
Speeding up K-Means Algorithm by GPUs

You Li, Kaiyong Zhao, Xiaowen Chu

Department of Computer Science

Hong Kong Baptist University

{youli, kyzhao, chxw}@comp.hkbu.edu.hk

Abstract

Clustering algorithm is always facing the efficiency

challenge due to the continuously fast increasing data

volume. Exploiting parallel computing is one of the

most promising solutions. In this paper, we conduct

systematic research on paralleling the most important

clustering algorithm k-Means on GPUs. We find that

data dimension is an important parameter that should

be taken into consideration when designing the

parallel algorithms. Particularly, two algorithms have

been designed for low and high dimension data

respectively to make the best use GPUs. For low

dimension data, we mainly utilize GPU registers to

decrease data access latency. For high dimension data,

we and then design a novel algorithm which simulates

matrix multiplication and exploits GPU shared

memory to achieve high compute to global memory

access ratio. As a result, our GPU-based k-Means

algorithm is four to ten times faster than the best

reported GPU-based algorithm.

I. Introduction

Clustering is a method of unsupervised learning that

partitions a set of records into clusters, such that intra-

cluster similarity is maximized while inter-cluster

similarity is minimized [1, 2]. The k-Means algorithm

is one of the most popular clustering algorithms [3]

and is widely used in many fields such as statistical

data analysis, pattern recognition, image analysis and

bioinformatics [4, 5]. The running time of k-Means

algorithm grows with the increase of the data size and

data dimension. Hence clustering large-scale datasets is

usually a time-consuming task. Parallelizing k-Means

is a promising approach to overcoming the challenge

of the huge computational requirement [6-8]. In [6], P-

CLUSTER uses a client-server model, in which a

server process partitions data into blocks and sends the

initial centroid list and blocks to each of clients. P-

CLUSTER has been further enhanced by pruning as

much computation as possible while preserving the

clustering quality [7]. In [8], the k-Means clustering

algorithm has been parallelized by exploiting the

inherent data-parallelism and utilizing message passing.

Recently, as a general-purpose and high

performance parallel hardware, Graphics Processing

Units (GPUs) develop continuously, and supply

another platform for parallelizing k-Means. GPUs are

dedicated hardware for manipulating computer

graphics. Due to the huge computing demand for real-

time and high-definition 3D graphics, the GPUs have

evolved into highly parallel many-core processors. The

advances of computing power in GPUs have driven the

development of general-purpose computing on GPUs

(GPGPU). In this paper, we use a general-purpose

parallel programming model, namely Compute Unified

Device Architecture (CUDA) [9, 10] to implement our

parallel k-Means algorithm.

CUDA has been used for speeding up a large

number of applications [11, 12]. Some clustering

algorithms have also been implemented on the GPUs,

including k-Means. There are three main GPU-based k-

Means algorithms: GPUMiner [13], UV_k-Means [14],

and HP_k-Means [15]. UV_k-Means achieves a

speedup of ten to forty as compared with a four-

threaded Minebench [16] running on a dual-core,

hyper-threaded CPU. HP_k-Means claims another

speedup of two to four compared with UV_k-Means

and twenty to seventy speedup compared with

GPUMiner. Obviously, those works reveal the high

performance advantage of the GPU. However, they

only investigated some general optimization rules and

utilized parts. Therefore, it is still worth analyzing how

to apply the optimization rules in the design of the

algorithm and how to better utilize the GPU.

Thus, in this paper, we conduct systematic research

on paralleling the k-Means using CUDA and

optimizing the algorithm in detail. Particularly,

considering the character of data dimension, we design

two strategies for low and high dimension data

respectively. For low dimension data, we adopt a

relatively simple workflow and mainly utilize the

register to achieve a low global memory access times

and latency. For high dimension data, we present a

novel idea on the relationship between k-Means and

Matrix multiplication, and design a shared memory

based k-Means algorithm. The experiment shows that

our k-Means compares very favorably with GPUMiner,

UV_k-Means and HP_k-Means, and yet achieves a

speedup of 100, 10 and 5 around respectively.

