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Abstract

Due to the uneven geographical availability of energy re-
sources and the world imbalanced economic development,
it is essential for the energy suppliers and consumers in
different countries or regions to most efficiently, economi-
cally, as well as reliably distribute energy resources. The
general problem of energy distribution is a complex one in
that many factors can be involved either endogenously or
exogenously such as human activities, energy transporta-
tion efficiency, geopolitics, and so on. Traditional statistical
and/or centralized models are impractical to tackle energy
distribution problems that are, by nature, non-centralized
and/or dynamically evolving. Although some decentralized
approaches (e.g., multi-agent systems) may be adopted to
solve certain types of dynamic distribution problems in a
small scale, they are, at the moment, still quite limited in
methodology and applications to practically address var-
ious important issues as related to the problems. In this
paper, starting from a specific energy distribution prob-
lem, we present a decentralized behavior-based paradigm
that draws on the methodology of self-organized comput-
ing, i.e., autonomy-oriented computing. The goal of our
work is twofold: (i) to characterize the underlying mech-
anism of the energy distribution system, and (ii) to pro-
vide scalable solutions for efficient energy distribution.We
provide simulation-based experiments to show the perfor-
mances of four local behavior-based algorithms, with grad-
ually increased behavioral complexity. The simulation re-
sults show that global objectives can be approximately
reached through autonomous entities with even simple ex-
ploration and regulation behaviors. We conjecture that effi-
cient energy trading markets can emerge from appropriate
behavior-based mechanisms, which can autonomously im-
prove energy distribution efficiency.

1 Introduction

Nowadays, the daily life of human being on the earth be-
comes more and more heavily depending on different kinds
of energy resources (It is reported by International Energy
Agency (IEA) in [14] that the total primary energy supply

of the world has doubled at the end of 2007 comparing with
the year 1971.). British Petroleum in [2] reports that the re-
serves of fossil fuels on the earth will not afford the require-
ment of human economic development in the very nearly fu-
ture, for example, the reserves-to-production ratio of world
oil (respectively, natural gas, coal) is estimated at 42 years
(respectively, 60 years, 122 years), at the end 2008. In ad-
dition to the scarcity of energy resources, we are also fac-
ing another serious problem, i.e., the uneven geographical
availability of energy resources and the world imbalanced
energy demand. On one hand, according to theOil and
Gas Journal[1] and IEA [13], 56 percent of the world’s
proved oil reserves are located in the Middle East, and al-
most three-quarters of the world’s natural gas reserves are
located in the Middle East and Eurasia. On the other hand,
North America and Europe contribute almost half the the
world primary energy consumptions in 2008 [2]. Further-
more, it is predicted by IEA in [13] that, energy demand
may grow rapidly in less developed regions (e.g., China,
India) for the rapid development of these regions in recent
years. For all above reasons, it becomes essentially impor-
tant for the energy suppliers and consumers in different re-
gions to distribute energy resources to meet their different
requirements.

1.1 The Energy Distribution Problems

Distributing energy resources among energy suppliers
and consumers at different regions relates to various issues
in different areas (e.g., economy, geopolitics, logistics, sys-
tems, market, etc.). For example, the energy price issues;
the transportation infrastructure (e.g., railway, oil or natural
gas pipelines, etc.) investment issues for industries and/or
governments [33]; the inventory management issues to meet
short-term needs when supply of energy resources are inter-
rupted for any reason (e.g., terrorism, severe weather events,
etc.); the cascading control or congestion management is-
sues on power grid [26][21]; and the issues about energy
trading markets such as the world oil markets and oil futures
markets. All these issues interrelate to form a very complex
energy distribution system, which may have its own relia-
bility [32], vulnerability [3], and system security [33]. For
the reason that most of the distribution challenges arise from



the fact that energy suppliers and consumers are located in
different geographic regions, in the context of this paper,we
mainly focus on the logistics networks of energy resources,
i.e., the energy distribution management problems.

The logistics network required to supply energy re-
sources from energy supplier to energy consumers is an
integration of different distribution infrastructures (e.g.,
pipelines, ships, railways, etc.). Most existing studies (e.g.,
[20][5][24][25][26], just list a few) focus on the distribution
managements under the physical constraints of the existing
logistics networks. In this paper, inspired by the dynamics-
driven network optimization problems proposed in [22], and
biologically-inspired adaptive network proposed in [31],we
will focus the formation of robust and adaptive energy flow
networks or trading relationship networks in terms of distri-
bution efficiency (e.g., minimal transportation cost).

