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Abstract 
 

Database searching is a main method for protein 

identification in shotgun proteomics, and till now most 

research effort is dedicated to improve its effectiveness. 

However, the efficiency of database searching is facing a 

serious challenge, due to the ever fast increasing of 

protein and peptide databases resulting from genome 

translations, enzymatic digestions, and post-translational 

modifications. On the other hand, as a general-purpose 

and high performance parallel hardware, Graphics 

Processing Units (GPUs) develop continuously and 

provide another promising platform for parallelizing 

database searching based protein identification to 

increase its efficiency. 

In this paper, we propose to systematically research on 

speeding up database search engines by GPUs for protein 

identification. Considering the scoring module is the most 

time-consuming part, we mainly utilize GPUs to speed it 

up. We choose two popular scoring method: firstly, SDP 

based method, which is chosen by X!Tandem, reaches a 

speedup of thirty to one hundred; secondly, KSDP, which 

is adopted by pFind, achieves a speedup of five to ten. 

 

1. Introduction 
 

Protein identification is the basis of proteomics, the 

main character of which is high-throughput, with tandem 

mass spectrometry based shotgun approach as the 

technique of choice. Compared with other data analysis 

methods, database search engines have been the most 

stably and widely utilized, such as  Mascot (Perkins et al., 

1999), SEQUEST (Eng et al., 1994), pFind (Fu et al., 

2004; Li et al., 2005; Wang et al., 2007), X !Tandem 

(Craig and Beavis, 2004), OMSSA (Geer et al., 2004), 

and Phenyx (Colinge et al., 2003). While most of research 

effort targets to improve effectiveness by the designing 

new scoring and validating algorithms, the efficiency of 

the database search engines are facing a serious challenge, 

due to the following reasons:  

Firstly, the number of entries in protein sequence 

database is keeping increasing. Take IPI.Human for 

example, from v3.22 to v3.49, the count of the protein has 

increased nearly by 1/3 times. Moreover, together with the 

evolution of genome sequencing technologies, 

proteogenomic research wishes to adopt genome 

translated protein sequences to identify more protein. As 

an example, the EST database (Human.12.06) will be 

translated into 8,163,883 protein sequences, over 100 

times larger than the human proteome IPI.Human.v3.49, 

which has only 74,017 protein sequences.(Li et al., 2010)  

Secondly, increasing importance of considering semi- 

or non-specific digestion leads to 10 or 100 times more 

digested peptides respectively than specific digestion, as 

is shown in Table 1.  

 

Table 1. The scale of peptide sequences under tryptic 

digestion 

 

Database Proteins 
Peptides  

(fully specific) 

Peptides  

(non-specific) 

Yeast 6,717 741,476 120,464,808 

IPI-Human 74,017 7,412,821 1,230,715,950 

Swiss-Prot 398,181 34,764,218 5,605,491,572 

peptide mass = 800 Da6000 Da, peptide length = 4100 amino 
acids, non-specifically digested peptide length = 450 amino 
acids, max missed cleavage sites = 2.  

Table 2. The number of post-translationally modified 

peptides 

 
Modification sites Num. modified peptides 

0 3,309,085 

1 25,197,765 

2 133,063,810 

3 477,180,661 

4 1,361,747,010 

5 3,395,725,099 

6 7,823,314,004 

7 17,606,043,889 

8 41,148,061,489 

9 99,244,365,518 

Note: database = IPI-Human V3.49, fully tryptic digestion, 
peptide mass = 800 Da6000 Da, peptide length = 4100 amino 
acids, max missed cleavage sites = 2. Ten modifications are 
specified: Oxidation (M), Phosphorylation (S, T, Y), 
Methylation (K, R), di-Methylation (K, R), tri-Methylation (K), 
and Acetylation (K).  



Thirdly, post-translational modifications (PTMs) 

generate exponentially more modified peptides. Till now, 

over 500 types of PTMs exist in Unimod database 

(http://www.unimod.org). If we choose ten common 

variable PTMs and limit the number of modification sites 

in a peptide to no larger than five, the number of tryptic 

peptides of the human proteome will be increased over 

1000 times, as is shown in Table 2. At the same time, the 

generation speed of the mass spectrometer increases 

steadily.  

