
Semantic Indexing for Music Search with Adaptive Recommendation

DENG Jie

Abstract

Due to the rapidly increasing availability of digital

music, advanced semantic music search and music

recommendation are becoming important issues. Thus

how to index music for semantic search and how to make

recommendations in intrinsic of musical art are

challenging problems currently. In this context, this paper

used a semantic indexing method that is capable of

flexibly retrieval music in semantic level. When the

semantic and dynamic index has been established,

updating, increasing and decreasing index scores are

necessary to build a reinforcement index to gain

accurately search results. Moreover, the paper also

proposed useful and flexible music recommendation

approaches, for example song-to-song matching and

multi-song matching methods. In order to optimize the

order of search result, genetic algorithm also used to re-

ranking those near hidden music in the top. The proposed

method will also support users with diverse needs when

searching for music. The observations indicate that the

present approach is able to get better performance.

Keywords: semantic index, genetic algorithm, ranking,

recommendation, music search

1. Introduction

As the digital music becomes more and more huge and

ubiquitous, music search becomes the vital important tool

when people use music services in the web. The first

generation search engines make great contribution to

finding textual information on the web. Yahoo!Music

represent the first generation search engine attempts to

support audio search, which adopts text-based approach

and the service is limited [6, 7]. Thus, non-textual

multimedia documents such as music audio bring new

challenges [3] to search engines – how to incorporate

search by the musical content, which will achieve better

music search result. Therefore, music search has

significant commercial and research promise in nowadays.

Many groups have already made a great effort on this

area, for example, Last.fm is a popular music search

engine also with a music recommender system. Pandora

is an automated music recommendation service and

custodian of the Music Genome Project which captures

the essence of music at the fundamental level. Thus

intelligent music search and recommendations will have

becoming more and more popular.

 According to the research, there are three key issues in

audio-based music search: how to index the content of

music objects, how to present the user with intuitive

methods of querying music objects, and which music

objects to present to the user and in which order. This

paper mainly addresses the first and the third key issues

and proposes a novel approach for semantic index of

music data objects and improved method for music data

ranking and recommendation when music browsing.

 This paper mainly focuses semantic index of music and

music recommendation. Thus, the paper is organized as

follows. In section 2, previous literature reviews on music

search and recommendation will be described. Section 3

gives an overview of music search. A detailed description

on proposed methodology will be introduced in Section 4,

which consists of music representation, semantic indexing,

index updating, incremental and decreased Index, music

matching and browsing. Experiment observations will be

given in Section 5. Finally, some conclusions and future

work are discussed in Section 6.

2. Related Work

Extraction of music feature vectors is the basis of music

search system. Nicola Orio [5] has already given some

music characteristics and features in “Music Retrieval: A

Tutorial and Review”. According to the Music Genome

Project depict, a given song contains approximately 400

attributes. Each attribute corresponds to a characteristic of

the music. Most of the today’s approaches content-based

music search systems are based on melody, timbre and

rhythm as the main features and often only content

descriptors. Therefore, depending on these main features,

there are three category approaches: index terms,

sequence matching, and geometric methods which deal

with polyphonic music scores. S. Downie and M. Nelson

has presented that melodies were indexed through the use

of N-grams. M. Melucci and N. Orio presented an

alternative approach, where indexing was carried out by

highlighting musically relevant approaches. Most

importantly, an architectural paradigm for collaborative

semantic indexing of multimedia data objects has been

present in [1]. Leung has also researched multimedia data

mining and searching through dynamic index evolution in

[2]. C. R. Buchanan presented some approaches to

semantic-based audio recognition and retrieval in

[9]. Douglas Turnbull [4] gives semantic annotation and

retrieval of music.

 Some of the famous commercial music services (e.g.