The paper is organized as follows: section II

introduces the existing GPU-based k-Means algorithms;

section III presents the design strategy and

implementation of our k-Means algorithm; section IV

presents our experimental results and compares our k-

Means algorithm with existing ones. Section V

concludes this paper.

II. Related work

To the best of our knowledge, there are mainly three

GPU-based k-Means algorithms, UV_k-Means,

GPUMiner, and HP_k-Means, the former two of

which are open source. To well understand the GPU-

based algorithm, we briefly introduce the architecture

first.

A. The GPU architecture

We take NVIDIA GTX280 as an example to show

the GPU architecture. GTX 280 has 30 Streaming

Multiprocessors (SMs), and each SM has 8 Scalar

Processors (SPs), resulting a total of 240 processor

cores. The SMs have a Single-Instruction Multiple-

Data (SIMD) architecture: At any given clock cycle,

each SP executes the same instruction, but operates on

different data. Each SM has four different types of on-

chip memory, namely registers, shared memory,

constant cache, and texture cache, as shown in Fig.1.

Constant cache and texture cache are both read-only

memories shared by all SPs, but with very limited size.

Off-chip memories such as local memory and global

memory have relatively long access latency, usually

400 to 600 clock cycles [10]. The properties of the

different types of have been summarized in [10, 17]. In

general, the scarce shared memory should be carefully

utilized to amortize the global memory latency cost.

In CUDA model, the GPU is regarded as a

coprocessor capable of executing a great number of

threads in parallel. A single source program includes

host codes running on CPU and also kernel codes

running on the GPU. Compute-intensive and data-

parallel kernel codes run on the GPU. The threads are

organized into thread blocks, and each block of threads

are executed concurrently on one SM. Threads in a

thread block can share data through the shared memory

and can perform barrier synchronization. But there is

no synchronization mechanism for different thread

blocks besides terminating the kernel. Another

important concept in CUDA is warp, which is formed

by 32 parallel threads and is the scheduling unit of

each SM. When a warp stalls, the SM can schedule

another warp to execute. A warp executes one

instruction at a time, so full efficiency can only be

achieved when all 32 threads in the warp have the

same execution path. There are two consequences: first,

if the threads in a warp have different execution paths

due to conditional branch, the warp will serially

execute each branch which increases the total time of

instructions executed for this warp; secondly, if the

number of threads in a block is not a multiple of warp

size, the remaining instruction cycles will be wasted.

Figure 1. Hardware architecture of the GPU

B. UV_k-Means

In the UV_k-Means, in order to avoid the long time

latency of global memory, they copy all the data to the

texture, which has cache mechanism. Then, they use

constant memory to store k centroids, which is also

more efficient than global memory. The grid and block

are organized as follows: each thread is responsible for

one data point, finding the nearest centroid, and each

block has 256 threads, so the grid has [n/256] blocks.

The work flow is straight forward: firstly, each

thread calculates the distance from one corresponding

data point to every centroid and finds the minimum

distance and corresponding centroid. Secondly, each

block calculates a temp centroid set based on several

data points, and each thread calculates one dimension

of the temp centroid. Thirdly, CPU copies the temporal

centroid sets from the GPU to the CPU, and serially

calculates the final new centroid set by adding the

temporal centroid sets.

UV_k-Means has achieved a speed-up of twenty to

forty through our experiment, mainly by assigning

each data point to one thread and utilizing the cache

mechanism to get a high reading efficiency. However,

the efficiency still could be further improved by using

another memory mechanism, shared memory, as well

as considering not only one data point once a time,

which are the two key points considered in this paper.

C. GPUMiner

GPUMiner puts all the input data in the global

memory, and loads k centroids to the shared memory.

Each block has 128 threads, and the grid has n/128

blocks. The workflow is also straight forward: firstly,

each thread calculates the distance from one data point

to every centroid, and changes the suitable bit into true

in the bit array, which stores the nearest centroid for

each data point; secondly, each thread is responsible

for one centroid, finds all the corresponding data points

from the bit array and takes the mean of those data

points as the new centroids.