One of the direct results from the above four increase 

is the large scale number of scoring between peptide and 

spectrum, which is the most compute intensive and time 

consuming part in the whole flow of protein identification. 

Profiling analysis shows that scoring module takes more 

than 90% of total identification time in both pFind and 

X!Tandem. Thus, speeding up scoring module is a 

promising method to increase the efficiency of protein 

identification, which could be conducted by parallelizing 

the scoring function.  

Recently, Graphics Processing Units (GPUs), which 

has become a general-purpose and high performance 

parallel hardware, develop continuously and provide 

another promising platform for parallelizing scoring 

function. GPUs are dedicated hardware for manipulating 

computer graphics. Due to the large demand for 

computing real-time and high-definition 3D graphics, the 

GPUs have evolved into highly parallel many-core 

processors. The advantages of computing power and 

memory bandwidth in GPUs have driven the development 

of general-purpose computing on GPUs (GPGPU).  

To the best of our knowledge, no research has ever 

attempted to parallel database search engine by GPUs, 

which could work as a small cluster or a much higher 

performance node inside a cluster. Thus, in this paper, we 

choose two popular scoring methods: SDP based method, 

chosen by X!Tandem; KSDP, adopted by pFind, and 

conduct systematic research on parallelizing the scoring 

function by using a general-purpose parallel programming 

model, namely Compute Unified Device Architecture 

(CUDA). Our first contribution is firstly applying GPUs 

to speed up the protein identification. Our second 

contribution is the observation that the spectrum-peptide 

matching distribution is an important factor to be 

considered, based on which we design, implementation, 

and evaluation of two different strategies. For the 

spectrum which does not share matched peptides with 

other spectra, we mainly utilize the GPU on-chip registers 

and texture to minimize the memory access latency. For 

the spectra which share the same set of matched peptides, 

we design a novel and highly efficient algorithm that treats 

the scoring module as matrix multiplication, and then 

makes use of GPU on-chip shared memory together with 

on-chip registers.  As a result, SDP gets a speedup of 

thirty to one hundred; KSDP achieves a speedup of five to 

ten. 

The rest of this paper is organized as follows. Section 

II introduces some existing speedup methods, the GPU 

architecture and GPU application in bioinformatics. 

Section III presents our design of parallel scoring 

algorithm on GPUs. Section IV presents our experimental 

results, and Section V concludes the paper and presents 

some future work. 

 

2. Background and Related work 

 

We firstly introduce the background knowledge for 

scoring method, present the existing speedup method, and 

illustrate the basic architecture of GPU. 

 

2.1. Spectrum and Fragment ions 

 
A peptide is a string of amino acid residues joined 

together by peptide bonds. In the mass spectrometer, 

peptides derived from digested proteins are ionized. 

Peptide precursors of a specific mass-charge ratio (m/z) 

are selected and further fragmented by collision-induced 

dissociation (CID). Product ions are detected. The 

measured m/z and intensity of the product ions form 

finally the peaks in the tandem mass spectrum (MS/MS 

spectrum), as shown in Fig 1. By CID, three kinds of 

backbone cleavages on peptide bonds can produce six 

series of fragment ions, denoted by N-terminal a, b and c 

type fragments and C-terminal x, y and z type fragments, 

as shown in Fig.2. 

 

Fig. 1. An example of MS/MS Spectrum 

http://www.unimod.org/


 

Fig. 2. Fragment ions from peptide bonds cleavage by CID 

    The scoring method computes the similarity between 

theoretical and experimental spectra, which could both be 

expressed as N-dimensional vectors, where N is the 

number of m/z values used. We use vector c = [c1, c2, ..., 

cN]  stand for the experimental spectrum and vector t = [t1, 

t2, ..., tN] the theoretical one. ci and ti are binary values {0, 

1} (or the intensity). 

    A very basic scoring method is spectral dot 

product (SDP). The SDP-based cosine value of the angle 

between spectral vectors was adopted as a similarity 

measure (Wan et al., 2002; Tabb et al., 2003). In current 

peptide-scoring algorithms, the SDP is often adopted 

directly or indirectly and plays an important role. The 

vector representation and the dot product were adopted 

explicitly in the Sonar. In SEQUEST, the cross-correlation 

of two spectra is actually the SDP, and the score Xcorr is 

the SDP minus the mean of a series of τ-displaced SDPs 

intended to reduce the stochastically high SDP. The shared 

peak count is the special case of the SDP where ci and ti 

are binary values. 

