
Hiding Emerging Pattern with Local Recoding Generalization

Michael Wai-Kit Cheng

Abstract

Establishing strategic partnership often requires orga-
nizations to publish and share meaningful data to support
collaborative business activities. An equally important con-
cern for them is to protect sensitive patterns like unique
emerging sales opportunities embedded in their data. In
this paper, we contribute to the area of data sanitization by
introducing an optimization-based local recoding method-
ology to hide emerging patterns from a dataset but with
the underlying frequent itemsets preserved as far as pos-
sible. We propose a novel heuristic solution that captures
the unique properties of hiding EPs to carry out iterative
local recoding generalization. Also, we propose a metric
which measures (i) frequent-itemset distortion that quanti-
fies the quality of published data and (ii) the degree of re-
duction in emerging patterns, to guide a bottom-up recoding
process. We have implemented our proposed solution and
experimentally verified its effectiveness with a benchmark
dataset.

Keywords: Emerging patterns, pattern hiding, data saniti-
zation, frequent itemsets

1 Introduction

Organizations often publish and share their data to sup-
port business collaboration. In the context of marketing
and sales, companies can leverage on the customer pools
of each other for cross-selling so that the involved parties
can gain sales volume increase. Due to the equally im-
portant need of privacy protection, customers often expect
their data to be anonymized before sharing [26] and studies
on privacy-preserving data publishing have bloomed [11].
Furthermore, trade secrets embedded in data are valuable to
organizations [?] and needed to be properly protected. For
instance, patterns like recent increase in the sales volume
of a product line for a certain customer group (emerging
marketing trends) can be an example. Leaking of related
intelligence could cause company loss in gaining the first-
mover advantage. Even though companies understand that
data sharing is unavoidable to support collaborative activ-

ities like cross-selling, they may face a great hindrance to
data sharing if the emerging sales opportunities of their own
business cannot be hidden.

Among others, emerging patterns [18] embedded in data
carry sensitive information, that data owners may prefer to
hide. In fact, previous studies have revealed that emerging
patterns are highly discriminative when used as features for
classification [28, 10, 7], and thus carry salient features of
the data. The hiding, however, is technically challenging as
collaborative data analysis is still often expected to facilitate
collaboration. That is, some statistical properties of the data
to-be-shared are preserved as far as possible. In particular,
frequent itemset mining has already been well-supported in
most commercial data-mining packages. Therefore, in this
paper, we study how to hide emerging patterns while pre-
serving frequent itemsets.

To hide emerging patterns, we adopt recoding general-
ization methods. In particular, we adopt local recoding
which is (intuitively) a value-grouping generalization pro-
cess, given an attribute generalization hierarchy. To ensure
that the generalized data neither (i) reveal sensitive infor-
mation nor (ii) produce a highly distorted mining result, we
propose metrics for quantifying the two competing objec-
tives. With the metrics, we present an iterative, bottom-up
optimization framework. Compared with hiding frequent
itemsets [24], hiding emerging patterns is more technically
challenging. In particular, the a priori anti-monotone prop-
erty does not hold in emerging patterns. Thus, the search
space of emerging patterns is huge. Worst still, a local re-
coding may hide an emerging pattern while generating new
emerging patterns. To the best of our knowledge, there has
not been work on hiding emerging patterns.

2 Related Work

Studies on data sanitization can be dated back to the ear-
lier work on statistical disclosure control [1]. Recent de-
velopment in privacy preserving data mining [25] has con-
tributed to some advances in privacy measure and data san-
itization method. For example, to avoid personal identity
to be recovered from an anonymized demographic dataset,
a number of privacy measures were proposed in the liter-
ature, e.g., k-anonymity [26] and `-diversity [21]. Other

privacy measures include km-anonymity [?] and (h,k,p)-
coherence [?]. Given a particular measure, recoding gen-
eralization [18, 13, 17, 25, 8, 30, 19] and perturbation
[2, 9, 16] are two commonly adopted data sanitization ap-
proaches. Recoding generalization is often preferred over
the perturbation approach as the dataset sanitized by recod-
ing generalization is still semantically consistent with the
original one, even though it is “blurred”. While this study
aims at hiding emerging patterns instead of personal identi-
ties, the concepts like equivalence classes and recoding gen-
eralization are adopted in the proposed methodology.

To control the distortion of the data caused by the saniti-
zation, attempts have been made to preserve as much infor-
mation of the original dataset as possible to, say, preserve
the subsequent classification accuracy [14] and clustering
structure [12]. In addition, there has been some recent work
studying the tradeoff between privacy and utility [20] in the
context of privacy-preserving data publishing. In this work,
we try to preserve the frequent itemsets of the data as far as
possible.

Recently, there has been work [24, 23] on hiding patterns
like frequent itemsets where users specify a subset of fre-
quent itemsets, namely sensitive frequent itemsets, that are
not supposed to be disclosed to the public. In our study, we
focus on hiding emerging patterns, which makes a unique
contribution to the area of pattern hiding. Emerging pat-
terns (EP) are features that are distinctive from one class
to another and has been found to be effective for building
highly accurate classifiers [15, 28, 10, 7]. Mining EPs from
large databases is technically intriguing as the total number
of EPs, in the worst case, is exponential to the total num-
ber of attributes in transactions, and there has not been a
corresponding notion of the apriori anti-monotone property
of frequent itemsets in EPs so that the search space can be
pruned. Previous work on EPs mainly focuses only on the
mining efficiency, e.g., using a border-based approach [4], a
constraint-based approach [31], or focusing only on jump-
ing EPs [3]. So far, there exists no related work on emerging
pattern hiding.