The main problem of GPUMiner is the utilization of

memory in the GPU, since GPUMiner accesses most

of the data (input data point) from global memory,

which is obviously the slowest one, and thus results in

a low efficiency. Besides, the main characteristic of

GPUMiner is designing a bitmap-based algorithm,

which makes it easy to find each data set. However, as

HP_k-Means points out, bitmap approach is elegant in

expressing the problem, but it is not a good method for

performance, since bitmap takes more space when k is

large and requires more shared memory. We will

present its performance in detail in section IV.

III. Design and implementation

The k-Means algorithm is one of the most useful

clustering methods. Given a set of n data points R = {r1,

r2, ..., rn} in a d dimensional space, the task of k-Means

is to partition R into k clusters (k < n) S = {S1, S2, ..., Sk}

such that
1

2
|| ||

k

ii

x j i

j

S

x 




  is minimized, where

i
 is the mean of Si.

The k-Means algorithm iteratively partitions a given

dataset into k clusters. It first selects k data points as

the initial centroids. Then the algorithm iterates as

follows: (1) Calculate the Euclidean distance between

each pair of data point and the centroid; (2) Assign

each data point to its closest centroid; (3) Calculate the

new centroid by taking the mean of all the data points

in each cluster. The iteration terminates when the

changes in the centroids are less than some threshold or

some given iteration time. The whole process is shown

in Algorithm 1.

The computational complexity of a single round of

k-Means is: O(nkd) in step (1), O(nk) in step(2), O(nd)

in step (3). We mainly focus on speeding up step (1).

Considering the parameter of data dimension d, we

design two GPU-based algorithms for low and high

dimension data respectively. For low dimension data,

we propose to utilize register and combine Step (1) and

Step (2) together. For high dimension data sets, we

adopt the shared memory to parallelize Step (1) and

apply the most efficient reduction method to speed up

Step (2). Step (3) has a relatively low computational

complexity of O(nd), and it is difficult to be fully

parallelized due to write conflict. So we let GPU

handle part of the task that is worthy to be performed

on GPU, and then send the remaining part to CPU for

execution.

Algorithm 1: CPU-based k-Means

// flag: shows whether it still needs to iterate;

// iter: the current round of iteration;

// Max_iter: the maximum number of iterations;

// d(r, s): the distance between r and the cluster s;

1. while flag && iter <= Max_iter

2. for each r in R and each s in S

3. Compute d(r, s);

4. Find the closest centroid based on the distance;

5. Compute new centroids;

6. if the changes of the centroids are less than threshold

7. flag ← false;

8. iter = iter + 1;

9. end of while

A. Finding closest centroid

The CPU-based algorithm of finding closest

centroid is straightforward, as shown in Algorithm 2.

Since the algorithm computes the distance between

each data point and each centroid, our first method to

parallelize Algorithm 2 is dispatching one data point to

one thread, and then each thread calculates the distance

from one data point to all the centroids, and maintains

the minimum distance and the corresponding centroid,

as shown in Algorithm 3. Line 1 and 2 show how the

algorithm designs the block and gird; line 3 tells how

to calculate the position of the corresponding data

point for each thread in global memory; line 4-5 load

the data point into the register; line 6-11compute the

distance and maintain the minimum one.

It is worth pointing out that the key step of

achieving high efficiency is loading the data point into

the register, which ensures reading the data point from

global memory only once when calculating the

distances between the data point and k centroids.

Obviously, reading from register is much faster than

reading from global memory. The experiment in

section IV shows the advantage of Algorithm 3

compared with the best published results. However, the

problem of Algorithm 3 is the limited size of the

register. In fact, users are not able to control the

register right now, and could only utilize register when

the data size is appropriate. When the data point cannot

be loaded into the register as the dimension grows, it

will be stored in local memory, which will increase the

reading latency.

In fact, the input data point and the centroid could

be viewed as two matrixes data[n][d] and

centroid[d][k]; the result distance could be denoted as

d[n][k]; and the distance computing process could be

described as Algorithm 4, which shares the same flow

as matrix multiplication. Based on this character, we

design Algorithm 5 for high dimension data, adopting

the idea of matrix operation and mainly utilizing the

shared memory.

