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Abstract

A cardiovascular care system can be regarded as a kind
of queueing network, for units which own queues are con-
nected to each other according to their temporal relation-
ship (e.g., since a patient should register before he receiving
the consultation in a hospital, there is a directed link from
the appointment unit to the consultation unit). Previous re-
searches about shortening long queues or long wait times
often focus on some intuitionally impact factors, like limited
resources, unpredictable patient behaviors and inefficient
management policies in an isolated unit (e.g., emergency
department), seldom consider the factors concealed among
units in a queueing network. This paper will figure out that
delay cascade, a small delay in one place resulted in long
delays elsewhere, is an important factor which may leads to
the covariance fluctuation of wait times among connected
units.

In this paper, we investigate delay cascade, or how de-
lays disseminate from one unit to another in a cardiovas-
cular care queueing network. Prior to a further investi-
gation of the dynamic patterns (e.g., how does the delay
cascade happen) in cardiovascular care, we 1) first iden-
tify whether two connected units have a wait time relation-
ship by Structure Equation Modeling based on empirical
data of Ontario, Canada; 2) in order to explain the under-
line mechanisms accounting for such kind of wait time rela-
tionship, we develop a series Markovian queueing network
model to analyze the relationship of delay cascade and wait
time mathematically. Our simulation results show that the
delays in a unit will cascade within its own queue, as well
as spread to other connected units, so that the total delays
and wait times in the whole system will be more heavily.

1 Introduction

As a specific healthcare service system, a cardiovascular
care system which is composed of a number of units can
be regarded as a directed queueing network. The node in
the network is a unit which offers a unique service (e.g., ap-
pointment, consultation, electrocardiogram test, etc.).Cus-
tomers, or patients travel through several nodes sequentially

to receive their needed services, then the temporal relation
of nodes are formed during such patient travel processes.
Queues or waits may arise at each node due to the inade-
quate service capacity [6] as well as unpredictable patient
arrivals and behaviors [11][12].

In order to shorten wait time in public health care, pre-
vious studies on wait time management focus mainly on
analyzing and controlling some intuitionally impact fac-
tors, like modeling patient flow [23], optimizing resource
allocation [6], improving management strategies [19], and
etc. These researches investigate wait time problem from
the same perspective, that is to balancing demands and re-
source allocations while avoiding unduly long queues. And
they often study wait time problems within an isolated unit,
like operating room [6], emergency department [4], and
etc. However, seldom of the studies endeavor to figure out
other factors underline the pervasive wait in healthcare sys-
tem besides dynamics and unbalanced demands and sup-
pliers, while they are failed to explain why some services
(e.g., coronary artery bypass surgery) still have long queues
though the capacities have already fulfilled the demands
[28].

In this paper, we suppose delay cascade, a phenomenon
has been long studied in the area of control system and sup-
ply chain management (may in other forms as information
delay or resource delay) [18][24], is an important factor
which leads to the pieces of tiny delays spreading over the
entire queueing network and finally results in heavy wait
times at units. For example, thirty minutes delay of patient
A in Magnetic Resonance Imaging (MRI) test will let all the
patients behind him wait thirty more minutes in the same
queue. As well, this delay may also influence the wait time
of other nodes involved in the sequential path of this patient.
For example, with doctor’s arrangement, patient A should
take MRI test on 9:00 am and take Cath test on 10:00 am
by schedule. Due to the delay of thirty minutes in MRI test,
the start time of Cath is not 10:00 am but 10:20 am. There-
fore, delays spread across the entire queueing network like
a virus. We call this spreading of a piece of delay along
links in a queueing network a delay cascade.

In order to investigate whether and how delays propagate
in a queueing network, we mainly concern the following
questions in this paper:



(1) Do the wait times of connected units have a kind of
covariance relationship from empirical data? In other
words, does the wait time of a unit be an important pre-
dictor for the wait times of connected units?

(2) Whether and how does delay spread in the queueing
network? How to model the delay cascading effects on
wait time? In other words, does delay cascade account
for the covariance relationship of wait times between
connected units?

