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Abstract to receive their needed services, then the temporal ralatio
of nodes are formed during such patient travel processes.
A cardiovascular care system can be regarded as a kind Queues or waits may arise at each node due to the inade-
of queueing network, for units which own queues are con-quate service capacity [6] as well as unpredictable patient
nected to each other according to their temporal relation- arrivals and behaviors [11][12].
ship (e.g., since a patient should register before he recgiv In order to shorten wait time in public health care, pre-
the consultation in a hospital, there is a directed link from vious studies on wait time management focus mainly on
the appointment unit to the consultation unit). Previous re analyzing and controlling some intuitionally impact fac-
searches about shortening long queues or long wait timestors, like modeling patient flow [23], optimizing resource
often focus on some intuitionally impact factors, like tedi allocation [6], improving management strategies [19], and
resources, unpredictable patient behaviors and inefficien etc. These researches investigate wait time problem from
management policies in an isolated unit (e.g., emergencythe same perspective, that is to balancing demands and re-
department), seldom consider the factors concealed amongsource allocations while avoiding unduly long queues. And
units in a queueing network. This paper will figure out that they often study wait time problems within an isolated unit,
delay cascade, a small delay in one place resulted in longlike operating room [6], emergency department [4], and
delays elsewhere, is an important factor which may leads toetc. However, seldom of the studies endeavor to figure out
the covariance fluctuation of wait times among connected other factors underline the pervasive wait in healthcase sy
units. tem besides dynamics and unbalanced demands and sup-
In this paper, we investigate delay cascade, or how de- pliers, while they are failed to explain why some services
lays disseminate from one unit to another in a cardiovas- (e.g., coronary artery bypass surgery) still have long geeu
cular care queueing network. Prior to a further investi- though the capacities have already fulfilled the demands
gation of the dynamic patterns (e.g., how does the delay[28].
cascade happen) in cardiovascular care, we 1) first iden-  |n this paper, we suppose delay cascade, a phenomenon
tlfy whether two connected units have a wait time relation- has been |Ong studied in the area of control System and sup-
ship by Structure Equation Modeling based on empirical ply chain management (may in other forms as information
data of Ontario, Canada; 2) in order to explain the under- delay or resource delay) [18][24], is an important factor
line mechanisms accounting for such kind of wait time rela- which leads to the pieces of tiny delays spreading over the
tionship, we develop a series Markovian queueing networkentire queueing network and finally results in heavy wait
model to analyze the relationship of delay cascade and waittimes at units. For example, thirty minutes delay of patient
time mathematically. Our simulation results show that the A in Magnetic Resonance Imaging (MRI) test will let all the
delays in a unit will cascade within its own queue, as well patients behind him wait thirty more minutes in the same
as spread to other connected units, so that the total delaysqueue. As well, this delay may also influence the wait time
and wait times in the whole system will be more heavily.  of other nodes involved in the sequential path of this patien
For example, with doctor’s arrangement, patient A should
take MRI test on 9:00 am and take Cath test on 10:00 am
1 Introduction by schedule. Due to the delay of thirty minutes in MRI test,
the start time of Cath is not 10:00 am but 10:20 am. There-
As a specific healthcare service system, a cardiovasculafore, delays spread across the entire queueing network like
care system which is composed of a number of units cana virus. We call this spreading of a piece of delay along
be regarded as a directed queueing network. The node ifinks in a queueing network a delay cascade.
the network is a unit which offers a unique service (e.g.,ap-  In order to investigate whether and how delays propagate
pointment, consultation, electrocardiogram test, eteus- in a queueing network, we mainly concern the following
tomers, or patients travel through several nodes seqligntia questions in this paper:



(1) Do the wait times of connected units have a kind of clinical need [29]. Regarding the factor of resource iz
covariance relationship from empirical data? In other tion and allocation, Brecht et al.[6] have reviewed over 100
words, does the wait time of a unit be an important pre- papers related to resource planning and scheduling in op-
dictor for the wait times of connected units? erating room. Jun et al.[16] and Jacobson et al.[19] have