1.2 Challenges

The reality of the energy distribution problems are more
complex in terms of (i) the energy supply and/or demand
may dynamically change either endogenously or exoge-
nously, (ii) the coupling relationships between energy sup-
pliers and consumers may not be explicitly represented by
simple (linear) functions, (iii) the information may only
be partially available due to private issues or competi-
tions among energy suppliers and consumers, and (iv) in
real market, entities (either energy suppliers or consumers)
make decisions (e.g., where to import/export energy, how
many to import, etc.) based on their own benefits rather
than the global goal (e.g., to minimize the total cost of en-
ergy flows in [24][25]) of the distribution systems. There-
fore, an energy distribution system can be considered to be a
complex one, which is, by nature, open, highly distributed,
and dynamically evolving. In this case, it is difficult for
statistical models (e.g., [15][29], just list a few) and/orcen-
tralized optimization approaches (e.g., [7][24][25][20], just
list a few) to solve such open, dynamic energy distribution
problems.

Although some decentralized approaches (e.g., multi-
agent systems [17][9]), which have been proposed to solve
resource management (e.g., resource allocation [8]) prob-
lems, may also be adopted to solve certain type of dynamic
energy distribution problems in a small scale, they are, at
the moment, still quite limited in methodology and applica-
tions to practically address various important issues as re-
lated to the energy distribution problems, e.g., the natural
mechanisms underlying an open, unpredictable energy dis-
tribution system. Most of these approaches focus on strat-
egy design (e.g., multi-agent negotiation systems [18][16]),
which belong to the problem of dynamics optimization on
static networks in [22]. As far as we know, very few studies
have been done to characterize the underlying mechanism

of the energy distribution systems in terms of dynamics-
driven network optimization [22] and/or adaptive network
formation [31].

1.3 Our Considerations

In order to efficiently, economically, as well as reliably
distribute energy resources in the open, dynamic environ-
ments, it is necessary for us to understand the underly-
ing mechanisms of the distribution systems. In this pa-
per, we present a decentralized behavior-based paradigm
that draws on the methodology of self-organized comput-
ing, i.e., autonomy-oriented computing (AOC) [19]. Ac-
cording to AOC, the entities can spontaneously interact with
each other as well as their environments, and operate based
on their behavioral rules. The relationships between enti-
ties can therefore be self-organized through entities’ behav-
ioral dynamics. Global objectives can be effectively and
efficiently achieved by involving positive-feedback mech-
anisms and collective regulation. The goal of our work is
twofold: (i) to characterizing the underlying mechanisms
of the energy distribution system through local interactions
between energy supplier and consumers with different kinds
of behavioral rules, and (ii) to provide scalable solutionsfor
efficient energy distribution.

Before we move to study the more complex energy
distribution problems, in this paper, we mainly focus on
evaluating the performances of the local behavior-based
paradigm for a static energy distribution problem in the first
instance. The basic goals of the static energy distribution
problem in this paper are (i) to distribute all energy re-
sources from energy suppliers to energy consumers, and (ii)
to minimize the total energy distribution costs. By evaluat-
ing performances of different kinds of local behavior-based
algorithms, we try to answer the following questions.

• How does an optimal (i.e., minimizing the total en-
ergy distribution cost) energy flow network can emerge
through local dynamic of supplier/consumer entities?

• What kind of local behaviors of supplier/consumer en-
tities are crucial for achieving final optimal energy
flow network?

The main objectives of this paper are not only to solve
the energy distribution problem, but to present a natural
behavior-based paradigm with respect to the energy distri-
bution problem so that more complex energy distribution
problems (i.e., open and dynamically evolving) can be stud-
ied in the future. The behavior-based paradigm may help to
answer the following systematic questions of a complex en-
ergy distribution system.

• How does the energy flow network evolve in an open,
unpredictable energy distribution system?



• What kind of local dynamics between supplies and
consumers can improve the robustness and stability of
the energy distribution system?

• What kind of energy trading mechanism (market) can
be formed? What are the critical factors for the stabil-
ity of the market?

The rest of this paper is organized as follows. In Sec-
tion 2, we summarize related energy system models, and
show their limitations in terms of the energy distribution
problems discussed in this paper. In Section 3, we formu-
late the energy distribution problem in details. In Section4,
we present a decentralized behavior-based paradigm for the
energy distribution problem, and four local behavior-based
algorithms with gradually increased behavior complexity to
study and solve the problem. We simulate our approaches
in Section 5. Finally, we conclude our work and present
some future works in Section 6.

2 Related Work

We classify the existing studies on energy systems mod-
eling into two categories: macro- and micro-modeling.
Macro-modeling aims to perform predictions (e.g., energy
supply/consumption in the future) or scenarios analysis ata
macroscopic level, while micro-modeling focuses on solv-
ing energy problems at specific energy domains (e.g., power
grid, natural gas pipeline system). In this section, we will
highlight some of the representative studies of the two cat-
egories.

