
Speeding up Scoring Module of Mass Spectrometry Based Protein Identification

by GPUs

Li You

Abstract

Database searching is a main method for protein

identification in shotgun proteomics, and till now most

research effort is dedicated to improve its effectiveness.

However, the efficiency of database searching is facing a

serious challenge, due to the ever fast increasing of

protein and peptide databases resulting from genome

translations, enzymatic digestions, and post-translational

modifications. On the other hand, as a general-purpose

and high performance parallel hardware, Graphics

Processing Units (GPUs) develop continuously and

provide another promising platform for parallelizing

database searching based protein identification to

increase its efficiency.

In this paper, we propose to systematically research on

speeding up database search engines by GPUs for protein

identification. Considering the scoring module is the most

time-consuming part, we mainly utilize GPUs to speed it

up. We choose two popular scoring method: firstly, SDP

based method, which is chosen by X!Tandem, reaches a

speedup of thirty to one hundred; secondly, KSDP, which

is adopted by pFind, achieves a speedup of five to ten.

1. Introduction

Protein identification is the basis of proteomics, the

main character of which is high-throughput, with tandem

mass spectrometry based shotgun approach as the

technique of choice. Compared with other data analysis

methods, database search engines have been the most

stably and widely utilized, such as Mascot (Perkins et al.,

1999), SEQUEST (Eng et al., 1994), pFind (Fu et al.,

2004; Li et al., 2005; Wang et al., 2007), X !Tandem

(Craig and Beavis, 2004), OMSSA (Geer et al., 2004),

and Phenyx (Colinge et al., 2003). While most of research

effort targets to improve effectiveness by the designing

new scoring and validating algorithms, the efficiency of

the database search engines are facing a serious challenge,

due to the following reasons:

Firstly, the number of entries in protein sequence

database is keeping increasing. Take IPI.Human for

example, from v3.22 to v3.49, the count of the protein has

increased nearly by 1/3 times. Moreover, together with the

evolution of genome sequencing technologies,

proteogenomic research wishes to adopt genome

translated protein sequences to identify more protein. As

an example, the EST database (Human.12.06) will be

translated into 8,163,883 protein sequences, over 100

times larger than the human proteome IPI.Human.v3.49,

which has only 74,017 protein sequences.(Li et al., 2010)

Secondly, increasing importance of considering semi-

or non-specific digestion leads to 10 or 100 times more

digested peptides respectively than specific digestion, as

is shown in Table 1.

Table 1. The scale of peptide sequences under tryptic

digestion

Database Proteins
Peptides

(fully specific)

Peptides

(non-specific)

Yeast 6,717 741,476 120,464,808

IPI-Human 74,017 7,412,821 1,230,715,950

Swiss-Prot 398,181 34,764,218 5,605,491,572

peptide mass = 800 Da6000 Da, peptide length = 4100 amino
acids, non-specifically digested peptide length = 450 amino
acids, max missed cleavage sites = 2.

Table 2. The number of post-translationally modified

peptides

Modification sites Num. modified peptides

0 3,309,085

1 25,197,765

2 133,063,810

3 477,180,661

4 1,361,747,010

5 3,395,725,099

6 7,823,314,004

7 17,606,043,889

8 41,148,061,489

9 99,244,365,518

Note: database = IPI-Human V3.49, fully tryptic digestion,
peptide mass = 800 Da6000 Da, peptide length = 4100 amino
acids, max missed cleavage sites = 2. Ten modifications are
specified: Oxidation (M), Phosphorylation (S, T, Y),
Methylation (K, R), di-Methylation (K, R), tri-Methylation (K),
and Acetylation (K).

Thirdly, post-translational modifications (PTMs)

generate exponentially more modified peptides. Till now,

over 500 types of PTMs exist in Unimod database

(http://www.unimod.org). If we choose ten common

variable PTMs and limit the number of modification sites

in a peptide to no larger than five, the number of tryptic

peptides of the human proteome will be increased over

1000 times, as is shown in Table 2. At the same time, the

generation speed of the mass spectrometer increases

steadily.

One of the direct results from the above four increase

is the large scale number of scoring between peptide and

spectrum, which is the most compute intensive and time

consuming part in the whole flow of protein identification.