Pandora.com [15], Last.fm [16]) own music search and

recommendation functions, which also rank the results

based on relevance, quantified by music similarity. The

founder of Pandora.com has presented the most used

approach which calculates the distance between the source

song and each of the database song. Each distance is

regarded as a function of the differences between the

musical features of the source song and database song. In

addition, some hybrid similarity measures were also

presented in recent work (e.g., [8, 13]), which combine

music features with social tags. There are also some

combined approaches which rank the search results by

both their importance and relevance to the query. GenJam

[14] proposed an interactive computer system improvising

over a set of jazz songs using genetic algorithms. Douglas

Turnbull, Luke Barrington, etc in [10] presented a

computer audition system that can both annotate novel

audio tracks with semantically meaningful words and use

a semantic query to retrieve relevant tracks form database

of unlabeled audio content.

3. Overview of Music Search

Intelligent music search contains basic search and

recommendation. The following figure 1 shows the whole

process of music search and recommendation.

Figure 1, Overview of Music search

First of all, a music database has been built, which

consists of two components: actually music songs and

semantic index contents. The songs part contains the basic

attributes of the music, and the indexing part contains four

tables (music songs, songs with attributes, index term and

index table). In addition, the recommendation will make

prediction about what kind of music you are going to like

next based on the search conditions and users feedback.

More details will be described in the following sections.

4. Proposed Methodology

With the limitations of the current technologies, it’s very

difficult to extract the semantic content of multimedia data

directly, especially for the music which is an art form.

Thus indexing of these music data may become more

costly and time-consuming. Therefore, this paper shall

employ a novel music index approach to better support

music search and retrieval.

4.1. Music Representation

The first task of music search is music representation.

Without regard to the format of digital audio music, just

think about the attributes and characteristics of music

songs. Therefore, a given music song M is represented by

an n-dimensional vector, which contains many different

attributes (approximately 300 - 400). M = < music_id, e1,

e2, e3, …, en >. Each attribute stand for a vector element,

which is a characteristic of music songs. Suppose an n-

dimensional music database vector which corresponds to

the musical characteristics of a source song is determined.

According to the Music Genome Project, a lot of music

attributes are sorted by categories, which used for

classifying music songs, for example Hip-Hop/R&B,

Rock/Pop, Jazz/Blues, Country/Folk, etc.

 By reference, Rock and Pop songs have 150 attributes;

Rap songs has 350 attributes; And Jazz songs have

approximately 400 attributes. Thus, these sufficient

numbers of attributes have enough used to represent a

given music. Each attribute is assigned a magnitude

number which is between one and five, in have-integer

increments every time. Thus, these attributes have been

digitized. Therefore, the simple distance between any two

songs in an n-dimensional space is able to be calculated

by the Euclidean distance. As the different attribute may

have different weight, thus the music song can be added a

weighting vector W = < w1, w2, w3, ..., wn >. The sample

formulation is in the following.

Music Representation:

 Music Song S = < s1, s2, s3, …, sn > ;

 Song Attribute Weight W = < w1, w2, w3, …, wn >;

 Where 1 < = sn <= 5, and 0 <= wn <= 1.

Source Song

Music Search

Engine
Music

Database

Find matching

Songs (distance)
Index / Score

Searched songs

Recommendation Users

4.2. Indexing

Indexing is the process of collecting, parsing, and storing

data to facilitate fast and accurate information retrieval.

The index describes partial or whole content of the

documents in one way or another. Index term may be

related keywords, phrase which are meaningful, and it can

be a well-defined hierarchy structures. Thus, without

regard to the metadata of the music, for example song

name, artist, album, the paper focus on the semantic

content of the music data, for example style, mood, etc.,

which is more challenging than indexing metadata. The

following part will describe the semantic content of music

indexing approach in detail.

4.2.1. Semantic Indexing Approach

The proposed music indexing approach is different from

traditional text indexing approaches. Let’s consider a

collection of music songs { Sj }, where their semantic

features and characteristics cannot be directly and

automatically extracted, it has been determined manually,

as what Music Genome Project has done. Then every

music song links with an index set { Ij }, and this set

contains a number of elements ej1, ej2, ej3, …, ejm. And

each element is made up of a triple which has three

components: song_id, index term, and index score. The

index score stands for the signification of the triple of the

index set to that music song. If the index score is higher,

the index term to that music song is more important.

