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Abstract 

 
 Multiple-precision modular multiplications are the key 

components in security applications, like public-key 
cryptography for encrypting and signing digital data. But 
unfortunately they are computationally expensive for 
contemporary CPUs. By exploiting the computing power of 
the many-core GPUs, we implemented a multiple-precision 
integer library with CUDA.  In the previous articles,  there are 
some GPU application to accelerate the multiplication of 
large numbers and model multiplication. Under normal 
circumstances, our expression of Multiple-precision numbers 
are in accordance with the order of memory, but the GPU in 
the thread access case accessed only on a consolidated to 
achieve maximum bandwidth.. In this case, the traditional 
arrangement of large numbers method suited GPU demand, 
we consider the use of alignment on the way to access memory. 
Similarly, because we are dealing with the data, and there is 
no order in terms of special requirements, data encryption, or 
data encoding, we have the data interpreted as a two-
dimensional matrix, the traditional approach is to store large 
numbers in accordance with lines, here it can follow the 
column to store large integer numbers, for the data itself is not 
much conflict. Therefore, under the new access methods, we 
can achieve higher processing efficiency. 
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1. Introduction 

Non-symmetric encryption is usually used in the network, and 
his calculation of the core is the processing of large numbers. 
Large amounts of data on the network to encode or to perform 
non-symmetric encryption, you need to use a lot of 
computation time, processing of large numbers will take up 
much of time. How to reduce computing time, speed up the 
encoding and encryption of data in the current environment of 
great challenges. In particular, the amount of data is 
particularly large when the calculation of encryption or 
encoding, particularly time-consuming. The emergence of 

GPU makes this situation changed. GPU is good at handling 
large amounts of data work.  
Recent advances in Graphics Processing Units (GPUs) open a 
new era of GPU computing [20]. For example, commodity 
GPUs like NVIDIA’s GTX 280 has 240 processing cores and 
can achieve 933 GFLOPS of computational horsepower. More 
importantly, the NVIDIA CUDA programming model makes 
it easier for developers to develop non-graphic applications 
using GPU [1] [4]. In CUDA, the GPU becomes a dedicated 
coprocessor to the host CPU, which works in the principle of 
Single-Program Multiple Data (SPMD) where multiple 
threads based on the same code can run simultaneously.  
While the GPU computing power is high, but our actual test 
results did not meet the highest performance. But how can we 
make to play a higher performance GPU now? Analysis we 
have found that the GPU code, GPU computing power of the 
performance bottleneck is the memory read section. Our 
research GPU threading model and memory access model of 
consolidation of large numbers using the new memory layout 
model to modify the traditional large numbers in the memory 
access methods, allowing GPU threads can follow the way to 
access the memory alignment of data to speed up the memory 
of the read.  
The rest of the paper is organized as follows. Section 2 
provides background information on Multiple-precision, GPU 
architecture, and CUDA programming model， GPU thread 
model and memory access model. Section 3 presents the 
design of multiple-precision integer arithmetic on GPU. 
Section 4 we design a new memory access model for multiple-
precision. Experimental results are presented in Section 5, and 
we conclude the paper in Section 6. 

2. Background and Related Work 
 
In this section, we provide the required background knowledge of 
Multiple-precision, GPU architecture and CUDA programming 
model. 

 
2.1 Multiple-precision Integer 
 
First, we describe that deal with large integer numbers, why do we 
need to deal with large numbers. In the non-symmetric encryption, 
using large numbers more difficult to break down characteristics, to 



encrypt the data. The number of larger, more difficult to break greater, 
and now usually used in large numbers are 1024bit bit. Coding in the 
network will deal with the situation of large numbers, only the larger 
situation of large numbers, including the amount of information 
before it was. For example, we will then be used to make the analysis 
of an algorithm, a vector is multiplied by a data and then seek mode, 
the process is the encoding process of handling large numbers.  
Location of large numbers of data over 1024bit position, then we 
know the computer inside the existing system is 32 bit position, or 
the 64bit bit. How to represent the present large numbers now? We 
know that number can be expressed as 𝐴𝐴 =  𝑥𝑥0  ∙  10 0  +  𝑥𝑥1  ∙
 10 1 +  … 𝑥𝑥𝑛𝑛  ∙  10 𝑛𝑛 ; such a way that a number of the same, we can 
also be used inside the computer the same way to represent a large 
numbers, here we have the b-bit 0x100000000, using 232  as a binary. 
We define binary bit b, then the large numbers can be expressed 
as  𝐴𝐴 =  𝑥𝑥0  ∙  𝑏𝑏 0  +  𝑥𝑥1  ∙  𝑏𝑏 1 + … 𝑥𝑥𝑛𝑛  ∙  𝑏𝑏 𝑛𝑛 . These circumstances, 
we can express the location of large numbers of more than 32bit. For 
example, large numbers 1024bit bit, we can use 8-bit integer type of 
representation is 32bit.  
We can see large integer is an expression of the polynomial. So we 
have large numbers of addition and subtraction multiplication and 
division rules. In fact, the conversion to polynomial multiplication 
and division addition and subtraction. In our realization of the large 
numbers library, we used a way to carry out large numbers 
polynomial arithmetic. Because large numbers have been a lot of 
processing algorithms, where we do not deal with large numbers of 
the algorithm to do too much to explain, but we choose the best and 
most suitable for GPU algorithms. Here we will discuss what kind of 
large numbers algorithm is suitable for GPU, for the present CUDA 
programming. Processing of large numbers, especially multiplication, 
exponentiation, modular computing, and power-mode operation in 
practical application a large proportion of, so large numbers in our 
database, we will focus on the realization of multiplication, power-
mode operation.  

