
Selectivity Estimation of XPath for Cyclic Graphs

Yun Peng Byron Choi Jianliang Xu
Department of Computer Science

Hong Kong Baptist University
{ypeng, choi, xujl}@comp.hkbu.edu.hk

ABSTRACT
Recent interests on the Semantic Web, Web ontology and
XML, among other topics, have sparked a renewed interest
on graph-structured databases. Path queries are often used
to retrieve graph-structured data (or simply graphs) from
the database. A crucial and classical query optimization has
been query selectivity estimation. However, the majority of
existing works on selectivity estimation focuses on relational
and tree data. In this paper, we investigate selectivity es-
timation on path queries on possibly cyclic graph data. To
facilitate selectivity estimation on cyclic graphs, we propose
a matrix representation of graphs extended from prime la-
beling, an index for reachability queries on directed acyclic
graphs. With this representation, we exploit consecutive
ones property (C1P) of matrix. As a consequence, a node
is mapped to a point in a 2-dimensional plane and a query
is mapped into multiple points. We adopt histograms for
selectivity estimation. We perform an experimental evalu-
ation on the space and time efficiency and accuracy of the
proposed technique.

1. INTRODUCTION
Graph-structured databases have a wide range of emerg-

ing applications, e.g., the Semantic Web, eXtensible Markup
Language (XML), biological databases and network topolo-
gies. To-date, there has already been voluminous real-world
(possibly cyclic) graph-structured data []. To retrieve sub-
graphs from a large graph-structured database efficiently,
various query optimization techniques have been proposed.
Among others, selectivity estimation of queries has been
a crucial query optimization technique in databases. In a
nutshell, given a query, we want to determine the number
of results of the query, without invoking potentially costly
query evaluation. Selectivity estimation has been built in
the query optimizer of all commercial relational databases.
However, the majority of previous research on selectivity es-
timation, with few exceptions (see Section 2), focuses on re-
lational and tree-structured data. In this paper, we propose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

open_auction

open_auction
open_auction

site

people

person

bidder
bidder

bidders
seller

...

... ...

watch

...

...
open_auction

...

watches

watch

[11]

[13]

open_auctions
[2x3x5x7x11x13]

[2x3x5x7]

[2x3x5x7]
[2x3x5x7]

[2x3x5x7x11x13x17]

[2x3x5x17]

[2x3x5x7]

person
[17]

[5] [2x3x5x7]

[2x3x5x7] [7]

... ...

[2]

author

[3]

person

person

[2x3x5x7]

Figure 1: An example graph of auction information

an accurate and efficient selectivity estimation for graph-
structured databases.

Path queries have been a popular and classical tool for
retrieving subgraphs from a graph-structured database. To
facilitate our technical discussions, we consider a fragment of
XPath query (see Section 3.2). Let us consider a simplified
synthetic XMark data graph [14] shown in Figure 1, where .
The graph encodes auction information, where people watch
over auctions and bidders bid items. Consider an example
query //open_auction[//bidder//open_auction], which se-
lects the auctions that are still open and have bidders who
watch some open_auctions. Note that the XMark data is
cyclic and the XPath query is recursive, where the query se-
lects open_auctions that have open_auction descendants.
In XMark with a scaling factor 0.1, there are 120, 708 and
bidders, open_auctions and open_auction//bidders, re-
spectively. To minimize intermediate result size, the query
//open_auction//bidder is evaluated prior to //bidder from
the root.

In recent years, there have been studies on selectivity es-
timation of XML data and XPath queries. In particular,
Wu et al. [19] proposes to adopt histograms to selectivity
estimation of XML queries. An advantage of this technique
is that histograms are by far the most popular technique for
query result estimation. The proposed technique relies on an
interval representation of nodes, which presumes tree data.
While a previous technique [2] extends the interval represen-
tation to support directed acyclic graphs, each node is po-
tentially represented by multiple intervals. The storage re-
quirement of multiple intervals per node can be prohibitvie.

In comparison, we represent a node with a single interval
but a query with multiple intervals.