For the first question, we will utilize the Structural
Equation Modeling (SEM), a powerful multivariate analy-
sis technique [7], with a hypothesis-testing approach to an-
alyzing the structure (i.e., regression, covariance relation)
between the wait times of connected units based on the em-
pirical data released by Cardiac Care Network of Ontario,
Canada. We propose a hypothesized wait time causal model
which includes causal factors (i.e., number of arrivals, the
service capacity, wait time of connected nodes) and wait
time measurement variables (i.e., time of 90% patients com-
pleted in the urgency/semi-urgency/elective patient group
respectively) to test the wait time relationship of connected
units. The estimation results show that our model fits the
empirical data well and there is a noticeable causal relation-
ship of wait times between connected nodes.

For the second question, we will apply the queueing the-
ory, a technique good at quantitatively studying waiting lists
[17], to model the dynamic of queueing network and to
discover the effects of delay cascade on wait times. We
propound a series Markovian queueing network model to
demonstrate the dynamic process of delay cascade and its
impact on wait times in queueing network. Experiments
show that delay is not only cascade within a node but also
spread to the connected nodes. This phenomenon may par-
tially explain why connected nodes have wait time relation-
ship in the real world.

The remainder of this paper is organized as follows. In
the next section, we will talk about the related work. Sec-
tion 3 is the problem statement. Section 4 analyzes the wait
time relationship of connected nodes by SEM. Section 5
describes our queueing model to study the delay cascade
effects in queueing network model. Section 6 is the prelim-
inary experiments. Finally, Section 7 concludes the whole
paper.

2 Related Work

As an effective way for wait time management in health-
care system, finding out and efficient controlling some con-
straint factors have received long-term attention. Capac-
ity of suppliers has been recognized as an important factor
which may result in significant regional disparities in ac-
cess to coronary artery bypass surgery after accounting for

clinical need [29]. Regarding the factor of resource utiliza-
tion and allocation, Brecht et al.[6] have reviewed over 100
papers related to resource planning and scheduling in op-
erating room. Jun et al.[16] and Jacobson et al.[19] have
presented a comprehensive survey for the purpose of op-
timizing healthcare resources allocation, improve patient
flow, while minimizing healthcare delivery costs over the
past forty years. As the factor of dynamic patient arrival,
Zhao and Lie [30] have applied the queueing model to de-
scribe the patient flow in an emergency department aiming
at intelligent scheduling and reducing emergency depart-
ment crowding.

In retrospect, most of the existing works on wait time
management focus on such physical resource bottlenecks
and patient movement patterns in an isolated unit, but sel-
dom reveal the factors or reasons for pervasive delays in
the whole healthcare system. To this end, delay cascade, a
possible explanation for forming wait time relationship be-
tween connected units is proposed in this paper.

Cascading effects have been widely studied in many re-
search areas to demonstrate how an unforeseen chain of
events happen due to an act affecting a system. For ex-
ample, in ecosystem, trophic cascade has been studied to
understand the population relations of predator and prey in
a food web [15]. Cascade failures are characterized and
modeled to explain why small initial shocks will trigger the
entire system collapses in electrical power network, traffic
network and Internet [13]. In social network, cascade ef-
fects have been investigated to figure out how information
disseminates through social links in social networks and the
underline mechanisms [9].

Although not with the same name, delay cascade has
been drawn attentions in the fields of control and manage-
ment systems. For example, in industrial control system,
mathematic based techniques (i.e., Lyapunov function) has
been constructed to control the time delay and its cascading
effects [18][25]. In business, delays (material delays, infor-
mation delays, etc.) at every stage and its cascade through
the supply chain have been recognized as the main causes of
the bullwhip effect [24]. Inspired by these works, our work
will unfold that delay cascade is also a noticeable impact
factor for wait time relationship between connected nodes
in queueing network.

