest neighbor. We use MOL as the update
check because the lower level is the more likely to change
and also more important in proximity monitoring.

Figure 18. Users Location from Time 0 to 1

Figure 19. Matrix Change from Time 0 to 1

Figure 18 show us the location of user A,B,C,D,E from
time 0 to time 1 and figure 19 is the overlap matrix of 5
users, which construct in time 0. Each time user may need
to send an update to server, then server use this matrix to
determine whether the user is required to update. Therefore
even in the worst case only 3N communications is required,
where N is the number of users.

Figure 20. Update Process in Every Period

In figure 20, we have a more detail explanation in our
solution and use the users from figure 18 as our sample. All
users require to do step 1, check whether there is change
in or below the MOL. Check the change of one level below

MOL can help us to detect the other users in the MOL come
closer. In our system update process, there are 3 cases with
different communication cost will occur in the process.

Firstly, for the worst case which require 3N communi-
cations occur when overlap with new users in or below the
MOL (step 1,3,4,5), just like the case of user E. Even he
does not exit his mappings in MOL, but user B overlap with
user E in level 0, which is a level lower then the original
MOL. Therefore user E also requires to update.

The second case is the user leaves its mapping in or a
level below the MOL (step 1, 2,5) just like user A,B,C,D.
They exit the mapping of their MOL. Therefore they are all
required to update their new mappings to the server. Un-
der the consideration of cost saving, users only transfer the
changed level mappings rather than update all mappings
blindly.

The third case is the best case which do not require any
communication occur when user do not exit any mappings
in or one level below the MOL and also no new user entry or
old user exit the MOL. Therefore, after (step 1) is finished,
it will directly jump to (step 5) and see whether there is
change in MOL.

The cost of update of step 2 and 4 is depending on num-
ber of levels of mapping change. For example, if there is
change in mapping of level 0,1,2 between the update pe-
riod. Then 3 levels are required to update.

5 EXPERIMENT

Our experiment employ T. Brinkho[17] solution as the
base of sample collection. We use the paper[17] provided
city Oldenburg as our test case. In order to have a better un-
derstand of our system performance, we analyze it in three
aspect number of users, proximity distance (D) and effect
of speed. For the size of social group, we use (10, 20,
40, 80) as our test case. It is a reasonable size of a social
group, while we can also observe the relationship between
the number of users and the cost clearly. For the proximity
distance (D), according to M.Gruteser and D. Grunwald [1]
suggestion, they propose 100m is a suitable segment dis-
tance for Driving Conditions Monitoring. So we use (25m,
50m, 100m, 200m) as our test cases and handle the case of
both walking and driving monitoring. Not only concern on
different need of groups, but also the difference of perfor-
mance in various speed.

The graphs in figure 21 show us, how the performance
of using the multi-layer grid is based layer approach instead
of the single layer approach. For the single layer version,
we require to update frequently, because if one the hashed
value change, we need to do an immediate update, so as to
preserve the data accuracy. Just like the situation we have
mentioned in Section 4.3. It is different from the multi-layer
version, which separate users into sparse level. From the

8

Figure 21. Comparison between Single-Layer
and Multi-Layer Grid Based Approach in Aver-
age Communication Cost of Server in a Sec-
ond

above graph, it shows us the performance is similar if the
proximity distance (D) is small. However, proximity dis-
tance (D) lager, more cost can be save in the multi-layer ap-
proach. Normally, if proximity distance (D) is larger, users
have higher chance to overlap. Thus communication cost
is also higher. However, in our system the relationship be-
tween proximity distance (D) and communication cost is
reversed. For D = 25, we use 7 layers to cover the whole
map, but when D = 200, we only require 5 layers to do this.
Multi-user approach also performs better in more users. So
multi-user approach is more suitable in practical applica-
tion.

In order to have a better understanding of our system per-
formance, we make a comparison between our system and
a native cloaking method.

Figure 22. Cloaking Region of the Native Ap-
proach

Figure 22 show the structure of the native approach.
First, we randomly generate a size (2D)2 rectangle which
contain the user’s current location. Based on this rectan-
gle, we will extend the size of the cloaking region to a
size (4D)2 rectangle, according to the center of the origi-
nal 2D2 rectangle. When the system starts, all users send
their cloaking region to the server. Then, server checks
whether they is overlap in users’ cloaking region. For the
users who are nearby, we will continue ask the user to gen-
erate a new cloaking region everytime of update, until they
are no longer nearby each other. For the users who are not
nearby, server ask the user to update cloaking region, only if
they have exit the original (2D)2 area, otherwise no update

is required.

Figure 23. Comparison in Times of Location
Update

Graphs in Figure 23 show number of times of loca-
tion update required within a minutes for different number
of users. Our system require less update than the native
approach, because of the contribution of the higher level
sparse layer. Users which have high minimum overlap level
are far from other users. Therefore they need less update,
because they require longer time to move out a grid based
cell comparing with the lower level cases.

Figure 24. Comparison between Grid Based
and Native in Average Communication Cost
of Server in a Second

Despite less update is required. The communication cost
of grid-based approach is still higher. It is because native
approach only need to send the center of its cloaking re-
gion, while our system require sets of hash value for se-
cure proximity monitoring. One time communication cost
of native approach is around 1000 Bytes, including the com-
munication overhead, but grid-based approach much more.
Therefore even our system requires much less update, the
cost of our system is still much higher than the native ap-
proach. However, the cost can be reduced by adjusting the
number of layers and numbers of hash values per layer, but
it is clearly a tradeoff between service quality and the load
of communication cost.

