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Abstract 
 

Clustering algorithm is always facing the efficiency 

challenge due to the continuously fast increasing data 

volume. Exploiting parallel computing is one of the 

most promising solutions. In this paper, we conduct 

systematic research on paralleling the most important 

clustering algorithm k-Means on GPUs. We find that 

data dimension is an important parameter that should 

be taken into consideration when designing the 

parallel algorithms. Particularly, two algorithms have 

been designed for low and high dimension data 

respectively to make the best use GPUs. For low 

dimension data, we mainly utilize GPU registers to 

decrease data access latency. For high dimension data, 

we and then design a novel algorithm which simulates 

matrix multiplication and exploits GPU shared 

memory to achieve high compute to global memory 

access ratio. As a result, our GPU-based k-Means 

algorithm is four to ten times faster than the best 

reported GPU-based algorithm. 

 

I. Introduction 
 

Clustering is a method of unsupervised learning that 

partitions a set of records into clusters, such that intra-

cluster similarity is maximized while inter-cluster 

similarity is minimized [1, 2]. The k-Means algorithm 

is one of the most popular clustering algorithms [3] 

and is widely used in many fields such as statistical 

data analysis, pattern recognition, image analysis and 

bioinformatics [4, 5]. The running time of k-Means 

algorithm grows with the increase of the data size and 

data dimension. Hence clustering large-scale datasets is 

usually a time-consuming task. Parallelizing k-Means 

is a promising approach to overcoming the challenge 

of the huge computational requirement [6-8]. In [6], P-

CLUSTER uses a client-server model, in which a 

server process partitions data into blocks and sends the 

initial centroid list and blocks to each of clients. P-

CLUSTER has been further enhanced by pruning as 

much computation as possible while preserving the 

clustering quality [7]. In [8], the k-Means clustering 

algorithm has been parallelized by exploiting the 

inherent data-parallelism and utilizing message passing.  

Recently, as a general-purpose and high 

performance parallel hardware, Graphics Processing 

Units (GPUs) develop continuously, and supply 

another platform for parallelizing k-Means. GPUs are 

dedicated hardware for manipulating computer 

graphics. Due to the huge computing demand for real-

time and high-definition 3D graphics, the GPUs have 

evolved into highly parallel many-core processors. The 

advances of computing power in GPUs have driven the 

development of general-purpose computing on GPUs 

(GPGPU). In this paper, we use a general-purpose 

parallel programming model, namely Compute Unified 

Device Architecture (CUDA) [9, 10] to implement our 

parallel k-Means algorithm.  

CUDA has been used for speeding up a large 

number of applications [11, 12]. Some clustering 

algorithms have also been implemented on the GPUs, 

including k-Means. There are three main GPU-based k-

Means algorithms: GPUMiner [13], UV_k-Means [14], 

and HP_k-Means [15]. UV_k-Means achieves a 

speedup of ten to forty as compared with a four-

threaded Minebench [16] running on a dual-core, 

hyper-threaded CPU. HP_k-Means claims another 

speedup of two to four compared with UV_k-Means 

and twenty to seventy speedup compared with 

GPUMiner. Obviously, those works reveal the high 

performance advantage of the GPU. However, they 

only investigated some general optimization rules and 

utilized parts. Therefore, it is still worth analyzing how 

to apply the optimization rules in the design of the 

algorithm and how to better utilize the GPU.  

Thus, in this paper, we conduct systematic research 

on paralleling the k-Means using CUDA and 

optimizing the algorithm in detail. Particularly, 

considering the character of data dimension, we design 

two strategies for low and high dimension data 

respectively. For low dimension data, we adopt a 

relatively simple workflow and mainly utilize the 

register to achieve a low global memory access times 

and latency. For high dimension data, we present a 



novel idea on the relationship between k-Means and 

Matrix multiplication, and design a shared memory 

based k-Means algorithm. The experiment shows that 

our k-Means compares very favorably with GPUMiner, 

UV_k-Means and HP_k-Means, and yet achieves a 

speedup of 100, 10 and 5 around respectively.  

The paper is organized as follows: section II 

introduces the existing GPU-based k-Means algorithms; 

section III presents the design strategy and 

implementation of our k-Means algorithm; section IV 

presents our experimental results and compares our k-

Means algorithm with existing ones. Section V 

concludes this paper. 

 

II. Related work 
 

To the best of our knowledge, there are mainly three 

GPU-based k-Means algorithms, UV_k-Means, 

GPUMiner,  and HP_k-Means, the former two of 

which are open source. To well understand the GPU-

based algorithm, we briefly introduce the architecture 

first.  