3 Background and Problem Statement

In the following, we present the definitions, notations
used and the problem statement.

A transactional dataset is a set of transactions. Let
I = {i1, i2, ..., in} be a finite set of distinct items in D.
A transaction t has a set of nominal attributes A = {a1, a2,
..., am} and each attribute ai takes values from a set Vi ⊆
I . We make two simple remarks about these notations. (i)
While we assume transactional data with nominal attributes,
data of a continuous domain can be cast into nominal data,
for example by defining ranges. (ii) One may consider a
relation as a set of transactions of a fixed arity.

An itemset X is a (proper) subset of I . SuppD(X) de-
notes the support of an itemset X in a dataset D, which can
be computed as |{t | X∈t∧t∈D}|

|D| . Given a support thresh-
old σ, X is said to be a σ-frequent itemset if SuppD(X) ≥
σ. The growth rate of an itemset is the ratio of its support in
one dataset to that in the other.
Definition 3.1: [6] Given two datasets, namely D1 and D2,
the growth rate of an itemset X , denoted as GR(X , D1,
D2), from D1 to D2 is defined as GR(X , D1, D2) =

0 , if SuppD1 = 0 and SuppD2 = 0

∞ , if SuppD1 = 0 and SuppD2 > 0
SuppD2 (X)

SuppD1 (X)
, otherwise.

Definition 3.2: [6] Given a growth rate threshold ρ and two
datasets D1 and D2, an itemset X is a ρ-emerging pattern
(ρ-EP) from D1 to D2 if GR(X , D1, D2) ≥ ρ.

Intuitively, given two datasets, emerging patterns
(EPs) [6] are the itemsets whose support increases signifi-
cantly from one dataset to another. The formal definition of
EPs is presented in Defintion 3.2. An emerging pattern with
a growth rate∞ (i.e., itemset that appears in one dataset but
not the other) is called a jumping emerging pattern.

For ease of presentation, we may skip σ, ρ, D1 and D2

of EPs when they are not essential to our discussions.
Example 3.1: Figure 1 (a) shows a simplified hypothetical
dataset D of the Adult dataset [27]. It contains some cen-
sus information of the United States. More description of
the dataset can be found in Section 8. We opt to present
some nominal attributes of Adult for discussions. Each
record (or transaction) represents a person. Consider two
subsets D1 containing married people and D2 containing
those who do not. From Figure 1 (a), we find the following
emerging patterns, among many others.
• The pattern (MSE, manager) has a support of 75% in

D1 and 20% in D2. Therefore, the growth rate of (MSE,
manager) from D1 to D2 is 3.75. When we set ρ to 3,
(MSE, manager) is a ρ-emerging pattern in D2.

• High-school graduate (HS) has a support of 0% in D1

but 20% in D2. Hence, its growth rate from D2 to D1

is infinite. (HS) is a jumping emerging pattern in D1.
Next, we state the formal problem statement of this paper
below (Figure 1 (b)).
Problem statement. Given two datasets (D1, D2), σ and
ρ, we want to sanitize (D1, D2) to (D′

1, D′
2) such that no

ρ-EPs from D′
1 to D′

2 can be mined while the distortion
between σ-frequent itemsets of (D1, D2) and those of (D′

1,
D′

2) is minimized.

4 Multidimensional Local Recoding

Our algorithm for hiding emerging pattern is based on
local recoding generalization (multi-local-recode in

ID Edu. Martial Occup. Rel. Race Sex

1 BA married executive wife black F
2 MSE married manager husband black M
3 MSE married manager wife white F
4 MSE married manager husband black M
5 BA never manager NA white M
6 MSE never manager NA white F
7 HS never repair NA black M
8 BA never manager NA white M
9 BA never manager NA black F

(a) (b)

Figure 1. (a) A hypothetical subset of Adult and (b) The problem statement illustration
Figure 2). In this section, we give an overview of recod-
ing generalization, or recoding for simplicity.
Recoding. As discussed in Section 1, recoding has been
proposed for anonymization. The idea of recoding is to
modify values into more general ones such that more tuples
will share the same values and cannot be distinguished in-
dividually. Thus, anonymization can be achieved. Here, we
recode values in emerging patterns with some non-emerging
values. Thus, the recoded patterns become less emerging.
Multidimensional local recoding. In this work, we adopt
the notion of multidimensional local recoding [8, 30, 19],
from the context of k-anonymity. It recodes values at “cell
level”. It relies on equivalence classes. An equivalence
class of attributes A is a set of tuples T , where πA(T) is
a singleton. That is, the tuples in T have the same value
in attributes A. In a recoding, the tuples in an equivalence
class (of a set of attributes) and those in another equivalence
class are recoded into the lowest common ancestors along
the hierarchies. One subtle point is that this recoding does
not require the entire equivalence class to be recoded, as
long as anonymity can be achieved. Hence, both original
and generalized values may co-exist in the recoded dataset.
Example 4.1: Let us revisit the dataset in Figure 1 (a)and the emerging pattern (MSE, manager). The emerg-
ing pattern is related to the attributes of education back-
ground (Edu.) and occupation (Occup.). Regarding
(Edu., Occup.), the equivalence classes in D2 are {{5, 8,
9}, {6}, {7}}, where the numbers are the IDs. In multi-
dimensional lcoal recoding, we may recode the Edu. at-
tribute of the subset of {2, 3, 4} and {5, 8, 9}. For ex-
ample, we may recode {2, 3, 4} with {8, 9}. and we may
recode BA and MSE into degree holder Deg. The growth rate
of (Deg., manager) in the recoded dataset is 75%/40% =
1.875. Hence, (Deg., manager) is not ρ-emerging when ρ
= 3. In addition, after such a recoding, all BA, MSE and Deg.
appear in the recoded dataset.Other notions of recoding, including single-dimensional
global recoding [5, 13, 17, 25] and multidimensional global
recoding [18], generalize values in a relatively coarse gran-
ularity and very often result in over-generalization.