According to the music representation and index

representation, the following relations show their whole

representation and relationship.

Music M = < music_id, music_name, description >

Song S = < song_id, attribute1, attribute2, ..., attributen >

Index Term I = < index_id, index_term_name >

Index Table T = < index_id, music_id, score >

 Thus the index table has a many-to-many relationship

between the music song and the index term. In order to

effectively and efficiently index all the music songs in the

database, hierarchy the built index is required. Let’s layer

the index according to the different intervals of the score,

thus there are N levels L1, L2, …, Ln with a set of

parameters P1, P2, …, Pn. Therefore, for the given score

value x, if Pi ≤ x ≤ Pi+1, the given index term with score

value x will be assigned to level Li. According to this rule,

all the index term will be placed in the suitable layer.

4.2.2. Index Score Updating

Though the music index has already built in the above, the

operations (add, delete, update) of the music index are

also required. Because the index score is directly affected

by the user search behavior and feedback, modified

reinforcement learning algorithm is able to update music

index score. Reinforcement learning is to maximize some

notion of long-term reward. Here is to get accurate music

search result. According to the SQL query, the query

score for a music song can easily get from the index table.

 Suppose when user input search terms Q(T1, T2, T3),

music search engine will display the suggested N music

songs (m1, m2, …, mn) result in descending order by

relevance (corresponding score s1, s2, …, sn). Then the

users will choose the result and give some feedback.

When the user chooses the mi in the result list, the si will

be strengthened by α1. In addition, if the user provides the

promising comments, the si will be strengthened by α2.

Conversely, if the user does not choose any song from the

search result list, the related index score on T1, T2, and T3

for the related songs will be decreased by β1, with the

different probability (1 – ε) . Furthermore, if the negative

feedback will be given to the engine, the penalty will be

performed on the related songs in the database by

different level γ. The following if statements show the

above structure and calculations.

 Algorithm 1: Updating Index Score

1. If (choose the mi in the result list) {

2. Mi.score = Mi.score + α1

3. If (positive feedback) {

4. Mi.score = Mi.score + α1 + (1 – γ) * α2

5. }

6. Else {

7. Mi.score = Mi.score + α1 - (1 – γ)

 8. }

 9. Else

 10. Mi.score = Mi.score – (1 – ε) * β1

4.2.3. Incremental and Decreased Index

Apart from updating the music index, in order to maintain

the index become more comprehensive and complete,

adding and deleting some index terms are necessary. As

we all know, if we give more search terms (index term) in

the query, the more accurate search results will be gain.

Let’s consider this situation: when a user input a

symphony “Eine kleine Nachtmusik”, which is a very

famous song composed by Mozart. However, the index

table only maintains the several index terms, which don’t

contain the composer of the song. Thus when the users

search this song by inputting Mozart, they may be not able

to find this song in the return list. Therefore, adding the

new index term “Mozart” to the index table is necessary.

Because the index is hierarchy built, properly assigning

the score to the new index and placing it to the suitable

hierarchy is very important, which affects the future

search results. Suppose a new index term is added, the

score of the related music song to the new index term is

initially related to the highest score (Smax) of that music

song in the index table. Let’s give a level factor µ (0 ≤ µ ≤

1) to the added index term. Thus, the initially index score

to the specific song can be gained by (1 - µ) * Smax. Thus,

the new index has been properly added, with the future

continuously updating this index score, the search result

by this index term will become more accurate.

 In theory, the more indexes, the better search results.

However, consider the time cost, keeping a proper number

of indexes to a specific music is promising. Sometimes

some existed index term may have a very low relevance

with some music. Thus, in order to decrease the

complexity of the computation and speed up search

process, deleting those index terms and some records in

the index table are required, which will keep the database

complete and flexible. Suppose an existed record in index

table is deleted, the delete criteria is related to the highest

score (Smax) of that music song in the index table. Let’s

give a threshold factor Θ (0 < Θ ≤ 0.05), if the index score

of the specific music song is smaller than Θ * Smax, those

records satisfying the above condition will be delete.