In order to model and measure the cascading effects,
there are generally two ways. One prevail approach is
bottom-up based modeling and simulation, which has been
widely used to study virus propagation and immunization
strategies in email networks [22], the contagion of obesity
in a social network [10], information cascade in blogs [21],
and etc. The common research steps of this method are
1) build up a large-scale or a complex network including
a large number of autonomous nodes; 2) define the behav-
ior rules or mechanisms for these nodes; 3) run simulations



dp,k =

{
0, if TEp,k − ˜TSp,k − ˜TPp,k < 0 or patient p does not visit node k

TEp,k − ˜TSp,k − ˜TPp,k, else
(1)

˜TSp,k =

{
( ˜(TSp−1,k + ˜TPp−1,k)/10 + 1) ∗ 10, if ( ˜TSp−1,k + ˜TPp−1,k + ˜TPp,k)/10 < ˜TPp,k

˜TSp−1,k + ˜TPp−1,k, else
(2)

to see how a tiny event disseminates through links in the
network and its finally aggregative effects. This method is
popular in researches aiming to observe the processes of
cascade and to find out how tiny events in isolated nodes
will finally cause unpredictable emergent events in global.

Another traditional analyze approach is top-down based
mathematically modeling, such as queueing theory we
adopted in this paper. As a long standing useful way to
analyze queues, queueing theory can capture the effects of
delays on the overall wait times. Regards the studies related
to queueing theory modeling on wait time, Fomundam and
Herrmann [14] have surveyed a range of queueing models
applied to waiting list analysis, resource utilization analysis,
and healthcare system design (e.g., appointment systems).
Creemers and Lambrecht [11] have constructed a queueing
model to assess the impact of service outages, to approxi-
mate patient flow times, and to evaluate a number of practi-
cal applications. They have also developed a decomposition
based queueing network model to assess the performance in
terms of patient flow at the orthopaedic department in Mid-
delheim hospital Lambrecht [12]. In this paper, we will uti-
lize queueing theory to model and to analyze the effects of
delay cascade on wait time in cardiovascular care queueing
network.

3 Problem Statement

Based on the cardiovascular treatment guidelines [1][2],
a cardiovascular care system can be simplified as a directed
graphG =< V, E > (as shown in Figure 1), where each
nodevi ∈ V (i ∈ [0, N ]) represents a unit, and each edge
eij ∈ E (i, j ∈ [0, N ]) represents a temporal connection
from vi to vj . If there is a patient flow fromvi to vj , then
eij = 1; otherwise,eij = 0. If eij 6= 0, thenvi andvj are
called connected nodes;vi is the prior node ofvj , andvj is
the subsequent node ofvi. The patient transfer rate which
denotes the patient proportion fromvi to vj is ξij .

In this paper, we will pay attention to the key nodes
(Cath, PTCA/PCI, Cardiac surgery, etc., shown in Figure
1) which need appoint before execution in real world be-
cause the appoint mechanism affords facilities for wait time
estimation in our simulation. In addition, to simplify the de-
lays and wait times calculation, we assume that the working
time of a unit is 10 hours a day. Then the delay of patientp
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Figure 1: A cardiovascular care queueing network consisting of
units commonly encountered in cardiovascular patient pathway. In
this figure, the rectangle, which represents a unit, is a nodein the
cardiovascular care queueing network. And the directed edge de-
notes the temporal relationship between two nodes. (ECG: Elec-
trocardiogram; PTCA: Percutaneous transluminal coronaryangio-
plasty; PCI: Percutaneous coronary intervention)

at nodek can be calculated by Equation 1.
In Equation 1,dp,k is the delay of patientp atvk. ˜TSp,k

which is calculated by Equation 2, is the scheduled start-
time for patientp to receive the treatment provided byvk.
˜TPp,k is the expected service time of patientp at vk. We

assume that the expected perform-times for all the patients
are the same.

The wait time of patientp atvk is defined as Equation 3.

wp,k =

{
0, if patient p does not visit node k

TEp,k − TJp,k − TPp,k, else
(3)

Where,wp,k is the wait time of patientp atvk. TEp,k is
the actual treatment end-time of patientp at vk. Similarly,
TJp,k is the time when patientp joins the queue ofvk and
TPp,k is the actual service time of patientp at vk. We as-
sume that the actual service time ofvk follows exponential
distributionTPp ∼ Exp(λs

k) 1.