2.1 Macro-modeling of Energy Systems

Traditional energy models (e.g., WORLD [12], COAL
[23], FOSSIL [4], etc.) commonly use system dynamics ap-
proach, which deals with internal feedback loops and time
delays that affect the behavior of an entire system through
various interrelated components. System dynamics model-
ing has been used for strategic energy planning and policy
analysis for more than three decades. The main issues the
system dynamics energy models try to address include (i)
understanding relationships among different components in
an energy system [12][23] (e.g., the relationship between
proven reserves and cumulative production in an energy
discovery system), (ii) capturing the roles that an energy
system plays in social, economic, and environmental sys-
tems [4][30][11], and (iii) integrating each related systems
together to simulate the real world [15][29]. Most of these
models are based on statistical data of population, economic
growth rate, elasticity of energy substitution, and so on.
Therefore, they are well suited for performing predictions
or scenarios analysis at a macroscopic level.

Many in-depth work has been done to try to simulate the
real world more precisely in recent years (e.g., the world
energy model [15] proposed by IEA, the MIT Integrated
Global System Model (IGSM) [29])). However, we are still
facing the following challenges:

• To precisely simulate the real world requires signif-
icant advances in economics, the social science, and
environmental science, each of which is quite compli-
cated discipline. It is quite challenging to represent
their relationships based only on statistical data.

• In reality, the energy systems are dynamically evolving
(e.g., energy technology innovation). It is difficult to
represent or predict this kind of dynamics.

• For such integrated systems, as reported in [28], the
predictions at a global scale are considered reason-
ably reliable, while more work should be done to
improve predictive capability at regional (i.e., micro-
scopic) scale.

• Such simulations need exascale computing [28].

Limited by above mentioned difficulties, it is difficult for
the system dynamics models to provide global/regional en-
ergy distribution solutions at specific energy domains, such
as natural gas dispatch problem [20], congestion or bottle-
necks management in power grid [26][6][7], cascade con-
trol [21] in power grid, etc. In the next section, we will
introduce micro-modeling of energy systems which can be
adopted to solve specific energy distribution problems.

2.2 Micro-modeling of Energy Systems

Micro-modeling of energy systems focuses on develop-
ing technological solutions to some specific energy prob-
lems of interest. For the energy distribution problems, most
existing work are based on optimization approaches, which
often combine with other techniques such as network flows
models [24][25][20].

The network optimization models, which take into ac-
count the effect of spatial constraints (i.e., uneven geograph-
ical availability of energy resources), try to find optimal
energy flows in a specific network [20][5][24][25]. The
networks can represent either the physical energy distribu-
tion networks (i.e., the natural gas pipeline network, power
grid, etc.) or the trading relationships between energy sup-
pliers and consumers. For example, in [24][25], the au-
thors describe U.S. integrated energy system as a network
with collection of nodes and links, where energy resources
may flow from one node to another under the constraints
of transportation capacity and per unit energy distribution
cost on each link. A constrained mathematical optimization
approach is proposed to minimize the total cost of energy



flows of the network. Different from the work of A. Quel-
has et. al. [24][25], where energy flow in each link is inde-
pendent with flows in other links, authors in [20] presents
the economic dispatch in natural gas networks, where the
gas flow from a node (i.e., inlet node) to another node (i.e.,
outlet node) in the networks is determined by the pressure
at the inlet node and pressure at the outlet node. In this case,
the potential flow in each pipeline is also dependent on the
actual flows in other pipelines of the system (i.e., system
effects in [20]). However, most existing network flow mod-
els, which are designed for optimization purposes, are still
centralized approaches.

The idea of abstracting energy components into net-
works provides a more extensive research potential on en-
ergy system modeling. Although some decentralized ap-
proaches (e.g., [27][10]) as well as multi-agent systems
(e.g., [9][8] [17]), which have been proposed to solve re-
source allocation problems, may also be adopted to cer-
tain dynamic energy distribution problems in a small scale.
Most of these approaches focusing on strategy design (e.g.,
multi-agent negotiation systems [18][16]), belong to the
problem of dynamics optimization on static networks in
[22]. Except for the problem of dynamics optimization on
static networks, the authors in [22] have also proposed the
dynamics-driven network optimization problems, which in-
clude two types of dynamics. On one hand, the network
structure may evolve over time to fit the dynamics (e.g., en-
ergy distribution) on the network. On the other hand, the
dynamics on the network may inversely be affected by the
network structure. Additionally, Tero et al. in [31] have
proposed biologically-inspired approach to form adaptive
networks with comparable efficiency, fault tolerance, and
cost to real-world infrastructure networks (i.e., the Tokyo
rail system in [31]). However, as far as we know, very
few studies have been done to characterize the underlying
mechanism of the energy distribution systems in terms of
dynamics-driven network optimization [22] and/or adaptive
network formation [31].

3 Problem Statements

As presented in Section 1, energy distribution networks
(e.g., railway networks, natural gas pipeline networks) are
essential for allocating energy resources under an open,
dynamically evolving energy distribution system. A ro-
bust and adaptive energy distribution network plays impor-
tant roles in distribution efficiency (e.g., minimizing trans-
portation cost), and fault tolerance (e.g., transportation dys-
function during abnormal weather). In this case, design-
ing mechanisms without centralized control [31] to form
adaptive energy distribution network becomes quite signifi-
cant for energy distribution management. In this paper, we
first evaluate the performances of the local behavior-based

paradigm (described in Section 4) for a static energy dis-
tribution problem so that the paradigm can be extended to
more more complex energy distribution problems in the fu-
ture.