5 Algorithm for Hiding Emerging Patterns

In this section, we present the overall algorithm
hide-eps (shown in Figure 2) for hiding emerging patterns

Procedure hide-eps
Input: two datasets, Di and Dj , the threshold of growth rate and frequent
itemsets ρ and σ, the heuristic parameters p and q, an initial temperature t0
and the cooling parameter α
Output: transformed datasets (Di, Dj)

01 t = t0 H .init() // initialization
02 E := mine-eps(Di, Dj , ρ) // [31]
03 while E 6= ∅
04 F := incr-mine-fis(Di ∪Dj , σ) // [?]
05 e := next-overlapping-ep(E)
06 if e is not null

(Di, Dj) := local-recoding-sa(Di, Dj , e, F , t, α, H)
07 if t > 0.01 then t = α× t
08 E := mine-eps(Di, Dj , ρ)
09 return (Di, Dj)

Procedure local-recoding-sa
Input: two datasets, Di and Dj , an emerging pattern e, a frequent itemset F ,
a temperature t, a hashtable H for caching

the utility gain of local recodings
Output: transformed datasets (Di, Dj)

10 let Di be the dataset where e has a higher support
11 denote ce be the equiv. class of e in Di

12 compute equiv. classes C of Dj of the attributes of e
// compute the utility gain of the local recoding of each equiv. class ck in C with ce

13 for each ck in C
14 if determine-missing-FIS(G(ce,ck), F) = ∅ then
15 if determine-new-singleton-eps(G(ce,ck), E) = ∅ then
16 if H[ce][ck] is null then
17 H[ce][ck] := util gain(G(ce,ck), E) // Section 6

18 ck := get-next-step-sa(ce, H , t)
19 Di := multi-local-recode(Di, ce, ck) // Section 4
20 Dj := multi-local-recode(Dj , ce, ck)
21 return (Di, Dj)

Figure 2. The overall algorithm
with a minimal distortion in frequent itemsets.

Overview of hide-eps. The main ideas of hide-eps can
be described as follows. First, we determine the emerging
patterns to be hidden (Line 02) and the frequent itemsets
(incrementally) to be preserved (Line 04). We refer the de-
tails of Lines 02 and 04 to previous works [?, 31], since
our focus is on hiding emerging patterns. For each selected
emerging pattern (Line 05), we carry out a local recoding
local-recoding-sa (Line 06, more details soon). This
process (Lines 03-08) is repeated until there is no more
emerging pattern to hide (Line 03). To avoid sub-optima,
we present hide-eps in the style of simulated annealing
search (Lines 01, 07 and 18).

Next, we discuss the details of the major steps of the algo-
rithm.

Mining emerging patterns (mine-eps, Lines 02 and 08).
During recoding, we invoke mine-eps [31] to determine if
all the emerging patterns have been hidden (Line 08). To

the best of our knowledge, there does not exist any incre-
mental algorithm for mining emerging patterns. As veri-
fied by our experiments, mine-eps is a bottleneck of run-
time of hide-eps. However, it should be remarked that
the emerging patterns may often be altered slightly by most
local recodings, in practice. To address this performance is-
sue, in Section 8, we tested another version of hide-eps,
where mine-eps is invoked only when all previously mined
emerging patterns have been hidden.

Incremental mining of frequent itemsets
(incr-mine-fis, Line 04). A local recoding may
alter the existing frequent itemsets. Figure 3 (b) (ii) shows
an example. Since a local recoding changes only part of
D1 and D2, we need not mine the dataset from scratch but
do it incrementally using algorithms like [?].

Selecting emerging patterns for recoding
(next-overlapping-ep, Line 05). Given a set of
emerging patterns E, next-overlapping-ep determines
the emerging pattern e in E such that it overlaps with the
remaining emerging patterns the most. The intuition is
that reducing the growth rate of e may indirectly reduce
the growth rate of the overlapping emerging patterns as
well. We verify with some experiments that this approach
consistently outperforms a number of other strategies (see
Section 8).

