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Abstract 
 

Due to the rapidly increasing availability of digital 

music, advanced semantic music search and music 

recommendation are becoming important issues. Thus 

how to index music for semantic search and how to make 

recommendations in intrinsic of musical art are 

challenging problems currently. In this context, this paper 

used a semantic indexing method that is capable of 

flexibly retrieval music in semantic level. When the 

semantic and dynamic index has been established, 

updating, increasing and decreasing index scores are 

necessary to build a reinforcement index to gain 

accurately search results. Moreover, the paper also 

proposed useful and flexible music recommendation 

approaches, for example song-to-song matching and 

multi-song matching methods. In order to optimize the 

order of search result, genetic algorithm also used to re-

ranking those near hidden music in the top. The proposed 

method will also support users with diverse needs when 

searching for music. The observations indicate that the 

present approach is able to get better performance. 
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1. Introduction 
 

As the digital music becomes more and more huge and 

ubiquitous, music search becomes the vital important tool 

when people use music services in the web. The first 

generation search engines make great contribution to 

finding textual information on the web. Yahoo!Music 

represent the first generation search engine attempts to 

support audio search, which adopts text-based approach 

and the service is limited [6, 7]. Thus, non-textual 

multimedia documents such as music audio bring new 

challenges [3] to search engines – how to incorporate 

search by the musical content, which will achieve better 

music search result. Therefore, music search has 

significant commercial and research promise in nowadays. 

Many groups have already made a great effort on this 

area, for example, Last.fm is a popular music search 

engine also with a music recommender system.  Pandora 

is an automated music recommendation service and 

custodian of the Music Genome Project which captures 

the essence of music at the fundamental level. Thus 

intelligent music search and recommendations will have 

becoming more and more popular.  

     According to the research, there are three key issues in 

audio-based music search: how to index the content of 

music objects, how to present the user with intuitive 

methods of querying music objects, and which music 

objects to present to the user and in which order. This 

paper mainly addresses the first and the third key issues 

and proposes a novel approach for semantic index of 

music data objects and improved method for music data 

ranking and recommendation when music browsing. 

     This paper mainly focuses semantic index of music and 

music recommendation. Thus, the paper is organized as 

follows. In section 2, previous literature reviews on music 

search and recommendation will be described. Section 3 

gives an overview of music search. A detailed description 

on proposed methodology will be introduced in Section 4, 

which consists of music representation, semantic indexing, 

index updating, incremental and decreased Index, music 

matching and browsing. Experiment observations will be 

given in Section 5. Finally, some conclusions and future 

work are discussed in Section 6. 

 

2. Related Work 
 

Extraction of music feature vectors is the basis of music 

search system. Nicola Orio [5] has already given some 

music characteristics and features in “Music Retrieval: A 

Tutorial and Review”. According to the Music Genome 

Project depict, a given song contains approximately 400 

attributes. Each attribute corresponds to a characteristic of 

the music. Most of the today’s approaches content-based 

music search systems are based on melody, timbre and 

rhythm as the main features and often only content 

descriptors.  Therefore, depending on these main features, 

there are three category approaches: index terms, 

sequence matching, and geometric methods which deal 

with polyphonic music scores. S. Downie and M. Nelson 

has presented that melodies were indexed through the use 

of N-grams. M. Melucci and N. Orio presented an 

alternative approach, where indexing was carried out by 

highlighting musically relevant approaches. Most 

importantly, an architectural paradigm for collaborative 

semantic indexing of multimedia data objects has been 

present in [1]. Leung has also researched multimedia data 

mining and searching through dynamic index evolution in 

[2]. C. R. Buchanan presented some approaches to 



semantic-based audio recognition and retrieval in 

[9].   Douglas Turnbull [4] gives semantic annotation and 

retrieval of music. 

     Some of the famous commercial music services (e.g. 

Pandora.com [15], Last.fm [16]) own music search and 

recommendation functions, which also rank the results 

based on relevance, quantified by music similarity. The 

founder of Pandora.com has presented the most used 

approach which calculates the distance between the source 

song and each of the database song. Each distance is 

regarded as a function of the differences between the 

musical features of the source song and database song. In 

addition, some hybrid similarity measures were also 

presented in recent work (e.g., [8, 13]), which combine 

music features with social tags. There are also some 

combined approaches which rank the search results by 

both their importance and relevance to the query. GenJam 

[14] proposed an interactive computer system improvising 

over a set of jazz songs using genetic algorithms. Douglas 

Turnbull, Luke Barrington, etc in [10] presented a 

computer audition system that can both annotate novel 

audio tracks with semantically meaningful words and use 

a semantic query to retrieve relevant tracks form database 

of unlabeled audio content. 