Consider a set ofn energy suppliers/consumers, we want
to distribute energy resources from energy suppliers to en-
ergy consumers. As described in Section 1.1, distributing
energy resources from one region to another may take var-
ious costs (e.g., capital cost associated with constructing
pipelines, energy resources consumed or wasted during dis-
tribution, etc.). We abstract distribution costs among en-
ergy suppliers and consumers to be a a predefined cost ma-
trix CMatrixn×n = {cij |1 ≤ i, j ≤ n}, wherecij rep-
resents the per unit energy distribution cost from one sup-
plier/consumeri to another supplier/consumerj. In this pa-
per, we supposeCMatrixn×n is symmetric, which means
thatcij = cji, for 1 ≤ i, j ≤ n. However, triangle inequal-
ity may not be correct, i.e.,cij + cjk may not definitely
greater than or equal tocik.

Definition 1. Energy Distribution Network The predefined
cost matrixCMatrixn×n forms a fully-connected energy
distribution network, where each node represents an energy
supplier/consumer, and each link is associated with the per
unit energy distribution cost.

Suppose that initially the total energy supply of suppli-
ers equal to the total demand of consumers, in this paper, we
will study how an efficient energy flow network can emerge
from the energy distribution network through local dynam-
ics of energy suppliers/consumers.

Definition 2. Energy Flow Network The energy flows
among energy suppliers/consumers can be represented by
an undirect networkG =< V, L, Q >. The node setV =
{vi|1 ≤ i ≤ n} denotes the set ofn suppliers/consumers.
The link setL = {lij |1 ≤ i, j ≤ n} represents all existing
energy flows (if there are energy flows between nodevi and
vj , thenlij = lji = 1; otherwise,lij = lji = 0). The quan-
tity setQ = {qij |1 ≤ i, j ≤ n} represents the volume of
energy flows on each linklij .

To evaluate the performances of different local behavior-
based strategies proposed in this paper, we have two kinds
of measurements for the final energy flow networks, i.e., the
global cost and per unit cost of final energy flow networks.

Definition 3. Global Cost of Energy Flow Network The
global cost of energy flow network represents total distribu-
tion cost of allocating all energy supply to corresponding
consumers based on the energy flow network. In this case,
the total costs of all energy flows can be calculated by

TC =
∑

lij∈L

qij · cij · lij (1)



Definition 4. Per Unit Cost of Energy Flow Network The
per unit cost of energy flow network represents average dis-
tribution cost of certain quantity of energy resources allo-
cating from energy suppliers to corresponding consumers
based on the energy flow network. By this definition, the
per unit cost of energy flows can be calculated by

PC =
TC∑

lij∈L qij

(2)

Specific research issues to be studied include (i)distri-
bution rate(i.e., can the local behavior-based strategies dis-
tribute all energy supply to consumers?), (ii)distribution
cost(i.e., can the global cost or per unit cost of energy flow
network generated by the local behavior-based strategies
approach to that of the optimal solution?), and (iii)scala-
bility(i.e., when the number of entities increases, can the
performance of local behavior-based strategies remain ef-
ficient, i.e., higher distribution rate and lower distribution
cost?). In order to answer the above questions, we will,
first of all, present some detailed formulation of the local
behavior-based strategies in the next section.

4 Formulations for the Behavior-based
Paradigm

In this section, we will present in details the local
behavior-based paradigm that draws on the methodology
of autonomy-oriented computing (AOC) [19]. According
to AOC, entities spontaneously interact with each other as
well as their environments based on their behavioral rules to
reach certain global objectives. In the context of the energy
distribution problem in this paper, the global objectives are
(i) to distribute all energy resources from energy suppliers
to energy consumers, and (ii) to minimize the global energy
distribution costs.

4.1 Entities Profile

In this paper, we haven entitiesE = {ei|1 ≤ i ≤ n},
each of which represents either an energy supplier or con-
sumer. A supplier entity aims to sell its energy surplus to
appropriate consumers, while a consumer entity aims to buy
energy resources from appropriate suppliers to make up its
energy deficit. Because the energy distribution costs are fi-
nally undertaken by both energy suppliers and consumers,
in this paper, we assume that each entity prefers to energy
resources with lower distribution costs.

The profile of an entity is represented as a tuple,<

id, type, volume, memory, rules >, whereid denotes the
identifier of an entity. type = {supplier, consumer}
means that an entity may either be an energy supplier or
consumer.volume represents the amount of surplus/deficit

an energy supplier/consumer has.memory records infor-
mation that the entity has. Since in real world no sup-
plier/demander has complete information of the energy dis-
tribution systems, in this paper, we assume that initially,
an entity only has information about its per unit distribu-
tion costs to all other suppliers/consumers on the distri-
bution network (i.e., entityei only has cost information
{cij |1 ≤ j ≤ n}). The entity does not know other enti-
ties’ type andvolume. Therefore, entities need to move on
the distribution network and interact with other entities to
collect more information.rules determines how an entity
move on the contact network and interact with other enti-
ties. In this paper, we represent two kinds of rules, i.e.,
behavioral rules and decision-making rules.