Determining the next local recoding
(local-recoding-sa, Lines 06, 10-21). Assume
that ce is the equivalence class of the emerging pattern e.
We first compute the equivalence classes of the attributes
of e to generalize with ck (Line 12). We apply the utility
gain defined in Section 6 to determine the goodness of local
recodings (Line 16). Since there can be many equivalence
classes, this is another bottleneck of runtime. We speed
up that step using (i) a hashtable (Lines 01 and 16-17) to
cache the utility gain values computed, and (ii) two filters
on equivalence classes (Lines 14 and 15). The first filter is
that we ignore the equivalence classes that would result in
missing frequent itemsets, which is obviously undesirable.
This can be computed by the change in support of itemsets
in F due to a local recoding. Second, we discard a local
recoding that would yield new single-attribute emerging
patterns. This can be computed by determining the growth
rate of the equivalence classes with the attributes of e. We
did not compute possible new multi-attribute emerging
patterns because of its daunting complexity.

With the utility gain of equivalence classes, we use a sim-
ulated annealing search (get-next-step-sa, Line 18), as
a black box, to get the next local recoding.

Analysis. Given that AE is the set of attributes of the
emerging pattern E, and D and H are the overall domain
size and the maximum height of the hierarchy of all possible
AE’s, respectively. In the worst case, there can be O(D×H)

possible recodings. Also, local recoding allows tuple-wise
recoding and thus in the worst case, |D1| + |D2| recoding
operations can be carried out. Thus, the search space of
finding the optimal recoding is O((|D1|+ |D2|)×D×H).
This work proposes a heuristic search for this problem.
While the loop (Lines 03-08) may repeat many times in the
worst case, the number of iterations needed was found small
in practice. As discussed, mine-eps and the computation
of util gain are the bottlenecks of runtime. The runtime
of the former is experimentally evaluated in [31]. The time
complexity for the latter is O(|Ae| × D ×H × |F |), where
e ∈ E, |Ae|×D×H is the number of possible equivalence
classes and for each class, O(|E|) and O(|F |) are used to
compute RGlocal and RDlocal, respectively.

6 Metric for Multidimensional Local Recod-
ing

In this section, we define an utility gain (util gain) to
quantify the effectiveness of a local recoding. util gain

will guide the process for hiding emerging patterns
local-recoding, in Figure 2. A recoding is effective if
(i) the distortion of frequent itemsets is small and (ii) the
reduction in the growth rate of emerging patterns is large.
Metric for the distortion of frequent itemsets. For pre-
sentation clarity, we will present our proposed metric for
global recoding followed by its adaption for local recoding.
(A) Distortion metric for single-dimensional global recod-
ing. Single-dimensional global recoding performs recoding
on the domain of an attribute in a dataset. It recodes a value
of the domain to another (generalized) value. That is, if
a particular value is recoded, the attribute of all the tuples
containing that particular value will be recoded. No fre-
quent itemsets disappear but may appear in a generalized
form after a recoding (Figure 3 (a)).

Inspired by the distortion metric proposed in [19], we
propose a metric for measuring the recoding distance
(RDist) between the original and generalized form of a tu-
ple. Then, we define a metric called value distance (V D)
which measures the distance between the original and gen-
eralized form of a single attribute value. We will use V D as
a building block for the definition of distortion (RD). Since
a recoding always assumes an attribute hierarchy, we may
skip the hierarchy H when it is clear from the context.
Definition 6.1: Recoding Distance (RDist): Consider a re-
coding G which generalizes a set of non-generalized values
V to a single generalized value vg , where V is the set of
values under vg in an attribute hierarchy. The recoding dis-
tance of G RDist(G) is |V |.
Definition 6.2: Value Distance (V D): Let h be the height
of an attribute hierarchy H , where level h and 0 is the
most generalized and specific level, respectively. Consider
a value v at level p which is generalized to a value v′ at level

q. Let Gi denotes the recoding that generalizes an attribute
from level i− 1 to i, where 0 < i ≤ h. The value distance
between v and v′ is: V D(v, v′) =

∑q
i=p

i·RDist(Gi)
h .

Value distance is unfavorable to recoding (i) many values
into one single generalized value; and (ii) a value into a
generalized value that is close to the top of the hierarchy.
This gives a measure for the distortion of a value due to a
recoding. Next, we extend V D to measure the distortion of
a tuple and frequent itemsets due to recoding.
Definition 6.3: Tuple Distance (TD): Suppose a tuple f =
(v1, v2, . . . , vn) is generalized to f ′ = (v′1, v

′
2, . . . , v

′
n). The

tuple distance between f and f ′ is defined as: TD(f, f ′) =∑n
i=1 V D(vi, v

′
i).

Definition 6.4: Recoding Distortion (RD): Let F = {f1, f2

. . . fn} be a set of σ-frequent itemsets in D and F ′ = {f ′1,
f ′2 . . . f ′m} be the set of σ-frequent itemsets in D′, where
m ≤ n. The corresponding frequent itemset of fi due to
global recoding is denoted as f ′j = G(fi). The recoding
distance between F and F ′ is defined as: RD(F, F ′) =∑n

i=1 TD(fi, G(fi)).

