
Design and Implementation of Multiple-precision Integer Library for GPUs

Kaiyong Zhao
Department of Computer Science

Hong Kong Baptist University
Hong Kong, P.R.C

kyzhao@comp.hkbu.edu.hk

Xiaowen Chu
Department of Computer Science

Hong Kong Baptist University
Hong Kong, P.R.C

chxw@comp.hkbu.edu.hk

Abstract

 Multiple-precision modular multiplications are the key

components in security applications, like public-key
cryptography for encrypting and signing digital data. But
unfortunately they are computationally expensive for
contemporary CPUs. By exploiting the computing power of
the many-core GPUs, we implemented a multiple-precision
integer library with CUDA. In the previous articles, there are
some GPU application to accelerate the multiplication of
large numbers and model multiplication. Under normal
circumstances, our expression of Multiple-precision numbers
are in accordance with the order of memory, but the GPU in
the thread access case accessed only on a consolidated to
achieve maximum bandwidth.. In this case, the traditional
arrangement of large numbers method suited GPU demand,
we consider the use of alignment on the way to access memory.
Similarly, because we are dealing with the data, and there is
no order in terms of special requirements, data encryption, or
data encoding, we have the data interpreted as a two-
dimensional matrix, the traditional approach is to store large
numbers in accordance with lines, here it can follow the
column to store large integer numbers, for the data itself is not
much conflict. Therefore, under the new access methods, we
can achieve higher processing efficiency.

Keywords

Multiple-precision, Big Integer, GPU Computing, CUDA,
Memory alignment Access, Multiple-precision algorithm

1. Introduction

Non-symmetric encryption is usually used in the network, and
his calculation of the core is the processing of large numbers.
Large amounts of data on the network to encode or to perform
non-symmetric encryption, you need to use a lot of
computation time, processing of large numbers will take up
much of time. How to reduce computing time, speed up the
encoding and encryption of data in the current environment of
great challenges. In particular, the amount of data is
particularly large when the calculation of encryption or
encoding, particularly time-consuming. The emergence of

GPU makes this situation changed. GPU is good at handling
large amounts of data work.
Recent advances in Graphics Processing Units (GPUs) open a
new era of GPU computing [20]. For example, commodity
GPUs like NVIDIA’s GTX 280 has 240 processing cores and
can achieve 933 GFLOPS of computational horsepower. More
importantly, the NVIDIA CUDA programming model makes
it easier for developers to develop non-graphic applications
using GPU [1] [4]. In CUDA, the GPU becomes a dedicated
coprocessor to the host CPU, which works in the principle of
Single-Program Multiple Data (SPMD) where multiple
threads based on the same code can run simultaneously.
While the GPU computing power is high, but our actual test
results did not meet the highest performance. But how can we
make to play a higher performance GPU now? Analysis we
have found that the GPU code, GPU computing power of the
performance bottleneck is the memory read section. Our
research GPU threading model and memory access model of
consolidation of large numbers using the new memory layout
model to modify the traditional large numbers in the memory
access methods, allowing GPU threads can follow the way to
access the memory alignment of data to speed up the memory
of the read.
The rest of the paper is organized as follows. Section 2
provides background information on Multiple-precision, GPU
architecture, and CUDA programming model， GPU thread
model and memory access model. Section 3 presents the
design of multiple-precision integer arithmetic on GPU.
Section 4 we design a new memory access model for multiple-
precision. Experimental results are presented in Section 5, and
we conclude the paper in Section 6.

2. Background and Related Work

In this section, we provide the required background knowledge of
Multiple-precision, GPU architecture and CUDA programming
model.

2.1 Multiple-precision Integer

First, we describe that deal with large integer numbers, why do we
need to deal with large numbers. In the non-symmetric encryption,
using large numbers more difficult to break down characteristics, to