4.2 Behavioral Rules

The behavioral rule of an entity determines how the en-
tity move on the distribution network to collect distribu-
tion cost information and find trading partners. In this pa-
per, we assume that once an entity moves to a node on the
distribution network, it will get the distribution cost infor-
mation, as well as the energy surplus/deficit of the sup-
plier/consumer on the node. Then the entity will deter-
mine whether or not to trade with the node based on its
decision-making rules. The information of visited suppli-
ers/consumers will be saved at the entity’smemory. For
the static energy distribution problem in this paper, enti-
ties move on the distribution network based on self-avoiding
random walks, which play a central role in the modeling of
the topological behavior of thread- and loop-like molecules.

Definition 5. Self-avoiding Random Walk A self-avoiding
random walk is a sequence of moves on a network that does
not visit the same node more than once.

In this paper, we will present two kinds of self-avoiding
random walks to study the effects of entitiesmemory on
the global performance of the mechanism. For the first kind
of random walk (adopted by Algorithms 1 and 2), each en-
tity only uses cost information of the current visited node
to determine where to move for the next step, i.e., the en-
tity does not memorize information. For the second kind of
random walk (adopted by Algorithms 3 and 4), each entity
will memorize all cost information of nodes that it has al-
ready visited, and integrate this information to determineits
next step. The hypothesis is that by utilizingmemory, it is
much easier for an entity to find a path with small distribu-
tion cost on the static distribution network. The details of
the random walks will be introduced in Section 4.4.

Remark: The self-avoiding random walk is adopted in
this paper for the static energy distribution problem because
the supply/demand of each entity will stay constant during
the dynamic process. However, it is obviously unsuitable



for the dynamic distribution problems. Here, it is necessary
to emphasize that our focus is mainly on the impacts of en-
titiesmemory (i.e., with limited memory or with unlimited
memory) on the performances of the mechanism.

4.3 Decision-making Rules

An entity makes decisions about whether or not to
trade with other suppliers/consumers based on its decision-
making rule. In this paper, we present three kinds of
decision-making rules, i.e., first-come-first-serve, compe-
tition, and request-passing, to study the effects of differ-
ent trading strategies on the global performances. Entities
with first-come-first-serve decision-making rule willpas-
sively trade with entities by their visiting order without
considering the distribution cost of energy resources; en-
tities with competition rules prefers to trading with entities
with lower distribution cost; entities with the third decision-
making ruleproactivelysend trading requests to a list of
entities who it would like to trade with based on cost infor-
mation in its memory. In other words, an entity will refuse
to trade with entities who are not in its list. The hypoth-
esis is that by proactively regulating trading partners and
sending requests based on cost information inmemory, it
is more likely for an entity to find appropriate trading part-
ners than passively trading with visitors. The details of the
decision-making rules will be introduced in corresponding
algorithms in Section 4.4.

4.4 Behavior-based Algorithms

To evaluate the two behavioral hypotheses, we present
four behavior-based algorithms with gradually increased
behavioral complexity in this section. Entities in Algo-
rithms 1 and 2 have limited memory and adopt first-come-
first-serve decision-making rule. Entities in Algorithms 3
and 4 can memorize all cost information of nodes that they
have already visited. Especially, entities in Algorithm 4 can
proactively send requests to potential trading partners based
on information inmemory.

Algorithm 1: Self-avoiding Random Walk with First-
come-first-serve: At each round of this algorithm, each en-
tity with ei.volume 6= 0, 1 ≤ i ≤ n (i.e., supply are not
distributed or demand are not satisfied) behaves in a random
order to find trading partners based on self-avoiding random
walk on the distribution network. Denoteei.Path(t) as the
set of entities that entityei has already visited up to round
t, hence, the potential entities forei to visit at roundt+1 is
PE = E \ ei.Path(t). The selection probabilities are in-
versely proportional to the per unit energy distribution cost
from current node to all other possible nodes, i.e., the prob-
ability of entity ei selectingej ∈ PE as trade partner at

Input : Cost matrixCMatrixn×n; Volume of each entity
{ei.volume|ei ∈ E};