While SDP is conceptually simple and effective in 

many cases, it ignores the correlative information among 

the dimensions of the spectral vector. One improving 

method is using kernel function to map the spectral vector 

space non-linearly into a high-dimensional space in which 

all the combinations of correlated fragments have their 

corresponding dimensions, which is KSDP's idea. 

 

Fig. 3. Correlative matrix and correlative windows 

  KSDP is a kernel based SDP scoring method, which 

significantly increase the effectiveness of SDP.  The 

kernel trick is to compute directly the dot product in the 

correlative space with a proper kernel without an explicit 

mapping from the spectral space to the correlative space. 

Considering different kind of fragment ions, all the 

fragments are arranged in correlative matrix, as shown in 

Fig.4. All predicted fragments are assumed to possess 

unique m/z values so that all non-zero dimensions in the 

theoretical spectral vector, t, can be extracted and 

rearranged into the matrix T=(tpq)m*n, where m is the 

number of fragment types and n+1 is the residue number 

of peptide precursor. For example, t2,3 corresponds to the 

fragment b3 in Fig.4. The experimental spectral vector c 

could be organized in the same way. 

 

2.2.Speeding up methods 

 
There are several researches on improving the design 

of classical database search engines, for example, 
Edwards & Lippert considered the problem of redundant 
peptides and peptide-spectrum matching (Edwards and 
Lippert, 2002), Tang et al. adopted peptide and b/y ions 
indexes (Tang et al., 2005), Dutta & Chen utilized the 
nearest neighbor search to improve peptide-spectrum 
matching (Dutta and Chen, 2007), and Roos et al. made 
use of hardware cache to speed up identification (Roos et 
al., 2007).  

There are also various researches, based on tag, to 
improve the efficiency of protein identification. One of the 
most significant method is the peptide sequence tag 
(Mann and Wilm, 1994), and followed by GutenTag 
(Tabb et al., 2003), MultiTag (Sunyaev et al., 2003), 
InsPecT (Tanner et al., 2005), and Spectral Dictionary 
(Kim et al., 2008). In fact, extracting peptide tag or tags 
from the tandem mass spectrum is a very complicated 
process, due to the spectra resolution and accuracy, charge 
states, peptides sequence length. Consequently this 
method is still not as commonly adopted as traditional 
database search engines. 

Obviously paralleling database search engines could 
achieve a high efficiency. pFind,  X!Tandem, Sequest, and 
Mascot all have parallel version. In fact, all the above 
work could further increase the efficiency by GPUs. For 
the single PC based search engine, GPUs could work as a 
small cluster. For parallel version, GPUs could sharply 
increase the computing power of each node. 

 

2.3. The GPU architecture 

 
We take NVIDIA GTX280 as an example to show the 

GPU architecture. GTX 280 has 30 Streaming 
Multiprocessors (SMs), and each SM has 8 Scalar 
Processors (SPs), resulting a total of 240 processor cores. 
The SMs have a Single-Instruction Multiple-Thread 
(SIMT) architecture: At any given clock cycle, each SP 



executes the same instruction, but operates on different 
data. Each SM has four different types of on-chip memory, 
namely registers, shared memory, constant cache, and 
texture cache, as shown in Fig.1. Constant cache and 
texture cache are both read-only memories shared by all 
SPs, but with very limited size. Off-chip memories such as 
local memory and global memory have relatively long 
access latency, usually 400 to 600 clock cycles [10]. The 
properties of the different types of have been summarized 
in [10, 12]. In general, the scarce shared memory should 
be carefully utilized to amortize the global memory 
latency cost. 