There has been a stream of work on summarizing cyclic
graphs, namely XSketch [12] and TreeSketch [13]. The main
idea of the work is to compute minimal bisimulation of a
graph, which is used as a summary structure of the graph.
However, the bisimiluation graph can still be large. Local
bisimulation has been adopted to further reduce the size of
the bisimulation graph. However, the estimation accuracy
relies on a strong statistical assumption (uniform distribu-
tion) of data. In addition, bisimulation is not yet available
in commercial databases.

In this paper, we propose selectivity estimation technique
for cyclic graphs. The novelities of this paper are two. (i) We
propose to adopt an index for descendant-ancestor queries
that can support cyclic graphs. (ii) The second technique is
to keep the index of the cyclic data simple while expanding
a query for estimation. The intuitions of the two techniques
can be described as follows.

We adopt prime number labeling scheme (or simply prime
labeling) [17, 18] in this work. Prime labeling was origi-
nally proposed to determine descendant-ancestor relation-
ship among nodes of trees. This scheme associates each node
with an exclusive prime number and labels each node with
the product of its parents’ labels and the exclusive prime
number of itself. Reachability between nodes is mapped
to divisibility test of labels. In later work [17] this label-
ing scheme is extended to support directed acyclic graphs
(DAGs). However, to the best of our knowledge, no further
work has been presented to extend this idea to cyclic graphs,
not mention to selectivity estimation for graph-structured
data. In addition, the size of prime labeling is often smaller
than that of transitive closure of a graph. We propose a
binary matrix representation of prime labeling to further
reduce the size of prime labeling.

Next, given a matrix representation of a graph, we trans-
form it into a matrix with the consecutive ones property
(C1P). Some columns are duplicated in the transformation.
Subsequently, a node of a cyclic graph can be represented as
an interval of column ID (start, end), as opposed to multiple
intervals [2]. The nodes are summarized in a positional his-
togram. The complexity of querying is intuitively “pushed”
into the mapping between duplicated column IDs. Given
a query, we expand it into multiple query points using the
mapping of duplicated column IDs.

The contributions of this paper are as follows.

· We propose to extend prime labeling of DAGs to cyclic
graphs. We propose a binary matrix representation of
prime labeling of cyclic graphs.

· We propose matrix transformation to map a node of
a graph to an interval and a query to possibly multi-
ple intervals. A two-dimensional histogram is adopted
to summarize the graph. We propose an estimation
procedure with the histogram.

· We performed a preliminary experimental study on the
proposed techniques. It verifies that our techniques
are efficient and accurate for real and synthetic data
graphs.

The rest of this paper is organized as follows. Section 2
discusses related works. Section 3 presents the terminologies

and notations of this work. Section 4 proposes the prime la-
beling and its matrix representation for cyclic graphs. Sec-
tion 5 presents matrix transformation for interval represen-
tation of the graph. We present a preliminary experimental
study in Section 6. We present a list of future works in
Section 7.

2. RELATED WORK
There has been a host of recent works on selectivity es-

timation on path queries. The techniques can be roughly
classified into two categories: graph-based approaches and
relational-based approaches.

While graph-structured data model has its root at net-
work data model, it was revisited in Tsimmis project, where
Object Exchange Model (OEM) is proposed. DataGuide
[11] is proposed to optimize query evaluation on graphs.
Graphs are considered as non-deterministic automata and
their DataGuide is the deterministic automata of the graph.
DataGuide has been extended to support approximate query
processing [8]. [6] proposes a straight-line grammar (STL),
which is a special form of context-fre grammar, to summa-
rize a data graph. To reduce the size of the grammar, [6]
proposes to use a wildcard to simplify some non-terminals
in a production.

Another graph-based approach [12,13] is derived from the
notion of bisimulation of graphs. [12] proposes to use the
minimum/minimal bisimulation as the summary structure
of a data graph. To further reduce the size of bisimulation, a
notion of local bisimulation [9] has been applied. To recover
the path information from a local bisimilar graph, graph
stability is exploited and uniform distribution of nodes are
assumed.

Histograms in relational databases have been adapted to
support selectivity estimation of queries on graphs. Chen et
al [4] proposes an interval representation of echo node of a
graph. The start and end position of the interval is used as
the coordinates of a point in a 2-dimensional plane. Next,
a positional histogram is used to summarize the point for
estimation.

