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Abstract

Apart from the physical pains they suffer, most patients
nowadays have to endure long waiting times during their
patient journeys. While the alleviation of physical pains can
mostly be done by the use of drugs, psychological stresses
resulting from long waiting times are by no means trivial
and always pose a threat to patients’ life. Hence, an in-
creasing attention has now focused on shortening the length
of patient journey by scheduling patients in a more efficient
way. In doing so, because of the decentralized structure of
hospital settings, conventional centralized approaches such
as operations research are hard to be applied and motivates
the use of a multi-agent approach. In this paper, we pro-
pose a multi-agent framework for scheduling patients in a
decentralized and efficient manner. Particularly, in order to
demonstrate the effectiveness of the proposed multi-agent
scheduling framework, simulations were performed based
on a dataset containing about five thousand cancer patient
journeys.

1 Introduction

Not to mention the physical pains they encounter, most
patients nowadays also have to confront with psychologi-
cal stresses resulting from long waiting times during their
patient journeys. While physical pains can be alleviated by
the use of drugs, psychological stresses resulting from long
waiting times are by no means trivial and always pose a
threat to patients’ life. Since how a patient feels is well-
linked to his or her medical condition [3, 8], we should not
underestimate the impacts brought by such psychological
stresses and thus long waiting times should not be tolerated.

In order to best utilize the existing resources to minimize
undesired long waiting times, a well-designed scheduling
algorithm is crucial [9]. Meanwhile, though conventional
operations research methods have been found effective for
centralized scheduling problems [10, 11, 5], most of them
are not suitable for hospital settings where decentralized
structures are found [6, 9, 2]. As a result, during the design
of a patient scheduling algorithm, a multi-agent approach is
proposed.

A multi-agent approach is characterized by emphasizing
on local interaction and self-organization of different en-
tities being modeled. These properties make it especially
suitable for tackling complex tasks with a lot of stakehold-
ers [13, 1]. Multi-agent methods have found applications
in a variety of problem domains, such as airport resource
scheduling [4], load allocation in transportation logistics
[7], supply chain management [12], etc. Recently, it has
also been applied to patient scheduling in [6, 9] with some
initial success demonstrated. And yet, there are limitations.
Paulussen et al., in [6], assume that a quantified health state
can be accurately derived as a utility measure for guiding
the scheduling process. In [9], Vermeulen et al. did not
consider the temporal constraints between the treatment op-
erations during the scheduling process.

The objective of this study is to explore the extent to
which a patient journey can be improved by better coor-
dinating and mobilizing resources distributed at different
medical units. In particular, we formulate the scheduling
problem according to the cancer treatment practice in Hong
Kong. We propose the use of a multi-agent framework in
which autonomous agents interact with each other to arrive
an effective overall schedule with reduced waiting times.
To evaluate the effectiveness of the proposed framework,
we made use of a patient identity anonymized dataset col-
lected by Hospital Authority in Hong Kong which contains
4720 cancer patients with a diagnosis period spanning over
6 months, and have carried out simulations with the pro-
posed approach given different settings of the environment.

The rest of the paper is organized as follows. A patient
scheduling problem is formulated in Section 2. Section 3
and Section 4 present the details of the proposed agent-
based scheduling algorithm. Section 5 presents some ex-
perimental results and Section 6 concludes the paper.

2 PROBLEM FORMULATION

In this section, we first briefly describe the establishment
of the cancer clusters in Hong Kong. Then, we formulate
the patient scheduling problem for cancer treatment as an
optimization problem and explain how our proposed multi-
agent framework can be adopted to address the distributed
nature of the problem.



2.1 Cancer Patient Treatment - A Hong Kong Sce-
nario

In Hong Kong, there are seven cancer clusters. Figure
1 shows the geographical distribution of the seven cancer
clusters in Hong Kong. With the objective not to reveal
the performance of individual clusters, we denote the set
of the seven clusters as C = {C1, C2, ..., C7}. Currently,
on-demand information exchange among the clusters for
scheduling patients is not yet extensively used. That is why
it is common for cancer patients to be scheduled to receive
treatments at only one cancer cluster, even though some of
the treatments could be provided earlier by other clusters.

Figure 1. Seven geographically distributed
cancer clusters in Hong Kong.