 

3. Overview of Music Search 

 

Intelligent music search contains basic search and 

recommendation. The following figure 1 shows the whole 

process of music search and recommendation. 

 
 

Figure 1, Overview of Music search 

 

First of all, a music database has been built, which 

consists of two components: actually music songs and 

semantic index contents. The songs part contains the basic 

attributes of the music, and the indexing part contains four 

tables (music songs, songs with attributes, index term and 

index table). In addition, the recommendation will make 

prediction about what kind of music you are going to like 

next based on the search conditions and users feedback. 

More details will be described in the following sections. 

 

4. Proposed Methodology 

 

With the limitations of the current technologies, it’s very 

difficult to extract the semantic content of multimedia data 

directly, especially for the music which is an art form. 

Thus indexing of these music data may become more 

costly and time-consuming. Therefore, this paper shall 

employ a novel music index approach to better support 

music search and retrieval. 

      

4.1. Music Representation 
 

The first task of music search is music representation. 

Without regard to the format of digital audio music, just 

think about the attributes and characteristics of music 

songs. Therefore, a given music song M is represented by 

an n-dimensional vector, which contains many different 

attributes (approximately 300 - 400). M = < music_id, e1, 

e2, e3, …, en >. Each attribute stand for a vector element, 

which is a characteristic of music songs. Suppose an n-

dimensional music database vector which corresponds to 

the musical characteristics of a source song is determined. 

According to the Music Genome Project, a lot of music 

attributes are sorted by categories, which used for 

classifying music songs, for example Hip-Hop/R&B, 

Rock/Pop, Jazz/Blues, Country/Folk, etc.  

     By reference, Rock and Pop songs have 150 attributes; 

Rap songs has 350 attributes; And Jazz songs have 

approximately 400 attributes. Thus, these sufficient 

numbers of attributes have enough used to represent a 

given music. Each attribute is assigned a magnitude 

number which is between one and five, in have-integer 

increments every time. Thus, these attributes have been 

digitized. Therefore, the simple distance between any two 

songs in an n-dimensional space is able to be calculated 

by the Euclidean distance. As the different attribute may 

have different weight, thus the music song can be added a 

weighting vector W = < w1, w2, w3, ..., wn >. The sample 

formulation is in the following.  

 

Music Representation: 

    

     Music Song S = < s1, s2, s3, …, sn > ; 

     Song Attribute Weight W = < w1, w2, w3, …, wn >; 

     Where 1 < = sn <= 5, and 0 <= wn <= 1. 
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4.2. Indexing 
 

Indexing is the process of collecting, parsing, and storing 

data to facilitate fast and accurate information retrieval. 

The index describes partial or whole content of the 

documents in one way or another. Index term may be 

related keywords, phrase which are meaningful, and it can 

be a well-defined hierarchy structures. Thus, without 

regard to the metadata of the music, for example song 

name, artist, album, the paper focus on the semantic 

content of the music data, for example style, mood, etc., 

which is more challenging than indexing metadata. The 

following part will describe the semantic content of music 

indexing approach in detail. 

 

4.2.1. Semantic Indexing Approach 
 

The proposed music indexing approach is different from 

traditional text indexing approaches. Let’s consider a 

collection of music songs { Sj }, where their semantic 

features and characteristics cannot be directly and 

automatically extracted, it has been determined manually, 

as what Music Genome Project has done. Then every 

music song links with an index set { Ij }, and this set 

contains a number of elements ej1, ej2, ej3, …, ejm. And 

each element is made up of a triple which has three 

components: song_id, index term, and index score. The 

index score stands for the signification of the triple of the 

index set to that music song. If the index score is higher, 

the index term to that music song is more important. 

According to the music representation and index 

representation, the following relations show their whole 

representation and relationship. 