3. BASIC DEFINITIONS
In this section, we present the notations used.

3.1 Data Model
In this paper, we study directed node-labeled rooted data

graphs, or simply graphs in the subsequent discussions. A
graph can be denoted as G = (V, E, r, Σ, λ, oid), where V is
a set of nodes and E: V ×V is a set of edges, r ∈ V is a root
node, Σ is a set of labels and λ:V → Σ is a function that
returns the label of a node and oid is a function that returns
a unique identifier of a node. For simplicity, we may denote
a graph as (V ,E) when other components are not relevant
to the discussions.

3.2 Path Queries
Among the queries on graphs, XPath has been studied

more extensively recently than others and it has been a in-
dispensable part of eXtensible Markup Language (XML) –
the de facto standard for electronic data exchange. Hence,
we consider a fragment of XPath. The syntax is given in
BNF below.

p ::= ǫ | A | ∗ | // | p/p | p[q],

q ::= p | q ∧ q | q ∨ q,

where ǫ, A, ∗ and ‘/’ denote the self-axis, a label (tag), a
wildcard and the child-axis, and ’//’ stands for /descendant-
or-self::node()/, respectively; and q in p[q] is called a filter ,
in which s is a constant (string value), and ‘∧’ and ‘∨’ de-
note conjunction and disjunction, respectively. For //, we
abbreviate p1/ // as p1// and // /p2 as //p2. We use r[|p|]
to denote the evaluation of the query p from the node r.

Let R be the set of nodes of the evaluation, where R =
r[|p|]. In this paper we want to determine |R| efficiently and
accurately.

4. REPRESENTATION OF CYCLIC GRAPHS
To efficiently evaluate the descendant-or-self axis on cyclic

graphs, we propose our index in this section. We extend
prime labeling [18] to our problem. The benefits are twofold:
(i) Prime labeling can support cyclic graphs with minor
modifications and the labels are simple; and (ii) Prime la-
beling of a graph is often smaller than the transitive closure
of the graph, in practice.

4.1 The Original Prime Labeling
Prime labeling is originally proposed for indexing trees not

cyclic graphs. The main idea of prime labeling is that each
node is labeled with a product of prime numbers such that
the ancestor-descendent relationship between nodes could be
determined by using the division of the labels. A node n1 is
an ancestor of another node n2 if and only if the label of n2

is divisible by that of n1. In [18], a unique prime number is
assigned to each leaf node. The prime label of a node is the
product of the prime label of its children. Obviously, such
labeling works only on trees. To extend prime labeling to
support DAGs, [17,18] requires a unique prime number per
node.

4.2 Prime Labeling for Cyclic Graphs
To support cyclic graphs, the extensions of the previous

work on prime labeling ([18], [17]) are two. (i) Prime label-
ing needs to support possibly multiple strongly connected
components (SCCs) in cyclic graphs. By definition, each
node in a SCC can reach any other node in the SCC. There-
fore, the nodes in a SCC can be associated with the same
prime label. (ii) Previous work [17] on prime labeling uses
excessive prime numbers (one prime number per node). We
use fewer number of (unique) prime numbers needed for la-
beling and therefore reduce the overall size of prime labeling.

In particular, we require a new prime number for labeling
a node in one of the following situations. (i) The node is a
leaf node. (ii) The node has multiple parents.

With the above background, we now give the definition of
prime labeling.

Let get_next() is a special function which returns a prime
number that it has not returned before. Assume that a cyclic
graph G has been preprocessed by Tarjan’s algorithm [15],
where each SCC is reduced to a supernode. Denote the
reduced graph (DAG) to be G′(V ′, E′). Each node n is
associated with a prime label ℓ as defined in Definition 4.1.

Definition 4.1: The prime label ℓ of a node n of the re-
duced graph G′(V ′, E′) can be defined as follows.