Generally speaking, once the case is suspected to be can-
cer for a patient, the doctor will specify the patient a treat-
ment plan which contains a sequence of treatment opera-
tions. We denote the set of treatment operations as Γ =
{radiotherapy, surgery, chemotherapy}.

To carry out the treatment operations, medical resources
are needed. We denote the set of medical resources (or
units) as A = {radiotherapy unit, operation unit, chemother-
apy unit}. We assume that one treatment operation can only
be performed at one medical unit of the corresponding type.
A patient journey is defined as the duration from the date of
histopathological diagnosis to the date of the last treatment
operation completed.

2.2 Formulation

Let K := A×C be the cartesian product of A and C giv-
ing the complete set of medical units, M := K → Γ be an
one-to-one mapping between K and Γ specifying the treat-
ment type of the medical units, and P be the set of cancer
patients being scheduled.

Also, given a patient i, let N i
Γ denotes the number of

treatment operations needed, Di
0 denotes the diagnosis date,

Di
j denotes the date of the jth treatment operation where

1 ≤ j ≤ N i
Γ, V i

j ∈ K be the unit at which the jth treatment
operation is performed, Tri

j ∈ Γ be the type of treatment
for the jth operation, Ck be the daily capacity (i.e. number

of patients that could be treated) of medical unit k ∈ K,
Tt be the duration (in days) of treatment type t ∈ Γ, and
Z be the set of dates on which patient scheduling is being
considered.

With the assumption that all the patients are being treated
equally in terms of urgency, the scheduling problem can be
formulated as:

min
D

|P |∑

i=1

Ni
Γ−1∑

j=1

(|Di
j −Di

j+1|) (1)

with the following constraints to be satisfied:

Di
j+1 > Di

j + TTri
j

(2)

∀d ∈ Z
∣∣{i : Di

j = d ∧ V i
j = k ∧ Tri

j = M(k)}∣∣
≤ Ck

(3)

Di
j > Di

0 > 0 (4)

The objective function in (1) is to minimize the time
lags between treatment operations for cancer patients. Con-
straint (2) ensures the temporal constraints between treat-
ment operations are not violated, constraint (3) is used to
ensure all medical units are operating within their capac-
ities. Constraint (4) ensures that patients would only be
scheduled to receive treatment operations after their diag-
noses.

3 SCHEDULING FRAMEWORK

Theoretically, patient waiting times could be minimized
by optimizing (1). However, it is impractical to do so as it
is hard to assume that a cancer cluster is willing to share
its real-time resource allocation related data (e.g., Ck) with
other clusters due to both technical and managerial reasons.

Hence, in this section, we propose the use of the multi-
agent approach which tries to model each stakeholder as
an autonomous agent and emphasizes on local interactions
among the agents. It aims to minimize the information shar-
ing requirement among the clusters and yet to obtain a good
enough suboptimal result for the (global) patient journey
optimization. In our proposed framework, there are two
types of agents, namely patient agents and resource agents.
They interact via some designed protocol for achieving the
aforementioned optimization.

3.1 Patient Agent

A patient agent is used to represent one cancer patient
and is denoted as Pi with i = 1, 2, ..., |P |. It stores
the patient’s treatment plan. As it is common that some
treatment operations have to be performed in prior to an-
other, the set of treatment operations to be received by a



patient has to be ordered to satisfy certain temporal con-
straints. Hence, each patient agent Pi maintains an ordered
set Tri = {Tri

1, T ri
2, ...T ri

Ni
Γ
} as its treatment plan.

3.2 Resource Agent

A resource agent is used to manage a specific medical
unit. Here, we denote Rab as a resource agent representing
medical unit a ∈ A at cancer cluster b ∈ C. Each resource
agent has full access to the schedule of the medical unit it
represents, but not the others.

3.3 Scheduling Algorithm

We adopt a two-phase scheduling algorithm similar to
what being proposed in [6, 9]. For each newly diag-
nosed cancer patient, a treatment plan is first designed and
then the corresponding treatment operations are initially
scheduled (initial assignment phase). Then, a timeslot-
swapping process is enforced for shortening the patient
journey (rescheduling phase). Here we assume that any two
patient agents are willing to exchange their timeslots as far
as none of their schedules is worsen (as suggested in [9])
and none of the temporal constraints as specified in Eq. (2)
is violated.1 Algorithm 1 gives a high-level description of
this two-phases scheduling algorithm.

