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Abstract of the world has doubled at the end of 2007 comparing with
the year 1971.). British Petroleum in [2] reports that the re
Due to the uneven geographical availability of energy re- serves of fossil fuels on the earth will not afford the requir
sources and the world imbalanced economic developmentment of human economic developmentin the very nearly fu-
it is essential for the energy suppliers and consumers inture, for example, the reserves-to-production ratio oflavor
different countries or regions to most efficiently, ecoromi oil (respectively, natural gas, coal) is estimated at 42yea
cally, as well as reliably distribute energy resources. The (respectively, 60 years, 122 years), at the end 2008. In ad-
general problem of energy distribution is a complex one in dition to the scarcity of energy resources, we are also fac-
that many factors can be involved either endogenously oring another serious problem, i.e., the uneven geographical
exogenously such as human activities, energy transporta-availability of energy resources and the world imbalanced
tion efficiency, geopolitics, and so on. Traditional stadil energy demand. On one hand, according to Gleand
and/or centralized models are impractical to tackle energy Gas Journal[1] and IEA [13], 56 percent of the world’s
distribution problems that are, by nature, non-centratize proved oil reserves are located in the Middle East, and al-
and/or dynamically evolving. Although some decentralized most three-quarters of the world’s natural gas reserves are
approaches (e.g., multi-agent systems) may be adopted tdocated in the Middle East and Eurasia. On the other hand,
solve certain types of dynamic distribution problems in a North America and Europe contribute almost half the the
small scale, they are, at the moment, still quite limited in world primary energy consumptions in 2008 [2]. Further-
methodology and applications to practically address var- more, it is predicted by IEA in [13] that, energy demand
ious important issues as related to the problems. In this may grow rapidly in less developed regions (e.g., China,
paper, starting from a specific energy distribution prob- India) for the rapid development of these regions in recent
lem, we present a decentralized behavior-based paradigmyears. For all above reasons, it becomes essentially impor-
that draws on the methodology of self-organized comput-tant for the energy suppliers and consumers in different re-
ing, i.e., autonomy-oriented computing. The goal of our gions to distribute energy resources to meet their differen
work is twofold: (i) to characterize the underlying mech- requirements.
anism of the energy distribution system, and (ii) to pro-
vide scalable solutions for efficient energy distributid¥ie 1.1 The Energy Distribution Problems
provide simulation-based experiments to show the perfor-
mances of four local behavior-based algorithms, with grad- Distributing energy resources among energy suppliers
ually increased behavioral complexity. The simulation re- 44 consumers at different regions relates to varioussssue
sults show that global objectives can be approximately i, different areas (e.g., economy, geopolitics, logistiys-
reached through autonomous entities with even simple exyems, market, etc.). For example, the energy price issues;
ploration and regulation behaviors. We conjecture thateffi e transportation infrastructure (e.g., railway, oil atural
cient energy trading markets can emerge from appropriate g5 pipelines, etc.) investment issues for industriescand/
behavior-based mechanisms, which can autonomously imyoyermnments [33]; the inventory managementissues to meet
prove energy distribution efficiency. short-term needs when supply of energy resources are inter-
rupted for any reason (e.g., terrorism, severe weathetgven
etc.); the cascading control or congestion management is-
1 Introduction sues on power grid [26][21]; and the issues about energy
trading markets such as the world oil markets and oil futures
Nowadays, the daily life of human being on the earth be- markets. All these issues interrelate to form a very complex
comes more and more heavily depending on different kindsenergy distribution system, which may have its own relia-
of energy resources (It is reported by International Energy bility [32], vulnerability [3], and system security [33].0F
Agency (IEA) in [14] that the total primary energy supply the reason that most of the distribution challenges arisa fr



the fact that energy suppliers and consumers are located irof the energy distribution systems in terms of dynamics-
different geographic regions, in the context of this paper,  driven network optimization [22] and/or adaptive network
mainly focus on the logistics networks of energy resources, formation [31].
i.e., the energy distribution management problems.

The logistics network required to supply energy re- 1.3 Our Considerations
sources from energy supplier to energy consumers is an

integration of different distribution infrastructures.de In order to efficiently, economically, as well as reliably
pipelines, ships, railways, etc.). Most existing studieg distribute energy resources in the open, dynamic environ-
[20][5][24][25][26], just list a few) focus on the distrilhion ments, it is necessary for us to understand the underly-

managements under the physical constraints of the existingng mechanisms of the distribution systems. In this pa-
logistics networks. In this paper, inspired by the dynamics per, we present a decentralized behavior-based paradigm
driven network optimization problems proposedin [22], and that draws on the methodology of self-organized comput-
biologically-inspired adaptive network proposed in [34& ing, i.e., autonomy-oriented computing (AOC) [19]. Ac-
will focus the formation of robust and adaptive energy flow cordingto AOC, the entities can spontaneously interadt wit
networks or trading relationship networks in terms of distr  each other as well as their environments, and operate based

bution efficiency (e.g., minimal transportation cost). on their behavioral rules. The relationships between enti-
ties can therefore be self-organized through entitiesalseh
1.2 Challenges ioral dynamics. Global objectives can be effectively and

efficiently achieved by involving positive-feedback mech-
anisms and collective regulation. The goal of our work is
twofold: (i) to characterizing the underlying mechanisms
of the energy distribution system through local interatsgio
between energy supplier and consumers with different kinds
of behavioral rules, and (ii) to provide scalable solutitors
efficient energy distribution.