encrypt the data. The number of larger, more difficult to break greater,
and now usually used in large numbers are 1024bit bit. Coding in the
network will deal with the situation of large numbers, only the larger
situation of large numbers, including the amount of information
before it was. For example, we will then be used to make the analysis
of an algorithm, a vector is multiplied by a data and then seek mode,
the process is the encoding process of handling large numbers.
Location of large numbers of data over 1024bit position, then we
know the computer inside the existing system is 32 bit position, or
the 64bit bit. How to represent the present large numbers now? We
know that number can be expressed as 𝐴𝐴 = 𝑥𝑥0 ∙ 10 0 + 𝑥𝑥1 ∙
 10 1 + … 𝑥𝑥𝑛𝑛 ∙ 10 𝑛𝑛 ; such a way that a number of the same, we can
also be used inside the computer the same way to represent a large
numbers, here we have the b-bit 0x100000000, using 232 as a binary.
We define binary bit b, then the large numbers can be expressed
as 𝐴𝐴 = 𝑥𝑥0 ∙ 𝑏𝑏 0 + 𝑥𝑥1 ∙ 𝑏𝑏 1 + … 𝑥𝑥𝑛𝑛 ∙ 𝑏𝑏 𝑛𝑛 . These circumstances,
we can express the location of large numbers of more than 32bit. For
example, large numbers 1024bit bit, we can use 8-bit integer type of
representation is 32bit.
We can see large integer is an expression of the polynomial. So we
have large numbers of addition and subtraction multiplication and
division rules. In fact, the conversion to polynomial multiplication
and division addition and subtraction. In our realization of the large
numbers library, we used a way to carry out large numbers
polynomial arithmetic. Because large numbers have been a lot of
processing algorithms, where we do not deal with large numbers of
the algorithm to do too much to explain, but we choose the best and
most suitable for GPU algorithms. Here we will discuss what kind of
large numbers algorithm is suitable for GPU, for the present CUDA
programming. Processing of large numbers, especially multiplication,
exponentiation, modular computing, and power-mode operation in
practical application a large proportion of, so large numbers in our
database, we will focus on the realization of multiplication, power-
mode operation.

2.2 GPU Computing and CUDA

GPUs are dedicated hardware for manipulating computer graphics.
Due to the huge computing demand for real-time and high-definition
3D graphics, the GPU has evolved into a highly parallel,
multithreaded, manycore processor. The advances of computing
power in GPUs have driven the development of general-purpose
computing on GPUs (GPGPU). The first generation of GPGPU
requires that any non-graphics application must be mapped through
graphics application programming interfaces (APIs).
Recently one of the major GPU vendors, NVIDIA, announced their
new general-purpose parallel programming model, namely Compute
Unified Device Architecture (CUDA) [1] [4], which extends the C
programming language for general-purpose application development.
Meanwhile, another GPU vendor AMD also introduced Close To
Metal (CTM) programming model which provides an assembly
language for application development [2]. Intel also exposed
Larrabee, a new many-core GPU architecture specifically designed
for the market of GPU computing this year [23].
Since the release of CUDA, it has been used for speeding up a large
number of applications [17] [18] [20] [21] [22].
The NVIDIA GeForce 8800 has 16 Streaming Multiprocessors (SMs),
and each SM has 8 Scalar Processors (SPs), resulting a total of 128
processor cores. The SMs have a Single-Instruction Multiple-Data
(SIMD) architecture: At any given clock cycle, each SP of the SM
executes the same instruction, but operates on different data. Each SP

can support 32-bit single-precision floating-point arithmetic as well
as 32-bit integer arithmetic.
Each SM has four different types of on-chip memory, namely
registers, shared memory, constant cache, and texture cache. For
GeForce 8800, each SM has 8192 32-bit registers, and 16 Kbytes of
shared memory which are almost as fast as registers. Constant cache
and texture cache are both read-only memories shared by all SPs.
Off-chip memories such as local memory and global memory have
relatively long access latency, usually 400 to 600 clock cycles [4].
The properties of the different types of memories have been
summarized in [4] [17]. In general, the scarce shared memory should
be carefully utilized to amortize the global memory latency cost.
Shared memory is divided into equally-sized banks, which can be
simultaneously accessed. If two memory requests fall into the same
bank, it is referred to as bank conflict, and the access has to be
serialized.
In CUDA model, the GPU is regarded as a coprocessor capable of
executing a great number of threads in parallel. A single source
program includes host codes running on CPU and also kernel codes
running on GPU. Compute-intensive and data-parallel kernel codes
run on GPU in the manner of Single-Process Multiple-Data (SPMD).
The threads are organized into blocks, and each block of threads are
executed concurrently on one SM. Threads in a thread block can
share data through the shared memory and can perform barrier
synchronization. Each SM can run at most eight thread blocks
concurrently, due to the hard limit of eight processing cores per SM.
As a thread block terminate, new blocks will be launched on the
vacated SM. Another important concept in CUDA is warp, which is
formed by 32 parallel threads and is the scheduling unit of each SM.
When a warp stalls, the SM can schedule another warp to execute. A
warp executes one instruction at a time, so full efficiency can only be
achieved when all 32 threads in the warp have the same execution
path. Hence, if the number of threads in a block is not a multiple of
warp size, the remaining instruction cycles will be wasted.
Of particular importance is the CUDA model of GPU threads to
access the memory model. Under normal circumstances this place
will become a bottleneck GPU acceleration. Each thread reads a 32
bit data, put the rules into alignment here. When all the threads in a
half-warp (16 threads) read the collocation memory the access will be
make one step.