. .__presented a comprehensive survey for the purpose of op-
(2) Whether and how does delay spread in the queuelngtimizing healthcare resources allocation, improve patien

network? How to model the delay cascading effects on flow, while minimizing healthcare delivery costs over the

wait time? In.other worQs, do_e s delay Cﬁscade accountpast forty years. As the factor of dynamic patient arrival,
for the covariance relationship of wait times between Zhao and Lie [30] have applied the queueing model to de-
connected units? scribe the patient flow in an emergency department aiming
For the first question, we will utilize the Structural at intelligent scheduling and reducing emergency depart-
Equation Modeling (SEM), a powerful multivariate analy- ment crowding.
sis technique [7], with a hypothesis-testing approach to an  In retrospect, most of the existing works on wait time
alyzing the structure (i.e., regression, covarianceimsiat ~ management focus on such physical resource bottlenecks
between the wait times of connected units based on the emand patient movement patterns in an isolated unit, but sel-
pirical data released by Cardiac Care Network of Ontario, dom reveal the factors or reasons for pervasive delays in
Canada. We propose a hypothesized wait time causal modethe whole healthcare system. To this end, delay cascade, a
which includes causal factors (i.e., number of arrivals, th possible explanation for forming wait time relationship be
service capacity, wait time of connected nodes) and waittween connected units is proposed in this paper.
time measurement variables (i.e., time of 90% patients com- Cascading effects have been widely studied in many re-
pleted in the urgency/semi-urgency/elective patient grou search areas to demonstrate how an unforeseen chain of
respectively) to test the wait time relationship of conedct  events happen due to an act affecting a system. For ex-
units. The estimation results show that our model fits the ample, in ecosystem, trophic cascade has been studied to
empirical data well and there is a noticeable causal relatio understand the population relations of predator and prey in
ship of wait times between connected nodes. a food web [15]. Cascade failures are characterized and
For the second question, we will apply the queueing the- modeled to explain why small initial shocks will trigger the
ory, a technique good at quantitatively studying waitisgsli ~ entire system collapses in electrical power network, traffi
[17], to model the dynamic of queueing network and to network and Internet [13]. In social network, cascade ef-
discover the effects of delay cascade on wait times. Wefects have been investigated to figure out how information
propound a series Markovian queueing network model to disseminates through social links in social networks ared th
demonstrate the dynamic process of delay cascade and itanderline mechanisms [9].

impact on wait times in queueing network. Experiments  Although not with the same name, delay cascade has
show that delay is not only cascade within a node but alsopeen drawn attentions in the fields of control and manage-
spread to the connected nodes. This phenomenon may paiment systems. For example, in industrial control system,
tially explain why connected nodes have wait time relation- mathematic based techniques (i.e., Lyapunov function) has
ship in the real world. been constructed to control the time delay and its cascading
The remainder of this paper is organized as follows. In gffects [18][25]. In business, delays (material delayfgrin

the next SeCtion, we will talk about the related work. Sec- mation de'ays’ etc_) at every Stage and its cascade through
tion 3 iS the problem statement. SeCtion 4 analyzeS the Wa|tthe Supp'y chain have been recognized as the main causes of
time relationship of connected nodes by SEM. Section 5 the pullwhip effect [24]. Inspired by these works, our work
describes our queueing model to study the delay cascadgyil| unfold that delay cascade is also a noticeable impact

effects in queueing network model. Section 6 is the prelim- factor for wait time relationship between connected nodes
inary experiments. Finally, Section 7 concludes the whole j, queueing network.

paper. In order to model and measure the cascading effects,

there are generally two ways. One prevail approach is
2 Related Work bottom-up based modeling and simulation, which has been
widely used to study virus propagation and immunization
As an effective way for wait time management in health- strategies in email networks [22], the contagion of obesity
care system, finding out and efficient controlling some con- in a social network [10], information cascade in blogs [21],
straint factors have received long-term attention. Capac-and etc. The common research steps of this method are
ity of suppliers has been recognized as an important factorl) build up a large-scale or a complex network including
which may result in significant regional disparities in ac- a large number of autonomous nodes; 2) define the behav-
cess to coronary artery bypass surgery after accounting foiior rules or mechanisms for these nodes; 3) run simulations
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to see how a tiny event disseminates through links in the Appointment
network and its finally aggregative effects. This method is I

popular in researches aiming to observe the processes of
cascade and to find out how tiny events in isolated nodes

will finally cause unpredictable emergent events in global. T

Another traditional analyze approach is top-down based ECG Holier=vent || Echocardiograph | | CathiAngiography
mathematically modeling, such as queueing theory we =
adopted in this paper. As a long standing useful way to

analyze queues, queueing theory can capture the effects of Cordios B
delays on the overall wait times. Regards the studies cklate Froare "] sugery ") Medene
to queueing theory modeling on wait time, Fomundam and