Algorithm 2: finding closest centroid based on CPU

//min_D: a temp variable, stores the minimum distance;

// index: stores the min centroid ID for each data point;

1. for ri in R

2. for sj in S

3. Compute d(ri, sj);

4. if d(ri, sj) < min_D

5. min_D ← d(ri, sj);

6. index[i] ← j;

7. end of for;

8. end of for;

Algorithm 3: finding closest centroid based on the

register of the GPU

// threadDim: the dimension of the thread in each block;

// blcokDim: the dimension of the block in each grid;

// blockIdx.x: the current block ID;

// threadIdx.x: the current thread ID;

// data: the address of R;

// i: the ID of data point;

// Gdata: the address of the corresponding data point;

//S: the set of the centroid;

1. threadDim ← 16x16;

2. blockDim ← n/256;

3. i ← blockIdx.x×blockDim+threadIdx.x×threadDim;

4. Gdata ← data + i×d;

5. Load the data point from Gdata to the register.

6. for sj in S

7. Compute d(ri, sj); // read ri the register

8. if d(ri, sj) < min_D

9. min_D ← d(ri, sj);

10. index[i] ← j;

11. end of for;

Algorithm 4: distance computing

1. for i from 1 to n

2. for j from 1 to k

3. for m from 1 to d

4. d[i][j] += (data[i][m]-centroid[m][j])2;
5. d[i][j] ← sqrt(d[i][j]);

Algorithm 5: finding closest centroid based on the

shared memory of the GPU

// THIGH: the high of the tile;

// TWIDTH: the width of the tile;

// thread: the dimensions of the block;

// grid: the dimensions of the grid;

// SMData: stores the tile in shared memory;

// TResult: stores the temp distance in shared memory;

// SR: stores the temp distance in global memory;

// Alast : is the upper bound address of data point;

1. THIGH ← 32, TWIDTH ← 32;

2. dim thread(THIGH, 2);

3. dim grid (k/ TWIDTH, n/ THIGH);

4. indexD points to the corresponding data;

5. indexC points to the corresponding centroid;

6. indexR points to the corresponding result;

7. SMData[TWIDTH][THIGH] in shared memory;

8. TResult[TWIDTH][THIGH] in shared memory;

9. Alast ← indexD + d;

10. do

11. {

12. Load data from global memory to SMData;

13. indexD is added by TWIDTH;

14. Compute the temp distance;

15. Add the temp distance in TResult ;

16. }while(indexD < Alast);

17. __syncthreads();

18. Write the minimum distance in TResult back to SR;

The main idea of Algorithm 5 is decreasing the

global memory access times and latency by loading the

data into the shared memory tile by tile. Thus,

Algorithm 5 reads each data point from global memory

only once, the same as Algorithm 3. The key point of

Algorithm 5 is how to access the shared memory

efficiently, which is achieved by adopting coalescing

reading, accessing sixteen continuous address for the

thread in a half warp to avoid the bank conflict. The

details are described as follows.

As shown in Algorithm 5, each block is in charge of

computing a sub result matrix SR[TWIDTH][THIGH].

Each block has THIGH*2 threads, and each thread

computes a column of sr. line 4-6 finds the right

position of the data, the centroid and the result matrix

for each thread; in the loop from line 11 to 16, the

algorithm loads a tile data from global memory to the

shared memory, and computes the temp distance saved

in TResult; the loop ends when the whole row has been

calculated, as shown in Fig.2.

After calculating the temp minimum distances from

each sub matrix, we need to get the final minimum one.

The computational complexity of CPU-based

algorithm is O(nk). On GPU, if each data point is

assigned to one thread, the computational complexity

decreases to O(k). If each data point has k threads, the

complexity will be O(logk). However, the cost of the

parallel algorithm is (k/logk) and not efficient, which is

measured by threads multiplying with complexity. In

fact, according to Brent's theory, we can assign

O(k/logk) threads for each data point, finding the

minimum distance from a k array; each thread does

O(logk) sequential work; then all O(k/logk) threads

cooperate for O(logk) steps. And the computational

complexity is O(logk) while the cost is O(k). This

paper will not discuss the implementation in detail but

adopt Brent's theory.