Algorithm 1 Scheduling Algorithm
1: for every patient agent Pi do
2: Initial assignment based on Pi’s treatment plan
3: for each Pi’s treatment operation do
4: Rescheduled to be performed earlier by ex-

changing timeslot with another patient agent with the
help of the resource agent (rescheduling phase)

5: if No involving parties are worsened in terms of
their resulting overall schedules then

6: The exchanging process is proceeded
7: end if
8: end for
9: end for

4 AGENT COORDINATION

In this section, more details about the scheduling algo-
rithm are given, including 1) how the patient agents inter-
act with the resource agents, and 2) how some “unneces-
sary” swappings can be rejected so as to further improve
the scheduling optimality.

1This assumption may imply that some policy-wise incentive has to be
in place so that different medical units are willing to share their resources
in this manner, which however is not the main focus of our study.

4.1 A bidding process for agent matchmaking

Figure 2 shows our proposed framework. As what have
been introduced in Sections 3.1 and 3.2, there are two types
of agents, namely patient agents and resource agents. In or-
der to show clearly the coordination between agents, we fur-
ther categorize patient agents into initiating patient agents
and target patient agents. Initiating patient agents PI are
those patient agents who initiate a request for timeslot ex-
change. Target patient agents PG are the others who are
willing to participate in the exchanging process.

Figure 2. The proposed agent coordination
framework for patient scheduling.

With the objective of shortening its patient journey, an
initiating patient agent PI first sends out a request for
rescheduling to the corresponding resource agents Rab. The
request includes the earliest possible start date (EPS) and
the latest possible start date (LPS) of its associated treat-
ment operation. In order not to violate the temporal con-
straints between treatment operations, the EPS can be de-
fined as:

EPSI
j = DI

j−1 + TTrI
j−1

+ δ1. (5)

Note that δ1 denotes how many days a patient should be ad-
mitted (if needed) before a treatment operation to be carried
out. In our experiment, we set to be one. In practice, this
value could be designated by healthcare providers in order
to better suit their needs. With a similar argument, LPS is
defined as:

LPSI
j = DI

j − 1. (6)

Once a resource agent receives a request with EPS and
LPS, it will first check whether there are available times-
lots released by deceased patients which can fulfill the re-
quest. If yes, the released timeslot will be assigned to
the initiating patient agent. If not, the resource agent will



then pass the request to those patient agents (target patient
agents, PG) which reserved resources of the same type in
the period from EPS to LPS. Those target patient agents
who have received the request will submit a bid to the re-
source agent in response.

There are several factors needed to be considered in com-
puting the bid value.

• First, the target patient agent should not have its last
treatment operation in its treatment plan to be ex-
changed, or its last treatment operation has then to be
performed later and thus it would end up with a length-
ened patient journey.

• Second, as it is impractical to reschedule a patient’s
treatment operation without prior notification, we as-
sume that the exchange of timeslots would not be con-
sidered if the initiating patient will have less than a
week’s time of notification.2

• Third, the target patient agent also has to ensure that
the temporal constraints between its treatment opera-
tions would not be violated after the exchanging pro-
cess.

Taking into account the above considerations, the bid
value submitted by a target patient agent PG is formulated
as:

BidG = (DG
jt
− EPSI

ji
) + Last + Noti + Temp, (7)

where Last, Noti and Temp are three binary variables.
Last = 0 if the jtth operation is not the last one for PG,
or ∞ otherwise. Noti = 0 if there is a week’s time of no-
tification for the target patient agent to be notified, or ∞
otherwise. Temp = 0 if there are no temporal constraints
violated, or ∞ otherwise.

Among all the target patient agents, the one with the low-
est bid value will be accepted and the timeslot swapping
between the initiating agent and target agent will be pro-
ceeded. If two bids are found to be numerically identical,
the resource agent will select one at random.

4.2 A coordination process for rejecting unneces-
sary swappings

A timeslot swapping as described in the previous section
sometimes does not necessarily lead to ultimate improve-
ment in patient journey. To illustrate that, suppose there is a
patient agent with 3 treatment operations to be rescheduled.
In case the last treatment operation could not be resched-
uled to be performed earlier, any rescheduling of the first 2
treatment operations are essentially useless as the duration

2In general, the time of notification can be adjusted according to the
real situation.

of the whole journey remains unchanged (see Figure 3(a)).
As another example, even a shortened patient journey can
be achieved, rescheduling of the first 2 treatment operations
could also be useless if the rescheduling of the last treat-
ment operation cannot be benefited from the rescheduling
of the first two (see Figure 3(b)).