1Due to the lack of empirical data to show the actual distribution of
treatment time in cardiovascular care, we follow a generally assumption
that the service time is exponential distributed [3]



In order to measure the accumulative effects of delays
and waits, the accumulative delays of a node in a given time
period can be calculated by Equation 4. And the accumula-
tive wait times of a node in a given time period is calculated
by Equation 5.

DNk =

M∑

p=1

dp,k (4)

Where,DNk is the accumulative delays ofvk, which is
summed by the delay of fist patient to that of the last one
(M patients in total) in a given time period.

WNk =
M∑

p=1

wp,k (5)

Where, WNk is the accumulative wait times ofvk,
which is summed by the wait times of all the patients (M
patients in total) in a given period of time.

The cascade delay may happen in the units with appoint-
ment service discipline and will spread over the cardiovas-
cular care queueing networks. In order to measure the de-
lays and wait times of a patient in his overall treatment pro-
cess, the total delay of patientp is define as Equation 6.
And the total wait time of patientp in his patient journey is
defined as Equation 7.

DPp =

N∑

j=1

dp,j (6)

Where, DPp is the accumulative delay of patientp,
which is summed by the delays of patientp at all theN
nodes in the queueing network.

WPp =

N∑

j=1

dp,j (7)

Where,WPp is the accumulative wait time of patientp,
which is summed by the wait times of patientp at all theN
nodes in the queueing network.

In this paper, due to the lack of complete empirical data
related to the units shown in Figure1, we start from a graph
including two units (i.e., Cath and cardiac surgery, which
have been identified as the most important and resource-
intensive cardiovascular procedures [8][26]), to show the
waiting list dynamic process. Specific research questions
to be answered are as follows:

(1) Do the queues or wait times of connected nodes have
some kinds of relationships in the real world?

(2) Does delays in one node result in delays elsewhere?
What is the dissemination mechanism of delay in car-
diovascular care queueing networks?

(3) Can we explain the wait time relationship of connected
nodes by delay cascading effects?

4 Wait Time Relationship Identification of
Connected Nodes

The objective of this section is to explore whether the
wait times of connected nodes have some kinds of rela-
tionships by Structure Equation Modeling. Structural Equa-
tion Modeling (SEM) is a statistic methodology that takes
a hypothesis-testing approach to the analysis of a structural
theory(i.e., regression, covariance relation) among observed
and unobserved variables bearing on some phenomenon [7].
In SEM, there are two kinds of models: (1) A measurement
model defines relations between the unobserved or latent
variables and the observed or measure variables. It specifies
the pattern by which each measure impacts on a particular
factor. (2) A structural model defines relations among the
unobserved variables. It demonstrates the pathes (regres-
sion coefficients) or correlations between unobserved vari-
ables [7]. Major applications of SEM include factor analy-
sis, path analysis, regression and correlation structure mod-
els [7][20].

In this section, we will: 1) postulate a SEM model to
estimate the wait time relationship of connected nodes (i.e.,
the wait time of prior node has an impact on the wait time of
subsequent node) based on existing literatures; 2) describe
the methods and data set to verify this hypothetic model; 3)
validate the model the analyze the results.

4.1 Hypothesis

Patient demands and capacity of suppliers are key fac-
tors impact on queues or wait times in healthcare system.
Harindra et al. [29] utilize cox-proportional hazard model
to figure out that the clinical needs and service capacity are
two important factors accounting for the access inequalities
of Cath in Canada. Schoenmeyr et al. [27] has found that
there is a sensitive relationship among caseload (i.e., de-
mands), physical capacity of suppliers (e.g., beds) and the
wait times in a congested recovery room. Regarding the re-
lationship of these two factors, patient demands may have
an impact on the capacity of suppliers because the desire to
meet and improve health care quality and health outcomes
is an dominant driven force for capacity changing [5].