Output : Energy flow networkRMatrixn×n

Initialize ei.Path(1)← ei for all 1 ≤ i ≤ n;1

foreach Roundt = 1 : (n− 1) do2

Generate a random operation orderO(t) with3

ei.volume 6= 0 for all 1 ≤ i ≤ n ;
foreach ej ∈ O(t) do4

PE = E \ ej .Path(t) ;5

Selectek ∈ PE based on Eq. 3;6

if ek.volume 6= 0 then7

Updateej .volume andek.volume;8

UpdateRMatrix based onej .Path(t + 1);9

end10

ei.Path(t + 1)← ei.Path(t) ∪ ek;11

end12

end13

Algorithm 1 : Self-avoiding Random Walk with First-
come-first-serve. In the algorithm, steps 5 and 6 are for
the self-avoiding random walk; steps 7-10 are for the first-
come-first-serve trading. We useei.Path(t) to record the
nodes that entityei has visited up to roundt.

roundt + 1 is calculated by

pij(t + 1) =

1
CMatrix(ei,ej)∑

ek∈PE
1

CMatrix(ei,ek)

(3)

The trading agreement will be reached based on a first-
come-first-serve rule without considering the costs of en-
ergy distribution.

Algorithm 2: Self-avoiding Random Walk with Compe-
tition: The entities’ behavioral rule in this algorithm is the
same with the self-avoiding random walk in Algorithm 1.
The only difference is that at each round, each entity with
non-zerovolume will first move to the node it selected.
Then, entities who selected the same node will compete for
trading with the supplier/consumer at that node.

Algorithm 3: Self-avoiding Random Walk with Infor-
mation Sharing: This algorithm is different with Algo-
rithm 2 in terms of random walk process. In this algo-
rithm, once an entityei visited a nodej on the distribu-
tion network, it will memorize all cost information (i.e.,
{cjk|1 ≤ k ≤ n}) of the visited nodej. Then, use in-
formation in its memory to determine next step of the ran-
dom walk: the entityei will first calculate the minimum
costsShortestPathCost(ei, ek) to all other potential en-
tities ek, k ∈ PE based onei.memory, then generate ran-
dom walk probabilities based on the calculated minimum
costs. The probability of entityei visitingej ∈ PE at round
t + 1 is calculated by

pij(t + 1) =

1
ShortestPathCost(ei,ej)∑

ek∈PE
1

ShortestPathCost(ei,ek)

(4)



Input : Cost matrixCMatrixn×n; Volume of each entity
{ei.volume|ei ∈ E};

Output : Energy flow networkRMatrixn×n

Initialize ei.Path(1)← ei for all 1 ≤ i ≤ n;1

foreach Roundt = 1 : (n− 1) do2

foreach ej .volume 6= 0 do3

PE = E \ ej .Path(t) ;4

Selectek ∈ PE based on Eq. 3;5

ei.Path(t + 1)← ei.Path(t) ∪ ek;6

end7

Generate a random operation orderO(t) with8

ei.volume 6= 0 for all 1 ≤ i ≤ n ;
foreach el ∈ O(t) do9

V (el) = {ej |ej .Path(t + 1) = el};10

S(el) = sort(V (el));11

foreach em ∈ S(el) do12

if el.volume 6= 0 then13

Updateel.volume andem.volume;14

UpdateRMatrix based on15

em.Path(t + 1);
end16

end17

end18

end19

Algorithm 2 : Self-avoiding Random Walk with Compe-
tition. In the algorithm, steps 4-5 are for the self-avoiding
random walk; steps 8-18 are for the competition trading.
We useei.Path(t) to record the nodes that entityei has
visited up to roundt.

Algorithm 4 Self-avoiding Random Walk with Informa-
tion Passing: In this algorithm, at each round (i) each entity
memorizes cost information of visited nodes to determine
the next step of random walk, and (ii) entities pass trading
requests to potential partners in its request list. The random
walk is the same as that in Algorithm 3. For the trading
part, at each round, each entityei will calculate the mini-
mum costsShortestPathCost(ei, :) to other nodes that it
has not visited, and sort the entities by cost in increasing
order. The request listei.RL of ei with sizes contains en-
tities who are tops in the sorted list ofei. In this paper, the
size of request list increases as the roundt increases. Each
entity will only agree to trade with another entity who is in
its request list.

5 Simulations

In this section, we will describe several simulations to
evaluate the performances of the local behavior-based al-
gorithms. The four behavior-based algorithms presented
in Section 4.4 are compared with the optimal solutions in
terms of (i) distribution rate of energy resources, (ii) the
global cost of final energy flow network, and (iii) the per

Input : Cost matrixCMatrixn×n; Volume of each entity
{ei.volume|ei ∈ E}

Output : Energy flow networkRMatrixn×n

foreach ei, ej ∈ E do1

ei.Path(1)← ei;2

ShortestPath(ei, ej , :)← ei;3

end4

foreach Roundt = 1 : (n− 1) do5

foreach ej .volume 6= 0 do6

PE = E \ ej .Path(t) ;7

foreach ek ∈ PE do8

CalculateShortestPathCost(ej, ek) based9

onej .memory;
end10

Selectek ∈ PE based on Eq. 4;11

ej .Path(t + 1)← ej .Path(t) ∪ ek;12

Updateej .memory based onej .Path(t + 1);13

UpdateShortestPath(ej, ek, :);14

end15

Generate a random operation orderO(t) with16

ei.volume 6= 0 for all 1 ≤ i ≤ n ;
foreach el ∈ O(t) do17

V (el) = {ej |ej .Path(t + 1) = el};18

S(el) = sort(V (el));19

foreach em ∈ S(el) do20

if el.volume 6= 0 then21

Updateel.volume andem.volume;22

UpdateRMatrix based on
ShortestPath(em, el, :);