A. The GPU architecture 

We take NVIDIA GTX280 as an example to show 

the GPU architecture. GTX 280 has 30 Streaming 

Multiprocessors (SMs), and each SM has 8 Scalar 

Processors (SPs), resulting a total of 240 processor 

cores. The SMs have a Single-Instruction Multiple-

Data (SIMD) architecture: At any given clock cycle, 

each SP executes the same instruction, but operates on 

different data. Each SM has four different types of on-

chip memory, namely registers, shared memory, 

constant cache, and texture cache, as shown in Fig.1. 

Constant cache and texture cache are both read-only 

memories shared by all SPs, but with very limited size. 

Off-chip memories such as local memory and global 

memory have relatively long access latency, usually 

400 to 600 clock cycles [10]. The properties of the 

different types of have been summarized in [10, 17]. In 

general, the scarce shared memory should be carefully 

utilized to amortize the global memory latency cost. 

In CUDA model, the GPU is regarded as a 

coprocessor capable of executing a great number of 

threads in parallel. A single source program includes 

host codes running on CPU and also kernel codes 

running on the GPU. Compute-intensive and data-

parallel kernel codes run on the GPU. The threads are 

organized into thread blocks, and each block of threads 

are executed concurrently on one SM. Threads in a 

thread block can share data through the shared memory 

and can perform barrier synchronization. But there is 

no synchronization mechanism for different thread 

blocks besides terminating the kernel. Another 

important concept in CUDA is warp, which is formed 

by 32 parallel threads and is the scheduling unit of 

each SM. When a warp stalls, the SM can schedule 

another warp to execute. A warp executes one 

instruction at a time, so full efficiency can only be 

achieved when all 32 threads in the warp have the 

same execution path. There are two consequences: first, 

if the threads in a warp have different execution paths 

due to conditional branch, the warp will serially 

execute each branch which increases the total time of 

instructions executed for this warp; secondly, if the 

number of threads in a block is not a multiple of warp 

size, the remaining instruction cycles will be wasted. 

 

 

Figure 1. Hardware architecture of the GPU 

 

B. UV_k-Means  

In the UV_k-Means, in order to avoid the long time 

latency of global memory, they copy all the data to the 

texture, which has cache mechanism. Then, they use 

constant memory to store k centroids, which is also 

more efficient than global memory. The grid and block 

are organized as follows: each thread is responsible for 

one data point, finding the nearest centroid, and each 

block has 256 threads, so the grid has [n/256] blocks.   

The work flow is straight forward: firstly, each 

thread calculates the distance from one corresponding 

data point to every centroid and finds the minimum 

distance and corresponding centroid. Secondly, each 

block calculates a temp centroid set based on several 

data points, and each thread calculates one dimension 

of the temp centroid. Thirdly, CPU copies the temporal 

centroid sets from the GPU to the CPU, and serially 

calculates the final new centroid set by adding the 

temporal centroid sets. 

UV_k-Means has achieved a speed-up of twenty to 

forty through our experiment, mainly by assigning 

each data point to one thread and utilizing the cache 



mechanism to get a high reading efficiency. However, 

the efficiency still could be further improved by using 

another memory mechanism, shared memory, as well 

as considering not only one data point once a time, 

which are the two key points considered in this paper. 

C. GPUMiner 

GPUMiner puts all the input data in the global 

memory, and loads k centroids to the shared memory. 

Each block has 128 threads, and the grid has n/128 

blocks. The workflow is also straight forward: firstly, 

each thread calculates the distance from one data point 

to every centroid, and changes the suitable bit into true 

in the bit array, which stores the nearest centroid for 

each data point; secondly, each thread is responsible 

for one centroid, finds all the corresponding data points 

from the bit array and takes the mean of those data 

points as the new centroids.  

The main problem of GPUMiner is the utilization of 

memory in the GPU, since GPUMiner accesses most 

of the data (input data point) from global memory, 

which is obviously the slowest one, and thus results in 

a low efficiency. Besides, the main characteristic of 

GPUMiner is designing a bitmap-based algorithm, 

which makes it easy to find each data set. However, as 

HP_k-Means points out, bitmap approach is elegant in 

expressing the problem, but it is not a good method for 

performance, since bitmap takes more space when k is 

large and requires more shared memory. We will 

present its performance in detail in section IV. 