Based on these existing works, in this section, we also
hypothesize that clinical needs or the number of patient ar-
rivals and service capacity are two factors affect the fluc-
tuations of wait times of nodes in the cardiovascular care
queueing network. And the number of patient arrivals has
an impact on service capacity. In addition, for the wait times
of connected nodes, we hypothesize that there is a causal re-



Table 1: Summary of the Data Set

Cath Cardiac Surgery
Number of Hospital 11 11
Number of Samples 132 132
Average number of Arrivals, monthly 341 82
Average number of completed cases, monthly 347 83
Average 90% urgent patients completed within (day) 5 11
Average 90% semi-urgent patients completed within (day) 27 31
Average 90% elective patients completed within (day) 31 49

lation between two connected nodes. Overall speaking, our
hypotheses for wait time causation in healthcare system are:

(1) The number of patient arrivals has an impact on the wait
time of a service.

(2) Service capacity has an impact on the wait time of a
service.

(3) The number of patient arrivals has an impact on the ser-
vice capacity.

(4) Wait times of connected nodes have a causal relation-
ship.

Due to the wait time data related to the whole cardio-
vascular care system is not available, we firstly analyze two
sequential connected key services–Cath (a test procedure)
and Cardiac surgery (a treatment procedure) based on the
aggregated wait time data provided by Cardiac Care Net-
work of Ontario2, Canada. Our hypothetic Cardiac surgery
waiting list causal model is shown in Figure 2.

In this model, two endogenous variables ‘Wait Time of
Cath’ and ‘Wait Time of Surgery’ has a causal relationship
according to our hypotheses. And each of them is measured
by three endogenous variables ‘Urgency 90% Wait’ (repre-
sents a time range that 90% urgent patients are completed
within this threshold), ‘Semi-urgency 90% Wait’ (repre-
sents a time range that 90% semi-urgent patients are com-
pleted within this threshold) and ‘Elective 90% Wait’ (rep-
resents a time range that 90% elective patients are com-
pleted within this threshold). Exogenous variables, ‘Ar-
rivals’ which represents the number of patient arrivals, and
‘Capacity’ which represents the factor of supplier capacity,
both directly affect the ‘Wait Time’. In addition, ‘Capac-
ity’ will be influenced by the ‘Arrivals’ according to the hy-
potheses. In the next two subsections, we will introduce
how to estimate the regression weights of these variables
and how to measure the correctness of this hypothetic model
from empirical data.

2http://www.ccn.on.ca
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Figure 2: The hypothetic wait time causal model of Cardiac
surgery. In this model, the rectangles denote the observed vari-
ables, and ellipses express the unobserved latent variables. The
single headed arrows describe the causal connections amongvari-
ables. And the double headed arrows indicate that the two con-
nected variables have a kind of covariance correlation.

4.2 Methods

To validate the hypothetic model, our cohort consists the
wait time data (quarterly average statistic data) of 11 hos-
pitals carrying on Cath and Cardiac surgery between April
1st 2005 and March31st 2008 in Ontario, Canada3. Specif-
ically, the statistic wait time data per hospital per quarter is
a test sample, so that there are 132 samples for Cath and
Cardiac surgery respectively. Table 1 is the outline of the
data set we used, more detailed descriptions of the data set
can be found in Table 3 and Table 4 in Appendix A.

In order to eliminate the effects of non-uniform dimen-
sions in analysis, the empirical data has been standard-
ized to z-scores. Then, maximum likelihood estimation
(ML-estimation), a preferred estimation method in SEM,
has been utilized for parameters estimated. ML estimation
method has favorable asymptotic qualities which makes it
possible to test a SEM model against the data by the in-
dexes ofχ2, degree of freedom and probability level (i.e.,

3http://www.ccn.on.ca/content.php?menuID=15&subMenuID=23&
subMenu2ID=66
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Figure 3: Output path diagram for hypothetic Cardiac surgery wait time causal model. Numbers beside directed line are standardized
regression coefficients. Numbers above the rectangle are the multiple squared covariance of the variables.

determine the significant of a model).
In this paper, data pretreatment (e.g., normalize) is per-

formed with SPSS16.0 for Windows computer package
software. Hypothetic SEM model estimation based on em-
pirical data is conducted with AMOS16.0 software.