Example 6.1: Following up Example 4.1, we com-
pute the (global) recoding distortion of generaliz-
ing (MSE, manager) to (Deg., manager). Fig-
ure 3 shows the attribute hierarchy of Edu.The re-
coding distortion RD({(MSE, manager)}, {(Deg.,
manager)}), RD, can be computed as follows:
RD = TD((MSE, manager), (Deg., manager))
= V D(MSE, Deg.) + V D(manager, manager) =
∑2

i=0
i·RDist(Gi)

h = 1×3
2 + 2×0

2 = 1.5
(B) Distortion metric for local recoding. Since single-
dimensional global recoding may often lead to over-
generalization, we adopted local recoding. We remark that
there are two unique challenges in computing recoding dis-
tance for local recoding (Figure 3 (b)).

(B.i) An itemset in F having no correspondence in F ′. Lo-
cal recoding allows part of the tuples that share the same
attribute values to be generalized. Such recoding may gen-
eralize some supporting tuples of a frequent itemset which
makes the itemset (in the original or generalized form) not
frequent anymore. To address this, we measure the distor-
tion of the disappeared frequent itemset to the most general
form. The reason is that the frequent itemset can be trivially
recovered when the entire dataset is generalized to the most
general form.

Specifically, given a f in F , if we cannot find a corre-
sponding frequent itemset in F ′, we first create an itemset,
fmax, which contains the most generalized value of each
value in f . Then, RD of f is the recoding distance between
f and fmax.

Example 6.2: Reconsider the dataset in Figure 1 (a). Sup-pose we recode the Edu. attribute of Records 1 and 2 to
Deg. When σ is 40%, {BA} and {MSE} were frequent item-

sets (not minimal for illustration purposes) before recoding
and there is no frequent itemset after recoding.
(B.ii) An itemset in F having more than one corresponding
itemset in F ′. As discussed, local recoding may generalize
a frequent itemset f in F into more than one correspon-
dence in F ′, denoted as Ff . In this case, we calculate the
tuple distance of each of the corresponding itemsets in Ff

and take the minimum tuple distance as the tuple distance
of f . This is because the itemset with the minimum tuple
distortion has been revealed in F ′, even when there may be
more distorted itemsets.
With the above, we have the following recoding distance for
local recoding:
Definition 6.5: Recoding Distance for Local Recoding
(RDlocal): Let F = {f1, f2 . . . fn} be a set of σ-
frequent itemsets in D and F ′ = {f ′1, f ′2 . . . f ′m} be the
set of σ-frequent itemsets in D′. The corresponding fre-
quent itemset(s) of fi due to local recoding is denoted
as Ff = G(fi). The recoding distance between F and
F ′ is: RDlocal(F, F ′)= 1

n

∑n
i=1

T Dlocal(fi,G(fi))
T Dlocal(fi,fmax) , where

TDlocal(fi, G(fi)) =

θq × TD(fi, G(fi)), if f has 1 correspondent in F ′

(1− θq)× TD(fi, fmax), if f has no correspondent in F ′

θq ×min(TD(fi, fj)),

where fj ∈ G(fi), otherwise,

θq is a parameter that specifies the relative importance of
the itemset distortion and missing itemsets, due to G, and
TDlocal(fi, fmax) is for normalizing RDlocal.

Example 6.3: Following up Example 6.2, when σ is 30%,
the frequent itemset {(BA)} corresponds to the frequent
itemsets {(BA), (Deg)} in the recoded datasets.
Metric for the change in growth rate. The second compo-
nent of our heuristics concerns the growth rate of the emerg-
ing patterns. Intuitively, we aim at a recoding that signifi-
cantly reduces the growth rate of the emerging patterns in
order to hide them. Given an emerging pattern e and the re-
sult of a local recoding e′, the reduction in growth rate due
to the recoding can be easily defined as the growth rate of e
minus the growth rate of e′. Then, the growth rate reduction
of E due to a local recoding G, denoted as RGlocal(G, E),
can be defined as the total reduction in the growth rate of e
in E divided by the total growth rate of e in E.

Putting all these together. Based on the derivations above,
the utility gain due to a local recoding G for a set of emerg-
ing patterns E is defined as:
util gain(G, E) = θpRGlocal(G, E)−(1−θp)RDlocal(F, F ′).
The two parameters θp and θq, where θp, θq ∈ [0,1], are
specified by users.

7 Implementation Optimization

In this section, we discuss some implementation issues
for optimizing the computation of the proposed algorithm.

All

Deg

BA MSE PHD HS
(a) (i) (ii)

F

F’F

F’

(b)
Figure 3. (a) An attribute hierarchy of Edu.; and (b) the relationship between F and F ′ in (i) global
recoding and (ii) local recoding

1. The maintenance of the equivalence classes. Local re-
coding relies on equivalence classes (Lines 03, 06 and 07 in
local-recoding in Figure ??). A local recoding would
change the equivalence classes in the datasets slightly. We
used a hashtable to keep track of the update of the classes
caused by a recoding (Line 07). Since an emerging pattern
may not be hidden by simply one recoding, we note that
we may compute the equivalence class of attributes multi-
ple times (Line 03). With the hashtable, Line 03 does not
recompute existing equivalence classes.
2. An index for checking correspondents of F in F ′. Given
two sets of frequent itemsets F and F ′, we check the cor-
respondences of an itemset in F to measure distortion be-
tween F and F ′ (util gain). The core of this is to check
whether a value v is a generalized version of another value
in an attribute hierarchy. While an attribute hierarchy is
often a small tree, these checks occur in every iteration
of hide-eps. We apply an index [29] for computing the
ancestor-descendant relationship of nodes in a tree. This
significantly reduces the runtime of our algorithm.
3. A data structure for checking correspondents of E in E′.
The other task in computing util gain is to keep track
of the change of emerging patterns during local recoding,
which is necessary to measure the reduction in growth rate.
Hence, we associate an emerging pattern of e to its records.
By comparing the records of e and e′, we obtain the corre-
spondence between e and e′.