Before we move to study the more complex energy
distribution problems, in this paper, we mainly focus on
evaluating the performances of the local behavior-based
paradigm for a static energy distribution problem in thet firs
instance. The basic goals of the static energy distribution
problem in this paper are (i) to distribute all energy re-
sources from energy suppliers to energy consumers, and (ii)
éo minimize the total energy distribution costs. By evaluat
ing performances of different kinds of local behavior-tthse
algorithms, we try to answer the following questions.

The reality of the energy distribution problems are more
complex in terms of (i) the energy supply and/or demand
may dynamically change either endogenously or exoge-
nously, (ii) the coupling relationships between energy-sup
pliers and consumers may not be explicitly represented by
simple (linear) functions, (iii) the information may only
be partially available due to private issues or competi-
tions among energy suppliers and consumers, and (iv) in
real market, entities (either energy suppliers or consajner
make decisions (e.g., where to import/export energy, how
many to import, etc.) based on their own benefits rather
than the global goal (e.g., to minimize the total cost of en-
ergy flows in [24][25]) of the distribution systems. There-
fore, an energy distribution system can be considered to be
complex one, which is, by nature, open, highly distributed,
and dynamically evolving. In this case, it is difficult for

statistical models (e.g., [15][29], just list a few) andéen- e How does an optimal (i.e., minimizing the total en-
tralized optimization approaches (e.g., [7][24][25][2fist ergy distribution cost) energy flow network can emerge
list a few) to solve such open, dynamic energy distribution through local dynamic of supplier/consumer entities?
problems.

Although some decentralized approaches (e.g., multi- ® Whatkind of local behaviors of supplier/consumer en-
agent systems [17][9]), which have been proposed to solve  tities are crucial for achieving final optimal energy
resource management (e.g., resource allocation [8]) prob-  flow network?

lems, may a!so Pe adopted to.solve certain type of dynamic The main objectives of this paper are not only to solve
energy distribution problems in a small scale, they are, aty,q onergy distribution problem, but to present a natural

t_he moment, ,Sti" quite limited in. methodology gnd applica- behavior-based paradigm with respect to the energy distri-
tions to practically address various important issues as re bution problem so that more complex energy distribution

lated to _the energy d_istribution problems_, e.g., the naturg problems (i.e., open and dynamically evolving) can be stud-
mechanisms underlying an open, unpredictable energy dIS'|ed in the future. The behavior-based paradigm may help to
tribution system. Most of these approaches focus on strat-

) ! o answer the following systematic questions of a complex en-
egy design (e.g., multi-agent negotiation systems [18)[16 trin
4 : s ergy distribution system.
which belong to the problem of dynamics optimization on
static networks in [22]. As far as we know, very few studies e How does the energy flow network evolve in an open,
have been done to characterize the underlying mechanism  unpredictable energy distribution system?



e What kind of local dynamics between supplies and  Many in-depth work has been done to try to simulate the
consumers can improve the robustness and stability ofreal world more precisely in recent years (e.g., the world
the energy distribution system? energy model [15] proposed by IEA, the MIT Integrated

Global System Model (IGSM) [29])). However, we are still
e What kind of energy trading mechanism (market) can facing the following challenges:

be formed? What are the critical factors for the stabil-

ity of the market? e To precisely simulate the real world requires signif-
icant advances in economics, the social science, and

The rest of this paper is organized as follows. In Sec- environmental science, each of which is quite compli-
tion 2, we summarize related energy system models, and  cated discipline. It is quite challenging to represent
show their limitations in terms of the energy distribution their relationships based only on statistical data.
problems discussed in this paper. In Section 3, we formu-
late the energy distribution problem in details. In Section e Inreality, the energy systems are dynamically evolving
we present a decentralized behavior-based paradigm forthe ~ (€.9., energy technology innovation). It is difficult to
energy distribution problem, and four local behavior-liase represent or predict this kind of dynamics.

algorithms with gradually increased behavior complexaty t
study and solve the problem. We simulate our approaches
in Section 5. Finally, we conclude our work and present
some future works in Section 6.

e For such integrated systems, as reported in [28], the
predictions at a global scale are considered reason-
ably reliable, while more work should be done to
improve predictive capability at regional (i.e., micro-
scopic) scale.