 

Music M = < music_id, music_name, description > 

Song    S = < song_id, attribute1, attribute2, ..., attributen > 

Index Term I  = < index_id, index_term_name > 

Index Table T = < index_id, music_id, score > 

 

     Thus the index table has a many-to-many relationship 

between the music song and the index term. In order to 

effectively and efficiently index all the music songs in the 

database, hierarchy the built index is required. Let’s layer 

the index according to the different intervals of the score, 

thus there are N levels L1, L2, …, Ln with a set of 

parameters P1, P2, …, Pn. Therefore, for the given score 

value x, if Pi ≤ x ≤ Pi+1, the given index term with score 

value x will be assigned to level Li. According to this rule, 

all the index term will be placed in the suitable layer. 

 

4.2.2. Index Score Updating  
 

Though the music index has already built in the above, the 

operations (add, delete, update) of the music index are 

also required. Because the index score is directly affected 

by the user search behavior and feedback, modified 

reinforcement learning algorithm is able to update music 

index score. Reinforcement learning is to maximize some 

notion of long-term reward. Here is to get accurate music 

search result. According to the SQL query, the query 

score for a music song can easily get from the index table. 

     Suppose when user input search terms Q(T1, T2, T3), 

music search engine will display the suggested N music 

songs (m1, m2, …, mn) result in descending order by 

relevance (corresponding score s1, s2, …, sn).  Then the 

users will choose the result and give some feedback. 

When the user chooses the mi in the result list, the si will 

be strengthened by α1. In addition, if the user provides the 

promising comments, the si will be strengthened by α2. 

Conversely, if the user does not choose any song from the 

search result list, the related index score on T1, T2, and T3 

for the related songs will be decreased by β1, with the 

different probability (1 – ε) . Furthermore, if the negative 

feedback will be given to the engine, the penalty will be 

performed on the related songs in the database by 

different level γ. The following if statements show the 

above structure and calculations. 

 

       Algorithm 1: Updating Index Score  

 

1. If ( choose the mi in the result list) {   

2.      Mi.score = Mi.score + α1  

3.      If ( positive feedback ) {  

4.   Mi.score = Mi.score + α1 + (1 – γ) * α2 

5.         } 

6.          Else { 

7.                   Mi.score = Mi.score + α1 - (1 – γ)  

       8.         } 

       9.      Else  

       10.        Mi.score = Mi.score – (1 – ε) * β1 

 

 

4.2.3. Incremental and Decreased Index  
 

Apart from updating the music index, in order to maintain 

the index become more comprehensive and complete, 

adding and deleting some index terms are necessary. As 

we all know, if we give more search terms (index term) in 

the query, the more accurate search results will be gain. 

Let’s consider this situation: when a user input a 

symphony “Eine kleine Nachtmusik”, which is a very 

famous song composed by Mozart. However, the index 

table only maintains the several index terms, which don’t 

contain the composer of the song. Thus when the users 

search this song by inputting Mozart, they may be not able 

to find this song in the return list. Therefore, adding the 

new index term “Mozart” to the index table is necessary. 



Because the index is hierarchy built, properly assigning 

the score to the new index and placing it to the suitable 

hierarchy is very important, which affects the future 

search results. Suppose a new index term is added, the 

score of the related music song to the new index term is 

initially related to the highest score (Smax) of that music 

song in the index table. Let’s give a level factor µ (0 ≤ µ ≤ 

1) to the added index term. Thus, the initially index score 

to the specific song can be gained by (1 - µ) * Smax. Thus, 

the new index has been properly added, with the future 

continuously updating this index score, the search result 

by this index term will become more accurate. 

     In theory, the more indexes, the better search results. 

However, consider the time cost, keeping a proper number 

of indexes to a specific music is promising. Sometimes 

some existed index term may have a very low relevance 

with some music. Thus, in order to decrease the 

complexity of the computation and speed up search 

process, deleting those index terms and some records in 

the index table are required, which will keep the database 

complete and flexible. Suppose an existed record in index 

table is deleted, the delete criteria is related to the highest 

score (Smax) of that music song in the index table. Let’s 

give a threshold factor Θ (0 < Θ ≤ 0.05), if the index score 

of the specific music song is smaller than Θ * Smax, those 

records satisfying the above condition will be delete. 

Therefore, according to adding and deleting index terms 

or records, the music database and search engine will 

maintain an efficient and effective performance. 