 

III. Design and implementation 
 

The k-Means algorithm is one of the most useful 

clustering methods. Given a set of n data points R = {r1, 

r2, ..., rn} in a d dimensional space, the task of k-Means 

is to partition R into k clusters (k < n) S = {S1, S2, ..., Sk} 

such that 
1

2
|| ||

k

ii

x j i

j

S

x 




   is minimized, where 

i
  is the mean of Si.  

The k-Means algorithm iteratively partitions a given 

dataset into k clusters. It first selects k data points as 

the initial centroids. Then the algorithm iterates as 

follows: (1) Calculate the Euclidean distance between 

each pair of data point and the centroid; (2) Assign 

each data point to its closest centroid; (3) Calculate the 

new centroid by taking the mean of all the data points 

in each cluster. The iteration terminates when the 

changes in the centroids are less than some threshold or 

some given iteration time. The whole process is shown 

in Algorithm 1. 

The computational complexity of a single round of 

k-Means is: O(nkd) in step (1), O(nk) in step(2), O(nd) 

in step (3). We mainly focus on speeding up step (1). 

Considering the parameter of data dimension d, we 

design two GPU-based algorithms for low and high 

dimension data respectively. For low dimension data, 

we propose to utilize register and combine Step (1) and 

Step (2) together. For high dimension data sets, we 

adopt the shared memory to parallelize Step (1) and 

apply the most efficient reduction method to speed up 

Step (2). Step (3) has a relatively low computational 

complexity of O(nd), and it is difficult to be fully 

parallelized due to write conflict. So we let GPU 

handle part of the task that is worthy to be performed 

on GPU, and then send the remaining part to CPU for 

execution. 

 
Algorithm 1: CPU-based k-Means 

// flag: shows whether it still needs to iterate; 

// iter: the current round of iteration; 

// Max_iter:  the maximum number of iterations; 

// d(r, s): the distance between r and the cluster s; 

1. while flag && iter <= Max_iter 

2.    for each r in R and each s in S 

3.         Compute d(r, s); 

4.    Find the closest centroid based on the distance; 

5.    Compute new centroids; 

6.    if the changes of the centroids are less than threshold 

7.         flag ← false; 

8.    iter = iter + 1; 

9. end of while 

 

A. Finding closest centroid 

The CPU-based algorithm of finding closest 

centroid is straightforward, as shown in Algorithm 2. 

Since the algorithm computes the distance between 

each data point and each centroid, our first method to 

parallelize Algorithm 2 is dispatching one data point to 

one thread, and then each thread calculates the distance 

from one data point to all the centroids, and maintains 

the minimum distance and the corresponding centroid, 

as shown in Algorithm 3. Line 1 and 2 show how the 

algorithm designs the block and gird; line 3 tells how 

to calculate the position of the corresponding data 

point for each thread in global memory; line 4-5 load 

the data point into the register; line 6-11compute the 

distance and maintain the minimum one.  

It is worth pointing out that the key step of 

achieving high efficiency is loading the data point into 

the register, which ensures reading the data point from 

global memory only once when calculating the 

distances between the data point and k centroids. 

Obviously, reading from register is much faster than 

reading from global memory. The experiment in 

section IV shows the advantage of Algorithm 3 

compared with the best published results. However, the 

problem of Algorithm 3 is the limited size of the 



register. In fact, users are not able to control the 

register right now, and could only utilize register when 

the data size is appropriate. When the data point cannot 

be loaded into the register as the dimension grows, it 

will be stored in local memory, which will increase the 

reading latency.  

In fact, the input data point and the centroid could 

be viewed as two matrixes data[n][d] and 

centroid[d][k]; the result distance could be denoted as 

d[n][k]; and the distance computing process could be 

described as Algorithm 4, which shares the same flow 

as matrix multiplication. Based on this character, we 

design Algorithm 5 for high dimension data, adopting 

the idea of matrix operation and mainly utilizing the 

shared memory. 