2 Related Work _ _ _
e Such simulations need exascale computing [28].

We classify the existing studies on energy systems mod-  Limited by above mentioned difficulties, it is difficult for
eling into two categories: macro- and micro-modeling. the system dynamics models to provide global/regional en-
Macro-modeling aims to perform predictions (e.g., energy ergy distribution solutions at specific energy domainshsuc
supply/consumption in the future) or scenarios analysis at as natural gas dispatch problem [20], congestion or bottle-
macroscopic level, while micro-modeling focuses on solv- necks management in power grid [26][6][7], cascade con-
ing energy problems at specific energy domains (e.g., powetro| [21] in power grid, etc. In the next section, we will
grid, natural gas pipeline system). In this section, we will introduce micro-modeling of energy systems which can be
highl_ight some of the representative studies of the two cat- adopted to solve specific energy distribution problems.
egories.

2.2 Micro-modeling of Energy Systems
2.1 Macro-modeling of Energy Systems
Micro-modeling of energy systems focuses on develop-

Traditional energy models (e.g., WORLD [12], COAL ing technological solutions to some specific energy prob-
[23], FOSSIL [4], etc.) commonly use system dynamics ap- lems of interest. For the energy distribution problems,tmos
proach, which deals with internal feedback loops and time existing work are based on optimization approaches, which
delays that affect the behavior of an entire system throughoften combine with other techniques such as network flows
various interrelated components. System dynamics model-models [24][25][20].
ing has been used for strategic energy planning and policy The network optimization models, which take into ac-
analysis for more than three decades. The main issues theountthe effect of spatial constraints (i.e., uneven gaoigr
system dynamics energy models try to address include (i)ical availability of energy resources), try to find optimal
understanding relationships among different componentsi energy flows in a specific network [20][5][24][25]. The
an energy system [12][23] (e.g., the relationship betweennetworks can represent either the physical energy distribu
proven reserves and cumulative production in an energytion networks (i.e., the natural gas pipeline network, powe
discovery system), (ii) capturing the roles that an energy grid, etc.) or the trading relationships between energy sup
system plays in social, economic, and environmental sys-pliers and consumers. For example, in [24][25], the au-
tems [4][30][11], and (iii) integrating each related syste  thors describe U.S. integrated energy system as a network
together to simulate the real world [15][29]. Most of these with collection of nodes and links, where energy resources
models are based on statistical data of population, ecanomi may flow from one node to another under the constraints
growth rate, elasticity of energy substitution, and so on. of transportation capacity and per unit energy distributio
Therefore, they are well suited for performing predictions cost on each link. A constrained mathematical optimization
or scenarios analysis at a macroscopic level. approach is proposed to minimize the total cost of energy



flows of the network. Different from the work of A. Quel- paradigm (described in Section 4) for a static energy dis-
has et. al. [24][25], where energy flow in each link is inde- tribution problem so that the paradigm can be extended to
pendent with flows in other links, authors in [20] presents more more complex energy distribution problems in the fu-
the economic dispatch in natural gas networks, where theture.
gas flow from a node (i.e., inlet node) to another node (i.e., Consider a set af energy suppliers/consumers, we want
outlet node) in the networks is determined by the pressureto distribute energy resources from energy suppliers to en-
at the inlet node and pressure at the outlet node. In this caseergy consumers. As described in Section 1.1, distributing
the potential flow in each pipeline is also dependent on theenergy resources from one region to another may take var-
actual flows in other pipelines of the system (i.e., systemious costs (e.g., capital cost associated with constmctin
effects in [20]). However, most existing network flow mod- pipelines, energy resources consumed or wasted during dis-
els, which are designed for optimization purposes, ark stil tribution, etc.). We abstract distribution costs among en-
centralized approaches. ergy suppliers and consumers to be a a predefined cost ma-
The idea of abstracting energy components into net-trix CMatriz,xn, = {cij|1 < 4,5 < n}, wherec;; rep-
works provides a more extensive research potential on enfesents the per unit energy distribution cost from one sup-
ergy system modeling. Although some decentralized ap-plier/consumet to another supplier/consumgrin this pa-
proaches (e.g., [27][10]) as well as multi-agent systems per, we SUPPOSE' M atriz, . iS Symmetric, which means
(e.g., [9][8] [17]), which have been proposed to solve re- thatc;; = cj;, for 1 <4, j < n. However, triangle inequal-
source allocation problems, may also be adopted to cer-ity may not be correct, i.eg;; + c;; may not definitely
tain dynamic energy distribution problems in a small scale. greater than or equal .