The following graph show us the communication cost in
one minute. Communication cost of the native approach
increase when the speed is increasing and grid-based ap-
proach do not have direct relationship between communi-
cation cost and speed. Even the users are moving very fast.
In grid-based approach, they require longer time for users
to leave a large grid cell. On the contrary, for the native ap-

9

Figure 25. Comparison between Our Ap-
proach and Native in Different Speed

proach as the speed of the users increase, they always leave
the cloaking region and overlap with new user. Therefore
the communication cost of native approach will continue to
increase and stop only when it reaches the equilibrium (ev-
ery user required to update every time).

Although our approach requires more communication
cost, it outperforms the native approach in better accuracy.

Figure 26. Comparison between the Report
Accuracy

Our experiment do more than 7 million comparisons in
case of different number of users, speed and proximity dis-
tance (D). We come out the result, which show in Fig-
ure 26. Grid-based approach is more accurate than Native
approach. Grid-based approach never gives wrong signal
when user is not within the proximity distance D and gives
less missing signal when there is user nearby.

Figure 27. Accuracy of Current Result in Later
Period

Figure 27 show us the degradation of accuracy for dif-
ferent approach in different speed by using current result in
later period. In this experiment each period time is set as

1 second. We see that the performance of both approach is
similar and grid based approach perform a bit better. The
fast speed is set at 100km/hr slow speed is set at 12.5km/h.
The result shows us fast speed have lower accuracy, espe-
cially in the easier stage.

6 CONCLUSION

In this paper, we investigate the problem of secure prox-
imity monitoring. We propose a solution, the worst case of
the solution is O(n2). Our solution can completely protect
the users’ location privacy with a reasonable cost.

For the future work, for communication cost we think
there is still some room of improvement. For example
developing some more effective location transformation.
Then communication cost can be reduced.

References

[1] M.Gruteser and D. Grunwald, ”Anonymous usage of
location-based service through spatial and temporal
cloaking,” Proc. Of the International Conference on
Mobile Systems, Applications, and Services (MobiSys’
03), pp163-168, Scan Francisco, USA, 2003

[2] Hidetoshi Kido, Yutaka Yanagisawa, Tetsuji Satoh, An
Anonymous Communication Technique using Dum-
mies for Location-based Services, Pervasive Services,
2005. ICPS ’05. Proceedings. International Conference

[3] T. Xu and Y. Cai. Location Anonymity in Continuous
Location-based Services. In ACM GIS’07, pages 300–
307, November 2007.

[4] Xian Pan, Jianliang Xu, Xiaofeng Meng, Protecting lo-
cation privacy against location-dependent attack in mo-
bile services, Proceeding of the 17th ACM conference
on Information and knowledge management, 2007

[5] A. Khoshgozaran and C. Shahabi. Blind Evaluation of
Nearest Neighbor Queries Using Space Transformation
to Preserve Location Privacy. In Proc. SSTD, 2007.

[6] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The New
Casper: Query Processing for Location Services with-
out Compromising Privacy. In Proc. of VLDB, 2006.

[7] A.C. Yao. Protocols for secure computations. In Pro-
ceedings of the 23nd Annual IEEE Symposium on
Foundations of Computer Science, 1982.

[8] A.C. Yao How to generate and exchange secrets. In
Proceedings 27th IEEE Symposium on Foundations of
Computer Science.

10

[9] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi,
and K.-L. Tan, ”Private queries in location based
services: Anonymizers are not necessary,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Vancouver,
Canada, Jun. 2008, pp. 121-132.

[10] P. Ruppel, G. Treu, A. Kpper, and C. Linnhoff-Popien,
”Anonymous User Tracking for Location-Based Com-
munity Services,” in LoCA, 2006, pp. 116-133.

[11] K. Liu, C. Giannella, and H. Kargupta, An Attackers
View of Distance Preserving Maps for Privacy Preserv-
ing Data Mining, in PKDD, 2006, pp. 297308.

[12] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and
S. Jajodia, Privacy-aware proximity based services, in
MDM, 2009, pp. 3140.

[13] L. Łiknys, J. R. Thomsen, S. Łaltenis, M. L. Yiu, and
O. Andersen, A Location Privacy Aware Friend Loca-
tor, in SSTD, 2009, pp. 405410.

[14] L. Łiknys, J. R. Thomsen, S. Łaltenis, M. L. Yiu, Pri-
vate and Flexible Proximity Detection in Mobile Social
Networks, Proceedings of the 11th International Con-
ference on Mobile Data Management (MDM), Kansas
City, Missouri, May 2010.

[15] Artak Amirbekyan and Vladimir Estivill-Castro.
Privacy-preserving k-nn for small and large data sets.
In Proceedings of the ICDM Workshops, 2007.

[16] Processing Private Queries over Private and Indexed
Data

[17] T. Brinkho. A Framework for Generating
Network-Based Moving Objects. GeoIn- format-
ica, 6(2):153C180, 2002.

11