Profiling analysis shows that scoring module takes more

than 90% of total identification time in both pFind and

X!Tandem. Thus, speeding up scoring module is a

promising method to increase the efficiency of protein

identification, which could be conducted by parallelizing

the scoring function.

Recently, Graphics Processing Units (GPUs), which

has become a general-purpose and high performance

parallel hardware, develop continuously and provide

another promising platform for parallelizing scoring

function. GPUs are dedicated hardware for manipulating

computer graphics. Due to the large demand for

computing real-time and high-definition 3D graphics, the

GPUs have evolved into highly parallel many-core

processors. The advantages of computing power and

memory bandwidth in GPUs have driven the development

of general-purpose computing on GPUs (GPGPU).

To the best of our knowledge, no research has ever

attempted to parallel database search engine by GPUs,

which could work as a small cluster or a much higher

performance node inside a cluster. Thus, in this paper, we

choose two popular scoring methods: SDP based method,

chosen by X!Tandem; KSDP, adopted by pFind, and

conduct systematic research on parallelizing the scoring

function by using a general-purpose parallel programming

model, namely Compute Unified Device Architecture

(CUDA). Our first contribution is firstly applying GPUs

to speed up the protein identification. Our second

contribution is the observation that the spectrum-peptide

matching distribution is an important factor to be

considered, based on which we design, implementation,

and evaluation of two different strategies. For the

spectrum which does not share matched peptides with

other spectra, we mainly utilize the GPU on-chip registers

and texture to minimize the memory access latency. For

the spectra which share the same set of matched peptides,

we design a novel and highly efficient algorithm that treats

the scoring module as matrix multiplication, and then

makes use of GPU on-chip shared memory together with

on-chip registers. As a result, SDP gets a speedup of

thirty to one hundred; KSDP achieves a speedup of five to

ten.

The rest of this paper is organized as follows. Section

II introduces some existing speedup methods, the GPU

architecture and GPU application in bioinformatics.

Section III presents our design of parallel scoring

algorithm on GPUs. Section IV presents our experimental

results, and Section V concludes the paper and presents

some future work.

2. Background and Related work

We firstly introduce the background knowledge for

scoring method, present the existing speedup method, and

illustrate the basic architecture of GPU.

2.1. Spectrum and Fragment ions

A peptide is a string of amino acid residues joined

together by peptide bonds. In the mass spectrometer,

peptides derived from digested proteins are ionized.

Peptide precursors of a specific mass-charge ratio (m/z)

are selected and further fragmented by collision-induced

dissociation (CID). Product ions are detected. The

measured m/z and intensity of the product ions form

finally the peaks in the tandem mass spectrum (MS/MS

spectrum), as shown in Fig 1. By CID, three kinds of

backbone cleavages on peptide bonds can produce six

series of fragment ions, denoted by N-terminal a, b and c

type fragments and C-terminal x, y and z type fragments,

as shown in Fig.2.

Fig. 1. An example of MS/MS Spectrum

http://www.unimod.org/

Fig. 2. Fragment ions from peptide bonds cleavage by CID

 The scoring method computes the similarity between

theoretical and experimental spectra, which could both be

expressed as N-dimensional vectors, where N is the

number of m/z values used. We use vector c = [c1, c2, ...,

cN] stand for the experimental spectrum and vector t = [t1,

t2, ..., tN] the theoretical one. ci and ti are binary values {0,

1} (or the intensity).

 A very basic scoring method is spectral dot

product (SDP). The SDP-based cosine value of the angle

between spectral vectors was adopted as a similarity

measure (Wan et al., 2002; Tabb et al., 2003). In current

peptide-scoring algorithms, the SDP is often adopted

directly or indirectly and plays an important role. The

vector representation and the dot product were adopted

explicitly in the Sonar. In SEQUEST, the cross-correlation

of two spectra is actually the SDP, and the score Xcorr is

the SDP minus the mean of a series of τ-displaced SDPs

intended to reduce the stochastically high SDP. The shared

peak count is the special case of the SDP where ci and ti

are binary values.

While SDP is conceptually simple and effective in

many cases, it ignores the correlative information among

the dimensions of the spectral vector. One improving

method is using kernel function to map the spectral vector

space non-linearly into a high-dimensional space in which

all the combinations of correlated fragments have their

corresponding dimensions, which is KSDP's idea.