Therefore, according to adding and deleting index terms

or records, the music database and search engine will

maintain an efficient and effective performance.

 Algorithm 2: Increasing and Deleting Index Term

1. If (add new index term)

2. mj.score = (1 - µ) * Smax

3. If (delete index term or index table record)

4. While (mj.score < Θ * Smax)

5. Delete (Ij)

4.3. Matching

Though the above indexing of music is able to

successfully retrieve music, it focuses on the semantic

music content. In order to consider more music attributes

or characteristics, the paper has used a hybrid matching

approach to find the similar songs. According to the music

representation, considering given a song S = < s1, s2, s3,

…, sn> and a song T = <t1, t2, t3, … , tn> , and each

attributes of these vectors have been assigned a number

between zero and five, in have-integer increments for

every value. Thus, the simple distance between these two

songs in n-dimensional space can be calculated by the

following formulation:

Distance(S, T) = sqrt[∑(si – ti)~2], for i = 1 to n (1)

When consider the weight W = < w1, w2, w3, … , wn > of

these attributes of music songs, where 1 < = sn <= 5, and 0

<= wn <= 1, the revised distance can be calculated as

follows:

Distance(S, T) = sqrt[wi * ∑(si – ti)~2], for i = 1 to n (2)

 In order to provide the user a flexibly control to the

matching behavior, customizing some search conditions of

the music attributes is required, which may be used to re-

weight the song of the above matching approach and

refine some searches for matching songs to include or

exclude some selected attributes. Suppose when a user

choose to modify the weighting vector, for example,

increasing some weights of the attributes which are

specific to the selected conditions, to complete particular

matching result. Thus, the new resulting songs will be

resembled closely to the source song in the new selected

conditions.

4.4. Recommendation

Recommendation attempts to recommend information

items (music, etc.) that are likely to be interest to the user.

So they give us what they think we want, based on what

we and other people like us have wanted in the past

experience. Most current existent recommendation

engines work backward instead, using information that

comes not from the art but from their customers or

audience, and they work on the principle that the behavior

of a lot of people can be used to make educated guesses

about the behavior of a single individual. Here is the idea:

if most people who liked “The Second Waltz” also like

“Medley Strauss And Co”, then if we know that a

particular individual liked “The Second Waltz”, we can

make an educated guess that that individual will also like

“Medley Strauss And Co”. This technique called

collaborative filtering. Take music recommendation for

example, the key point to grasp about collaborative

filtering is that it knows absolutely nothing about the

music, which has no preconceptions, and it works entirely

on the basis of the audience’s reaction. However, this

mechanism may result some problem: when most people

claim to have enjoyed “The Second Waltz” and also liked

“Eine Kleine Nachtmusik K.525”, the recommendation

engine would be forced to infer that those two songs share

some common quality that the users liked. Collaborative

filtering works only as well as the data it has available,

and humans produce noisy, low-quality data. Therefore,

collaborative filtering has to improve to get accurate

predictions. So the recommendation engine should use the

information not only from the audience but also from the

Intrinsic of art.

 According to above song to song matching approach,

the computation of the distance of the song in the same

category can be calculated. Let’s give a threshold σ, all

the distance smaller than σ will be recommended to the

users. By improving above matching approach, multi-song

matching approach can be used to strength

recommendation. It builds functionality that will return the

best matches to a group of source songs. This

functionality provides a list of songs which are similar to

the collection of an artist or album. Thus it will generate

recommendations for the users, purely on their taste,

without any source songs. Let’s group the songs into a

single virtual song, and the virtual center is defined to be a

song vector whose attributes are the arithmetic average of

the songs in the collection. Then associating this center a

deviation vector represents the distribution of the songs

within the collection. The following figure 2 shows the

process of multi-song matching. So an individual attribute

which has narrow distribution of values around the

average value will have a strong affinity for the center

value. Therefore, the small deviation will be assigned

higher weight.