2.2 GPU Computing and CUDA 

GPUs are dedicated hardware for manipulating computer graphics. 
Due to the huge computing demand for real-time and high-definition 
3D graphics, the GPU has evolved into a highly parallel, 
multithreaded, manycore processor. The advances of computing 
power in GPUs have driven the development of general-purpose 
computing on GPUs (GPGPU). The first generation of GPGPU 
requires that any non-graphics application must be mapped through 
graphics application programming interfaces (APIs). 
Recently one of the major GPU vendors, NVIDIA, announced their 
new general-purpose parallel programming model, namely Compute 
Unified Device Architecture (CUDA) [1] [4], which extends the C 
programming language for general-purpose application development. 
Meanwhile, another GPU vendor AMD also introduced Close To 
Metal (CTM) programming model which provides an assembly 
language for application development [2]. Intel also exposed 
Larrabee, a new many-core GPU architecture specifically designed 
for the market of GPU computing this year [23]. 
Since the release of CUDA, it has been used for speeding up a large 
number of applications [17] [18] [20] [21] [22].  
The NVIDIA GeForce 8800 has 16 Streaming Multiprocessors (SMs), 
and each SM has 8 Scalar Processors (SPs), resulting a total of 128 
processor cores. The SMs have a Single-Instruction Multiple-Data 
(SIMD) architecture: At any given clock cycle, each SP of the SM 
executes the same instruction, but operates on different data. Each SP 

can support 32-bit single-precision floating-point arithmetic as well 
as 32-bit integer arithmetic. 
Each SM has four different types of on-chip memory, namely 
registers, shared memory, constant cache, and texture cache. For 
GeForce 8800, each SM has 8192 32-bit registers, and 16 Kbytes of 
shared memory which are almost as fast as registers. Constant cache 
and texture cache are both read-only memories shared by all SPs. 
Off-chip memories such as local memory and global memory have 
relatively long access latency, usually 400 to 600 clock cycles [4]. 
The properties of the different types of memories have been 
summarized in [4] [17]. In general, the scarce shared memory should 
be carefully utilized to amortize the global memory latency cost. 
Shared memory is divided into equally-sized banks, which can be 
simultaneously accessed. If two memory requests fall into the same 
bank, it is referred to as bank conflict, and the access has to be 
serialized. 
In CUDA model, the GPU is regarded as a coprocessor capable of 
executing a great number of threads in parallel. A single source 
program includes host codes running on CPU and also kernel codes 
running on GPU. Compute-intensive and data-parallel kernel codes 
run on GPU in the manner of Single-Process Multiple-Data (SPMD). 
The threads are organized into blocks, and each block of threads are 
executed concurrently on one SM. Threads in a thread block can 
share data through the shared memory and can perform barrier 
synchronization. Each SM can run at most eight thread blocks 
concurrently, due to the hard limit of eight processing cores per SM. 
As a thread block terminate, new blocks will be launched on the 
vacated SM. Another important concept in CUDA is warp, which is 
formed by 32 parallel threads and is the scheduling unit of each SM. 
When a warp stalls, the SM can schedule another warp to execute. A 
warp executes one instruction at a time, so full efficiency can only be 
achieved when all 32 threads in the warp have the same execution 
path. Hence, if the number of threads in a block is not a multiple of 
warp size, the remaining instruction cycles will be wasted. 
Of particular importance is the CUDA model of GPU threads to 
access the memory model. Under normal circumstances this place 
will become a bottleneck GPU acceleration. Each thread reads a 32 
bit data, put the rules into alignment here. When all the threads in a 
half-warp (16 threads) read the collocation memory the access will be 
make one step. 