8 Experimental Evaluation

To verify the effectiveness and efficiency of our proposed
algorithms, we conducted several experiments on Adult

dataset [27] using the attribute hierarchies from [13].
We implemented our algorithm in JAVA SDK 1.61. We

have run our experiments on a PC with a Quad CPU at
2.4GHz and 3.25GB RAM. The PC is running Windows XP
operating system. We have used system calls to invoke the
implementations from [31] and [22] to determine emerging
patterns and frequent itemsets, respectively.

The simplified Adult dataset contains 8 attributes. We
removed the records with missing values. The records in
the dataset were divided into two classes - people who have

1The implementation is available at
http://www.comp.hkbu.edu.hk/∼michael/source.rar.

more than $50k/year (7508 records) and people who do not
(22654 records).

The effect of the parameters θp and θq. The first
experiment is to verify the effects on the parameters θp

and θq on the heuristic algorithm. In this experiment, we
do not apply any filter (i.e., Lines 14-15 in hide-eps)
and SA search (Line 18) in order to observe the effects
on the parameters clearly. Instead, we used a Greedy

search. The performance was presented in “distortion
on the frequent itemsets / the number of missing frequent
itemsets”, unless otherwise specified. When σ and ρ
were set to 40% and 5, respectively, the frequent itemsets
obtained are: {(Husband, Married-civ-spouse, Male),
(Married-civ-spouse, White), (Married-civ-spouse,
United-States), (Male, Private, White), (Male, Private,
United-States), (Male, White, United-States), (Private,
White, United-States)}.

When we recode all attributes to All in the frequent
itemsets, we obtain the maximum distortion of the frequent
itemsets of Adult 623.1.

To illustrate the possible effect of recodings on the re-
sulting frequent itemsets, we list the frequent itemsets af-
ter we applied Greedy, where θp and θq were both set to
0.8: {(Relationship, United-States), (Married, White,
United-States), (Male, Private, White), (Male, Private,
United-States), (Male, White, United-States), Private,
White, United-States)}. The distortion obtained is 21.5
(out of 623.1).

Next, we varied θp and θq and measured the performance
of Greedy. The performance is shown in Table 1 (LHS).
The average runtime is 58 mins and 16 out of 58 mins is
spent on mining EPs. The average number of local recod-
ings is 14.

We make four observations from Table 1 (LHS). Firstly,
when θp is set to 0, the algorithm concerns only distortion
(regardless the corresponding reduction in growth rate) dur-
ing local recodings. In such a case, the distortion on fre-
quent itemsets of various θq’s is in general large. The rea-
son is that when θp is 0, the heuristics does not effectively
reduce the growth rate and the search takes more recodings
that are not relevant to hiding emerging patterns. Secondly,
when θp is 1, the algorithm concerns only the reduction in
growth rate. Note that 3 out of 7 frequent itemsets have dis-
appeared. Thirdly, when we set θq to 1, we do not concern
the missing frequent itemsets. Hence, more frequent item-

Table 1. The effect of the parameters
in util gain on Greedy’s performance
(LHS) and the performance of the
determine-new-singleton-eps filter (RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 73.3/1 50.0/1 50.0/1 50.0/1 50.0/3 50.0/1

0.2 73.3/1 59.7/1 38.2/1 38.2/1 46.5/1 11.5/4
0.4 73.3/1 59.7/1 38.2/1 21.5/1 46.5/1 11.5/4
0.6 73.3/1 59.7/1 21.5/1 38.2/1 46.5/1 11.5/4
0.8 73.3/1 59.7/1 21.5/1 21.5/1 38.2/1 0/5
1.0 11.5/3 11.5/3 11.5/3 11.5/3 11.5/3 11.5/3

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 62.7/0 43.7/1 43.7/1 35.8/3 35.8/3 11.1/4

0.2 62.7/0 32.0/1 32.0/1 15.7/2 9.7/3 7.5/4
0.4 62.7/0 32.0/1 16.8/1 21.9/2 9.7/3 7.5/4
0.6 71.5/0 32.0/1 16.8/1 21.9/2 7.2/3 0/5
0.8 71.5/0 32.0/1 16.8/1 15.7/2 7.2/3 0/5
1.0 73.1/1 73.1/1 73.1/1 73.1/1 73.1/1 73.1/1

sets were lost. Similarly, when we set θq to 0, we concern
only the frequent itemsets that do not disappear. Since there
is one missing frequent itemset during recodings, overlook-
ing this led to more distortion. Fourthly, we found that a
significant runitme (42 mins) was spent on calculating the
utility gain of equivalence classes. The reason is that no
filters had been applied yet.

In all, we found that on Adult, Greedy yields frequent
itemsets with a distortion 21.5 (out of 623.1) and 1 missing
frequent itemset when both θp and θq are moderate.