Figure 2, Multi-song Matching

Suppose the center vector of the selected song group

C = < c1, c2, …, cn >, the standard deviation vector of the

song group D = < d1, d2, …, dn >, thus the distance

between the target vector to the center vector is in the

following formulation:

Distance(S, T) = sqrt [∑(1 / di) ~2 * (ci – ti) ~2] (3)

Where i from 1 to n; thus the smallest distance are the best

matches, thus those songs with smallest distance will be

recommended to the users.

4.5. Browsing

In order to make users conveniently find what they want

in the search result list, which music songs to present to

the user and in which order is related to browsing.

Ranking music data by relevance and importance has been

proposed by Maria M.Ruxanda, etc. in [12]. According to

the previous music indexing, the simple approach is to

rank the result by the index score in descending order.

Thus the high scored music songs in the index table are

always ranked in the top of the result list. Because the

users choosing the top music list has a very large

probability, the scores of these music songs have a great

chance to be increased. Thus those new added songs

which have great relevance to the search term as the above

issue will be ranked lowly, which have affected the users’

behavior. In addition, initially the search engine may be

not work perfectly, thus the top search result may not what

the users really want.

 As the above issues, optimizing the search result will

solve these problems. Genetic algorithm generates

solutions to optimization problems using techniques

inspired by natural evolution. Thus, by genetic algorithm,

those related songs which ranked lowly will have a chance

to place in a top result list, so the users will find those

near hidden , actually important songs. Consider the above

situation, let’s give a probability to the each song Mi with

a corresponding index score Si in the result list. Suppose

there are N songs in the result list, according to the

probability theory, initially the score of each returned

song can be calculated by the following formulation:

Pi = Si / ∑ Sj , where i, j from 1 to N (4)

 Thus the songs with higher scores would have a higher

probability. So those songs with higher probability would

a higher rank in the search result list. After initializing,

then it would search for those index terms, and then select

acceptable songs from the search result list and mark

down some index terms from it. This procedure would

utilize a fitness function. Fitness evaluation is based on

external feedback from the users. So do this until the

results are approximately what you are really looking for,

then stop do it if you are searching over and over for many

times but you are not getting good results.

5. Observations

In order to best evaluate the suggested indexing and

recommending approaches on music retrieving, some

observations have to make. Initially, as the index term is

limited, the search result not always works perfectly. With

gradually adding new index term to the music database,

the search result will be more accurate. Then though the

Song Group

Middle Match

Near Match

Far Match

H
ig

h

D
ev

iatio
n

Low Deviation

Center Vector

users continue to increase new indices, the accurate of

search results tend towards an equilibrium level. When

users set different search conditions, the more search

terms input, the more accurate result gain. If the

dimensional of music representation is very large, the

songs will be effectively distinguished, while the

computation may be very complex. On the contrary, it is

not able to accurately recommend songs the user likes.

 As improved ranking is a genetic algorithm it also

suffers from the shortcomings that genetic algorithm has.

First of all adaptive search depends on your first initial

guess, which may become so unrelated that your search

results are really bad. Secondly, it depends on your

judgment of accepting a result. If you expect results too

soon and accept no result you may end up unhappy. On

the other hand, if you expect all results you may end up

doing too many searches with all unrelated results.

6. Conclusions and Future Work

This paper presents a semantic indexing method that is

capable of flexibly retrieval music in semantic level. In

order to retrieve music accurately, first of all, music

representation in a given song is represented by an n-

dimensional vector, which contains many different

attributes. Then four tables (music, songs, index term,

index tables) have been established to semantic index.

After that some algorithms and formulations of index

score updating, increasing, and decreasing have been

detailed explained. In addition, useful and flexible music

recommendation approaches, for example song-to-song

matching, and multi-song matching methods, has been

detailed introduced to make better recommendations to

the users. Finally, improved genetic algorithm is used to

optimize the ranking of the search results list when users

browse. Thus, the above proposed methods can be useful

when incorporated into commercial music search engines

for improving music service.