 
Algorithm 2: finding closest centroid based on CPU 

//min_D: a temp variable, stores the minimum distance; 

// index: stores the min centroid ID for each data point; 

1. for ri in R 

2.      for sj in S 

3.           Compute d(ri, sj); 

4.           if d(ri, sj) < min_D 

5.                min_D ← d(ri, sj); 

6.           index[i] ← j; 

7.      end of for; 

8. end of for;  

 
Algorithm 3: finding closest centroid based on the 

register of the GPU 

// threadDim: the dimension of the thread in each block;  

// blcokDim: the dimension of the block in each grid; 

// blockIdx.x: the current block ID; 

// threadIdx.x: the current thread ID; 

// data: the address of R; 

// i: the ID of data point; 

// Gdata: the address of the corresponding data point; 

//S: the set of the centroid; 

1.   threadDim ← 16x16; 

2.   blockDim ← n/256; 

3.   i ← blockIdx.x×blockDim+threadIdx.x×threadDim; 

4.   Gdata ← data + i×d; 

5.   Load the data point from Gdata to the register. 

6.   for sj in S 

7.       Compute d(ri, sj); // read ri the register 

8.       if d(ri, sj) < min_D 

9.                min_D ← d(ri, sj); 

10.              index[i] ← j; 

11.  end of for; 

 

Algorithm 4:  distance computing 

1.   for i from 1 to n 

2.         for j from 1 to k 

3.             for m from 1 to d 

4.                   d[i][j] += (data[i][m]-centroid[m][j])2; 
5.           d[i][j] ← sqrt(d[i][j]); 

 

 

Algorithm 5:  finding closest centroid based on the 

shared memory of the GPU 

// THIGH: the high of the tile; 

// TWIDTH: the width of the tile; 

// thread: the dimensions of the block; 

// grid: the dimensions of the grid; 

// SMData: stores the tile in shared memory;  

// TResult: stores the temp distance in shared memory; 

// SR: stores the temp distance in global memory; 

// Alast : is the upper bound address of data point; 

1. THIGH ← 32, TWIDTH ← 32; 

2. dim thread(THIGH, 2); 

3. dim grid (k/ TWIDTH, n/ THIGH); 

4. indexD points to the corresponding data; 

5. indexC points to the corresponding centroid; 

6. indexR points to the corresponding result; 

7. SMData[TWIDTH][THIGH] in shared memory; 

8. TResult[TWIDTH][ THIGH] in shared memory; 

9. Alast ← indexD + d; 

10. do 

11. { 

12.     Load data from global memory to SMData; 

13.     indexD is added by TWIDTH; 

14.     Compute the temp distance; 

15.     Add the temp distance in TResult ; 

16. }while(indexD < Alast); 

17. __syncthreads(); 

18. Write the minimum distance in TResult back to SR; 

 

The main idea of Algorithm 5 is decreasing the 

global memory access times and latency by loading the 

data into the shared memory tile by tile. Thus, 

Algorithm 5 reads each data point from global memory 

only once, the same as Algorithm 3. The key point of 

Algorithm 5 is how to access the shared memory 

efficiently, which is achieved by adopting coalescing 

reading, accessing sixteen continuous address for the 

thread in a half warp to avoid the bank conflict. The 

details are described as follows.  

As shown in Algorithm 5, each block is in charge of 

computing a sub result matrix SR[TWIDTH][THIGH]. 

Each block has THIGH*2 threads, and each thread 

computes a column of sr. line 4-6 finds the right 

position of the data, the centroid and the result matrix 

for each thread; in the loop from line 11 to 16, the 

algorithm loads a tile data from global memory to the 

shared memory, and computes the temp distance saved 

in TResult; the loop ends when the whole row has been 

calculated, as shown in Fig.2. 

After calculating the temp minimum distances from 

each sub matrix, we need to get the final minimum one. 

The computational complexity of CPU-based 

algorithm is O(nk). On GPU, if each data point is 

assigned to one thread, the computational complexity 

decreases to O(k). If each data point has k threads, the 

complexity will be O(logk). However, the cost of the 

parallel algorithm is (k/logk) and not efficient, which is 



measured by threads multiplying with complexity.  In 

fact, according to Brent's theory, we can assign 

O(k/logk) threads for each data point, finding the 

minimum distance from a k array; each thread does 

O(logk) sequential work; then all O(k/logk) threads 

cooperate for O(logk) steps. And the computational 

complexity is O(logk) while the cost is O(k). This 

paper will not discuss the implementation in detail but 

adopt Brent's theory.  

 

 

Figure 2 tile-based distance computing process 

 

B. Calculating the new centroid 

The result of finding the closest centroid is an array 

index[n], which stores the closest centroid for each data 

point. The data points belonging to the same centroid 

constitute one cluster. Calculating the new centroids is 

taking the mean of all the data points in each cluster. 