3. Multiple-Precision Modular Arithmetic for
CUDA

In this section, we present a set of library functions of multiple-
precision modular arithmetic implemented on GPUs. These library
functions are the cornerstones of the network coding system and
homomorphic hash functions. It is of critical importance to
implement these library functions efficiently. In modular arithmetic,

all operations are performed in a group mΖ , i.e., the set of integers
}1,,2,1,0{ −m . In the following, the modulus m is represented in

radix b as bnn mmmm)(011− where 0≠nm . Each symbol
nimi ≤≤0 , , is referred to as a radix b digit. Non-negative integers x

and y, mymx << , , are represented in radix b as bnn xxxx)(011−

and bnn yyyy)(011− respectively.
We have implemented the following multiple-precision library
functions for CUDA:

Multiple-precision comparison
Multiple-precision subtraction
Multiple-precision modular addition
Multiple-precision modular subtraction
Multiple-precision multiplication
Multiple-precision division
Multiple-precision multiplicative inversion
Due to the space limitation, we do not present the implementation
details in this paper.

3.1 Modular Addition and Subtraction
Algorithm 1 Multiple-precision Comparison

INPUT: non-negative integers x and y, each with 1+n radix b
digits.
OUTPUT: 1, if yx > ; 0, if yx = ; -1, if yx < .

1: ni ← ;
2: while (ii yx == and 0>i)
3: ;1−← ii
4: end while
5: if (ii yx >) then return 1;
6: else if (ii yx ==) then return 0;
7: else return -1;

Algorithm 2 Multiple-precision Subtraction

INPUT: non-negative integers x and y, each with 1+n radix b
digits, yx ≥ .

OUTPUT: bnn zzzzyx)(011−=− .

1: 0←c ; /* carry digit */
2: for (i from 0 to n) do
3:)(cyxz iii +−← mod b;
4: if (0≥+− cyx ii) then 0←c ;
5: else 1−←c ;
6: end for
5: return bnn zzzz)(011− ;

Algorithm 3 Multiple-precision Modular Addition

INPUT: non-negative integers x and y, each with 1+n radix b
digits, mymx << , .

OUTPUT:)(yx + mod m = bnn zzzz)(011− .

1: 0←c ; /* carry digit */
2: for (i from 0 to n) do
3:)(cyxz iii ++← mod b;
4: if (bcyx ii <++) then 0←c ;
5: else 1←c ;
6: end for
7: czn ←+1 ; 01 ←+nm ;
8: if (bnnn zzzzz)(0111 −+ >= bnnn mmmmm)(0111 −+) then
9: ←−+ bnnn ttttt)(0111  −−+ bnnn zzzzz)(0111 
 bnnn mmmmm)(0111 −+ ;

10: return bnn tttt)(011− ;
11: else return bnn zzzz)(011− ;

Algorithm 4 Multiple-precision Modular Subtraction

INPUT: non-negative integers x and y, each with 1+n radix b
digits, mymx << , .

OUTPUT:)(yx − mod m = bnn zzzz)(011− .

1: if (yx >=) then return yx − ;
2: else
3:);(ymt −←
4: return)(tx + mod m;
5: end else

Complexity Analysis: Obviously all the above algorithms have
computational complexity of)(nΟ .

3.2 Modular Multiplication
One straightforward method to implement modular multiplication of

yx ⋅ mod m is to calculate yx ⋅ first and then calculate the
remainder of yx ⋅ divided by m. Hence we first give two algorithms
to calculate multiple-precision multiplication and division
respectively.