Herrmann [14] have surveyed a range of queueing models $
applied to waiting list analysis, resource utilization ks, Departure
and healthcare system design (e.g., appointment systems).
Creemers and Lambrecht [11] have constructed a queueingigyre 1: A cardiovascular care queueing network consisting of
model to assess the impact of service outages, to approxiunits commonly encountered in cardiovascular patientpayhin
mate patient flow times, and to evaluate a number of practi-this figure, the rectangle, which represents a unit, is a fotkee

cal applications. They have also developed a decompositiorcardiovascular care queueing network. And the directee elg
based queueing network model to assess the performance inotes the temporal relationship between two nodes. (EC&-El
terms of patient flow at the orthopaedic department in Mid- trocardiogram; PTCA: Percutaneous transluminal coroaagjo-
delheim hospital Lambrecht [12]. In this paper, we will uti- Pasty; PCI: Percutaneous coronary intervention)

lize queueing theory to model and to analyze the effects of

delay cascade on wait time in cardiovascular care queuein
network.

Consultation

%t nodek can be calculated by Equation 1.

In Equation 1, ;, is the delay of patient atwvy,. T/S\‘,,/,;C
which is calculated by Equation 2, is the scheduled start-
3 Problem Statement time for patientp to receive the treatment provided by.

T/Iik is the expected service time of patignat v,. We

Based on the cardiovascular treatment guidelines [1][2], assume that the expected perform-times for all the patients
a cardiovascular care system can be simplified as a directedre the same.
graphG =< V, E > (as shown in Figure 1), where each The wait time of patienp atvy, is defined as Equation 3.
nodev;, € V (i € [0, N]) represents a unit, and each edge
ei; € E (i,j € [0,N]) represents a temporal connection
from v; to v;. If there is a patient flow from; to v;, then - {0, if patient p does not visit node k 3)
ei; = 1; otherwiseg;; = 0. If e¢;; # 0, thenv; andv; are b TEpr—TJpr — TPy}, else
called connected nodes; is the prior node ob;, andv; is
the subsequent node of. The patient transfer rate which Where,w,, \ is the wait time of patienp atvy. T'E,, j is
denotes the patient proportion framto v; is &;;. the actual treatment end-time of patiendt v,. Similarly,

In this paper, we will pay attention to the key nodes 7'J,. is the time when patient joins the queue o, and
(Cath, PTCA/PCI, Cardiac surgery, etc., shown in Figure TPy« is the actual service time of patieptat v,. We as-
1) which need appoint before execution in real world be- sume that the actual service timewgffollows exponential
cause the appoint mechanism affords facilities for waietim  distributionT P, ~ Exp(X;) .
estimation II'.I O.ur SImUIatlon.' In addition, to simplify the-d . 1Due to the lack of empirical data to show the actual distrdupf
lays and wait times calculation, we assume that the working yreatment time in cardiovascular care, we follow a genratisumption
time of a unitis 10 hours a day. Then the delay of patient that the service time is exponential distributed [3]




In order to measure the accumulative effects of delays(3) Can we explain the wait time relationship of connected
and waits, the accumulative delays of a node in a giventime  nodes by delay cascading effects?
period can be calculated by Equation 4. And the accumula-

tive wait times of a node in a given time period is calculated 4 Wait Time Relationship Identification of

by Equation 5.
Y= Connected Nodes
M
DNy, = Zdi’»k (4) The objective of this section is to explore whether the
p=1

wait times of connected nodes have some kinds of rela-
Where,D Ny, is the accumulative delays of, which is tionships by Structure Equation Modeling. Structural Equa
summed by the delay of fist patient to that of the last one tion Modeling (SEM) is a statistic methodology that takes
(M patients in total) in a given time period. a hypothesis-testing approach to the analysis of a stralctur
theory(i.e., regression, covariance relation) amongiese

M and unobserved variables bearing on some phenomenon[7].