 In future work, other new schemes that adopted in

semantic indexing and retrieval areas will be investigated.

In addition, new intelligent music recommendation which

based on the intrinsic of musical art will also be studied,

whether content-based filtering or collaborative filtering,

with the popularity of the social media [11]. As well, the

suggested music search engines will be constructed, and

some experiments, evaluations and user feedbacks will be

conducted, to evaluate user’s satisfaction with respect to

the proposed music search and recommendation methods.

References

[1] C. H. C. Leung, J. Liu, W. S. Chan, and A. Milani. An

Architectural Paradigm for Collaborative Semantic Indexing

of Multimedia Data Objects. Proceedings of the 10th

international conference on Visual Information Systems:

Web-Based Visual Information Search and Management,

Vol. 5188, pp.216 – 226, 2008

[2] Leung, C. and Liu, J. Multimedia data mining and searching

through dynamic index evolution. In 9th proceedings of

advances in Visual Information systems, Shanghai, China,

pp.298-309, 2007.

[3] Gros, P., Delakis, M., and Gravier, G. Multimedia Indexing:

The Multimedia Challenge. In ERCIM News No. 62, 2005.

[4] Douglas Turnbull, Luke Barrington, David Torres, and Gert

Lanckriet. Semantic Annotation and Retrieval of Music and

Sound Effects. Audio, Speech, and Language Processing,

IEEE Transactions on Issue Date: Feb. 2008, Vol.16, pp.

467 – 476.

[5] Nicola Orio. Music Retrieval: A Tutorial and Review.

Foundations and Trends in Information Retrieval, Volume1,

Issue 1, Pages 1-96, 2006.

[6] Alexandros Nanopoulos, Dimitrios Rafailidis, Maria M.

Ruxanda, Yannis Manolopoulos: Music search engines:

Specifications and challenges. Inf. Process. Manage. 45(3):

pp.392-396, 2009.

[7] Donald Byrd, Tim Crawford: Problems of music information

retrieval in the real world. Inf. Process. Manage. 38(2):

pp.249-272, 2002.

[8] R. Stenzel and T. Kamps. Improving content-based

similarity measures by training a collaborative model, in

Proc. ISMIR, 2005, pp. 2264-271.

[9] C. R. Buchanan Semantic-based audio recognition and

retrieval, pp. 2005.

[10] D. Turnbull, L. Barrington, D. Torres and G. Lanckriet

"Towards musical query-by-semantic description using the

CAL500 data set", Proc. SIGIR"07, pp. 439 2007

[11] Music Information Retrieval Using Social Tags and

Audio, Levy, M. Sandler, M. Multimedia, IEEE

Transactions on page(s): 383 - 395, Volume: 11 Issue: 3,

April 2009

[12] Maria M.Ruxanda, Alexandros Nanopoulos, Christian S.

Jensen, Yannis Manolopoulos. Ranking music data by

relevance and importance. Multimedia and Expo, 2008 IEEE

international conference, pp.549- 552, 2008.

[13] C. R. Buchanan J. Kandola, J. Shawe-Taylor, and N.

Cristianini. Learning Semantic Similarity, in Proc. NIPS,

2002, pp.657-664.

[14] Biles, J.A. GenJam: a genetic algorithm for generation of

jazz sols. In Proceedings of the International Computer

Music Conference. Aarhus, Denmark, 1994.

[15] Pandora.cm. www.pandora.com

[16] Last.fm . www.last.fm

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10376
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10376
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rafailidis:Dimitrios.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ruxanda:Maria_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ruxanda:Maria_M=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Manolopoulos:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/journals/ipm/ipm45.html#NanopoulosRRM09
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Byrd:Donald.html
http://www.informatik.uni-trier.de/~ley/db/journals/ipm/ipm38.html#ByrdC02