Algorithm 5 Multiple-precision Multiplication

INPUT: non-negative integers x and y, each with 1+n radix b
digits and 1+s radix b digits respectively.

OUTPUT: yx ⋅ = bsnsn zzzz)(011 +++ .

1: for (i from 0 to 1++ sn) do
2: 0←iz ;
3: end for
4: for (i from 0 to s) do
5: 0←c ; /* carry digit */
6: for (j from 0 to n) do
7: cyxzuv ijjib +⋅+← +)(;

8: vz ji ←+ ; uc ← ;
9: end for
10: uz in ←++ 1 ;
11: end for
12: return bsnsn zzzz)(011 +++ ;

Algorithm 6 Multiple-precision Division

INPUT: non-negative integers x and y, each with 1+n radix b
digits and 1+s radix b digits respectively, 1≥≥ sn , 0≠sy .

OUTPUT: the quotient bsn qqqq)(01−= and remainder

bs rrrr)(01= such that ryqx +⋅= , yr <≤0 .

1: for (i from 0 to sn −) do
2: 0←iq ;
3: end for
4: while (snbyx −⋅≥) do
5: 1+← −− snsn qq ;

6: snbyxx −⋅−← ;

7: end while
8: for (i from n down to 1+t) do
9: if (si yx ==) then 11 −←−− bq si ;
10: else  siisi yxbxq /)(11 −−− +⋅← ;

11: while))((21
2

11 −−−−− +⋅+⋅>+⋅⋅ iiisssi xbxbxybyq do
12: 111 −← −−−− sisi qq ;
13: end while
14: 1

1
−−

−− ⋅⋅−← si
si byqxx ;

15: if (0<x) then
16: 1−−⋅+← sibyxx ;
17: 111 −← −−−− sisi qq ;
18: end if
19: end for
20: xr ← ;
21: return),(rq ;

The classical modular multiplication is suitable for normal operations.
However, when performing modular exponentiations, Montgomery
multiplication shows much better performance advantage [7]. The
following gives the Montgomery reduction and Montgomery
multiplication algorithms.
Let m be a positive integer, and let R and A be integers such that

mR > , gcd(m, R) = 1, and RmA ⋅<≤0 . The Montgomery
reduction of A modulo m with respect to R is defined as 1−⋅RA mod
m. In our applications, R is chosen as nb to simply the calculation.

Algorithm 7 Multiple-precision Montgomery Reduction

INPUT: integer m with n radix b digits and gcd(m, b) = 1,
nbR = , 1' −−= mm mod b, and integer A with 2n radix b digits

and RmA ⋅< .

OUTPUT: T = 1−⋅RA mod m.

1: AT ← ;
2: for (i from 0 to 1−n)
3: 'mTu ii ⋅← mod b;

4: i
i bmuTT ⋅⋅+← ;

5: end for
6: nbTT /← ;
7: if (mT ≥) then mTT −← ;
8: return T;

Algorithm 8 Multiple-precision Montgomery Multiplication

INPUT: non-negative integer m, x, y with n radix b digits,
mymx << , , and gcd(m, b) = 1, nbR = , 1' −−= mm mod b.

OUTPUT: T = 1−⋅⋅ Ryx mod m.

1: 0←T ;
2: for (i from 0 to 1−n)
3: ')(00 myxTu ii ⋅⋅+← mod b;
4: bmuyxTT ii /)(⋅+⋅+← ;
5: end for
6: if (mT ≥) then mTT −← ;
7: return T;

3.3 Barrett Modular Reduction Algorithm

Barrett Reduction is a method of reducing a number modulo another
number. Barrett reduction by precomputing some values, one can
easily far exceed the speed of normal modular reductions.
Barrett reduction's benefits are most visible when it is used to reduce
various numbers modulo a single number many times. Barrett
reduction is not particularly useful when used with small numbers (32
or 64 bits); it's benefits occur when using numbers that are
implemented by multiple precision arithmetic libraries, such as when
implementing the network coding in GF(232).
Next I will give the implementation of the Barrett reduction
algorithm. But first, keep in mind that Barrett Reduction can only
reduce numbers that are, at most, twice as long (in words) as the
modulus. We define the modulus, called m, which is k words long
(numbered k-1...0, with 0 being the least significant word). First we
need pre-calculate the value: u = �b2k m⁄ � where b is the "base" of
the integers used. For example, if you represented the numbers as a
sequence of 32-bit values, b is 232 , or 0x100000000. You will keep
this value u across function calls so you can reuse it.
Now, given a number x, which is an arbitrary integer of size (at most)
2k words (2k-1...0), this procedure (in pseudocode) will return the
value of x mod m:

Algorithm 9 Barrett Modular Reduction Algorithm

INPUT: positive integers 𝑥𝑥 = (𝑥𝑥2𝑘𝑘−1 … 𝑥𝑥1𝑥𝑥0)𝑏𝑏 , 𝑚𝑚 =
(𝑚𝑚𝑘𝑘−1 …𝑚𝑚1𝑚𝑚0)𝑏𝑏 (with 𝑚𝑚𝑘𝑘−1 ≠ 0), and 𝑢𝑢 = �𝑏𝑏2𝑘𝑘 𝑚𝑚⁄ �.

OUTPUT: 𝑟𝑟 = 𝑥𝑥 mod 𝑚𝑚
1: q1 = �𝑥𝑥 𝑏𝑏𝑘𝑘−1⁄ �, 𝑞𝑞2 = 𝑞𝑞1 ∙ 𝑢𝑢, q3 = �𝑞𝑞2 𝑏𝑏𝑘𝑘+1⁄ �;
2: 𝑟𝑟1 = 𝑥𝑥 mod 𝑏𝑏𝑘𝑘+1, 𝑟𝑟2 = 𝑞𝑞3 ∙ 𝑚𝑚 mod 𝑏𝑏𝑘𝑘+1, 𝑟𝑟 = 𝑟𝑟1 − 𝑟𝑟2;
3: if (r < 0) then 𝑟𝑟 = 𝑟𝑟1 + 𝑏𝑏𝑘𝑘+1;
4: while (𝑟𝑟 ≥ 𝑚𝑚) do 𝑟𝑟 = 𝑟𝑟𝑟𝑟 − 𝑚𝑚;
5: return r;

Note that the divisions and modular reductions in this procedure can
be replaced by right shifts and AND operations because the b is 232 .
This results in the remaining operations being addition and
multiplication, both of which are much cheaper than division for
multiple precision integers.

3.4 Multiplicative Inversion
Traditionally multiplicative inversion is obtained through extended
Euclidean algorithm. In order to avoid the expensive multiple-
precision division operations, we implement multiple-precision
multiplicative inversion using an extended binary GCD algorithm.

Algorithm 10 Multiple-precision Multiplicative Inversion

INPUT: odd prime number m with n radix b digits, positive
integer a with n radix b digits, ma < .

OUTPUT: integer mb Ζ∈ such that 1≡⋅ba (mod m) .

1: mu ← ; av ← ; 0←B ; 1←D ;
2: while u is even
3: 2/uu ← ;
4: if B is even then 2/BB ← ;
5: else 2/)(mBB −← ;
6: end while
7: while v is even

http://everything2.com/title/modulo�
http://everything2.com/title/precomputing�
http://everything2.com/title/modular+reductions�
http://everything2.com/title/bits�
http://everything2.com/title/multiple+precision+arithmetic�
http://everything2.com/title/function+calls�
http://everything2.com/title/integer�
http://everything2.com/title/pseudocode�
http://everything2.com/title/AND�

8: 2/vv ← ;
9: if D is even then 2/DD ← ;
10: else 2/)(mDD −← ;
11: end while
12: if (vu ≥) then vuu −← ; DBB −← ;
13: else uvv −← ; BDD −← ;
14: if 0==u then return D;
15: else go to Step 2.

3.5 Modular Exponentiation
Algorithm 11 Multiple-precision Montgomery Exponentiation

INPUT: integer m with n radix b digits and gcd(m, b) = 1,
nbR = , positive integer x with n radix b digits and mx < , and

positive integer e = 20)(eet .

OUTPUT: ex mod m.