WNi = Z W,k (5) In SEM, there are two kinds of models: (1) A measurement
p=1 model defines relations between the unobserved or latent
Where, W N, is the accumulative wait times aofy, variables and the observed or measure variables. It specifie
which is summed by the wait times of all the patient$ ( the pattern by which each measure impacts on a particular
patients in total) in a given period of time. factor. (2) A structural model defines relations among the

The cascade delay may happen in the units with appoint-unobserved variables. It demonstrates the pathes (regres-
ment service discipline and will spread over the cardiovas- sion coefficients) or correlations between unobserved vari
cular care queueing networks. In order to measure the de-ables [7]. Major applications of SEM include factor analy-
lays and wait times of a patient in his overall treatment pro- sis, path analysis, regression and correlation structogt m
cess, the total delay of patieptis define as Equation 6. els [7][20].

And the total wait time of patient in his patient journey is In this section, we will: 1) postulate a SEM model to
defined as Equation 7. estimate the wait time relationship of connected nodes (i.e
the wait time of prior node has an impact on the wait time of
N subsequent node) based on existing literatures; 2) describ
DP, = Z dp.j (6) the methods and data set to verify this hypothetic model; 3)
=1 validate the model the analyze the results.
Where, DP, is the accumulative delay of patiept

which is summed by the delays of patientt all the N 4.1 Hypothesis
nodes in the queueing network.

N Patient demands and capacity of suppliers are key fac-
WP, = de (7) tors impact on queues or wait times in healthcare system.
J=1 Harindra et al. [29] utilize cox-proportional hazard model

to figure out that the clinical needs and service capacity are

two important factors accounting for the access inegealiti

of Cath in Canada. Schoenmeyr et al. [27] has found that

there is a sensitive relationship among caseload (i.e., de-

related to the units shown in Figurel, we start from a graph mapd_s), physmal capacity of suppliers (e.g., bed_s) and the
wait times in a congested recovery room. Regarding the re-

including two units (i.e., Cath and cardiac surgery, which ) .
: o : lationship of these two factors, patient demands may have
have been identified as the most important and resource-

intensive cardiovascular procedures [8][26]), to show the an impact on the capacity of supphe_rs because the desire to
P ; - .~ meet and improve health care quality and health outcomes
waiting list dynamic process. Specific research questions, . : . .
) is an dominant driven force for capacity changing [5].
to be answered are as follows: - 0 .
Based on these existing works, in this section, we also
(1) Do the queues or wait times of connected nodes havehypothesize that clinical needs or the number of patient ar-
some kinds of relationships in the real world? rivals and service capacity are two factors affect the fluc-
tuations of wait times of nodes in the cardiovascular care
(2) Does delays in one node result in delays elsewherejueueing network. And the number of patient arrivals has
What is the dissemination mechanism of delay in car- an impact on service capacity. In addition, for the wait sme
diovascular care queueing networks? of connected nodes, we hypothesize that there is a causal re-

Where, IV P, is the accumulative wait time of patiept
which is summed by the wait times of patienat all the NV
nodes in the queueing network.

In this paper, due to the lack of complete empirical data



Table 1: Summary of the Data Set

Cath Cardiac Surgery

Number of Hospital 11 11

Number of Samples 132 132

Average number of Arrivals, monthly 341 82

Average number of completed cases, monthly 347 83

Average 90% urgent patients completed within (day) 5 11

Average 90% semi-urgent patients completed within (dpy) 27 31

Average 90% elective patients completed within (day) 31 49
lation between two connected nodes. Overall speaking, our Cath Urgency
hypotheses for wait time causation in healthcare system are Catn Arvals e et

L Wait Time of Cath Cath SemeLrgency

(1) The number of patient arrivals has an impact on the wait Cath Capacity

Cath Elective

time of a service. 90% Wait

(2) Service capacity has an impact on the wait time of a Cath Urgency
H 90% Wait
service. Surgery Arrivals