 

     Algorithm 2: Increasing and Deleting Index Term 

 

1. If (add new index term)    

2.      mj.score = (1 - µ) * Smax 

3. If (delete index term or index table record) 

4.      While (mj.score < Θ * Smax) 

5.           Delete (Ij) 

 

 

4.3. Matching 
   

Though the above indexing of music is able to 

successfully retrieve music, it focuses on the semantic 

music content. In order to consider more music attributes 

or characteristics, the paper has used a hybrid matching 

approach to find the similar songs. According to the music 

representation, considering given a song S = < s1, s2, s3, 

…, sn>  and a song T = <t1, t2, t3, … , tn> , and each 

attributes of these vectors have been assigned a number 

between zero and five, in have-integer increments for 

every value. Thus, the simple distance between these two 

songs in n-dimensional space can be calculated by the 

following formulation: 

 

Distance(S, T) = sqrt[ ∑(si – ti)~2 ], for i = 1 to n      (1) 

When consider the weight W = < w1, w2, w3, … , wn > of 

these attributes of music songs, where 1 < = sn <= 5, and 0 

<= wn <= 1, the revised distance can be calculated as 

follows: 

 

Distance(S, T) = sqrt[ wi * ∑(si – ti)~2 ], for i = 1 to n   (2) 

 

     In order to provide the user a flexibly control to the 

matching behavior, customizing some search conditions of 

the music attributes is required, which may be used to re-

weight the song of the above matching approach and 

refine some searches for matching songs to include or 

exclude some selected attributes. Suppose when a user 

choose to modify the weighting vector, for example, 

increasing some weights of the attributes which are 

specific to the selected conditions, to complete particular 

matching result. Thus, the new resulting songs will be 

resembled closely to the source song in the new selected 

conditions. 

 

4.4. Recommendation 
 

Recommendation attempts to recommend information 

items (music, etc.) that are likely to be interest to the user. 

So they give us what they think we want, based on what 

we and other people like us have wanted in the past 

experience. Most current existent recommendation 

engines work backward instead, using information that 

comes not from the art but from their customers or 

audience, and they work on the principle that the behavior 

of a lot of people can be used to make educated guesses 

about the behavior of a single individual. Here is the idea: 

if most people who liked “The Second Waltz” also like 

“Medley Strauss And Co”, then if we know that a 

particular individual liked “The Second Waltz”, we can 

make an educated guess that that individual will also like 

“Medley Strauss And Co”. This technique called 

collaborative filtering. Take music recommendation for 

example, the key point to grasp about collaborative 

filtering is that it knows absolutely nothing about the 

music, which has no preconceptions, and it works entirely 

on the basis of the audience’s reaction. However, this 

mechanism may result some problem: when most people 

claim to have enjoyed “The Second Waltz” and also liked 

“Eine Kleine Nachtmusik K.525”, the recommendation 

engine would be forced to infer that those two songs share 

some common quality that the users liked. Collaborative 

filtering works only as well as the data it has available, 

and humans produce noisy, low-quality data. Therefore, 

collaborative filtering has to improve to get accurate 

predictions. So the recommendation engine should use the 

information not only from the audience but also from the 

Intrinsic of art.  

     According to above song to song matching approach, 

the computation of the distance of the song in the same 



category can be calculated. Let’s give a threshold σ, all 

the distance smaller than σ will be recommended to the 

users. By improving above matching approach, multi-song 

matching approach can be used to strength 

recommendation. It builds functionality that will return the 

best matches to a group of source songs. This 

functionality provides a list of songs which are similar to 

the collection of an artist or album. Thus it will generate 

recommendations for the users, purely on their taste, 

without any source songs. Let’s group the songs into a 

single virtual song, and the virtual center is defined to be a 

song vector whose attributes are the arithmetic average of 

the songs in the collection. Then associating this center a 

deviation vector represents the distribution of the songs 

within the collection. The following figure 2 shows the 

process of multi-song matching. So an individual attribute 

which has narrow distribution of values around the 

average value will have a strong affinity for the center 

value. Therefore, the small deviation will be assigned 

higher weight.  

 
Figure 2, Multi-song Matching 

 

Suppose the center vector of the selected song group  

C = < c1, c2, …, cn >, the standard deviation vector of the 

song group D = < d1, d2, …, dn >, thus the distance 

between the target vector to the center vector is in the 

following formulation: 

 

Distance(S, T) = sqrt [ ∑( 1 / di ) ~2  * (ci – ti) ~2 ]        (3) 

 

Where i from 1 to n; thus the smallest distance are the best 

matches, thus those songs with smallest distance will be 

recommended to the users. 