4.3 Results and Discussion

By AMOS 16.0, the estimated model is displayed in Fig-
ure 3, and the assessment of the model fit is shown in Table
2.

Table 2: Goodness of fit indices for hypothetic wait time causal
model.

Fit Index Value Judgement Criteria
χ2 48.37
df 31
p value 0.024 normallyp < 0.05
NFI 0.959 normallyNFI > 0.9
RMSEA 0.065 normallyRMSEA < 0.1

Note: df=degree of freedom,NFI = Normed Fit Index,
RMSEA = Root Mean Square Error of Approximation.

As table 2 shows, goodness-of-fit statistics exhibit that
the hypothetic model is well fit the data. From the causal
paths shown in Figure 3, we can find that: 1) increase of
the number of arrivals will induce the capacity elevation and

increase of the wait time, whereas the capacity increase will
decrease the wait time; 2) the arrivals of Cath and Cardiac
surgery have a covariance relationship; 3) the ‘Wait Time of
Cath’ has a positive impact on the ‘Wait Time of Surgery’.

5 Modeling Delay Cascade in Queueing Net-
work

Although we have found that queues or wait times of
connected nodes do have positive causal relationship in the
real world in Section 4, the underline reason for forming
such kind of relationship is still unknown. In order to ana-
lyze the wait times mathematically and to validate that de-
lay cascade may result in such kind of wait time relation,
we will utilize queueing theory to model the wait times in
Queueing Network.

Our proposed series queueing network model which is
shown in Figure4 is composed by two M/M/1 service sta-
tions in accordance with the hypothetic model in Section
4. Where the first M denotes the Markovian arrival rate,
the second M denotes the service time distribution follow-
ing exponential distribution, and 1 denotes a single server.
Some basic assumptions of this model are:

(1) An open queueing system with only one entrance. That
means, the system has infinity input at the root node
(e.g., register unit in healthcare system) but the rest of



Figure 4: A series queueing network model. Nodes 1 and 2 are
two serial connected nodes with queues.U denotes other nodes in
queueing network without queues.

nodes do not have external arrivals except flow from
other nodes.

(2) The external arrivals of Cath appointment is Poisson
distribution with parameterλk.

(3) The arrival rate of node 2 is proportional to the arrival
of nodev1 by state transition parameterξ (0 < ξ ≤ 1).
There are no external arrivals in the second unit.

(4) Nodesv1 and v2 always have waiting queues while
other nodes (denoted as “U” in Figure4) have no queues
to eliminate the influence from other nodes.

(5) Consider First In First Out service discipline. That
means, there is no service priority in this model.

(6) Letµi denote the average departure rate of nodevi. µi

can be considered as negative exponential distribution.

Let Ni(t) denotes task number (including patients in the
queue and in process) atvi on timet. And letp(a, b : t) =
P{N1(t) = a, N2(t) = b}, wherep(a, b : t) is the state
probability that system hasa tasks (patients) atv1 and b
tasks (patients) atv2. Then we can draw a group of equa-
tions (shown as Equation 8) to characterize the queueing
process.

When∆t → 0, p(a, b) = limt→∞ p(a, b : t), a, b ≥ 0.
The solving process is omitted in this paper.