end23

end24

end25

end26

Algorithm 3 : Self-avoiding Random Walk with Informa-
tion Sharing. In the algorithm, steps 7-11 are for the self-
avoiding random walk; steps 16-25 are for the competition
trading. We useei.Path(t) to record the nodes that entity
ei has visited up to roundt, andShortestPath(ei, ej , :)

to record the dynamically changing lowest cost path from
ei to ej .

unit cost of final energy flow network. The optimal solu-
tions are calculated by a static and centralized method.

5.1 Settings

There are three inputs for the simulations: the number of
entities, the per unit distribution cost matrix, and entities’
volume.

• The number of entities: In reality, the energy distri-
bution problems may have different scales, for exam-
ple, the distribution network may have scale about 100
(i.e., the number of transmission transformer) at a city
level, but about 1000 at a country level [25]. Hence, it



Input : Cost matrixCMatrixn×n; Volume of each entity
{ei.volume|ei ∈ E}

Output : Energy flow networkRMatrixn×n

foreach ei, ej ∈ E do1

ei.Path(1)← ei;2

ShortestPath(ei, ej , :)← ei;3

end4

foreach Roundt = 1 : (n− 1) do5

foreach ei.volume 6= 0 do6

PE = E \ ei.Path(t) ;7

foreach ek ∈ PE do8

CalculateShortestPathCost(ei, ek) based9

on ei.memory;
end10

Generate request listei.RL with sizet;11

end12

Generate a random operation orderO(t) with13

ei.volume 6= 0 for all 1 ≤ i ≤ n ;
foreach el ∈ O(t) do14

foreach em ∈ el.RL do15

if el ∈ em.RL then16

Updateel.volume andem.volume;17

UpdateRMatrix based on18

ShortestPath(el, em, :);
end19

end20

end21

foreach ej .volume 6= 0 do22

PE = E \ ej .Path(t) ;23

foreach ek ∈ PE do24

CalculateShortestPathCost(ej, ek) based25

on ej .memory;
end26

Selectek ∈ PE based on Eq. 4;27

ej .Path(t + 1)← ej .Path(t) ∪ ek;28

Updateej .memory based onej .Path(t + 1);29

UpdateShortestPath(ej, ek, :);30

end31

end32

Algorithm 4 : Self-avoiding Random Walk with Infor-
mation Passing. In the algorithm, steps 6-12 are for each
entity to generate request listRL based on itsmemory;
steps 13-20 are for the energy trading; steps 23-27 are
for the self-avoiding random walk. We useei.Path(t) to
record the nodes that entityei has visited up to roundt, and
ShortestPath(ei, ej , :) to record the dynamically chang-
ing lowest cost path fromei to ej .

is necessary to evaluate the performances of different
behavior-based algorithms in different scales. In this
paper, we preform the simulations for the distribution
problem withn = 10, 50, 100, 500, 1000.

• Per unit distribution cost matrix: The values in the
per unit distribution cost matrix are randomly gener-
ated from region[10, 1000] to reflect the high cost het-

erogeneity between each pair of suppliers/demanders.
Because we focus on the relative comparison of the
behavior-based algorithms, the absolute value of the
per unit distribution cost does not affect the final anal-
ysis of the algorithms.

• Entities’ volume: The volume of each entity is ran-
domly generated from region[−100, 100], where the
global supply and demand are balanced. Similarly, the
absolute value of entitiesvolume will also not affect
the relative comparisons of the behavior-based algo-
rithms.

5.2 Simulation Results and Observations

Distribution rate: The distribution rate is measured by
the percentage of energy supply that has been distributed
to consumers. Simulation results show that all the four
behavior-based algorithms can successfully distribute all
energy supply to consumers. This is because for the static
energy distribution problem, thevolume of each entity re-
mains constant during the dynamic process. According the
the self-avoiding random walk, each entity will visit all
other entities withinn − 1 rounds. Because of the simple
decision-making rules each entity adopts, all supply will be
distributed withinn − 1 rounds.