Figure 3. Unnecessary reschedulings.

In order that these useless swappings can be rejected so
as to be reserved for other potentially more useful swap-
pings, the scheduling algorithm could be modified in such
a way that a resource agent after identifying the most opti-
mal bid among the target patient agents will not notify the
initiating patient agent immediately. Instead, it will pass the
bid to the resource agent which is responsible for the suc-
ceeding treatment operation of the initiating patient agent.
Having received such a bid, the resource agent could derive
a new EPS, denoted as (new)EPSI

ji+1. Clearly, unneces-
sary swappings occur if that resource agent could not find
a bid among those received from the target patient agent
PG such that (new)EPSI

ji+1 ≤ DG
j′t
≤ EPSI

ji+1, where
TrI

ji+1 = TrG
j′t

. In that case, the resource agent will notify
its antecedent to discard the bid such that the corresponding
timeslots would not be exchanged. In general, such a suc-
ceeding resource agent consultation process can be carried
out in a recursive manner.

5 EXPERIMENTS

In order to evaluate the effectiveness of the proposed
multi-agent framework, we first obtained a dataset contain-
ing the scheduled treatment plans of 4720 cancer patients
being treated at the seven cancer clusters in Hong Kong
with a diagnosis period spanning 6 months (from 1/7/2007
to 31/12/2007). The average length of the patient journey
among all cancer clusters is 82.4 days. Based on the dataset,



we have carried out simulations with the following 4 exper-
imental settings:

Setting 1: Patient agents are willing to exchange timeslots
with others whenever there is a Pareto improvement.

Setting 2: It is assumed that only 20% of the patients of
each cancer cluster are allowed to undergo timeslot
swapping.

Setting 3: It is assumed that patients are reluctant to travel
for a long distance even though some of their opera-
tions can be scheduled earlier, and thus only swappings
between two nearby cancer clusters are allowed. In
particular, the neighborhood relationships are assumed
to be

• C1 → C2 or C3

• C2 → C1 or C3

• C3 → C1 or C2 or C4 or C5 or C6

• C4 → C3 or C6

• C5 → C3 or C7

• C6 → C3 or C4

• C7 → C5

where α → β implies that patients admitted in cancer
cluster α would only be swapped to its neighboring
cancer cluster β.

Setting 4: Timeslots released by deceased patients are allo-
cated to the patient agents who have the longest patient
journeys at a time point.

Given the four aforementioned settings, Figure 4 shows
the average length of patient journey among the seven can-
cer clusters in Hong Kong.

The experimental results obtained show that, on average,
the average length of journey can be reduced by 6.0 days
for those 4720 cancer patients if no restriction is imposed
on the exchange of timeslots whenever there is a Pareto im-
provement (Setting 1). Given only 20% of patients per can-
cer cluster are allowed for timeslot exchange (Setting 2),
we found that the average length of journey could still be
reduced by an average of 3.4 days. With the geographical
restriction on allowing only swappings between nearby can-
cer clusters (Setting 3), the average length of journey can
also be reduced by 4.4 days.

However, it should also be noted that according to Figure
5, the maximum length of journey remains unchanged. The
reason is obvious as no one is willing to swap with those
with the longest length of journey. Reductions on the max-
imum length of patient journey can only be observed for
Setting 4 where the released timeslots due to deceased pa-
tients are allocated to those with the longest patient journey.

Figure 4. Average length of patient journey
among the seven cancer clusters under 4 dif-
ferent settings.

5.1 Simulations revealing the impacts of varying
the unit capacities

For all the results presented so far, it is assumed that the
capacity of each medical unit is fixed. To study the cost-
effectiveness of increasing the capacities of medical units
for patient journey optimization, we had conducted sev-
eral simulations in which timeslots were additionally allo-
cated to each medical unit. Particularly, 3 different timeslot-
allocation strategies were performed in our simulations:

1. Timeslots were added on a daily basis. In our simu-
lation, 2 timeslots were added daily to each medical
unit.

2. Timeslots were added on a weekly basis. In our simula-
tion, 14 timeslots were added weekly to each medical
unit.

3. Timeslots were added on a monthly basis. In our simu-
lation, 60 timeslots were added monthly to each medi-
cal unit.

It is worth to note that, let say, if timeslots were added
on a weekly basis, cancer patients would then be scheduled
on a weekly basis too (i.e. a cancer patient would be sched-
uled to receive treatment operation in a certain week if the
corresponding weekly capacity does not exceed its limit).