Input: A data graph G
Output: the matrix representation of a graph M

01 G′ = tarjan(G)
02 for each n in G′.V in reverse topological order
03 if n is a leaf node /* Definition 4.1 */

04 n.~ℓ[get_next()] = 1
05 else

06 if |n.parent| ≥ 1

07 n.~ℓ[get_next()] = 1
08 for each c in n.children

09 n.~ℓ = n.~ℓ || c.~ℓ

Figure 2: Prime Labeling Construction prime-construct

1. If n is a leaf node, then n.ℓ = get_next().

2. If n is a non-leaf node and n has multiple parents,
then n.ℓ = get_next() ×

∏
c∈C

c.ℓ, where C is the set
of child nodes of n.

3. Otherwise, n.ℓ =
∏

c∈C c.ℓ.

The prime label can be assigned to nodes of the reduced
graph G′ in a reverse-topological order, i.e., a bottom-up
traversal. The pseudo-code of the construction (prime-construct)
is shown in Figure 2. The time complexity of prime-construct
is O(|V ′| + |E′|).

Assume we have a set of A-nodes and B-nodes, denoted
as SA and SB , respectively. A naive way to determine the
number of B-descendants in SB of the nodes in SA takes
O(|Sa|×|Sb|). With prime labeling, this can be done by first
computing the product of the prime labels of SA, denoted
as MA and then check the divisibility between the product
MA and the prime label of each node in SB . This requires
O(|Sa| + |Sb|).

4.3 Vector Representation of Prime Labeling
A known issue of prime labeling is that it often results in

very large integers. Nowadays, there has been voluminous
graph data, such as protein data, social network and XML.
In response to these, we propose a vector representation of
prime labeling and map division of integers to logic operators
of vectors.

Definition 4.2: Suppose that the prime label ℓ of a node
n of a graph G is pi1 × pi2 × ... × pim , where pij

is the ij-

th prime number. ℓ is then presented by a vector ~ℓ where
~ℓ[ij] = 1 if and only if pij

is a factor of ell and 0, otherwise.
The dimension of the vector is the number of prime numbers
used in labeling G.

Then, a graph can be represented as a matrix. In this
work, we always discuss binary vectors and matrices. For
simplicity, we may omit the term “binary”.

With this representation, division and multiplication of
prime labels can be mapped into logical operations on the
vector representation of the prime labels. In addition, the
property of prime labeling that a set of

Definition 4.3: Given two nodes n1 and n2, n1.ℓ is divisible

by n2.ℓ if and only if ¬n1.~ℓ ∧ n2.~ℓ = ~0.

Definition 4.3 can alternatively be understood that the

vector ¬n1.~ℓ and n2.~ℓ are orthogonal, where the product of
the two vectors is 0.

Definition 4.4: Given a set of nodes V and n2,
∏

n∈V
n.ℓ

is divisible by n2.ℓ if and only if ¬(
∧

n∈V n.~ℓ) ∧ n2.~ℓ = ~0.

Therefore, our problem is translated into the following.

Selectivity Estimation. Assume that m prime numbers
have been used in labeling and a graph with n nodes. Given
a vector representation of a query ~v and a n×m matrix M ,
we want to estimate the number of rows in M that are or-
thogonal to ~v.

Hence, the remaining task is to summarize the matrix for
the selectivity estimation problem.

5. AN OVERVIEW OF OUR SOLUTION
In this section, we present an overview of our solution by

exploiting the matrix representing proposed in Section 4.

5.1 Consecutive One Property
Given the matrix representation discussed Section 4, we

perform a few transformations on the matrix for summa-
rization. First, we convert a matrix into a matrix with a
consecutive one property (C1P).

Definition 5.1: A matrix M has the weak Consecutive
Ones Property (C1P) if its columns can be permuted such
that in each row, the ones are adjacent. A matrix M has
strong C1P if the ones of each row are adjacent.

Unfortunately, the conversion of a matrix into a C1P ma-
trix is intractable. Worst still, there is no polynomial time
approximation algorithm for determining C1P submatrix of
a given matrix. Here, we propose a linear time algorithm
to convert a matrix into a C1P matrix. Obviously, the ma-
trix returned is not minimum. The algorithm is presented
in Figure 3, namely Algorithm convex_bipartite.