Distribution costs: The distribution costs are measured
by global and per unit costs of final energy flow networks
proposed in Section 3. Figure 1 shows the global cost com-
parisons of the four algorithms we proposed in Section 4.4
and the optimal solution. We can find that comparing with
optimal solution, Algorithms 1 and 2 have quite worse per-
formances. However, this is not surprising because entities
in Algorithm 1 have limited memory and behave without
considering cost at all. Though in Algorithm 2, entities may
compete for trading when they visit the same node, this kind
of competition is proved to be helpless for the minimiza-
tion of global energy flow cost as shown in Figure 1. In
Algorithm 3, by adopting information of visited nodes to
calculate path with minimum cost and select trade partners,
the entity can find appropriate walk path with much smaller
energy flow cost. However, it is obvious that Algorithm
3 is still far away from optimal solution because (i) enti-
ties in this algorithm behave based only on cost information
in its memory while the optimal solution is calculated by
centralized algorithm based on complete information, and
(ii) Algorithm 3 only uses cost information, however, there
is another information, i.e., the availability of resources,
which may help an entity to quickly find appropriate trade
partners. We can observe from Figure 1 that Algorithm 4
achieves better performance than Algorithm 3 in terms of
global cost of energy flow network. This is because in Al-
gorithm 4, each entity calculates request list based on cost
information in its memory before making decisions to trade.



The similar performance results can be observed for the per
unit cost of energy flow network in Figure 2.
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Figure 1: Global cost comparisons among four algorithms for dif-
ferent number of entities. The costs are calculated by Equation 1.
The results show that Algorithm 4 preform better than other three
Algorithms, where the global costs of Algorithm 4 are very close
to the optimal solution.

Scalability: It can be observed that the per unit cost of
energy flow network of Algorithm 4 approaches to optimal
solution (see inset of Figure 2) as the number of nodes in-
creases from 10 to 1000. This is because in Algorithm 4,
entities collect cost information by exploring on the distri-
bution network through more efficient random walks, and
further determine potential trading partners (i.e., request
list) by collected cost information. The larger the network
scale, the more effective and efficient the behaviors of enti-
ties will become. Scalability is a very important character-
istic for the local behavior-based paradigm to tackle huge
distribution systems, where static and/or centralized algo-
rithms cannot perform well. This evidence also shows that
it is feasible and advantageous to study huge and complex
systems from a bottom-up point of view.

Remark: The main purpose of this simple simulation
is (i) to show the possibility that global objectives can be
approximately reached through local behavior-based au-
tonomous entities with even simple behavioral rules and
decision-making rules, and (ii) to study the effects of differ-
ent behavioral rules and decision-making rules on the global
performances of the behavior-based paradigm. Evidences
show that appropriate exploration behavior (i.e., the self-
avoiding random walk in this paper) and regulation behavior
(i.e., the request list generated in Algorithm 4) play impor-
tant roles for the local behavior-based paradigm to achiev-
ing better global performances.

6 Conclusion and Future Work

In this paper, we present a local behavior-based
paradigm that draws on the methodology of autonomy-
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Figure 2: Per unit energy flow cost comparisons among four algo-
rithms for different number of entities. Inset: Compare Algorithm
4 with optimal solution. The per unit energy flow costs are cal-
culated by Equation 2. The results show that the per unit costof
energy flow network of Algorithm 4 approaches to optimal solu-
tion as the number of nodes increases from 10 to 1000.

oriented computing (AOC) for energy distribution prob-
lems, which are by nature, open, and dynamically chang-
ing over time. According to AOC, the entities in the
behavior-based paradigm can spontaneously interact with
each other, and operate based on their behavioral rules and
decision-making rules. Simulation results on four algo-
rithms with gradually increased behavioral complexity re-
veal that global objectives can be effectively and efficiently
approached by involving explorations (i.e., self-avoiding
random walk on the distribution network) and collective
regulation (i.e., the request lists calculated by cost infor-
mation in entities’ memory). Furthermore, behavior-based
paradigm with appropriately designed entity profiles and
behavioral rules may also have scalable performance, i.e.,
the per unit cost of energy flow network of Algorithm 4
gradually approaches to optimal solution (see inset of Fig-
ure 2) as the number of nodes increases from 10 to 1000.

The main objectives of this paper are not only to solve
the energy distribution problem, but to present a natural
behavior-based paradigm with respect to the energy distri-
bution problem so that dynamic energy distribution prob-
lems can be studied. As describe in Section 1.1, many sys-
tematic properties (i.e., vulnerability, criticality, and stabil-
ity) can be involved in an open, dynamic energy distribution
problem. For example, the energy supply vulnerability may
relate to whether the distribution system can make sure suf-
ficient energy supply for each energy consumer when sup-
ply of energy resources are interrupted for any reasons; the
energy distribution criticality analysis may help to find out
the critical suppliers/consumers in the distribution network.
Understanding systematic properties of an energy distribu-
tion problem is essential for us to design robust mechanisms
in the future to improve energy distribution efficiency, to
study the formation of energy trading markets, to control
the cascading failure of distribution networks (e.g., power



grid), and so on. Since the energy distribution activities are
by nature, performed by highly distributed energy suppli-
ers and consumers, we conjecture that the local behavior-
based paradigm (focusing on the local interactions of sup-
plier/consumer entities) in this paper are more feasible than
traditional centralized approaches to study the essences of
the dynamic energy distribution problems.
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