Figure 2 tile-based distance computing process

B. Calculating the new centroid

The result of finding the closest centroid is an array

index[n], which stores the closest centroid for each data

point. The data points belonging to the same centroid

constitute one cluster. Calculating the new centroids is

taking the mean of all the data points in each cluster.

As shown in Algorithm 6, the computational

complexity is O(nd+kd), and it is difficult to be fully

parallelized. Since if we assign each data point to a

thread, it will generate write conflict when adding the

data to the shared centroid. On the other hand, if we

assign each centroid to a thread, the computing power

of the GPU is has limited utilization.

In this paper, we design an algorithm, which adopts

the “divide and conquer” strategy: divide the data into

groups; reduce each group and get temp centroids; then

divide the temp centroids and reduce iteratively on the

GPU until n' is smaller than M, which means the GPU

has no advantage than the CPU for further computing;

calculate the final centroids on the CPU, as shown in

Algorithm 7. By dividing the data into groups, the

write conflict decreases, since each group writes its

own temp centroids and has no influence to other

groups. And it is still a profitable method when we

consider the additional data transfer through our

experiments (see section IV). Besides, it is necessary to

point out that M in Algorithm 7 line 1 should be the

multiple of the number of SM, which can ensure a high

schedule efficiency on the GPU.

Algorithm 6: CPU_based method

for Calculating the new centroids

// count: stores the number of data points in each clusters;

// new_cen: the address of the new centroid;

// data: is the address of data point set R;

1. for i from 1 to n

2. ++count[index[i]];

3. for j from 1 to d

4. new_cen [index[i]][j] += data[i][j];

5. for i from 1 to k

6. for j from 1 to d

7. new_cen [i][j] /= count[i];

Algorithm 7: GPU_based method

for Calculating the new centroids

// n': is the number of groups to be divided;

1. M is the multiple of the number of SM;

2. n' ← n/M;

3. Divide n data points in to n' groups;

4. Compute n' temp centroids on the GPU;

5. while n' > M

6. {

7. Divide n' temp centroids into n'/M groups;

8. n' ← n'/M;

9. Compute n' temp centroids on the GPU;

10. }

11. Reduce n' temp centroids into final centroids on CPU;

IV. Experiments

The experiments were conducted on a PC with an

NVIDIA GTX280 GPU and an Intel(R) Core(TM) i5

CPU. GTX 280 has 30 SIMD multi-processors, and

each one contains eight processors and performs at

1.29 GHz. The memory of the GPU is 1GB with the

peak bandwidth of 141.7 GB/sec. The CPU has four

cores running at 2.67 GHz. The main memory is 8 GB

with the peak bandwidth of 5.6 GB/sec. We use Visual

Studio 2008 to write and compile all the source code.

The version of CUDA is 2.3. We calculate the time of

the application after the file I/O, in order to show the

speedup effect more clearly.

The experiments contain two parts: first, we

compare our results with the best published results of

HP_k-Means, which is mainly on low dimension data.

Second, we compare our k-Means with UV_k-Means

and GMiner on high dimension data. Each of the

experiments is repeated ten times and the average

results are reported.

A. On low dimension data

Here we choose exactly the same data sets with

HP_k-Means as follows: n has two values, two million

and four million; k has two values, one hundred and

four hundred; d also has two values, two and eight.

Each dimension is a floating point number, and

generated randomly.

Table 1: Speed of k-Means on low dimension data

n k d Our

k-Means

HP

k-Means

UV

k-Means

GPU

Miner

2

million

100 2 0.22 1.45 2.84 61.39

400 2 0.64 2.16 5.96 63.46

100 8 0.24 2.48 6.07 192.05

400 8 0.65 4.53 16.32 226.79

4

million

100 2 0.31 2.88 5.64 130.36

400 2 1.22 4.38 11.94 126.38

100 8 0.42 4.95 12.85 383.41

400 8 1.26 9.03 34.54 474.83

Note: the time is in second. The hardware environment of HP is as

follows: NVIDIA GTX280 GPU; Intel Xeon CPU, 2.33GHz; 4GB
memory.