6 Experiments

Based on our serial queueing network model, in this sec-
tion, we will do experiments to examine whether and how
delay cascade results in the wait time relation between con-
nected nodes in queueing network. The objective of our
experiments is to answer these following two questions:

p(0, 0 : t + ∆t) = (1 + λ∆t)p(0, 0 : t)

+ µ2∆tp(0, 1 : t)

+ (1 − λξ∆t)p(1, 0 : t)

+ o(∆t),

p(a, 0 : t + ∆t) = λ∆p(a − 1, 0 : t)

+ (1 − λ∆t − µ1∆t)p(a, 0 : t)

+ (1 − λξ∆t)p(a + 1, 0 : t)

+ µ2∆tp(a, 1 : t)

+ o(∆t)), a > 0,

p(0, b : t + ∆t) = µ1ξ∆tp(1, b − 1 : t)

+ (1 − λ∆t − λξ∆t − µ2∆t)p(0, b : t)

+ (1 − µiξ∆t)p(1, b : t)

+ µ2∆tp(0, b + 1 : t)

+ (1 − µ1ξ∆t + µ2∆t)p(1, b + 1 : t)

+ o(∆t), b > 0,

p(a, b : t + ∆t) = λ∆p(a − 1, b : t)

+ (1 − λ∆t − λξ∆t − µ1∆t − µ2∆t)p(a, b : t)

+ µ1ξ∆tp(a + 1, b − 1 : t)

+ (1 − µ1ξ∆)p(a + 1, b : t)

+ µ2∆tp(a, b + 1 : t)

+ (1 − µ1ξ∆t + µ2∆t)p(a + 1, b + 1 : t)

+ o(∆t), a, b > 0
(8)

(1) How does delay cascade happen within a unit? In other
words, what is the relationship between the delays and
accumulative wait time within a node?

(2) Whether and how does delay cascade happen across
units? what are the relationships between the delays
and accumulative wait time of connected nodes?

6.1 Experiment Settings

In order to observe the effects of delay cascade on wait
times by queueing network model, we should define some
basic parameters involved in our model.

Based on the assumptions in Section 3 and Section 5, the
patients for receiving the treatments in Cath and Cardiac
surgery are by schedule, in that both of them need appoint-
ment before execution. Therefore, the arrival rate for Cath
treatment is uniform distribution although the arrival rate
for Cath appointment is Poisson distribution. The arrival
rate for treatment in Cardiac surgery is also normal distri-
bution. The transfer parameterξ12 = 0.2 is approximately
equal to the rate of service provision from Cath to Cardiac
surgery shown in Tables 1.
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Figure 5: Relationship between delay and wait time in node 1. (a) The distribution of random delays of patients; (b) Actual wait times of
patients; (c) Accumulative wait time during simulation. The overall delay is 724 hours which results in20 ∗ 10

5 hours wait in total.

Figure 6: Illustrate the delays and wait times distribution of pa-
tients in node 2 without delays in node 1.

For the parameters of service time, the Cath procedure
itself generally takes 30 minutes according to the guide-
line4. In our simulation, we assume the average service
time of Cath is 1 hour which includes the performance time
and necessary preparation time for this procedure. There-
fore, the actual service time in simulation is exponential
distributed with rate parameterλs

1
= 1.

Similarly, the performance time of Cardiac surgery nor-
mally varies from 3 to 6 hours5. Therefore, in our simula-
tion, we assume the average service time of Cardiac surgery
is 5 hours, and the actual service time is exponential dis-
tributed with rate parameterλs

2
= 0.2.

Each run in our simulation includes 3650 time steps aim-
ing to simulate one year situation with 10 hours working
time per day.

6.2 Delay Cascade Within a Node

Figure 5 shows the simulation results of delay and wait
time in a unit (nodev1). Although the largest delay is less

4http://my.clevelandclinic.org/heart/services/tests/invasive/ccath.aspx
5http://openheart.net/procedures/surgery/coronaryarterybypass.htm

Figure 7: Illustrate the delays and wait times distribution of pa-
tients in node 2 with delays in node 1.

than 2 hours (shown in subfigure (a)), due to the delay cas-
cading effects, these pieces of delays result in the wait times
of patients nearly linearly increase (shown in subfigure (b)),
and the accumulative wait time ofv1 exponential increase
(shown in subfigure (c)). Therefore, we can draw the con-
clusion that a piece of delay will cascade in the queue within
a node.