Wait Time of
Surgery

Cath Semi-urgency

(3) The number of patient arrivals has an impact on the ser- L 90% Wait

vice Capacity. Surgery Capacity

Cath Elective
90% Wait

(4) Wait times of connected nodes have a causal relation-
ship. Figure 2: The hypothetic wait time causal model of Cardiac
surgery. In this model, the rectangles denote the obseragd v
i . ables, and ellipses express the unobserved latent vagiaflee
Due to the wait tlme data rglated to th_e whole cardio- single headed arrows describe the causal connections amadng
vascular care system is not available, we firstly analyze two gpjes. And the double headed arrows indicate that the twe con
sequential connected key services—Cath (a test proceduréjected variables have a kind of covariance correlation.
and Cardiac surgery (a treatment procedure) based on the
aggregated wait time data provided by Cardiac Care Net-
work of Ontarid@, Canada. Our hypothetic Cardiac surgery 4.2 Methods
waiting list causal model is shown in Figure 2.

In this model, two endogenous variables ‘Wait Time of o validate the hypothetic model, our cohort consists the
Cath’ and ‘Wait Time of Surgery’ has a causal relationship wajt time data (quarterly average statistic data) of 11 hos-
according to our hypotheses. And each of them is measurecbitab carrying on Cath and Cardiac surgery between April
by three endogenous variables ‘Urgency 90% Wait' (repre- 1t 2005 and Marci31* 2008 in Ontario, CanadaSpecif-
sents a time range that 90% urgent patients are completeqlca"y’ the statistic wait time data per hospital per quaige
within this threshold), ‘Semi-urgency 90% Wait" (repre- 4 test sample, so that there are 132 samples for Cath and
sents a time range that 90% semi-urgent patients are comcardiac surgery respectively. Table 1 is the outline of the
pleted within this threshold) and ‘Elective 90% Wait' (rep- gata set we used, more detailed descriptions of the data set
resents a time range that 90% elective patients are comgan be found in Table 3 and Table 4 in Appendix A.
pleted within this threshold). Exogenous variables, ‘Ar- | order to eliminate the effects of non-uniform dimen-
rivals’ which represents the number of patient arrivalel an  gions in analysis, the empirical data has been standard-
‘Capacity’ which represents the factor of supplier capacit  j;eq to z-scores. Then, maximum likelihood estimation
both directly affect the ‘Wait Time'. In addition, ‘Capac-  (\j_-estimation), a preferred estimation method in SEM,
ity will be influenced by the ‘Arrivals’ according to the hy-  p45 peen utilized for parameters estimated. ML estimation
potheses. In the next two subsections, we will introduce method has favorable asymptotic qualities which makes it

how to estimate the regression weights of these Variablesgossible to test a SEM model against the data by the in-
and how to measure the correctness of this hypothetic modejeyes ofy?, degree of freedom and probability level (i.e.,

from empirical data.

Shttp://www.ccn.on.ca/content.php?menulD=158&subM&=238&
2http://www.ccn.on.ca subMenu2ID=66
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Figure 3: Output path diagram for hypothetic Cardiac surgery waiteticausal model. Numbers beside directed line are standdrdiz
regression coefficients. Numbers above the rectangle ematittiple squared covariance of the variables.

SurgeryElectiveNinetyPercentWait

bae

determine the significant of a model). increase of the wait time, whereas the capacity increase wil

In this paper, data pretreatment (e.g., normalize) is per-decrease the wait time; 2) the arrivals of Cath and Cardiac
formed with SPSS16.0 for Windows computer package surgery have a covariance relationship; 3) the ‘Wait Time of
software. Hypothetic SEM model estimation based on em- Cath’ has a positive impact on the ‘Wait Time of Surgery’.
pirical data is conducted with AMOS16.0 software.