Most of these approaches focusing on strategy design (e.g.b e o :
multi-agent negotiation systems [18][16]), belong to the efinition 1. Energy Distribution Network The predefined

problem of dynamics optimization on static networks in COSt matrixCMatriz,x, forms a fully-connected energy
[22]. Except for the problem of dynamics optimization on dlstrlb_utlon network, where ea(_:h n_ode represents_an energy
static networks, the authors in [22] have also proposed theSUPPlier/consumer, and each link is associated with the per
dynamics-driven network optimization problems, which in- Unit énergy distribution cost.

clude two types of dynamics. On one hand, the network

structure may evolve over time to fit the dynamics (€.9., en- g5 equal to the total demand of consumers, in this paper, we

ergy distribution) on the network. On the other hand, the i st dy how an efficient energy flow network can emerge
dynamics on the network may inversely be affected by the 4y, the energy distribution network through local dynam-
network structure. Additionally, Tero et al. in [31] have j.g of energy suppliers/consumers.

proposed biologically-inspired approach to form adaptive

networks with comparable efficiency, fault tolerance, and Definition 2. Energy Flow Network The energy flows
cost to real-world infrastructure networks (i.e., the Toky among energy suppliers/consumers can be represented by
rail system in [31]). However, as far as we know, very an undirect networkd =< V, L,Q >. The node seV =

few studies have been done to characterize the underlying{v;|1 < i < n} denotes the set of suppliers/consumers.
mechanism of the energy distribution systems in terms of The link setl = {/;;|1 < 4,j < n} represents all existing
dynamics-driven network optimization [22] and/or adaptiv  energy flows (if there are energy flows between ngdad

Suppose that initially the total energy supply of suppli-

network formation [31]. vj, thenl;; = 1;; = 1; otherwise/;; = [;; = 0). The quan-
tity set@ = {qi;|1 < 4,5 < n} represents the volume of
3 Problem Statements energy flows on each lin;.

To evaluate the performances of different local behavior-

As presented in Section 1, energy distribution networks based strategies proposed in this paper, we have two kinds
(e.g., railway networks, natural gas pipeline networks) ar of measurements for the final energy flow networks, i.e., the
essential for allocating energy resources under an openglobal cost and per unit cost of final energy flow networks.
dynamically evolving energy distribution system. A ro-
bust and adaptive energy distribution network plays impor- Definition 3. Global Cost of Energy Flow Network The
tant roles in distribution efficiency (e.g., minimizingms  9lobal cost of energy flow network represents total distribu
portation cost), and fault tolerance (e.g., transpontedigs- ~ tion cost of allocating all energy supply to corresponding
function during abnormal weather). In this case, design- consumers based on the energy flow network. In this case,
ing mechanisms without centralized control [31] to form the total costs of all energy flows can be calculated by
adaptive energy distribution network becomes quite signifi
cant for energy distribution management. In this paper, we TC = Z i - cij - lij 1)
first evaluate the performances of the local behavior-based lijeL.



Definition 4. Per Unit Cost of Energy Flow Network The an energy supplier/consumer hasemory records infor-
per unit cost of energy flow network represents average dis-mation that the entity has. Since in real world no sup-
tribution cost of certain quantity of energy resources allo plier/demander has complete information of the energy dis-
cating from energy suppliers to corresponding consumerstribution systems, in this paper, we assume that initially,
based on the energy flow network. By this definition, the an entity only has information about its per unit distribu-
per unit cost of energy flows can be calculated by tion costs to all other suppliers/consumers on the distri-
bution network (i.e., entitye; only has cost information

PC = _TC¢ ) {_cij|1 < j < n}). The entity does not know other enti-

ZlijeL Qij ties’ type andvolume. Therefore, entities need to move on

-~ ) o o the distribution network and interact with other entities t
Specific research issues to be studied includeligiyi- collect more informationzules determines how an entity

bytion rate(i.e., can the local behavior-based strqteg_ies dis- move on the contact network and interact with other enti-
tribute all energy supply to consumers?), (istribution  ties. |n this paper, we represent two kinds of rules, i.e.,

cost(i.e., can the global cost or per unit cost of energy flow pehavioral rules and decision-making rules.
network generated by the local behavior-based strategies

approach to that of the optimal solution?), and @idala- 4.2 Behavioral Rules
bility(i.e., when the number of entities increases, can the
performance of local behavior-based strategies remain ef-
ficient, i.e., higher distribution rate and lower distrilout
cost?). In order to answer the above questions, we will
first of all, present some detailed formulation of the local
behavior-based strategies in the next section.

The behavioral rule of an entity determines how the en-
tity move on the distribution network to collect distribu-

" tion cost information and find trading partners. In this pa-
per, we assume that once an entity moves to a node on the
distribution network, it will get the distribution cost o

) ] mation, as well as the energy surplus/deficit of the sup-

4 Formulations for the Behavior-based piier/consumer on the node. Then the entity will deter-

Paradigm mine whether or not to trade with the node based on its
decision-making rules. The information of visited suppli-
In this section, we will present in details the local €rs/consumers will be saved at the entityigmory. For
behavior-based paradigm that draws on the methodologythe static energy distribution problem in this paper, enti-
of autonomy-oriented computing (AOC) [19]. According ties move on the distribution network based on self-avagjdin
to AOC, entities spontaneously interact with each other asfandom walks, which play a central role in the modeling of
well as their environments based on their behavioral rales t the topological behavior of thread- and loop-like molesule
reach certain global objectives. In the context of the eperg

distribution problem in this paper, the global objectives a

(i) to distribute all energy resources from energy supplier

to energy consumers, and (ii) to minimize the global energy

Definition 5. Self-avoiding Random Walk A self-avoiding
random walk is a sequence of moves on a network that does
not visit the same node more than once.