The effect of the determine-new-singleton-eps fil-
ter. This filter is used to avoid recoding equivalence
classes that would yield new single-attribute EPs (Line 15
of hide-eps). The performance of Greedy with this filter
is shown in Table 1 (RHS).

We observe from Table 1 (RHS) that there are similar
trends on the performance with various θp and θq. The dis-
tortion is sometimes smaller but the missing frequent item-
sets may sometimes be more. However, the average runtime
of this experiment is 26 mins (compared to 58 previously).
Specifically, the time for computing utility gain has been
reduced from 42 to 15 mins. The number of recodings re-
duces from 14 to 9. The runtime improvement is due to
(i) the smaller number of equivalence classes for comput-
ing the utility gain and (ii) fewer (if any) new EPs generated
during hide-eps.

The effect of the determine-missing-FIS filter. From
the previous experiments, we note that there are missing fre-
quent itemsets in most cases. Here, we test the effectiveness
of determine-missing-FIS filter (Line 14). The perfor-
mance is shown in Table 2 (LHS). The average runtime for
computing the utility gain increased from 15 to 21 mins and
the number of recodings increased from 9 to 14. At first
glance, the distortion might have increased. However, there
is no missing frequent itemset for all θp’s and θq’s. This
improvement comes at the expense of a slight increase in
runtime.

The effect of calling mine-eps when E is empty. In the

Table 2. The performance of the
determine-missing-FIS filter (LHS) and
the performance of invoking mine-eps only
when E is empty (RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 NA 89.2/0 89.2/0 89.2/0 71.5/0 71.5/0

0.2 105.3/0 89.2/0 78.6/0 78.6/0 41.5/0 41.5/0
0.4 105.3/0 78.6/0 50/0 50/0 41.5/0 41.5/0
0.6 105.3/0 78.6/0 50/0 50/0 41.5/0 41.5/0
0.8 105.3/0 78.6/0 61.3/0 61.3/0 41.5/0 41.5/0
1.0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 NA 97.2/0 97.2/0 81.3/0 70.1/0 81.3/0

0.2 105.3/0 97.2/0 97.6/0 81.3/0 59.3/0 59.3/0
0.4 105.3/0 97.6/0 64.9/0 64.9/0 59.3/0 59.3/0
0.6 105.3/0 78.6/0 64.9/0 64.9/0 59.3/0 59.3/0
0.8 105.3/0 78.6/0 64.9/0 70.1/0 59.3/0 59.3/0
1.0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0 105.3/0
Table 3. The performance of hiding the EP

with the minimum overlapping (LHS) and the
performance of simulated annealing search
(RHS)

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 NA 101.8/0 101.8/0 95.6/0 95.6/0 95.6/0

0.2 127.1/0 98.3/0 75.8/0 75.8/0 53.7/0 53.7/0
0.4 127.1/0 98.3/0 50.0/0 50.0/0 53.7/0 53.7/0
0.6 127.1/0 78.6/0 67.2/0 58.5/0 53.7/0 53.7/0
0.8 127.1/0 80.2/0 61.3/0 65.3/0 48.1/0 48.1/0
1.0 127.1/0 127.1/0 127.1/0 127.1/0 127.1/0 127.1/0

θp\θq 0.0 0.2 0.4 0.6 0.8 1.0
0 67.4/0 27.8/0 58.5/0 50.0/0 44.3/0 23.6/0

0.2 80.1/0 62.5/0 22.4/0 53.8/0 47.8/0 52.1/0
0.4 84.1/0 81.4/0 55.7/0 29.3/0 53.7/0 37.4/0
0.6 85.0/0 50.0/0 97.0/0 31.8/0 40.5/0 22.8/0
0.8 64.9/0 45.2/0 30.0/0 59.6/0 39.5/0 32.3/0
1.0 84.1/0 31.7/0 47.9/0 44.1/0 28.9/0 51.6/0

last experiment, 15 out of 36 mins was spent on mining
EPs. In this experiment, we attempt to improve the runtime
by hiding all existing EPs first before calling mine-eps, as
opposed to calling mine-eps after each recoding. The per-
formance is shown in Table 2 (RHS). From the result, we
found that there is a slight increase in distortion. However,
the time for mining EPs is reduced from 15 to 8 mins. The
average runtime for computing the utility gain increased
from 21 to 23 mins and the number of iterations remains
unchanged.

The effect of hiding the EP with the minimum overlap-
ping. To justify the decision of hiding the maximum over-
lapping EP in Line 05 of hide-eps, we conducted an ex-
periment which first hides the EP with the minimum over-
lapping. The result is shown in Table 3 (LHS). We observed
that the distortion is slightly larger than that of the maxi-
mum overlapping. However, the average runtime for com-
puting the utility gain increased from 23 to 39 mins and the
time for mining EP increased from 8 to 23 mins.

Simulated annealing search. After demonstrating the ef-
fects of various settings with Greedy, we applied SA on the
algorithm (Line 18 of hide-eps). We set a low tempera-
ture (T=10) of SA with a high cooling rate (α=0.4). Hence,
SA initially has some chances to avoid local sub-optima and

then converges to Greedy quickly. To explore the search
space more, each SA was allowed to restart fifty times. The
results are shown in Table 3 (RHS). SA introduces some ran-
domness in the performance. Compared to the best versions
(Table 2), SA often produces better results, at the expense of
runtime.