5 Modeling Delay Cascade in Queueing Net-

4.3 Results and Discussion work

By AMOS 16.0, the estimated model is displayed in Fig-

ure 3, and the assessment of the model fit is shown in Table Although we have found that queues or wait times of
2. connected nodes do have positive causal relationship in the

real world in Section 4, the underline reason for forming
Table 2: Goodness of fit indices for hypothetic wait time causal  such kind of relationship is still unknown. In order to ana-

model. lyze the wait times mathematically and to validate that de-
Fit Index Value Judgement Criteria lay cascade may result in such kind of wait time relation,
% 48.37 we will utilize queueing theory to model the wait times in
df 31 Queueing Network.
p value 0.024 normallyp < 0.05 Our proposed series queueing network model which is
NFI 0.959 normally NFI > 0.9 shown in Figure4 is composed by two M/M/1 service sta-
RMSEA 0.065| normallyRMSEA < 0.1 tions in accordance with the hypothetic model in Section

Note: df=degree of freedom NFI = Normed Fit Index, 4. Where the first M denotes the Markovian arrival rate,

RMSEA = Root Mean Square Error of Approximation. the second M denotes the service time distribution follow-

ing exponential distribution, and 1 denotes a single server
Some basic assumptions of this model are:
As table 2 shows, goodness-of-fit statistics exhibit that
the hypothetic model is well fit the data. From the causal (1) An open queueing system with only one entrance. That
paths shown in Figure 3, we can find that: 1) increase of means, the system has infinity input at the root node
the number of arrivals will induce the capacity elevatiod an (e.g., register unit in healthcare system) but the rest of



Other service nodes with

infinite service capacity /\
...... u
(2 —/ (0,01t + At) = (1+ AAD)P(0,0 : )
+ p2Atp(0,1 : ¢)

@_]Iﬂmuﬂmmummﬂﬂmmﬂﬂm@a:ﬂmmﬂﬂmﬂmﬂmﬂmﬂmﬂm@ 4 (1= AADP(L,0 - £)

External Arrivals 1 2 Departure + O(At)7
(Poisson distribution) (M/M/1, Exponential (M/M/1, Exponential

distributed Service rate) distributed Service rate) p(a’ 0:¢ + At) = AAp(a — 1’ 0: t)

Figure 4: A series queueing network model. Nodes 1 and 2 are + (1= AAL = At)p(a, 0+ 1)
two serial connected nodes with queuEsdenotes other nodes in + (1 = XAt)p(a+1,0: 1)
queueing network without queues. + paAtpla, 1 :t)

+o(At)),a > 0,

nodes do not have external arrivals except flow from PO bt + At) = pugAtp(1,b—1:1)
other nodes. + (1 = MNAE — MEAL — pa At)p(0,b : t)
+ (1 — wi€At)p(1,b: t)
(2) The external arrivals of Cath appointment is Poisson + o Atp(0,b 41 : t)
distribution with parametek;,. 4 (1= €A+ o A)p(L,b+1: 1)
+ o(At),b > 0,

(3) The arrival rate of node 2 is proportional to the arrival

of nodew; by state transition paramete(0 < ¢ < 1). pla;b:t+At) = AAp(a—1,b:1)

There are no external arrivals in the second unit. + (1 = At = ANAE — i At — pAt)p(a, b : t)
+ wéAtpla+1,0—1:¢)
(4) Nodeswv; and v, always have waiting queues while + (1= méA)pla+1,b:1)
other nodes (denoted as “U” in Figure4) have no queues + o Atp(a,b+1: 1)

to eliminate the influence from other nodes.
+ (1 = AL+ poAt)p(a + 1,0+ 1 : t)

(5) Consider First In First Out service discipline. That +o(At),a,b>0

means, there is no service priority in this model. (8)
(1) How does delay cascade happen within a unit? In other
(6) Lety; denote the average departure rate of nade; words, what is the relationship between the delays and

can be considered as negative exponential distribution. accumulative wait time within a node?

(2) Whether and how does delay cascade happen across
units? what are the relationships between the delays
and accumulative wait time of connected nodes?

Let N;(t) denotes task number (including patients in the
queue and in process)aton timet. And letp(a,b : t) =
P{Ni(t) = a, Nao(t) = b}, wherep(a,b : t) is the state
probability that system hag tasks (patients) at; andb
tasks (patients) at,. Then we can draw a group of equa-
tions (shown as Equation 8) to characterize the queueing
process.

WhenAt — 0, p(a,b) = limy—,o p(a,b : t),a,b > 0.
The solving process is omitted in this paper.