 

4.5. Browsing 
 

In order to make users conveniently find what they want 

in the search result list, which music songs to present to 

the user and in which order is related to browsing. 

Ranking music data by relevance and importance has been 

proposed by Maria M.Ruxanda, etc. in [12]. According to 

the previous music indexing, the simple approach is to 

rank the result by the index score in descending order. 

Thus the high scored music songs in the index table are 

always ranked in the top of the result list. Because the 

users choosing the top music list has a very large 

probability, the scores of these music songs have a great 

chance to be increased. Thus those new added songs 

which have great relevance to the search term as the above 

issue will be ranked lowly, which have affected the users’ 

behavior. In addition, initially the search engine may be 

not work perfectly, thus the top search result may not what 

the users really want. 

     As the above issues, optimizing the search result will 

solve these problems. Genetic algorithm generates 

solutions to optimization problems using techniques 

inspired by natural evolution. Thus, by genetic algorithm, 

those related songs which ranked lowly will have a chance 

to place in a top result list, so the users will find those 

near hidden , actually important songs. Consider the above 

situation, let’s give a probability to the each song Mi with 

a corresponding index score Si in the result list. Suppose 

there are N songs in the result list, according to the 

probability theory, initially the score of each returned 

song can be calculated by the following formulation: 

 

Pi = Si / ∑ Sj , where i, j from 1 to N                              (4) 

 

     Thus the songs with higher scores would have a higher 

probability. So those songs with higher probability would 

a higher rank in the search result list. After initializing, 

then it would search for those index terms, and then select 

acceptable songs from the search result list and mark 

down some index terms from it. This procedure would 

utilize a fitness function. Fitness evaluation is based on 

external feedback from the users. So do this until the 

results are approximately what you are really looking for, 

then stop do it if you are searching over and over for many 

times but you are not getting good results. 

 

5. Observations 

 

In order to best evaluate the suggested indexing and 

recommending approaches on music retrieving, some 

observations have to make. Initially, as the index term is 

limited, the search result not always works perfectly. With 

gradually adding new index term to the music database, 

the search result will be more accurate. Then though the 
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users continue to increase new indices, the accurate of 

search results tend towards an equilibrium level. When 

users set different search conditions, the more search 

terms input, the more accurate result gain. If the 

dimensional of music representation is very large, the 

songs will be effectively distinguished, while the 

computation may be very complex. On the contrary, it is 

not able to accurately recommend songs the user likes. 

     As improved ranking is a genetic algorithm it also 

suffers from the shortcomings that genetic algorithm has. 

First of all adaptive search depends on your first initial 

guess, which may become so unrelated that your search 

results are really bad. Secondly, it depends on your 

judgment of accepting a result. If you expect results too 

soon and accept no result you may end up unhappy. On 

the other hand, if you expect all results you may end up 

doing too many searches with all unrelated results. 

 

6. Conclusions and Future Work 

 

This paper presents a semantic indexing method that is 

capable of flexibly retrieval music in semantic level. In 

order to retrieve music accurately, first of all, music 

representation in a given song is represented by an n-

dimensional vector, which contains many different 

attributes. Then four tables (music, songs, index term, 

index tables) have been established to semantic index. 

After that some algorithms and formulations of index 

score updating, increasing, and decreasing have been 

detailed explained. In addition, useful and flexible music 

recommendation approaches, for example song-to-song 

matching, and multi-song matching methods, has been 

detailed introduced to make better recommendations to 

the users. Finally, improved genetic algorithm is used to 

optimize the ranking of the search results list when users 

browse. Thus, the above proposed methods can be useful 

when incorporated into commercial music search engines 

for improving music service. 

     In future work, other new schemes that adopted in 

semantic indexing and retrieval areas will be investigated. 

In addition, new intelligent music recommendation which 

based on the intrinsic of musical art will also be studied, 

whether content-based filtering or collaborative filtering, 

with the popularity of the social media [11].  As well, the 

suggested music search engines will be constructed, and 

some experiments, evaluations and user feedbacks will be 

conducted, to evaluate user’s satisfaction with respect to 

the proposed music search and recommendation methods. 
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