1: 2(,)x Mont x R mod m← ;
2: RA← mod m;
3: for (i from n down to 0)
4: (,)A Mont A A← ;
5: if 1==ie then (,)A Mont A x←  ;
6: end for
7: (, 1)A Mont A ← ;
8: return A;

3.6 Exponentiation with Multi-Exponentiation
There exist multi-exponentiation algorithms which perform much
better than calculating the exponents individually. The following
algorithm is a variation of Straus’s algorithm [5], by integrating the

Montgomery method. To evaluate
1

0 i

i
k e

i
g

−

=∏ where the maximum

bit-length of all the exponents is n, we first form a k n× bit matrix

whose rows are the binary representations of
i

e , 0 1i k≤ ≤ − . Let

j
C be the non-negative integer whose binary representation is the jth

column, 1 j n≤ ≤ , of the bit matrix, where the least significant bit is
at the top of the column.

Algorithm 12 Montgomery Multi-Exponentiation

INPUT: integers
0 1 1
, , ...,

k
g g g

−
,

0 1 1
, , ...,

k
e e e

−
, R , and m.

OUTPUT:
1

0 i

i
k e

i
g

−

=∏ mod m.

1: for (i from 0 to 2 1k −)

2:
1

0
()j

j

k i

i j
G g R

−

=
← ∏ mod m, where

1 0 2
()

k
i i i

−
= 

3: end for
4: A R← mod m;
5: for (j from 1 to n)
6: (,)A Mont A A← ;

7: if 0
j

C ≠ then (,)
iCA Mont A G←  ;

8: end for
9: (, 1)A Mont A ← ;
10: return A;

The above algorithm requires at most 2 2(2)k n+ − multiplication

operations, with a memory space of 2 1k − . The optimal value of k
depends on the value of n, and it is usually small for contemporary
cryptography applications.
Given the structure of homomorphic hash function, we can divide the

product
1

() i

m
e

i
i

h e g
=

=∏ into groups of multi-exponentiations:

(1)

(1)1
1

/

() ()i k j
k e

i k jj
i

m k

h e g − +

− +=
=

  

= ∏ ∏ , and assign each multi-exponentiation

to an individual processing core.

3.7 Exponetiation with Precomputation
When applying homomorphic hash function in network coding
enabled P2P applications, the same homomorphic hash function, i.e.,
with the same set of parameters, will be used for a large data set such
as a whole file or a video streaming session. Under this special
circumstance, it is possible to speed up the modular exponentiations

by precomputation [8]. To calculate eg , we first represent the

exponent e using radix 2kb = :
1

0

n i

ii
e a b

−

=
= ∑ , where 0 ia b≤ <

and 1 0na
−
≠ . It is easy to see that 2(log 1) /n e k= +       . The

fast modular exponentiation algorithm requires the precomputation of
2ki

g mod m for 1 1i n≤ ≤ − . Then we can use the following

algorithm to calculate eg mod m.

Algorithm 13 Exponentiation with Precomputation

INPUT: integers m, g,
1

0

m i

ii
e a b

−

=
= ∑ , R , and 2kiRg mod m for

1 1i n≤ ≤ −

OUTPUT: eg mod m.

1: ,A R B R← ← ;
2: for (j from 1b − down to 1)
3: for i from 0 to 1m −

4: if ia j== then 2(,)kiB Mont B Rg← mod m;
5: end for
6: (,)A Mont A B← ;
7: end for
8: (,1)A Mont A← ;
9: return A;
As shown by [8], the above algorithm takes 3m b+ −
multiplications. For e with 257-bit, the optimal value of b is 16,
which takes only 78 multiplications in the worst case, as compared
with 512 multiplications required by the binary method.

4. Implementation Multiple-precision Integer
library on GPUS

This chapter, we will discuss the use of memory with alignment
approach to the implementation of Multiple-precision integer
numbers. In the GPU, in order to achieve maximum access to
bandwidth, we need a CUDA half-warp access the data inside the
data, when, in accordance with coalescing way to access memory.

Next part we will discuss the way, how the half-warp access the
memory by coalescing .

4.1 Data Structure of Multiple-precision Integer

There are two ways to organize the data, one way is the CPU data
structure, one is suitable for GPU data structures. We define large
numbers over more than 64bit or 32bit, so we need to re-definition of
the structure of the big integer. It based on 232 , each element of big
integer is 32bit, according to 232 as a binary, a total number of bits
into the data structure of the last one. In our implementation, each of
a large numbers are all composed of two parts, first part is the actual
data of large numbers, the second part of the numbers of bits, these
two can be separated is placed, it is not released to the same array.
The first way is to put the data in accordance with the habit of CPU,
in order, put each number into a 32bit memory inside. Another way
to put the data in accordance with GPU appropriate manner, and put
32 large numbers in each row, each a large numbers of data are
arranged according to the column.
Our actual calculations will be used simultaneously to both structures,
a number of constants, or only once the data, we can put inside GPU
computing, or stored in a number of high-performance memory
inside, place the data in accordance with the first approach. Be
counted some of the data, we will follow for GPU-series data to store
data