6.1 Experiment Settings

In order to observe the effects of delay cascade on wait
times by queueing network model, we should define some
basic parameters involved in our model.

Based on the assumptions in Section 3 and Section 5, the
patients for receiving the treatments in Cath and Cardiac
6 Experiments surgery are by schedule, in that both of them need appoint-

ment before execution. Therefore, the arrival rate for Cath
treatment is uniform distribution although the arrivalerat

Based on our serial queueing network model, in this sec-for Cath appointment is Poisson distribution. The arrival
tion, we will do experiments to examine whether and how rate for treatment in Cardiac surgery is also normal distri-
delay cascade results in the wait time relation between con-bution. The transfer parametgr, = 0.2 is approximately
nected nodes in queueing network. The objective of our equal to the rate of service provision from Cath to Cardiac
experiments is to answer these following two questions:  surgery shown in Tables 1.
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Figure 6: lllustrate the delays and wait times distribution of pa- Figure 7: lllustrate the delays and wait times distribution of pa-
tients in node 2 without delays in node 1. tients in node 2 with delays in node 1.

For the parameters of service time, the Cath procedure han 2 h h . b d he del
itself generally takes 30 minutes according to the guide-t an 2 hours (shown in subfigure (a)), due to the delay cas-

line*. In our simulation, we assume the average service cading effects, thege piec_es of delays resul_tinthelwaﬁst' im
time of Cath is 1 hour which includes the performance time of patients nearly Imearly Increase (showniin ?‘“?ﬂgur% (b)
and necessary preparation time for this procedure. There-and the accumulative wait time of exponential increase

fore, the actual service time in simulation is exponential (shqwn In subf!gure (€))- The_refore, we can draw the con-
distributed with rate parametat = 1. clusion that a piece of delay will cascade in the queue within

Similarly, the performance time of Cardiac surgery nor- anode.
mally varies from 3 to 6 houfs Therefore, in our simula-
tion, we assume the average service time of Cardiac surgery, o Delay Cascades Across Nodes
is 5 hours, and the actual service time is exponential dis-
tributed with rate parametey, = 0.2.

Each runin our simulation includes 3650 time steps aim- Figure 6 shows the simulation result of the idle delays
ing to simulate one year situation with 10 hours working and wait times distribution im in a year, without delays

time per day. cascade from; . Figure 7 is the actual delays and wait times
o distribution invy considering the delay influence from.
6.2 Delay Cascade Within a Node Compare these two figures, we can see that both delays and

) ) ) ~ waittimes are more heavy in Figure 7 than in Figure 6. That
~ Figure 5 shows the simulation results of delay and wait means due to the temporal relationship caused by patient
time in a unit (node,). Although the largest delay is less  paih, the delays in one node do cascade to the subsequent
“http://my.clevelandclinic.org/heart/services/téatadsive/ccath.aspx nodes, so tha_‘t delays a_nd waittimes in the SUbS_equent nodes
Shttp://openheart.net/procedures/surgery/coronamggrypass.htm are more serious than in those be regarded as isolated.




7 Conclusion [7] B. M. Byrne. Structural Equation Modeling with AMOS:
Basic Concepts, Applications, and Programming (2nd)

. I . . Routledge, 2009.
The main contribution of this paper includes two aspects: [8] R. garrogfl S. Horn. B. Soderfeldt. B. James. and L. Malm-

(1) Discover the wait time relationship of Cath unit and berg. International comparison of waiting times for sedelct
Cardiac surgery unit based on the empirical data employ- cardiovascular proceduredournal of the American College
ing the technique of Structural Equation Modeling. Results of Cardiology 25:557-563, March 1995.

show that wait time of Cath has a noticeable impact on the [9] M. Cha, A. Mislove, B. Adams, and K. P. Gummadi. Char-

wait time of Cardiac Surgery. This case study validates acterizing social cascades in flickr.Pnoceedings of the first
our hypothesis that there are a kind of wait time relation- workshop on Online social networksages 13-18, 2008.