By Figure 6, it was found that when the timeslot-
allocation strategy was changed from a daily basis to a
weekly basis, and then to a monthly basis; the utilization
of medical units will increase subsequently. The reason is
that when the medical resources were allocated in a more



Figure 5. Maximum length of patient journey
among the seven cancer clusters under 4 dif-
ferent settings.

flexible way (i.e. with a wider time frame considered), the
possibility of assigning a cancer patient to receive treatment
operation on a particular date will increase as a result.

Figure 6. Utilization of medical units by vary-
ing the timeslot-allocation strategies.

Meanwhile, it was also observed that, both the average
and maximum length of patient journey will drop signif-
icantly when additional timeslots were allocated to each
medical unit. In particular, such significant drop can be
found before (see Figure 7 and Figure 8) and after (see
Figure 9 and Figure 10) the rescheduling phase. In fact,
among the 3 timeslot-allocation strategies, we found that a
monthly-basis strategy is the most effective one in achiev-
ing an optimal patient journey.

Figure 7. Average length of patient journey
among the seven cancer clusters by vary-
ing the timeslot-allocation strategies (before
rescheduling).

5.2 Simulations revealing the impacts of reducing
the durations between treatment operations

During our simulations, we had also tried to investigate
the impacts induced by the durations between treatment op-
erations. At this time, while all the unit capacities are fixed,
we reduced all the treatment durations by half.

Interestingly, it was observed that when the treatment du-
rations were reduced by half, a significant reduction in both
the average and maximum length of patient journey can also
be achieved before (see Figure 11 and Figure 12) and after
(see Figure 13 and Figure 14) the rescheduling phase. With
such insight, we got an important implication: whenever the
durations between treatment operations can be minimized
in accordance with medical reasons, cancer patients could
then enjoy themselves with less undesired waiting times. In
other words, during the practical implementation, it is im-
portant for the healthcare provider to carefully and unbias-
edly quantify such durations between treatment operations.

6 CONCLUSIONS

In this paper, a multi-agent framework was proposed
for patient journey optimization. Particularly, by applying
the framework, the shortening of a patient journey will not
lengthen the journeys of the others. Also, all the temporal
constraints among the treatment operations for each patient
would not be violated during the scheduling process.

The effectiveness of the proposed framework has been
demonstrated by applying it to a dataset containing 4720
scheduled treatment plans of cancer patients admitted to



Figure 8. Maximum length of patient journey
among the seven cancer clusters by vary-
ing the timeslot-allocation strategies (before
rescheduling).

hospitals in Hong Kong. The effects of varying the unit
capacities and treatment durations on the overall reduction
in length of patient journey are also studied.

Because of the limited resources during practical imple-
mentation; in the near future, rather than routinely allocate
a fixed amount of additional timeslots to each cancer cluster
as what had been demonstrated earlier, we are going to as-
sess how resources (or timeslots) should be allocated to can-
cer clusters in a more efficient and unbiased way such that
the overall patient journey could be shortened in a greater
extent.

Figure 9. Average length of patient journey
among the seven cancer clusters by vary-
ing the timeslot-allocation strategies (after
rescheduling).

Figure 10. Maximum length of patient jour-
ney among the seven cancer clusters by vary-
ing the timeslot-allocation strategies (after
rescheduling).



Figure 11. Average length of patient journey
among the seven cancer clusters by reduc-
ing the treatment durations by half (before
rescheduling).

Figure 12. Maximum length of patient journey
among the seven cancer clusters by reduc-
ing the treatment durations by half (before
rescheduling).

Figure 13. Average length of patient jour-
ney among the seven cancer clusters by re-
ducing the treatment durations by half (after
rescheduling).

Figure 14. Maximum length of patient jour-
ney among the seven cancer clusters by re-
ducing the treatment durations by half (after
rescheduling).
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