distribution costs. In this paper, we will present two kinds of self-avoiding
random walks to study the effects of entitiegmory on
4.1 Entities Profile the global performance of the mechanism. For the first kind
of random walk (adopted by Algorithms 1 and 2), each en-
In this paper, we have entitiesE = {e;|1 < i < n}, tity only uses cost information of the current visited node

each of which represents either an energy supplier or con+o determine where to move for the next step, i.e., the en-
sumer. A supplier entity aims to sell its energy surplus to tity does not memorize information. For the second kind of
appropriate consumers, while a consumer entity aims to buyrandom walk (adopted by Algorithms 3 and 4), each entity
energy resources from appropriate suppliers to make up itswill memorize all cost information of nodes that it has al-
energy deficit. Because the energy distribution costs are fi-ready visited, and integrate this information to deterniticie
nally undertaken by both energy suppliers and consumersnext step. The hypothesis is that by utilizingmory, it is

in this paper, we assume that each entity prefers to energynuch easier for an entity to find a path with small distribu-

resources with lower distribution costs. tion cost on the static distribution network. The details of
The profile of an entity is represented as a tupte, the random walks will be introduced in Section 4.4.

id, type, volume, memory, rules >, whereid denotes the Remark: The self-avoiding random walk is adopted in

identifier of an entity. type = {supplier,consumer} this paper for the static energy distribution problem bseau

means that an entity may either be an energy supplier orthe supply/demand of each entity will stay constant during
consumervolume represents the amount of surplus/deficit the dynamic process. However, it is obviously unsuitable



for the dynamic distribution problems. Here, it is necegsar
to emphasize that our focus is mainly on the impacts of en-
titiesmemory (i.e., with limited memory or with unlimited
memory) on the performances of the mechanism.

4.3 Decision-making Rules

An entity makes decisions about whether or not to
trade with other suppliers/consumers based on its deeision
making rule. In this paper, we present three kinds of
decision-making rules, i.e., first-come-first-serve, cemp
tition, and request-passing, to study the effects of differ
ent trading strategies on the global performances. Esititie
with first-come-first-serve decision-making rule wihs-
sively trade with entities by their visiting order without
considering the distribution cost of energy resources; en-
tities with competition rules prefers to trading with eietit
with lower distribution cost; entities with the third deicis-
making ruleproactivelysend trading requests to a list of
entities who it would like to trade with based on cost infor-
mation in its memory. In other words, an entity will refuse
to trade with entities who are not in its list. The hypoth-
esis is that by proactively regulating trading partners and
sending requests based on cost informatiomimory, it
is more likely for an entity to find appropriate trading part-
ners than passively trading with visitors. The details &f th
decision-making rules will be introduced in corresponding
algorithms in Section 4.4.

4.4 Behavior-based Algorithms

Input: Cost matrixC M atriz.,x»; Volume of each entity
{ei.volumele; € E};
Output: Energy flow networkRM atrix,xrn
1 Initialize e;. Path(1l) <« e; forall 1 <i <m;
2 foreachRoundt =1: (n — 1) do
3 Generate a random operation ordg(t) with
ei.volume #0forall1 <i<n;
foreache; € O(t) do
PE = E\ e;.Path(t) ;
Selecte, € PFE based on Eq. 3;
if er.volume # 0 then
Updatee;.volume andey.volume;
UpdateRM atriz based ore;.Path(t + 1);
end
ei.Path(t + 1) < e;.Path(t) U ex;
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Algorithm 1: Self-avoiding Random Walk with First-
come-first-serve. In the algorithm, steps 5 and 6 are for
the self-avoiding random walk; steps 7-10 are for the first-
come-first-serve trading. We usg Path(t) to record the
nodes that entity; has visited up to rountl

end

end

roundt + 1 is calculated by

1
CMatriz(e;,e;)
1
er€PE CMatriz(e;,ey)

pij(t+1) = )

>
The trading agreement will be reached based on a first-
come-first-serve rule without considering the costs of en-
ergy distribution.
Algorithm 2: Self-avoiding Random Walk with Compe-
tition: The entities’ behavioral rule in this algorithm is the

To evaluate the two behavioral hypotheses, we presentsame with the self-avoiding random walk in Algorithm 1.

four behavior-based algorithms with gradually increased
behavioral complexity in this section. Entities in Algo-
rithms 1 and 2 have limited memory and adopt first-come-
first-serve decision-making rule. Entities in Algorithms 3
and 4 can memorize all cost information of nodes that they
have already visited. Especially, entities in Algorithmahc
proactively send requests to potential trading partnessedba
on information inmemory.

Algorithm 1: Self-avoiding Random Walk with First-
come-first-serveAt each round of this algorithm, each en-
tity with e;.volume # 0,1 < i < n (i.e., supply are not

The only difference is that at each round, each entity with
non-zerovolume will first move to the node it selected.
Then, entities who selected the same node will compete for
trading with the supplier/consumer at that node.