Fig. 3. Correlative matrix and correlative windows

 KSDP is a kernel based SDP scoring method, which

significantly increase the effectiveness of SDP. The

kernel trick is to compute directly the dot product in the

correlative space with a proper kernel without an explicit

mapping from the spectral space to the correlative space.

Considering different kind of fragment ions, all the

fragments are arranged in correlative matrix, as shown in

Fig.4. All predicted fragments are assumed to possess

unique m/z values so that all non-zero dimensions in the

theoretical spectral vector, t, can be extracted and

rearranged into the matrix T=(tpq)m*n, where m is the

number of fragment types and n+1 is the residue number

of peptide precursor. For example, t2,3 corresponds to the

fragment b3 in Fig.4. The experimental spectral vector c

could be organized in the same way.

2.2.Speeding up methods

There are several researches on improving the design

of classical database search engines, for example,
Edwards & Lippert considered the problem of redundant
peptides and peptide-spectrum matching (Edwards and
Lippert, 2002), Tang et al. adopted peptide and b/y ions
indexes (Tang et al., 2005), Dutta & Chen utilized the
nearest neighbor search to improve peptide-spectrum
matching (Dutta and Chen, 2007), and Roos et al. made
use of hardware cache to speed up identification (Roos et
al., 2007).

There are also various researches, based on tag, to
improve the efficiency of protein identification. One of the
most significant method is the peptide sequence tag
(Mann and Wilm, 1994), and followed by GutenTag
(Tabb et al., 2003), MultiTag (Sunyaev et al., 2003),
InsPecT (Tanner et al., 2005), and Spectral Dictionary
(Kim et al., 2008). In fact, extracting peptide tag or tags
from the tandem mass spectrum is a very complicated
process, due to the spectra resolution and accuracy, charge
states, peptides sequence length. Consequently this
method is still not as commonly adopted as traditional
database search engines.

Obviously paralleling database search engines could
achieve a high efficiency. pFind, X!Tandem, Sequest, and
Mascot all have parallel version. In fact, all the above
work could further increase the efficiency by GPUs. For
the single PC based search engine, GPUs could work as a
small cluster. For parallel version, GPUs could sharply
increase the computing power of each node.

2.3. The GPU architecture

We take NVIDIA GTX280 as an example to show the

GPU architecture. GTX 280 has 30 Streaming
Multiprocessors (SMs), and each SM has 8 Scalar
Processors (SPs), resulting a total of 240 processor cores.
The SMs have a Single-Instruction Multiple-Thread
(SIMT) architecture: At any given clock cycle, each SP

executes the same instruction, but operates on different
data. Each SM has four different types of on-chip memory,
namely registers, shared memory, constant cache, and
texture cache, as shown in Fig.1. Constant cache and
texture cache are both read-only memories shared by all
SPs, but with very limited size. Off-chip memories such as
local memory and global memory have relatively long
access latency, usually 400 to 600 clock cycles [10]. The
properties of the different types of have been summarized
in [10, 12]. In general, the scarce shared memory should
be carefully utilized to amortize the global memory
latency cost.

Fig. 4. Hardware architecture of the GPU

In CUDA model, the GPU is regarded as a

coprocessor capable of executing a great number of
threads in parallel. A single source program includes host
codes running on CPU and also kernel codes running on
the GPU. Compute-intensive and data-parallel kernel
codes run on the GPU. The threads are organized into
thread blocks, and each block of threads are executed
concurrently on one SM. Threads in a thread block can
share data through the shared memory and can perform
barrier synchronization. But there is no synchronization
mechanism for different thread blocks besides terminating
the kernel. Another important concept in CUDA is warp,
which is formed by 32 parallel threads and is the
scheduling unit of each SM. When a warp stalls, the SM
can schedule another warp to execute. A warp executes
one instruction at a time, so full efficiency can only be
achieved when all 32 threads in the warp have the same
execution path. There are two consequences: first, if the
threads in a warp have different execution paths due to
conditional branch, the warp will serially execute each
branch which increases the total time of instructions
executed for this warp; second, if the number of threads in
a block is not a multiple of warp size, the remaining
instruction cycles will be wasted. Besides, when accessing
the memory, half-warp executes as a group, which has 16
threads. If the half-warp threads access the coalesced data,

the access operation will perform within one instruction
cycle. Otherwise, the access operation will occupy up to
16 instruction cycles.