As is shown in Table 1, our k-Means is the most

efficient one among the four algorithms. It is four to

ten times faster than the best published results: HP_k-

Means, ten to twenty faster than UV_k-Means and one

hundred to three hundred faster than GPUMiner. Since

HP only says some optimization rules without

publishing the source code. We mainly analyze the

difference between our k-Means and UV_k-Means.

The workflows of the two algorithms are very

similar: each thread finds the minimum centroid for

each data point. The main difference is the memory

utilization: UV_k-Means puts the data on the texture

and puts the centroids on the constant; our k-Means

firstly loads the data on the register, and reads the data

from the register each time when calculating the

distance from each centroid, resulting in a low global

memory access times and latency, since reading from

register is by far faster than reading from other

memories.

Also shown in Table 1, our k-Means is insensitive

with dimension, since the time differs a little when the

dimension changes from two to eight, which also

results from the utilization of the register. On the other

hand, when k grows, the algorithm has to access the

global memory more, which is proportional to the k.

Through our experiment, when the dimension is

larger than sixteen, the data point cannot be loaded into

the register (The compiling and building information of

Visual Studio can indicate the memory that the

program will use), and the speed decreases sharply

because of accessing the local memory. So, we use

Algorithm 5, shared memory based algorithm to deal

with the high dimension data.

B. On high dimension data

Here we use the data from the KDD Cup 1999 [10],

and choose two data sets, which have 51200 and

494080 data points. Each data point contains 34

features, and each one is floating point. We compare

our algorithm with GPUMiner and UV_k-Means.

The results are shown in Table 2. Our k-Means is

four to eight faster than UV_k-Means, ten to forty

faster than GPUMiner, and one hundred to two

hundred faster than a CPU based k-Means algorithm

which is also developed by us, using Algorithm 1 and

Algorithm 6. We also mainly analyze the difference

between our k-Means and UV_k-Means.

Table 2: Speed of k-Means on high dimension data

Data set Our

k-Means

UV

k-Means

GPU

Miner

CPU

k-Means

51200 0.43 1.86 4.26 35.79

494080 1.15 8.67 40.6 224.47

Table 3: Time distribution of our k-Means algorithm

Function/data set Find the

closest centroid

Compute new

centroid

51200 GPU

CPU

0.07

33.5

0.16

2.28

494080 GPU

CPU

0.87

207.78

0.18

16.67

When dealing with high dimension data, larger than

sixteen, our algorithm loads the data tile by tile into the

shared memory. Thus it accesses the global memory

only once for each data point. UV_k-Means adopts

texture to store the data point and decreases the global

memory reading latency. However, it depends on the

cache mechanism, and if the cache missing grows, the

efficiency would lower down. On the other hand, the

shared memory could perform more stably.

As shown in Table 3, finding the closest centroid

achieves a speedup of forty to two hundred compared

with our CPU-based algorithm, while computing new

centroid achieves a speedup around ten, which further

prove the advantage of our algorithm.

V. Conclusions

In this paper, we proposed a GPU-based k-Means

algorithm. It presents mainly two novel ideas: first,

based on the dimension of the data, our k-Means

algorithm chooses two different strategies. For low

dimension data, our algorithm utilizes GPU registers,

and achieves a speedup of four to ten than HP_k-

Means. For high dimension data, our algorithm firstly

observes the connections of each data point, analyzes

the relationship with matrix multiplication and

reduction, adopts shared memory to avoid multiple

accessing the global memory, increases the number of

the computing operation for each global memory

access, and achieves a speedup of four to eight as

compared with UV_k-Means.

The algorithm presented in this paper could deal

with a finite scale of data set, limited by the global

memory size of the GPU. Consequently, when the data

set is larger than it, new strategies have to be designed.