Algorithm 3: Self-avoiding Random Walk with Infor-
mation Sharing This algorithm is different with Algo-
rithm 2 in terms of random walk process. In this algo-
rithm, once an entity; visited a nodej on the distribu-
tion network, it will memorize all cost information (i.e.,
{¢jk|l < k < n}) of the visited nodej. Then, use in-
formation in its memory to determine next step of the ran-

distributed or demand are not satisfied) behaves in a randondom walk: the entitye; will first calculate the minimum
order to find trading partners based on self-avoiding randomcostsShortest PathCost(e;, i) to all other potential en-

walk on the distribution network. Denote. Path(t) as the
set of entities that entity; has already visited up to round
t, hence, the potential entities feoyto visit at round + 1 is
PE = E\ e;.Path(t). The selection probabilities are in-
versely proportional to the per unit energy distributioistco
from current node to all other possible nodes, i.e., the prob
ability of entity e; selectinge; € PE as trade partner at

titiese, k € PE based ore;.memory, then generate ran-
dom walk probabilities based on the calculated minimum
costs. The probability of entity; visitinge; € PE atround

t 4+ 1is calculated by

1
ShortestPathCost(e;,e;)

pij(t+1) = (4)

1
Zek €PE ShortestPathCost(e;,ey)



Input: Cost matrixC M atriz.,x»; Volume of each entity
{ei.volumele; € E};
Output: Energy flow networkRM atrix,xrn
1 Initialize e;. Path(1) « e; forall 1 <14 < mn;
2 foreachRoundt =1: (n — 1) do
foreach e;.volume # 0 do
PE = E\ e;j.Path(t) ;
Selecte, € PE based on Eq. 3;
ei.Path(t + 1) < e;.Path(t) U ex;
end
Generate a random operation ordgt) with
e;.volume #Oforall1 <i<n;
9 foreache; € O(t) do

0w N o 0 b~ W

10 Ver) = {ejlej.Path(t+ 1) = e };

11 S(er) = sort(V(er));

12 foreache,, € S(e;) do

13 if e;.volume # 0 then

14 Updatee;.volume ande,, .volume;

15 UpdateRMatriz based on
em.Path(t+ 1);

16 end

17 end

18 end

19 end

Algorithm 2 : Self-avoiding Random Walk with Compe-
tition. In the algorithm, steps 4-5 are for the self-avoglin
random walk; steps 8-18 are for the competition trading.

We usee;.Path(t) to record the nodes that entity has
visited up to round.

Algorithm 4 Self-avoiding Random Walk with Informa-
tion Passing In this algorithm, at each round (i) each entity
memorizes cost information of visited nodes to determine
the next step of random walk, and (ii) entities pass trading
requests to potential partners in its request list. Theaand
walk is the same as that in Algorithm 3. For the trading
part, at each round, each entity will calculate the mini-
mum costsShortest PathCost(e;, :) to other nodes that it
has not visited, and sort the entities by cost in increasing
order. The request ligt;,. RL of e; with sizes contains en-
tities who are top in the sorted list og;. In this paper, the
size of request list increases as the rotitreases. Each
entity will only agree to trade with another entity who is in

its request list.

5 Simulations

In this section, we will describe several simulations to

© 0 N o g b~ WwN

10
11
12
13
14
15
16

17
18
19
20
21
22

23
24
25
26

Input: Cost matrixC M atriz.,x»; Volume of each entity
{ei.volumele; € E}
Output: Energy flow networkRM atrix,xrn
1 foreache;,e; € E do
e;.Path(1) « e;;
ShortestPath(e;, e;,:) «— e;;
nd
foreachRoundt = 1: (n — 1) do
foreach e;.volume # 0 do
PE = E\ e;.Path(t) ;
foreache, € PE do
CalculateShortest PathCost(e;, ex) based
one;.memory,
end
Selecte, € PFE based on Eq. 4;
ej.Path(t + 1) «— e;.Path(t) Uey;
Updatee,;.memory based ore;. Path(t + 1);
UpdateShortest Path(e;, e, :);
end
Generate a random operation ordg(t) with
ei.volume #0forall1 <i<n;
foreache; € O(t) do
V(er) = {ejle;. Path(t + 1) = e };
S(er) = sort(V(er));
foreache,, € S(e;) do
if e;.volume # 0 then
Updatee;.volume ande,, .volume;
UpdateR M atrix based on
ShortestPath(em,eq,:);
end
end
end
end

Algorithm 3 : Self-avoiding Random Walk with Informa-
tion Sharing. In the algorithm, steps 7-11 are for the self-
avoiding random walk; steps 16-25 are for the competition
trading. We use;. Path(t) to record the nodes that entity
e; has visited up to round, andShortest Path(e;, ej,:)

to record the dynamically changing lowest cost path from
e; to €.

unit cost of final energy flow network. The optimal solu-
tions are calculated by a static and centralized method.