. . - . [10] N. A. Christakis and J. H. Fowler. The spread of obesity
ship among nades in queueing network. (2) Explain the in a large social network over 32 year§he New England
reason for such wait time relationship among nodes by de- Journal of Medicinet357(4):370-379, 2007.

lay cascading effects. In order to validate whether and how [11] S. Creemers and M. Lambrecht. Isr technical report:
delay cascade causes wait time relationship among nodes,  Healthcare queueing models. Katholieke Universiteit Leu-

we propose a serial queueing network model to mathemat- ven. http://ideas.repec.org/p/ner/leuven/urnhd|18385-
ically study the effects of delay cascade in cardiovascular 164227.html, 2008.

queueing networks. The simulations demonstrate that de-[12] S. Creemers and M. R. Lambrecht. Modeling a healthcare
lay will cascade not only within a node, but also across the system as a queueing network: The case of belgian hospital.

L Open Access publications from Katholieke Universiteit Leu
connected nodes. However, although we have use empiri- :
g b ven. http://ideas.repec.org/p/ner/leuven/urnhd|1B385-

cal data to initialize some parameters in our serial quepein 120530 html. 2007
network model, the service times in experiments are ran- 13] P. Crucitti. V. Latora. and M. Marchiori. Model for cas-

domly generated following defined stochastic distribution cading failures in complex networksPhysical Review F
therefore it may not well match the real situations in cardio 69(4):045104, 2004.
vascular care. We will further investigate the mechanisms [14] S. Fomundam and J. Herrmann. Isr technical report: A sur

and effects of delay cascade in healthcare system based on  Vvey of queuing theory applications in healthcare, 2007.
empirical data in the future. [15] K.T. Frank, B. Petrie, J. S. Choi, and W. C. Leggett. Trigp
cascades in a formerly cod-dominated ecosyst8gience
308(10):1621-1623, June 2005.
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Table 3: Profile of Wait Time Data of Cardiac Cath from April 2005 to Mkar2008 in Ontario, Canada

Hospital Arrivals | Completed Cases U: 90% within | S: 90% within | E: 90% within
Hamilton HSC 474 488 9 16 18
Hopital Régional de Sudbury 226 232 6 34 39
Kingston General Hospital 255 254 5 24 30
London HSC 297 302 7 31 35
Southlake Regional HC, Newmarket 420 423 4 16 21
St. Mary’s General Hospital, Kitchengr 253 257 3 24 27
St. Michael’s Hospital, Toronto 229 219 4 18 21
Sunnybrook Health Sciences Centre 251 252 4 21 25
Trillium HC, Mississauga 370 381 4 27 29
University Health Network, Toronto 523 529 3 35 36
University of Ottawa heart Institute 467 478 7 38 47

Note: ‘Arrival’=the monthly average number of arrivals irgaarter, ‘Completed cases’ = the monthly average numbeomipteted
cases in a quarter, ‘U: 90% within'= the monthly average titmeshold within which 90% urgent patients completed, ‘8%9
within'= the monthly average time threshold within which®®@emi-urgent patients completed, ‘E: 90% within’= the nmbynaverage
time threshold within which 90% elective patients complete

Table 4: Profile of Wait Time Data of Cardiac Surgery from April 2005March 2008 in Ontario, Canada

Hospital Arrivals | Completed Cases U: 90% within | S: 90% within | E: 90% within
Hamilton HSC 119 120 7 29 49
Hopital Régional de Sudbury 39 38 11 31 48
Kingston General Hospital 43 46 16 36 53
London HSC 113 113 6 29 52
Southlake Regional HC, Newmarket 68 69 12 40 60
St. Mary’s General Hospital, Kitchengr 57 61 13 41 60
St. Michael’s Hospital, Toronto 83 85 14 32 48
Sunnybrook Health Sciences Centre 66 67 9 22 35
Trillium HC, Mississauga 85 87 9 18 31
University Health Network, Toronto 135 138 8 37 52
University of Ottawa heart Institute 92 89 14 32 54

Note: ‘Arrival’=the monthly average number of arrivals imjaarter, ‘Completed cases’ = the monthly average numbeomipteted
cases in a quarter, ‘U: 90% within'= the monthly average titmeshold within which 90% urgent patients completed, ‘8%9
within'= the monthly average time threshold within which®®@emi-urgent patients completed, ‘E: 90% within’= the nmbynaverage
time threshold within which 90% elective patients compdete