As shown in Algorithm 6, the computational 

complexity is O(nd+kd), and it is difficult to be fully 

parallelized. Since if we assign each data point to a 

thread, it will generate write conflict when adding the 

data to the shared centroid. On the other hand, if we 

assign each centroid to a thread, the computing power 

of the GPU is has limited utilization. 

In this paper, we design an algorithm, which adopts 

the “divide and conquer” strategy: divide the data into 

groups; reduce each group and get temp centroids; then 

divide the temp centroids and reduce iteratively on the 

GPU until n' is smaller than M, which means the GPU 

has no advantage than the CPU for further computing; 

calculate the final centroids on the CPU, as shown in 

Algorithm 7. By dividing the data into groups, the 

write conflict decreases, since each group writes its 

own temp centroids and has no influence to other 

groups. And it is still a profitable method when we 

consider the additional data transfer through our 

experiments (see section IV). Besides, it is necessary to 

point out that M in Algorithm 7 line 1 should be the 

multiple of the number of SM, which can ensure a high 

schedule efficiency on the GPU. 

 
Algorithm 6: CPU_based method  

for Calculating the new centroids 

// count: stores the number of data points in each clusters; 

// new_cen: the address of the new centroid; 

// data: is the address of data point set R; 

1. for i from 1 to n 

2.    ++count[ index[i] ]; 

3.    for j from 1 to d 

4.       new_cen [index[i]][j] += data[i][j]; 

5. for i from 1 to k 

6.     for j from 1 to d 

7.         new_cen [i][j] /= count[i]; 

 

Algorithm 7: GPU_based method  

for Calculating the new centroids 

// n': is the number of groups to be divided; 

1. M is the multiple of the number of SM; 

2. n' ← n/M; 

3. Divide n data points in to n' groups; 

4. Compute n' temp centroids on the GPU; 

5. while n' > M 

6. { 

7.     Divide n' temp centroids into n'/M groups; 

8.     n'  ← n'/M; 

9.     Compute  n' temp centroids on the GPU; 

10. } 

11. Reduce n' temp centroids into final centroids on CPU; 

 

IV. Experiments  
 

The experiments were conducted on a PC with an 

NVIDIA GTX280 GPU and an Intel(R) Core(TM) i5 

CPU. GTX 280 has 30 SIMD multi-processors, and 

each one contains eight processors and performs at 

1.29 GHz. The memory of the GPU is 1GB with the 

peak bandwidth of 141.7 GB/sec. The CPU has four 

cores running at 2.67 GHz. The main memory is 8 GB 

with the peak bandwidth of 5.6 GB/sec. We use Visual 

Studio 2008 to write and compile all the source code. 

The version of CUDA is 2.3. We calculate the time of 

the application after the file I/O, in order to show the 

speedup effect more clearly. 

The experiments contain two parts: first, we 

compare our results with the best published results of 

HP_k-Means, which is mainly on low dimension data. 

Second, we compare our k-Means with UV_k-Means 

and GMiner on high dimension data. Each of the 

experiments is repeated ten times and the average 

results are reported. 



A. On low dimension data 

Here we choose exactly the same data sets with 

HP_k-Means as follows: n has two values, two million 

and four million; k has two values, one hundred and 

four hundred; d also has two values, two and eight. 

Each dimension is a floating point number, and 

generated randomly.  

 
Table 1: Speed of k-Means on low dimension data 

n k d Our 

k-Means 

HP  

k-Means 

UV 

k-Means 

GPU  

Miner 

2 

million 

100 2 0.22 1.45   2.84   61.39 

400 2 0.64 2.16   5.96   63.46 

100 8 0.24 2.48   6.07 192.05 

400 8 0.65 4.53 16.32 226.79 

4 

million 

100 2 0.31 2.88   5.64 130.36 

400 2 1.22 4.38 11.94 126.38 

100 8 0.42 4.95 12.85 383.41 

400 8 1.26 9.03 34.54 474.83 

Note: the time is in second. The hardware environment of HP is as 

follows: NVIDIA GTX280 GPU; Intel Xeon CPU, 2.33GHz; 4GB 
memory. 

 

As is shown in Table 1, our k-Means is the most 

efficient one among the four algorithms. It is four to 

ten times faster than the best published results: HP_k-

Means, ten to twenty faster than UV_k-Means and one 

hundred to three hundred faster than GPUMiner. Since 

HP only says some optimization rules without 

publishing the source code. We mainly analyze the 

difference between our k-Means and UV_k-Means. 