5.1 Settings

There are three inputs for the simulations: the number of

entities, the per unit distribution cost matrix, and ea#ti
volume.

evaluate the performances of the local behavior-based al- e The number of entities: In reality, the energy distri-

gorithms. The four behavior-based algorithms presented
in Section 4.4 are compared with the optimal solutions in
terms of (i) distribution rate of energy resources, (ii) the
global cost of final energy flow network, and (iii) the per

bution problems may have different scales, for exam-
ple, the distribution network may have scale about 100
(i.e., the number of transmission transformer) at a city
level, but about 1000 at a country level [25]. Hence, it



Input: Cost matrixC M atriz.,x»; Volume of each entity
{ei.volumele; € E}
Output: Energy flow networkRM atrix,xrn
1 foreache;,e; € E do
e;.Path(1) « e;;
ShortestPath(e;, ej,:) «— e;;
end
foreachRoundt = 1: (n — 1) do
foreach e;.volume # 0 do
PE = E\ e;.Path(t);
foreache, € PE do
CalculateShortest PathCost(e;, e)) based
one;.memorvy;

© 0 N o g b~ WwN

10 end

11 Generate request list. RL with sizet;
12 end

13 Generate a random operation ordg(t) with
ei.volume #Oforall1 <i < n;

14 foreache; € O(t) do

15 foreache,, € ¢;.RL do

16 if e; € em.RL then

17 Updatee;.volume ande,, .volume;
18 UpdateR M atrix based on
ShortestPath(ey, em, :);

19 end

20 end

21 end

22 foreach e;.volume # 0 do

23 PE = E\ e;.Path(t) ;

24 foreache, € PE do

25 CalculateShortest PathCost(e;, e, ) based
on ej.memory;

26 end

27 Selecte, € PE based on Eq. 4;

28 ej.Path(t + 1) « e;.Path(t) Ueg;

29 Updatee,;.memory based ore;.Path(t + 1);

30 UpdateShortest Path(e;, ek, :);

31 end

32 end

Algorithm 4: Self-avoiding Random Walk with Infor-
mation Passing. In the algorithm, steps 6-12 are for each
entity to generate request li&L based on itsnemory;
steps 13-20 are for the energy trading; steps 23-27 are
for the self-avoiding random walk. We use Path(t) to
record the nodes that entity has visited up to round and
ShortestPath(e;, e;, ) to record the dynamically chang-
ing lowest cost path from; to e;.

is necessary to evaluate the performances of differen
behavior-based algorithms in different scales. In this
paper, we preform the simulations for the distribution

problem withn = 10, 50, 100, 500, 1000.

e Per unit distribution cost matrix: The values in the

erogeneity between each pair of suppliers/demanders.
Because we focus on the relative comparison of the
behavior-based algorithms, the absolute value of the
per unit distribution cost does not affect the final anal-
ysis of the algorithms.

e Entities’ volume: The volume of each entity is ran-
domly generated from regiop-100, 100], where the
global supply and demand are balanced. Similarly, the
absolute value of entitiesolume will also not affect
the relative comparisons of the behavior-based algo-
rithms.

5.2 Simulation Results and Observations

Distribution rate: The distribution rate is measured by
the percentage of energy supply that has been distributed
to consumers. Simulation results show that all the four
behavior-based algorithms can successfully distribute al
energy supply to consumers. This is because for the static
energy distribution problem, thevlume of each entity re-
mains constant during the dynamic process. According the
the self-avoiding random walk, each entity will visit all
other entities withinn — 1 rounds. Because of the simple
decision-making rules each entity adopts, all supply véll b
distributed withinn — 1 rounds.

Distribution costs: The distribution costs are measured
by global and per unit costs of final energy flow networks
proposed in Section 3. Figure 1 shows the global cost com-
parisons of the four algorithms we proposed in Section 4.4
and the optimal solution. We can find that comparing with
optimal solution, Algorithms 1 and 2 have quite worse per-
formances. However, this is not surprising because estitie
in Algorithm 1 have limited memory and behave without
considering cost at all. Though in Algorithm 2, entities may
compete for trading when they visit the same node, this kind
of competition is proved to be helpless for the minimiza-
tion of global energy flow cost as shown in Figure 1. In
Algorithm 3, by adopting information of visited nodes to
calculate path with minimum cost and select trade partners,
the entity can find appropriate walk path with much smaller
energy flow cost. However, it is obvious that Algorithm
3 is still far away from optimal solution because (i) enti-
ties in this algorithm behave based only on cost information
in its memory while the optimal solution is calculated by
centralized algorithm based on complete information, and
t(ii) Algorithm 3 only uses cost information, however, there
is another information, i.e., the availability of resowsce
which may help an entity to quickly find appropriate trade
partners. We can observe from Figure 1 that Algorithm 4
achieves better performance than Algorithm 3 in terms of
global cost of energy flow network. This is because in Al-

per unit distribution cost matrix are randomly gener- gorithm 4, each entity calculates request list based on cost

ated from regiorj10, 1000] to reflect the high cost het-

information in its memory before making decisions to trade.