 

 
Fig. 4. Hardware architecture of the GPU 

 
In CUDA model, the GPU is regarded as a 

coprocessor capable of executing a great number of 
threads in parallel. A single source program includes host 
codes running on CPU and also kernel codes running on 
the GPU. Compute-intensive and data-parallel kernel 
codes run on the GPU. The threads are organized into 
thread blocks, and each block of threads are executed 
concurrently on one SM. Threads in a thread block can 
share data through the shared memory and can perform 
barrier synchronization. But there is no synchronization 
mechanism for different thread blocks besides terminating 
the kernel. Another important concept in CUDA is warp, 
which is formed by 32 parallel threads and is the 
scheduling unit of each SM. When a warp stalls, the SM 
can schedule another warp to execute. A warp executes 
one instruction at a time, so full efficiency can only be 
achieved when all 32 threads in the warp have the same 
execution path. There are two consequences: first, if the 
threads in a warp have different execution paths due to 
conditional branch, the warp will serially execute each 
branch which increases the total time of instructions 
executed for this warp; second, if the number of threads in 
a block is not a multiple of warp size, the remaining 
instruction cycles will be wasted. Besides, when accessing 
the memory, half-warp executes as a group, which has 16 
threads. If the half-warp threads access the coalesced data, 

the access operation will perform within one instruction 
cycle. Otherwise, the access operation will occupy up to 
16 instruction cycles. 

 

3. Design of parallel scoring module 

 

Profiling analysis shows that scoring module takes 

more than 90% of total identification time with both pFind 

and X!Tandem. Thus, in this paper, we mainly parallel 

scoring module by GPUs, and choose two widely used 

scoring methods from two popular search engines. 

3.1. Spectral dot product in X!Tandem  
The tandem mass SDP between the experimental and 

theoretical spectra is defined as  

            SDP = <c, t> = 
1

N

i
i ic t

              (1) 

    The algorithm of SDP is simple, as shown in 

Algorithm 1. Line 1~3, for each spectrum, find all the 

peptides whose precursor mass are in the spectrum’s 

precursor mass window, assuming there are m peptides; 

line 4~5 compute the SDP score between the experimental 

and theoretical spectrum. The computation complexity is 

O(|C|lg(|T|)Nm). Adopting GPUs, we can assign each 

peptide to one thread, scoring with its matched peptide, as 

shown is Algorithm 2. Obviously, the computation 

complexity decreases to O(lg(|T|)Nm).  

Algorithm 1: CPU-based SDP 

// C: the set of experimental spectrum 

// c:  experimental spectrum 

// T: the set of experimental spectrum 

// t: experimental spectrum 

1. for each c in C 

2.      for each t in T  

3.         if c.mass > t.mass-tol && c.mass < t.mass+tol 

4.             for i from 1 to N 

5.                 SDP_Score += citi 

6.          end of for 

7.      end of if 

8.   end of for 

9. end of for 

 

Algorithm 2: GPU-based SDP 

// Ci : the i_th spectrum in C 

1. i = threadId; 

2.      for each t in T  

3.         if Ci.mass > t.mass-tol && Ci.mass < t.mass+tol 

4.             for j from 0 to N 

5.                 SDP_Score += Cijti 

6.          end of for 

7.      end of if 

8.   end of for 

     

    Another widely used scoring method XCorr could also 



adopt the above parallel algorithm. XCorr is an important 

scoring part in SEQUEST, which a widely used protein 

identification software, but with a notorious searching 

speed. The process of XCorr is as equation 2 and 3. 

Obviously, calculating XCorr is like calculating SDP for 

150 times. 

                 ( )
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             (2) 
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3.2. KSDP in pFind 

 
The process of KSDP is show as Equation 4 and 

Algorithm 5. Line 1~3 find the corresponding peptides for 

each spectrum; line 4~13 calculate the kernel function by 

traversing the whole correlative matrix. The computation 

complexity is O(|C|lg(|T|)mn). Using GPUs, we can also 

assign each spectrum to one thread, scoring with all its 

corresponding peptides, as shown in Algorithm 6. And the 

computation complexity is O(lg(|T|)mn). 
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Algorithm 5: CPU-based KSDP 

//l: the size of correlative window 

//l1: ( 1) / 2l   
, l2: ( 1) / 2l     

//win: temp kernel value 

//d: a parameter controls the degree of correlation 

1. for each c in C 

2.      for each t in T  

3.         if c.mass > t.mass-tol && c.mass < t.mass+tol 

4.             K_ct  = 0; 

5.             for (i=1; i≤m; ++i) 

6.                 wini,1 = 0; 

7.                 for(j=1;j≤l2; ++j) 

8.                     wini,1 += (cij, tij)
1/d; 

9.                 end of for 

10.                 K_ct  += wini,1
d; 

11.                 for (j=2; j≤n; ++j) 