3. Design of parallel scoring module

Profiling analysis shows that scoring module takes

more than 90% of total identification time with both pFind

and X!Tandem. Thus, in this paper, we mainly parallel

scoring module by GPUs, and choose two widely used

scoring methods from two popular search engines.

3.1. Spectral dot product in X!Tandem
The tandem mass SDP between the experimental and

theoretical spectra is defined as

 SDP = <c, t> =
1

N

i
i ic t

 (1)

 The algorithm of SDP is simple, as shown in

Algorithm 1. Line 1~3, for each spectrum, find all the

peptides whose precursor mass are in the spectrum’s

precursor mass window, assuming there are m peptides;

line 4~5 compute the SDP score between the experimental

and theoretical spectrum. The computation complexity is

O(|C|lg(|T|)Nm). Adopting GPUs, we can assign each

peptide to one thread, scoring with its matched peptide, as

shown is Algorithm 2. Obviously, the computation

complexity decreases to O(lg(|T|)Nm).

Algorithm 1: CPU-based SDP

// C: the set of experimental spectrum

// c: experimental spectrum

// T: the set of experimental spectrum

// t: experimental spectrum

1. for each c in C

2. for each t in T

3. if c.mass > t.mass-tol && c.mass < t.mass+tol

4. for i from 1 to N

5. SDP_Score += citi

6. end of for

7. end of if

8. end of for

9. end of for

Algorithm 2: GPU-based SDP

// Ci : the i_th spectrum in C

1. i = threadId;

2. for each t in T

3. if Ci.mass > t.mass-tol && Ci.mass < t.mass+tol

4. for j from 0 to N

5. SDP_Score += Cijti

6. end of for

7. end of if

8. end of for

 Another widely used scoring method XCorr could also

adopt the above parallel algorithm. XCorr is an important

scoring part in SEQUEST, which a widely used protein

identification software, but with a notorious searching

speed. The process of XCorr is as equation 2 and 3.

Obviously, calculating XCorr is like calculating SDP for

150 times.

 ()
1

N
i i

i
R ct

 (2)

(0) ()

75 75

1

149
k

k

XCorr R R

 (3)

3.2. KSDP in pFind

The process of KSDP is show as Equation 4 and

Algorithm 5. Line 1~3 find the corresponding peptides for

each spectrum; line 4~13 calculate the kernel function by

traversing the whole correlative matrix. The computation

complexity is O(|C|lg(|T|)mn). Using GPUs, we can also

assign each spectrum to one thread, scoring with all its

corresponding peptides, as shown in Algorithm 6. And the

computation complexity is O(lg(|T|)mn).

2

1

1/
| |

1 1

(,) [(())]
j lm n

d d
pep k j ik ik

i j k j l

K c t w c t

 (4)

Algorithm 5: CPU-based KSDP

//l: the size of correlative window

//l1: (1) / 2l
, l2: (1) / 2l

//win: temp kernel value

//d: a parameter controls the degree of correlation

1. for each c in C

2. for each t in T

3. if c.mass > t.mass-tol && c.mass < t.mass+tol

4. K_ct = 0;

5. for (i=1; i≤m; ++i)

6. wini,1 = 0;

7. for(j=1;j≤l2; ++j)

8. wini,1 += (cij, tij)
1/d;

9. end of for

10. K_ct += wini,1
d;

11. for (j=2; j≤n; ++j)

12. wini,j=wini,j-1+(ci,j+l2,ti,j+l2)
1/d-(ci, j-l1-1, ti, j-l1-

1)
1/d;

13. K_ct += wini,j
d;

14. end of for

15. end of for

16. end of if

17. end of for

18. end of for

Algorithm 6: GPU-based KSDP

//

1. i = threadID;

2. for each t in T

3. if Ci.mass > t.mass-tol && Ci.mass < t.mass+tol

4. K_ct = 0;

5. for (i=1; i≤m; ++i)

6. wini,1 = 0;

7. for(j=1;j≤l2; ++j)