The similar performance results can be observed for the per 1500
unit cost of energy flow network in Figure 2. 1600 2
1400 {5
1200 %
40 % B First-Come-First-Serve
£ . § 1000 4 L |OCompetiion
H i _ 2 O Share Information
g 35 5 ] S 800 m Pass Information
30 | [ & o0 & Optimal
@ 25 T —F - = 400
S 20+ = — 200
5 s i L F— 0 IS
10 50 100 500 1000
10 Number of Nodes
. 18
0 Figure 2: Per unit energy flow cost comparisons among four algo-
10 0. w rithms for different number of entities. Inset: Compare @xithm
= FirstCome Frst-Serve 0 Competion & nformaton Sharng 4 with optimal solution. The per unit energy flow costs are cal
B Information Passing  E Optimal

culated by Equation 2. The results show that the per unit@fost
energy flow network of Algorithm 4 approaches to optimal solu

Figure 1: Global cost comparisons among four algorithms for dif- tion as the number of nodes increases from 10 to 1000.

ferent number of entities. The costs are calculated by Eauat
The results show that Algorithm 4 preform better than otheze

Algorithms, where the global costs of Algorithm 4 are vergse . . S
togtjhe optimal solution.g g v oriented computing (AOC) for energy distribution prob-

lems, which are by nature, open, and dynamically chang-
ing over time. According to AOC, the entities in the
behavior-based paradigm can spontaneously interact with
each other, and operate based on their behavioral rules and
decision-making rules. Simulation results on four algo-
rithms with gradually increased behavioral complexity re-
veal that global objectives can be effectively and effidient
approached by involving explorations (i.e., self-avoidin
random walk on the distribution network) and collective
regulation (i.e., the request lists calculated by costrinfo
mation in entities’ memory). Furthermore, behavior-based
paradigm with appropriately designed entity profiles and
behavioral rules may also have scalable performance, i.e.,

. . . the per unit cost of energy flow network of Algorithm 4
rithms cannot perform well. This evidence also shows that . . : )
it is feasible and advantageous to study huge and comple>gJradually approaches to optimal solution (see inset of Fig-
systems from a bottom-up point of view ure 2) as the number of nodes increases from 10 to 1000.
Remark: The main purpose of this simple simulation The main (_)bj_ecti\_/es of this paper are not only to solve
is (i) to show the possibility that global objectives can be the energy d|str|but|or_1 prob_lem, but to present a nat_ura_l
approximately reached through local behavior-based au_behawor-based paradigm W|th_respect to t.he_ene_rgy distri-
tonomous entities with even simple behavioral rules and bution problem SO that dynamllc energy Q|str|but|on prob-
decision-making rules, and (ii) to study the effects ofeliff lems can be stu_dleq. As descnb(_e_m Se_c_t|or_1 L1, marny Sys-
ent behavioral rules and decision-making rules on the ¢jloba _tematlc prqpertles (_|.e., vulnerability, c_r|t|cal|ty, m.Sta.b"' :
performances of the behavior-based paradigm. Evidenceéty) can be involved in an open, dynamic energy d|st_r_|but|0n
show that appropriate exploration behavior (i.e., the-self problem. Forexample,. th? energy supply vulnerability may
avoiding random walk in this paper) and regulation behavior ][_ellate to whether thle (:|str|butr|]on system can make rs],ure suf-
(i.e., the request list generated in Algorithm 4) play imxpor icient energy supply for each energy consumer when sup-

tant roles for the local behavior-based paradigm to achiev-ply of Energy resources are interrupted for any reasons, the
ing better global performances. energy distribution criticality analysis may help to findtou

the critical suppliers/consumers in the distribution ratw
Understanding systematic properties of an energy distribu
tion problem is essential for us to design robust mechanisms
in the future to improve energy distribution efficiency, to
In this paper, we present a local behavior-based study the formation of energy trading markets, to control
paradigm that draws on the methodology of autonomy- the cascading failure of distribution networks (e.g., powe

Scalability: It can be observed that the per unit cost of
energy flow network of Algorithm 4 approaches to optimal
solution (see inset of Figure 2) as the number of nodes in-
creases from 10 to 1000. This is because in Algorithm 4,
entities collect cost information by exploring on the distr
bution network through more efficient random walks, and
further determine potential trading partners (i.e., regue
list) by collected cost information. The larger the network
scale, the more effective and efficient the behaviors of enti
ties will become. Scalability is a very important character
istic for the local behavior-based paradigm to tackle huge
distribution systems, where static and/or centralized-alg

6 Conclusion and Future Work



grid), and so on. Since the energy distribution activities a
by nature, performed by highly distributed energy suppli-
ers and consumers, we conjecture that the local behavior-[18]

based paradigm (focusing on the local interactions of sup-

plier/consumer entities) in this paper are more feasitda th

traditional centralized approaches to study the esserfces o

the dynamic energy distribution problems.
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