First, we convert a matrix M into a bipartite graph G(U ,
V , E), where U and V are two sequences of nodes. We create
a node in U , for each row of M . Similarly, we create a node
in V for each column of M . In addition, we introduce (u, v)
∈ E if and only if M [u][v] is non-zero. A convex bipartite
graph is a bipartite graph where the neighbors of each node
in U are adjacent. An example of convex bipartite graph
is shown in Figure 5. It is obvious that a matrix with C1P
can be derived from a convex bipartite graph. However, to
obtain a C1P matrix, we will need to introduce new nodes in
U . Therefore, a main task of Algorithm convex_bipartite

is to introduce few new nodes when generating a convex
bipartite graph.

Second, we discuss the details of convex_bipartite. In
Line 01, we simply order the nodes in V by the number
of neighbors. In Lines 03 - 08, we expand the bipartite
graph fully. Each node has an unique id (assigned by an
incremental counter) In Lines 09 - 13, we merge the bipartite
graph from left to right. In Lines 14 - 19, we merge the
bipartite graph from right to left. The neighbors of a node in
v can then represented by the id of its first and last neighbor
nodes, which forms an interval of ids. The interval of nodes
is that summarized by a two dimensional histogram. In
addition, after we obtained a C1P matrix, a node u in U
may have been copied multiple times. Hence, we need to
record the ids that a node u in U represents. In particular,

Input: A bipartite graph G=(U , V , E)
Output: A convex bipartite graph G′=(U ∪ U ′, V , E′)

/* sort v ∈ V by v.N.length from smallest to largest */
01 G=sort(G)

/* duplication */
02 count = 0
03 for i in [1 ... |V |]
04 for each uj in vi.N
05 construct a new node u′ in U ′

06 construct a new edge (vi, u
′) in E′

07 set u′.cid = uj .cid
08 set u′.id = count++

/* two passes merging */
/* merging from left to right */
09 for i in [1 ... |V | − 1]
10 for each uj in vi.N
11 p = find(uj , vi+1.N)
12 if p 6= −1
13 mergeL2R(uj , up, i)
/* merging from right to left */
14 for i in [|V | ... 2]
15 for each uj in vi.N
16 if uj .N.length == 1
17 p′ = find(uj , vi−1.N)
18 if p′ 6= −1 and mergable(uj , up′ , i)
19 mergeR2L(uj , up′ , i)
20 returnG′

Figure 3: Transformation to a convex bipartite graph con-

vex_bipartite

we store this information in two relations f and f−1, where
f(u) returns the ids of nodes that u represent and f−1(x)
returns u if x ∈ f(u).

A property of the the intervals is that the interval of a
node’s descendants must be contained in the interval of the
node. In the two dimensional histogram representation, the
descendant point must be on the bottom right direction of
the point of the node. To determine the count of the descen-
dants of a node, we simply count the number of points in the
bottom right direction of the data point of the node. Two-
dimensional histogram divides the two-dimensional space
(plane) into grids. Each grid stores the number of data
points contained in the grid.

In all, given a matrix M , convex_bipartite returns a
C1P M ′ and a map that maps a node u to the ids that u
represents f and the inverse of this map f−1.

5.2 Estimation Framework
We assume that the input of an estimation step is (i) a

descendant step //A in a path query, where A is a label, (ii)
the graph represented as discussed in Section 5.1 and (iii) a
set of grids in the two dimensional histogram, which contain
the set of input nodes of the query //A.

For each grid d, we determine the A-grid on the bottom
right of the grid. For a gird that is completely in the bottom
right region of d, all its nodes are A descendants of the node.
For the grid that is partly in the bottom right region of d,
we assume the number of A descendants is proportional to
the area that is in the bottom right region – we assume data

/* search in a list for a particular element */
find(u,list)
01 for i in [1 ... list.length]
02 if list[i].cid == u.cid
03 return i
04 return -1

/* merge uj and up from left to right */
mergeL2R(uj , up, i)
01 remove uj from vi.N
02 add up to vi.N
03 move up to left most position of vi+1.N

/* merge uj and up′ from right to left */
mergeR2L(uj , up′ , i)
01 remove uj from vi.N
02 add up′ to vi.N
03 move up′ to right most position of vi−1.N

/* determine whether uj and up′ are mergable */
mergable(uj , up′ , i)
/* recall that after mergeL2R vi.N is an ordered list */
01 for k in [p′ + 1 ... vi−1.N]
02 if uk.N.length < up′ .N.length
03 return false

04 return true

Figure 4: Algorithm merge

c c c c c c c c ccc c

r r r

1 6532 2 3 5 3 4 5 6

21 3

Figure 5: A simple example of convex bipartite graph

is evenly distributed in the grid. This gives us the count of
//A and a set of grids that contain some //A.