A possible method is to divide the data set into several

parts, each of which could be loaded into global

memory of the GPU; find the closest centroid for each

data point in each part; accumulate the data point to

their corresponding centroid part by part and get the

new centroids. It is worth pointing out that the above

method could adopt the algorithm in this paper when

dealing with each part. Another feasible approach is

using the GPU cluster, which is a computer cluster and

each node is equipped with a GPU, and conducted as

follows: divide the data into several parts, each of

which is assigned to one node; on each node, find the

closest centroid for each data point, using Algorithm 5;

adopt the divide and conquer strategy as Algorithm 7

to calculate the new centroid.

In summary, the results of this paper prove that

adopting GPUs is a promising acceleration method for

clustering algorithms to deal with large scale data.

Moreover, the analysis method and optimization rules

presented in this paper could also be applied in

speeding up other data mining algorithms.

References

[1] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to

Data Mining, Addison-Wesley Companion Book Site
2006.

[2] A. K. Jain and R. C. Dubes, Algorithms for clustering
data, Prentice-Hall, 1988.

[3] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H.

Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H.

Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top

10 algorithms in data mining,” knowledge information

systems, vol. 14, pp. 1-37, 2008.

[4] X. Wang and M. Leeser, “K-means Clustering for

Multispectral Images Using Floating-Point Divide,” in

Proceedings of the 15th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines:

IEEE Computer Society, 2007.

[5] H. Zhou and Y. Liu, “Accurate integration of multi-

view range images using k-means clustering,” Pattern
Recogn., vol. 41, pp. 152-175, 2008.

[6] D. Judd, P. K. McKinley, and A. K. Jain, “Large-Scale

Parallel Data Clustering,” in Proceedings of the

International Conference on Pattern Recognition (ICPR

'96) Volume IV-Volume 7472 - Volume 7472: IEEE
Computer Society, 1996.

[7] D. Judd, P. K. McKinley, and A. K. Jain, “Large-Scale

Parallel Data Clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 20, pp. 871-876, 1998.

[8] I. S. Dhillon and D. S. Modha, “A Data-Clustering

Algorithm on Distributed Memory Multiprocessors,” in

Revised Papers from Large-Scale Parallel Data Mining,

Workshop on Large-Scale Parallel KDD Systems,
SIGKDD: Springer-Verlag, 2000.

[9] NVIDIA CUDA:

http://developer.nvidia.com/object/cuda.html.

[10] NVIDIA CUDA Compute Unified Device Architecture:

Programming Guide, Version 2.0, June 2008.

[11] S. A. Manavski, “CUDA compatible GPU as an

efficient hardware accelerator for AES cryptography,”

In Proceedings of IEEE International Conference on
Signal Processing and Communication, p. 4, Nov. 2007.

[12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,

D. B. Kirk, and W. Hwu, “Optimization principles and

application performance evaluation of a multithreaded

GPU using CUDA,” in Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of

parallel programming Salt Lake City, UT, USA: ACM,

2008.

[13] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam, P. Y.

Yang, B. He, Q. Luo, P. V. Sande, and K. Yang,

“Parallel Data Mining on Graphics Processors,”
Technical Report HKUSTCS08, 2008.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,

and K. Skadron, “A Performance Study of General-

Purpose Applications on Graphics Processors Using

CUDA,” Journal of Parallel and Distributed Computing,
2008.

[15] R. Wu, B. Zhang, and M. Hsu, “Clustering billions of

data points using GPUs,” in UCHPC-MAW '09:

Proceedings of the combined workshops on

UnConventional high performance computing workshop

plus memory access workshop, Ischia, Italy, 2009, pp.
1-6.

[16] J. Pisharath, Y. Liu, W.-k. Liao, A. Choudhary, G.

Memik, and J. Parhi, “NU-MineBench 2.0,” CUCIS

Technical Report CUCIS-2005-08-01, Center for Ultra-

Scale Computing and Information Security,
Northwestern University, 2005.

[17] J. C. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A

Scalable Parallel Classifier for Data Mining,” VLDB'96,

Proceedings of 22th International Conference on Very
Large Data Bases, pp. 544-555, 1996.