8. wini,1 += (cij, tij)
1/d;

9. end of for

10. K_ct += wini,1
d;

11. for (j=2; j≤n; ++j)

12. wini,j=wini,j-1+(ci,j+l2,ti,j+l2)
1/d-(ci, j-l1-1, ti, j-l1-

1)
1/d;

13. K_ct += wini,j
d;

14. end of for

15. end of for

16. end of if

17. end of for

18. end of for

4. Experiment

We have implemented both CPU- and GPU based

scoring algorithms using CUDA version 2.3. Our

experiments were conducted on a PC with an NVIDIA

GTX280 GPU and an Intel(R) Core(TM) i5 CPU. GTX

280 has 30 SIMD multi-processors, and each one contains

eight processors and performs at 1.29 GHz. The memory

of the GPU is 1GB with the peak bandwidth of 141.7

GB/sec. The CPU has four cores running at 2.67 GHz.

The main memory is 8 GB with the peak bandwidth of 5.6

GB/sec. We calculate the time of the application after the

file I/O, in order to show the speedup effect more clearly.

We compare the speed of CPU- and GPU based

scoring algorithms, varying the number of the spectrum

and peptide. To show the number of scoring and the time

consumption more clearly, we let each spectrum score

with a specific number of peptide.

As shown in Table 3, the speedup of SDP by GPUs is

very favorable, from thirty to more than one hundred,

mainly resulting from the distribution of each spectrum to

each thread. Besides, owing to the simple calculation

process of SDP, most of the work could be conducted on

on-chip register without reading latency. We can also

observe that the increase of the number of spectrum does

not increase the time consumption, which means this

simple parallel algorithm works well.

As is shown in Table 4, KSDP achieves a speedup of

two to eight, which is not very favorable right now. The

speedup mainly comes from the simple multi-thread

without any optimization concerning memory usage.

Table 3. The speedup effect of SDP, in second.

Pep Spec On CPU On GPU

1024 1024 3.74 0.11

2048 7.49 0.14

4096 14.97 0.16

2048 1024 7.51 0.14

2048 15.02 0.18

4096 30.01 0.22

 4096 1024 15.07 0.18

2048 30.26 0.23

4096 60.28 0.31

Table 4. The speedup effect of KSDP, in second.

Pep Spec On CPU On GPU

1024 1024 1.85 0.78

2048 3.74 0.81

4096 7.58 0.97

2048 1024 3.86 1.52

2048 7.78 1.57

4096 15.56 1.96

 4096 1024 8.01 3.01

2048 16.02 3.09

4096 32.01 3.98

5. Future work

As talked in section 4, KSDP has not got a

very high speed-up effect, since we only use

global memory. In the following work, we

would:

Firstly, we would put the spectrum on texture,

since each spectrum would score with multi

peptides, so using texture with cache mechanism

would decrease the reading latency.

Secondly, when the set of peptides grows,

letting one thread deals with one spectrum is not

surely a good idea. We need to make a new

strategy: letting one thread dealing with one

spectrum and a limited set of peptides, when the

peptides grow, we will use multi thread to deal

with one spectrum.

Thirdly, we find out that some spectrum with

near precursor mass would score with the same

set of peptides, which makes it possible to adopt

shared memory to further optimize the algorithm.

References

[1] Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S.,

Probability-based protein identification by searching

sequence databases using mass spectrometry data.

Electrophoresis 1999, 20, (18), 3551-67.

[2] Eng, J., An approach to correlate tandem mass spectral

data of peptides with amino acid sequences in a protein

database. Journal of the American Society for Mass

Spectrometry 1994, 5, (11), 976-989.

[3] Fu, Y.; Yang, Q.; Sun, R.; Li, D.; Zeng, R.; Ling, C. X.;

Gao, W., Exploiting the kernel trick to correlate fragment

ions for peptide identification via tandem mass

spectrometry. Bioinformatics 2004, 20, (12), 1948-54.

[4] Gronert, S.; Li, K. H.; Horiuchi, M., Manipulating the

fragmentation patterns of phosphopeptides via gas-phase

boron derivatization: determining phosphorylation sites in

peptides with multiple serines. J Am Soc Mass Spectrom

2005, 16, (12), 1905-14.