9 Conclusions

We presented a heuristic local-recoding algorithm for
hiding emerging patterns of a dataset while preserving its
frequent itemsets as far as possible. We tested our algorithm
with a benchmark dataset and showed its effectiveness.

References

[1] N. R. Adam and J. C. Worthmann. Security-control methods for
statistical databases: A comparative study. ACM Computing Surveys,
21(4):515–556, 1989.

[2] D. Agrawal and C. Aggarwal. On the design and quantification of
privacy preserving data mining algorithms. In Proc. of PODS, 2001.

[3] J. Bailey, T. Manoukian, and K. Ramamohanarao. Fast algorithms
for mining emerging patterns. In Proc. of ECML/PKDD, 2002.

[4] J. R. Bayardo. Efficiently mining long patterns from databases. In
Proc. of SIGMOD, pages 85–93, 1998.

[5] R. Bayardo and R. Agrawal. Data privacy through optimal k-
anonymization. In Proc. of ICDE, pages 217–228, 2005.

[6] G. Dong and J. Li. Efficient mining of emerging patterns: Discover-
ing trends and differences. In Proc. of SIGKDD, pages 43–52, 1999.

[7] G. Dong, X. Zhang, and L. Wong. CAEP: Classification by aggre-
gating emerging patterns. In Proc. of DS’99, pages 30–42, 1999.

[8] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On multidimensional
k-anonymity with local recoding generalization. In Proc. of ICDE,
pages 1422–1424, 2007.

[9] A. Evfimievski, R. Strikant, R. Agrawal, and J. Gehrke. Privacy
preserving mining of association rules. In Proc. of SIGKDD, 2002.

[10] H. Fan and K. Ramamohanarao. A Bayesian approach to use emerg-
ing patterns for classification. In Proc. of ADC, pages 39–48, 2003.

[11] B. Fung, K. Wang, A. Fu, and P. Yu. Privacy-Preserving Data Pub-
lishing: Concepts and Techniques. Chapman & Hall/CRC, 2010.

[12] B. Fung, K. Wang, L. Wang, and M. Debbabi. A framework for
privacy-preserving cluster analysis. In Proc. of ISI, page 4651, 2008.

[13] B. Fung, K. Wang, and P. Yu. Top-down specialization for infor-
mation and privacy preservation. In Proc. of ICDE, pages 205–216,
2005.

[14] B. Fung, K. Wang, and P. Yu. Anonymizing classification data for
privacy preservation. TKDE, 10(5):711–725, 2007.

[15] H. F. K. Ramamohanarao. Pattern based classifiers. In Proc. of
WWW, pages 71–83, 2007.

[16] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random-data
perturbation techniques and privacy-preserving data mining. KAIS,
7(4):387–414, 2005.

[17] K. LeFevre, D. Dewitt, and R. Ramakrishnan. Incognito: Efficient
full-domain k-anonymity. In Proc. of SIGMOD, pages 49–60, 2005.

[18] K. LeFevre, D. Dewitt, and R. Ramakrishnan. Mondrian multidi-
mensional k-anonymity. In Proc. of ICDE, page 25, 2006.

[19] J. Li, R. Wong, A. Fu, and J. Pei. Anonymization by local recoding
in data with attribute hierarchical taxonomies. TKDE, 20(9):1181–
1194, 2008.

[20] T. Li and N. Li. On the tradeoff between privacy and utility in data
publishing. In Proc. of SIGKDD, 2009.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Vẽnkitasubramaniam. L-diversity: Privacy beyond k-anonymity.
TKDD, 1(1):3, 2007.

[22] MAFIA. Mining Maximal Frequent Itemsets.
http://himalaya-tools.sourceforge.net/Mafia/.

[23] G. Moustakides and V. Verykios. A maxmin approach for hiding
frequent itemsets. DKE, 65(1):75–79, 2008.

[24] S. Oliveira and O.R.Zaiane. Privacy preserving frequent itemset min-
ing. In Proc. of ICDM Workshop on Privacy, Security and Data Min-
ing, volume 14, pages 43–54, 2002.

[25] L. Sweeney. Achieving k-anonymity privacy protection using gener-
alization and suppression. IJUFKS, 10(5):571–588, 2002.

[26] L. Sweeney. k-anonymity: A model for protecting privacy. In
IJUFKS, pages 557–570, 2002.

[27] UCI Machine Learning Repository. Adult Data Set.
http://archive.ics.uci.edu/ml/datasets/Adult.

[28] Z. Wang, H. Fan, and K. Ramamohanarao. Exploiting maximal
emerging patterns for classification. In Proc. of AUS-AI, pages 1062–
1068, 2004.

[29] X. Wu, M. L. Lee, and W. Hsu. A prime number labeling scheme for
dynamic ordered xml trees. In Proc. of ICDE, pages 66–78, 2004.

[30] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu. Utility-based
anonymization using local recoding. In Proc. of SIGKDD, pages
785–790, 2006.

[31] X. Zhang, G. Dong, and K. Ramamohanarao. Exploring constraints
to efficiently mine emerging patterns from large high-dimensional
datasets. In Proc. of SIGKDD, pages 310–314, 2000.