To estimate a path query //A1...//An. Initially, we start
with the grid containing the root node. We repeat the esti-
mation described above for //A1, ... and //An.

6. EXPERIMENTAL EVALUATION
In this section, we present a preliminary experimental

evaluation that verifies the accuracy and efficiency of our
proposed techniques.

We run our experiments on a machine with a Dual 4-
core 2.93GHz with 30GB memory running Solaris OS. The
implementation is written in Java. We use Matrix to refer
to our technique.

We used XMark [14] to obtain a set of data graphs. The
scaling factor was ranged from 0.1 - 0.5. We implement
a query generator based on the description in Polyzotis et
al. [12]. The average length of queries is 4. We generate
10,000 queries on the XMark data.

The estimation error of the queries on various XMark graphs
is shown in Figure 6. The x-axis is the gird size of the two-
dimensional histogram. The estimation error increases as
the grid size increases. This is because more details of the
data points have been summarized by larger grids. The es-
timation error drops for larger grids because we exploit an
query evaluation (which produces exact answer) on the last

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

Grid size

E
st

im
at

io
n

er
ro

r

0.01
0.02
0.03
0.04

Figure 6: Estimation error

0 1 2 3 4 5

x 10
5

0

1

2

3

4

5

6

x 10
7

Grid size

E
st

im
at

io
n

tim
e

 Estimation
Evaluation

Figure 7: Estimation time

query step. The reason is that the last step often influential
to estimation. To avoid introducing large error in estima-
tion, in the last query step, we employ a query evaluation.
For large grids, many grids are involved in the last query
step for query evaluation. Hence, the estimation error is
low.

We compared our result with a previous work [12]. The
estimation errors under these settings are ranged from 8%
to 10%. In comparison, our estimation never exceeds 3%.

Next, we compare the time for query estimation and query
evaluation. The result is shown in Figure 7. The figure
shows query estimation is always smaller than 33% of query
evaluation time.

The next experiment shows a problem that we are cur-
rently working on. While the node is neatly summarized in
two-dimension history. However, it assumes the existence of
two mappings f and f−1. Figure 8 shows the average size of
f(u) under different scaling factor of XMark. As shown, the
average size of f(u) is large, at least 100. And the average
size increases linearly with s.f. Therefore, we are currently
working on compression techniques for f and f−1.

While f and f−1 are large, not the entire map is used
in estimating the selectivity of a query. We use a simple
indexing technique on f and f−1 to skip lookups that would
always generate empty results. Figure 9 shows the number
of lookups that are skipped. This shows that the skipping
is linearly to the scaling factor of XMark.

Next we investigated the effect of optimizations that we
used to reduce the estimations. First, we used query eval-
uation on the last query step. We ran an experiment with

0.01 0.015 0.02 0.025 0.03 0.035 0.04
100

150

200

250

300

350

400

450

Xmark factor

D
up

lic
at

io
n

ra
te

(d
up

lic
at

ed
 c

ol
. n

um
/p

rim
iti

ve
 c

ol
. n

um
)

Figure 8: Number of copies of a nodes in f and f−1

0.005 0.01 0.015 0.02 0.025 0.03
31

32

33

34

35

36

37

Xmark factor

O
pt

. r
at

e
(q

ue
ry

 d
ot

 n
um

 b
ef

or
e

op
t.

 /
qu

er
y

do
t n

um
 a

fte
r

op
t.)

Figure 9: Performance of query dot generation opt.

and without this optimization to illustrate the effect. The
result is presented in Figure 10. The figure shows that the
optimization clearly reduces estimation errors.

Finally, we explore another optimization to reduce the es-
timation errors. The optimization is to maintain a bounding
rectangle of the points in a grid. Hence, instead of selecting
the entire grid or using uniform data distribution on data,
we use the data points to limit the region where there are
data points. The result is shown in Figure 11. It shows that
this optimization clearly reduces estimation errors.