6.3 Delay Cascades Across Nodes

Figure 6 shows the simulation result of the idle delays
and wait times distribution inv2 in a year, without delays
cascade fromv1. Figure 7 is the actual delays and wait times
distribution inv2 considering the delay influence fromv1.
Compare these two figures, we can see that both delays and
wait times are more heavy in Figure 7 than in Figure 6. That
means due to the temporal relationship caused by patient
path, the delays in one node do cascade to the subsequent
nodes, so that delays and wait times in the subsequent nodes
are more serious than in those be regarded as isolated.



7 Conclusion

The main contribution of this paper includes two aspects:
(1) Discover the wait time relationship of Cath unit and
Cardiac surgery unit based on the empirical data employ-
ing the technique of Structural Equation Modeling. Results
show that wait time of Cath has a noticeable impact on the
wait time of Cardiac Surgery. This case study validates
our hypothesis that there are a kind of wait time relation-
ship among nodes in queueing network. (2) Explain the
reason for such wait time relationship among nodes by de-
lay cascading effects. In order to validate whether and how
delay cascade causes wait time relationship among nodes,
we propose a serial queueing network model to mathemat-
ically study the effects of delay cascade in cardiovascular
queueing networks. The simulations demonstrate that de-
lay will cascade not only within a node, but also across the
connected nodes. However, although we have use empiri-
cal data to initialize some parameters in our serial queueing
network model, the service times in experiments are ran-
domly generated following defined stochastic distribution,
therefore it may not well match the real situations in cardio-
vascular care. We will further investigate the mechanisms
and effects of delay cascade in healthcare system based on
empirical data in the future.
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Appendices
A Data Profile



Table 3: Profile of Wait Time Data of Cardiac Cath from April 2005 to March 2008 in Ontario, Canada

Hospital Arrivals Completed Cases U: 90% within S: 90% within E: 90% within
Hamilton HSC 474 488 9 16 18
Hôpital Régional de Sudbury 226 232 6 34 39
Kingston General Hospital 255 254 5 24 30
London HSC 297 302 7 31 35
Southlake Regional HC, Newmarket 420 423 4 16 21
St. Mary’s General Hospital, Kitchener 253 257 3 24 27
St. Michael’s Hospital, Toronto 229 219 4 18 21
Sunnybrook Health Sciences Centre 251 252 4 21 25
Trillium HC, Mississauga 370 381 4 27 29
University Health Network, Toronto 523 529 3 35 36
University of Ottawa heart Institute 467 478 7 38 47

Note: ‘Arrival’=the monthly average number of arrivals in aquarter, ‘Completed cases’ = the monthly average number of completed
cases in a quarter, ‘U: 90% within’= the monthly average timethreshold within which 90% urgent patients completed, ‘S: 90%
within’= the monthly average time threshold within which 90% semi-urgent patients completed, ‘E: 90% within’= the monthly average
time threshold within which 90% elective patients completed.

Table 4: Profile of Wait Time Data of Cardiac Surgery from April 2005 toMarch 2008 in Ontario, Canada

Hospital Arrivals Completed Cases U: 90% within S: 90% within E: 90% within
Hamilton HSC 119 120 7 29 49
Hôpital Régional de Sudbury 39 38 11 31 48
Kingston General Hospital 43 46 16 36 53
London HSC 113 113 6 29 52
Southlake Regional HC, Newmarket 68 69 12 40 60
St. Mary’s General Hospital, Kitchener 57 61 13 41 60
St. Michael’s Hospital, Toronto 83 85 14 32 48
Sunnybrook Health Sciences Centre 66 67 9 22 35
Trillium HC, Mississauga 85 87 9 18 31
University Health Network, Toronto 135 138 8 37 52
University of Ottawa heart Institute 92 89 14 32 54

Note: ‘Arrival’=the monthly average number of arrivals in aquarter, ‘Completed cases’ = the monthly average number of completed
cases in a quarter, ‘U: 90% within’= the monthly average timethreshold within which 90% urgent patients completed, ‘S: 90%
within’= the monthly average time threshold within which 90% semi-urgent patients completed, ‘E: 90% within’= the monthly average
time threshold within which 90% elective patients completed.