4.2 Using Constant Value with Cache Memory

In the calculation process, we usually use to duplicate data, or to be
multiple uses of data. The data we need to try to put to efficient
memory cache inside. In Nvidia's GPU we can use texture and
constant memory storage of constants. Texture and the constant has
two caches, multiple use of the data will be loaded into the cache
inside, so that you can efficiently use the constant data. For example,
exponentiation of the base, or are seeking modules modulus.

4.3 Using Shared Memory for Temp Value

We can see that some of the above formula to the process need
to use temporary variables. Because the performance of local
memory and global memory as well, so this part of the
variable we will use shared memory to be stored. All of the
intermediate process is the need to reiterate the use of
variables. And then passed to a function as a temporary
variable to use it.

4.4 Balance the Computing Resource

Balance the number of threads for each block, making a
maximum of active threads. CUDA programming model
Stream Multiprocessor each one simultaneously active 8
blocks, but the need to registers for each block and the shared
memory used in the calculation. The need to co-inside with the
4.3, sometimes without direct use of shared memory as global
memory can achieve higher performance

4.5 Example Implementation in GPUs

This part, we design a example for benchmarking this library. There
is a vector array A multiplication with big integer matrix B, and then
mod 1024bit big integer. Large numbers in the original matrix
arranged in memory when the inside is based on a lump sum for each
line to represent. A lump sum for each of a lump sum and the next
will be the location of 256bit interval, so that the GPU inside the
access and causing access can't be merged. This will allow each half-
warp access memory produce 16 times the time to visit. Each visit is
approximately 500 cycle, if it is can be merged into one visit, then
these 16 threads will be merged into one visit, which will reduce the
access time period, increasing access to bandwidth.
So in this case, we have designed to store large numbers under the
column of the memory layout. Can see the figure below, we show
that the yellow unit One-big-integer-256bits, says that a large
numbers. So, 16 threads to access the matrix B when the alignment
means in accordance with the order would be to visit each of the first
data row, so that you can make 16 threads to access the data
alignment.

Figure 1. Vector A multiplication with Big integer matrix B

 Because the vector A will be used multiple times, so we will
put into the vector A into constant memory, because there will
be two constant caches, you can speed up the data read

5. Implementation and experimental Result

We have implemented this function using CUDA. We
tested these implementations on XFX GTX280 graphic card
which contains an NVIDIA GeForce GTX280 GPU. The
GTX280 GPU uses the GT200 architecture with 240
processing cores working at 1.24 GHz.

5.1 Result of the Example

Figure 2 shows the results of our CUDA version of
network coding encoding with GT200 GPU. Since most of the

computing task is the modular, the throughput is almost
independent of the value of m. The encoding speed about 400
MBPs.

Figure 2． Network Coding Encoding Speed with CUDA

6. Conclusions

Multiple-precision modular is an important component in
public-key cryptography for encrypting and signing digital
data. In this paper, we describe the design, implementation
and optimization of multiple-precision modular using GPU
and CUDA. Especially in the case of dealing with large
amounts of data, how to optimize the access speed of GPU, we
have changed the traditional way of their large numbers of
memory, which is more suitable for GPU access the memory
data.

7. References

[1] NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html
[2] AMD CTM Guide: Technical Reference Manual.

2006. http://ati.amd.com/companyinfo/researcher/documents/AT
I_CTM_Guide.pdf

[3] GNU MP Arithmetic Library. http://gmplib.org/
[4] NVIDIA CUDA Compute Unified Device Architecture:

Programming Guide, Version 2.0beta2, Jun. 2008.
[5] Montgomery, P., 1985. Multiplication without trial division,

Math. Computation, vol. 44, 1985, 519-521.
[6] Menezes, A., van Oorshot, P., and Vanstone S., 1996. Handbook

of applied cryptography. CRC Press, 1996.
[7] Ahlswede, R., Cai, N., Li S. R., and Yeung, R. W. 2000.