7. FUTURE WORKS
At the time this report is drafted, we are optimizing the

proposed techniques. We are extending this report in a few
directions. (i) We are compressing the representation of f
and f−1. The idea is the to detect frequent parttens in the
maps and replace patterns with pattern ids. (ii) We are
extending the experimental evaluation with larger datasets.
The current dataset can support up to XMark up to a s.f. 0.5.
(iii) We are deriving estimation upper and lower bounds of
our method. (iv) Lastly, we are writing up the algorithms
and optimizations that have been used in our experiments.

8. REFERENCES
[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton.

Estimating the selectivity of xml path expressions for
internet scale applications. In VLDB, pages 591–600,
2001.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data

1

2

3

4

5

6

1 2 3 4 5

E
st

im
at

io
n

er
ro

r
(x

 0
.1

)

Grid size (x 100)

with children check at diagonal
w/o children check at diagonal

Figure 10: Performance of children check at diagonal grids
at last step

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Grid size

E
rr

or

w/o cut
with cut

Figure 11: Performance of interval-cut operation

and knowledge bases. In SIGMOD, pages 253–262,
1989.

[3] A. Chaudhary, D. Chen, X. Hu, M. Niemier,
R. Ravichandran, and K. Whitton. Fabricatable
interconnect and molecular qca circuits.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 26(11):1978–1991,
Nov. 2007.

[4] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas,
S. Muthukrishnan, R. Ng, and D. Srivastava. Counting
twig matches in a tree. In ICDE, pages 595–604, 2001.

[5] D. Fisher and S. Maneth. Structural selectivity
estimation for xml documents. In ICDE, pages
626–635, 2007.

[6] D. K. Fisher and S. Maneth. Structural selectivity
estimation for xml documents. In ICDE, pages
626–635, 2007.

[7] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and
J. Siméon. Statix: making xml count. In SIGMOD,
pages 181–191, 2002.

[8] R. Goldman and J. Widom. Approximate dataguides.
In In Proceedings of the Workshop on Query
Processing for Semistructured Data and Non-Standard
Data Formats, volume 97, pages 436–445, 1999.

[9] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for indexing paths in
graph-structured data. In ICDE, page 129, 2002.

[10] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and
R. Parr. Xpathlearner: an on-line self-tuning markov

histogram for xml path selectivity estimation. In
VLDB, pages 442–453, 2002.

[11] J. McHugh and J. Widom. Query optimization for
xml. In VLDB, pages 315–326, 1999.

[12] N. Polyzotis and M. Garofalakis. Xsketch synopses for
xml data graphs. ACM Trans. Database Syst.,
31(3):1014–1063, 2006.

[13] N. Polyzotis, M. Garofalakis, and Y. Ioannidis.
Approximate xml query answers. In SIGMOD, pages
263–274, 2004.

[14] A. Schmidt, F. Waas, M. Kersten, M. J. Carey
I. Manolescu, and R. Busse. Xmark: A benchmark for
xml data management. In VLDB, pages 974–985, 2002.

[15] R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[16] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom
histogram: Path selectivity estimation for xml data
with updates. In VLDB, pages 240–251, 2004.

[17] G. Wu, K. Zhang, C. Liu, and J.-Z. Li. Adapting
prime number labeling scheme for directed acyclic
graphs. In DASFAA, pages 787–796, 2006.

[18] X. Wu, M. L. Lee, and W. Hsu. A prime number
labeling scheme for dynamic ordered xml trees. In
ICDE, page 66, 2004.

[19] Y. Wu, J. M. Patel, and H. V. Jagadish. Using
histograms to estimate answer sizes for xml queries.
Inf. Syst., 28(1-2):33–59, 2003.

[20] N. Zhang, M. Ozsu, A. Aboulnaga, and I. Ilyas.
Xseed: Accurate and fast cardinality estimation for
xpath queries. In ICDE, pages 168–197, 2006.

Acknowledgements. We are grateful to Neoklis Polyzo-
tis for providing the implementation of [12, 13]. We thank
Haibo Hu and Jintian Deng for their comments on the earlier
drafts.