[5] Gao, Y.; Wang, Y., A method to determine the ionization

efficiency change of peptides caused by phosphorylation. J

Am Soc Mass Spectrom 2007, 18, (11), 1973-6.

[6] Craig, R.; Beavis, R. C., TANDEM: matching proteins

with tandem mass spectra. Bioinformatics 2004, 20, (9),

1466-7.

[7] Geer, L. Y.; Markey, S. P.; Kowalak, J. A.; Wagner, L.;

Xu, M.; Maynard, D. M.; Yang, X.; Shi, W.; Bryant, S. H.,

Open mass spectrometry search algorithm. J Proteome Res

2004, 3, (5), 958-64.

[8] Colinge, J.; Masselot, A.; Giron, M.; Dessingy, T.;

Magnin, J., OLAV: towards high-throughput tandem mass

spectrometry data identification. Proteomics 2003, 3, (8),

1454-63.

[9] Mann, M.; Wilm, M., Error-tolerant identification of

peptides in sequence databases by peptide sequence tags.

Anal Chem 1994, 66, (24), 4390-9.

[10] Tabb, D. L.; Saraf, A.; Yates, J. R., 3rd, GutenTag: high-

throughput sequence tagging via an empirically derived

fragmentation model. Anal Chem 2003, 75, (23), 6415-21.

[11] Sunyaev, S.; Liska, A. J.; Golod, A.; Shevchenko, A.,

MultiTag: multiple error-tolerant sequence tag search for

the sequence-similarity identification of proteins by mass

spectrometry. Anal Chem 2003, 75, (6), 1307-15.

[12] Tanner, S.; Shu, H.; Frank, A.; Wang, L. C.; Zandi, E.;

Mumby, M.; Pevzner, P. A.; Bafna, V., InsPecT:

identification of posttranslationally modified peptides

from tandem mass spectra. Anal Chem 2005, 77, (14),

4626-39.

[13] Datta, R.; Bern, M., Spectrum fusion: using multiple mass

spectra for de novo Peptide sequencing. J Comput Biol

2009, 16, (8), 1169-82.

[14] Kim, S.; Gupta, N.; Bandeira, N.; Pevzner, P. A., Spectral

dictionaries: Integrating de novo peptide sequencing with

database search of tandem mass spectra. Mol Cell

Proteomics 2008.

[15] Bafna, V.; Edwards, N. In On de novo interpretation of

tandem mass spectra for peptide identification, RECOMB

'03: Proceedings of the seventh annual international

conference on Research in computational molecular

biology, 2003; ACM Press: 2003; pp 9-18.

[16] Shilov, I. V.; Seymour, S. L.; Patel, A. A.; Loboda, A.;

Tang, W. H.; Keating, S. P.; Hunter, C. L.; Nuwaysir, L.

M.; Schaeffer, D. A., The Paragon Algorithm, a next

generation search engine that uses sequence temperature

values and feature probabilities to identify peptides from

tandem mass spectra. Mol Cell Proteomics 2007, 6, (9),

1638-55.

[17] Yen, C. Y.; Russell, S.; Mendoza, A. M.; Meyer-Arendt,

K.; Sun, S.; Cios, K. J.; Ahn, N. G.; Resing, K. A.,

Improving sensitivity in shotgun proteomics using a

peptide-centric database with reduced complexity:

protease cleavage and SCX elution rules from data mining

of MS/MS spectra. Anal Chem 2006, 78, (4), 1071-84.

[18] Dutta, D.; Chen, T., Speeding up tandem mass

spectrometry database search: metric embeddings and fast

near neighbor search. Bioinformatics 2007, 23, (5), 612-8.

[19] Roos, F. F.; Jacob, R.; Grossmann, J.; Fischer, B.;

Buhmann, J. M.; Gruissem, W.; Baginsky, S.; Widmayer,

P., PepSplice: cache-efficient search algorithms for

comprehensive identification of tandem mass spectra.

Bioinformatics 2007, 23, (22), 3016-23.

[20] Park, C. Y.; Klammer, A. A.; Kall, L.; MacCoss, M. J.;

Noble, W. S., Rapid and accurate peptide identification

from tandem mass spectra. J Proteome Res 2008, 7, (7),

3022-7.