Network information flow. IEEE Transactions on Information
Theory, 46(4), July 2000, 1204-1216.

[8] Ho, T., Koetter. R., Médard, M., Karger, D.R. and Effros, M.
2003. The benefits of coding over routing in a randomized
setting. In Proceedings of IEEE ISIT, 2003.

[9] Li, S.-Y.R., Yueng, R.W., and Cai, N. 2003. Linear network
coding. IEEE Transactions on Information Theory, vol. 49, 2003.
371-381.

[10] Krohn, M., FreedMan, M., and Mazieres, D. 2004. On-the-fly
verification of rateless erasure codes for efficient content
distribution. In Proceedings of IEEE Symposium on Security
and Privacy, Berkeley, CA, 2004.

[11] Gkantsidis, C. and Rodriguez, P. 2005. Network coding for large
scale content distribution. In Proceedings of IEEE INFOCOM
2005.

[12] Gkantsidis, C. and Rodriguez, P. 2006. Cooperative security for
network coding file distribution. In Proceedings of IEEE
INFOCOM’06, 2006.

[13] Li, Q., Chiu, D.-M., and Lui, J. C.S. 2006. On the practical and
security issues of batch content distribution via network coding.
In Proceedings of IEEE ICNP’06, 2006, 158-167.

[14] Chou, P. A. and Wu, Y. 2007. Network coding for the Internet
and wireless networks. Technical Report. MSR-TR-2007-70,
Microsoft Research.

[15] Wang, M. and Li, B. 2007. Lava: a reality check of network
coding in peer-to-peer live streaming. In Proceedings of IEEE
INFOCOM’07, 2007.

[16] Wang, M. and Li, B. 2007. R2

[17] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk,
D. B., and Hwu, W. 2008. Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA. In Proceedings of ACM PPoPP’08, Feb. 2008.

: random push with random
network coding in live peer-to-peer streaming. In IEEE Journal
on Selected Areas in Communications, Dec. 2007, 1655-1666.

[18] Falcao, G., Sousa, L., and Silva, V. 2008. Massiv parallel LDPC
decoding in GPU. In Proceedings of ACM PPoPP’08, Feb. 2008.

[19] Yu, Z., Wei, Y., Ramkumar, B., and Guan, Y. 2008. An efficient
signature-based scheme for securing network coding against
pollution attacks. In Proceedings of IEEE INFOCOM’08, Apr.
2008.

[20] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E.,
and Phillips, J. C. 2008. GPU computing. IEEE Proceedings,
May 2008, 879-899.

[21] Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G., and
Ripeanu, M. 2008. StoreGPU: exploiting graphics processing
units to accelerate distributed storage systems. In Proceedings of
IEEE Symposium on High Performance Distributed Computing
(HPDC), Jun. 2008.

[22] Silberstein, M., Geiger, D., Schuster, A., Patney, A., Owens, J.
D. 2008. Efficient computation of sum-products on GPUs
through software-managed cache. In Proceedings of the 22nd
ACM International Conference on Supercomputing, Jun. 2008.

[23] Seiler, L., et. al., 2008. Larrabee: a many-core x86 architecture
for visual computing. ACM Transactions on Graphics, 27(3),
Aug. 2008.

0
50

100
150
200
250
300
350
400
450

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

En
co

di
ng

 S
pe

ed
 (M

B/
s)

Matrix Width

GPU

CPU

http://developer.nvidia.com/object/cuda.html�
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf�
http://ati.amd.com/companyinfo/researcher/documents/ATI_CTM_Guide.pdf�
http://gmplib.org/�

	Introduction
	Background and Related Work
	Multiple-precision Integer
	GPU Computing and CUDA

	Multiple-Precision Modular Arithmetic for CUDA
	Modular Addition and Subtraction
	Complexity Analysis: Obviously all the above algorithms have computational complexity of .
	Modular Multiplication
	Barrett Modular Reduction Algorithm
	Multiplicative Inversion
	Modular Exponentiation
	Exponentiation with Multi-Exponentiation
	Exponetiation with Precomputation

	Implementation Multiple-precision Integer library on GPUS
	Data Structure of Multiple-precision Integer
	Using Constant Value with Cache Memory
	Using Shared Memory for Temp Value
	Balance the Computing Resource
	Example Implementation in GPUs

	Implementation and experimental Result
	Result of the Example

	Conclusions
	References