The workflows of the two algorithms are very 

similar: each thread finds the minimum centroid for 

each data point. The main difference is the memory 

utilization: UV_k-Means puts the data on the texture 

and puts the centroids on the constant; our k-Means 

firstly loads the data on the register, and reads the data 

from the register each time when calculating the 

distance from each centroid, resulting in a low global 

memory access times and latency, since reading from 

register is by far faster than reading from other 

memories.  

Also shown in Table 1, our k-Means is insensitive 

with dimension, since the time differs a little when the 

dimension changes from two to eight, which also 

results from the utilization of the register. On the other 

hand, when k grows, the algorithm has to access the 

global memory more, which is proportional to the k. 

Through our experiment, when the dimension is 

larger than sixteen, the data point cannot be loaded into 

the register (The compiling and building information of 

Visual Studio can indicate the memory that the 

program will use), and the speed decreases sharply 

because of accessing the local memory. So, we use 

Algorithm 5, shared memory based algorithm to deal 

with the high dimension data. 

B. On high dimension data 

Here we use the data from the KDD Cup 1999 [10], 

and choose two data sets, which have 51200 and 

494080 data points. Each data point contains 34 

features, and each one is floating point. We compare 

our algorithm with GPUMiner and UV_k-Means. 

The results are shown in Table 2. Our k-Means is 

four to eight faster than UV_k-Means, ten to forty 

faster than GPUMiner, and one hundred to two 

hundred faster than a CPU based k-Means algorithm 

which is also developed by us, using Algorithm 1 and 

Algorithm 6. We also mainly analyze the difference 

between our k-Means and UV_k-Means. 

 
Table 2: Speed of k-Means on high dimension data 

Data set Our 

k-Means 

UV 

k-Means 

GPU 

Miner 

CPU 

k-Means 

51200 0.43 1.86 4.26 35.79 

494080 1.15 8.67 40.6 224.47 

 
Table 3: Time distribution of our k-Means algorithm 

Function/data set Find the  

closest centroid 

Compute new 

centroid 

51200 GPU 

CPU 

0.07 

33.5 

0.16 

2.28 

494080 GPU 

CPU 

0.87 

207.78 

0.18 

16.67 

 

When dealing with high dimension data, larger than 

sixteen, our algorithm loads the data tile by tile into the 

shared memory. Thus it accesses the global memory 

only once for each data point. UV_k-Means adopts 

texture to store the data point and decreases the global 

memory reading latency. However, it depends on the 

cache mechanism, and if the cache missing grows, the 

efficiency would lower down. On the other hand, the 

shared memory could perform more stably. 

As shown in Table 3, finding the closest centroid 

achieves a speedup of forty to two hundred compared 

with our CPU-based algorithm, while computing new 

centroid achieves a speedup around ten, which further 

prove the advantage of our algorithm. 

 

V. Conclusions 
 

In this paper, we proposed a GPU-based k-Means 

algorithm. It presents mainly two novel ideas: first, 

based on the dimension of the data, our k-Means 

algorithm chooses two different strategies. For low 

dimension data, our algorithm utilizes GPU registers, 

and achieves a speedup of four to ten than HP_k-



Means. For high dimension data, our algorithm firstly 

observes the connections of each data point, analyzes 

the relationship with matrix multiplication and 

reduction, adopts shared memory to avoid multiple 

accessing the global memory,  increases the number of 

the computing operation for each global memory 

access, and achieves a speedup of four to eight as 

compared with UV_k-Means. 

The algorithm presented in this paper could deal 

with a finite scale of data set, limited by the global 

memory size of the GPU. Consequently, when the data 

set is larger than it, new strategies have to be designed. 

A possible method is to divide the data set into several 

parts, each of which could be loaded into global 

memory of the GPU; find the closest centroid for each 

data point in each part; accumulate the data point to 

their corresponding centroid part by part and get the 

new centroids. It is worth pointing out that the above 

method could adopt the algorithm in this paper when 

dealing with each part. Another feasible approach is 

using the GPU cluster, which is a computer cluster and 

each node is equipped with a GPU, and conducted as 

follows: divide the data into several parts, each of 

which is assigned to one node; on each node, find the 

closest centroid for each data point, using Algorithm 5; 

adopt the divide and conquer strategy as Algorithm 7 

to calculate the new centroid. 

In summary, the results of this paper prove that 

adopting GPUs is a promising acceleration method for 

clustering algorithms to deal with large scale data. 

Moreover, the analysis method and optimization rules 

presented in this paper could also be applied in 

speeding up other data mining algorithms. 
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