12.                   wini,j=wini,j-1+(ci,j+l2,ti,j+l2)
1/d-(ci, j-l1-1, ti, j-l1-

1)
1/d; 

13.                   K_ct  += wini,j
d; 

14.                 end of for 

15.             end of for 

16.          end of if 

17.       end of for 

18. end of for 

 

 

 

Algorithm 6: GPU-based KSDP 

//  

1. i = threadID; 

2.      for each t in T  

3.         if Ci.mass > t.mass-tol && Ci.mass < t.mass+tol 

4.             K_ct  = 0; 

5.             for (i=1; i≤m; ++i) 

6.                 wini,1 = 0; 

7.                 for(j=1;j≤l2; ++j) 

8.                     wini,1 += (cij, tij)
1/d; 

9.                 end of for 

10.                 K_ct  += wini,1
d; 

11.                 for (j=2; j≤n; ++j) 

12.                   wini,j=wini,j-1+(ci,j+l2,ti,j+l2)
1/d-(ci, j-l1-1, ti, j-l1-

1)
1/d; 

13.                   K_ct  += wini,j
d; 

14.                 end of for 

15.             end of for 

16.          end of if 

17.       end of for 

18. end of for 

 

4. Experiment 
 

We have implemented both CPU- and GPU based 

scoring algorithms using CUDA version 2.3. Our 

experiments were conducted on a PC with an NVIDIA 

GTX280 GPU and an Intel(R) Core(TM) i5 CPU. GTX 

280 has 30 SIMD multi-processors, and each one contains 

eight processors and performs at 1.29 GHz. The memory 

of the GPU is 1GB with the peak bandwidth of 141.7 

GB/sec. The CPU has four cores running at 2.67 GHz. 

The main memory is 8 GB with the peak bandwidth of 5.6 

GB/sec. We calculate the time of the application after the 

file I/O, in order to show the speedup effect more clearly. 

We compare the speed of CPU- and GPU based 

scoring algorithms, varying the number of the spectrum 

and peptide. To show the number of scoring and the time 

consumption more clearly, we let each spectrum score 

with a specific number of peptide. 

As shown in Table 3, the speedup of SDP by GPUs is 

very favorable,  from thirty to more than one hundred, 

mainly resulting from the distribution of each spectrum to 

each thread. Besides, owing to the simple calculation 

process of SDP, most of the work could be conducted on 

on-chip register without reading latency. We can also 

observe that the increase of the number of spectrum does 

not increase the time consumption, which means this 

simple parallel algorithm works well. 

As is shown in Table 4, KSDP achieves a speedup of 

two to eight, which is not very favorable right now. The 

speedup mainly comes from the simple multi-thread 

without any optimization concerning memory usage. 



Table 3. The speedup effect of SDP, in second. 

Pep Spec On CPU On GPU 

1024 1024 3.74 0.11 

2048 7.49 0.14 

4096 14.97 0.16 

2048 1024 7.51 0.14 

2048 15.02 0.18 

4096 30.01 0.22 

 4096 1024 15.07 0.18 

2048 30.26 0.23 

4096 60.28 0.31 

Table 4. The speedup effect of KSDP, in second. 

Pep Spec On CPU On GPU 

1024 1024 1.85 0.78 

2048 3.74 0.81 

4096 7.58 0.97 

2048 1024 3.86 1.52 

2048 7.78 1.57 

4096 15.56 1.96 

 4096 1024 8.01 3.01 

2048 16.02 3.09 

4096 32.01 3.98 

 

5.  Future work 

 

As talked in section 4, KSDP has not got a 

very high speed-up effect, since we only use 

global memory. In the following work, we 

would: 

Firstly, we would put the spectrum on texture, 

since each spectrum would score with multi 

peptides, so using texture with cache mechanism 

would decrease the reading latency. 

Secondly, when the set of peptides grows, 

letting one thread deals with one spectrum is not 

surely a good idea. We need to make a new 

strategy: letting one thread dealing with one 

spectrum and a limited set of peptides, when the 

peptides grow, we will use multi thread to deal 

with one spectrum. 

Thirdly, we find out that some spectrum with 

near precursor mass would score with the same 

set of peptides, which makes it possible to adopt 

shared memory to further optimize the algorithm. 
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