3. Multiple-Precision Modular Arithmetic for 
CUDA 

In this section, we present a set of library functions of multiple-
precision modular arithmetic implemented on GPUs. These library 
functions are the cornerstones of the network coding system and 
homomorphic hash functions. It is of critical importance to 
implement these library functions efficiently. In modular arithmetic, 

all operations are performed in a group mΖ , i.e., the set of integers 
}1,,2,1,0{ −m . In the following, the modulus m is represented in 

radix b as bnn mmmm )( 011−  where 0≠nm . Each symbol 
nimi ≤≤0 , , is referred to as a radix  b digit. Non-negative integers x 

and y, mymx <<  , , are represented in radix b as bnn xxxx )( 011−  

and bnn yyyy )( 011−  respectively. 
We have implemented the following multiple-precision library 
functions for CUDA: 



Multiple-precision comparison 
Multiple-precision subtraction 
Multiple-precision modular addition 
Multiple-precision modular subtraction 
Multiple-precision multiplication 
Multiple-precision division 
Multiple-precision multiplicative inversion 
Due to the space limitation, we do not present the implementation 
details in this paper. 

3.1 Modular Addition and Subtraction 
Algorithm 1 Multiple-precision Comparison 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits. 
OUTPUT: 1, if yx > ; 0, if yx = ; -1, if yx < . 

1:   ni ← ; 
2:   while ( ii yx ==  and 0>i ) 
3:       ;1−← ii  
4:   end while 
5:   if ( ii yx > ) then return 1; 
6:   else if ( ii yx == ) then return 0; 
7:   else return -1; 
 

Algorithm 2 Multiple-precision Subtraction 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits, yx ≥ . 

OUTPUT: bnn zzzzyx )( 011−=− . 

1:   0←c ;  /* carry digit */ 
2:   for ( i from 0 to n ) do 
3:       )( cyxz iii +−←  mod b; 
4:       if ( 0≥+− cyx ii ) then 0←c ; 
5:       else 1−←c ; 
6:   end for 
5:   return bnn zzzz )( 011− ; 
 

Algorithm 3 Multiple-precision Modular Addition 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits, mymx <<  , . 

OUTPUT: )( yx + mod m = bnn zzzz )( 011− . 

1:   0←c ;  /* carry digit */ 
2:   for ( i from 0 to n ) do 
3:       )( cyxz iii ++←  mod b; 
4:       if ( bcyx ii <++ ) then 0←c ; 
5:       else 1←c ; 
6:   end for 
7:   czn ←+1 ;  01 ←+nm ; 
8:   if ( bnnn zzzzz )( 0111 −+ >= bnnn mmmmm )( 0111 −+ ) then 
9:       ←−+ bnnn ttttt )( 0111   −−+ bnnn zzzzz )( 0111   
                                             bnnn mmmmm )( 0111 −+ ; 

10:      return bnn tttt )( 011− ; 
11: else return bnn zzzz )( 011− ; 
 

Algorithm 4 Multiple-precision Modular Subtraction 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits, mymx <<  , . 

OUTPUT: )( yx − mod m = bnn zzzz )( 011− . 

1:   if ( yx >= ) then return yx − ; 
2:   else 
3:        );( ymt −←  
4:        return )( tx + mod m; 
5:   end else 

Complexity Analysis: Obviously all the above algorithms have 
computational complexity of )(nΟ . 

3.2 Modular Multiplication 
One straightforward method to implement modular multiplication of 

yx ⋅  mod m is to calculate yx ⋅  first and then calculate the 
remainder of yx ⋅  divided by m. Hence we first give two algorithms 
to calculate multiple-precision multiplication and division 
respectively. 

Algorithm 5 Multiple-precision Multiplication 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits and 1+s  radix b digits respectively. 

OUTPUT: yx ⋅  = bsnsn zzzz )( 011 +++ . 

1:   for ( i from 0 to 1++ sn ) do  
2:        0←iz ; 
3:   end for 
4:   for ( i from 0 to s ) do 
5:       0←c ;  /* carry digit */ 
6:       for ( j from 0 to n ) do 
7:           cyxzuv ijjib +⋅+← +)( ; 

8:            vz ji ←+ ; uc ← ; 
9:       end for 
10:     uz in ←++ 1 ; 
11: end for 
12: return bsnsn zzzz )( 011 +++ ; 
 

Algorithm 6 Multiple-precision Division 

INPUT: non-negative integers x and y, each with 1+n  radix b 
digits and 1+s  radix b digits respectively, 1≥≥ sn , 0≠sy . 

OUTPUT: the quotient bsn qqqq )( 01−=  and remainder 

bs rrrr )( 01=  such that ryqx +⋅= , yr <≤0 . 

1:    for ( i from 0 to sn − ) do  
2:        0←iq ; 
3:    end for 
4:    while ( snbyx −⋅≥ ) do 
5:        1+← −− snsn qq ;  

6:        snbyxx −⋅−← ; 



7:    end while 
8:    for ( i from n down to 1+t ) do 
9:        if ( si yx == ) then 11 −←−− bq si ; 
10:      else  siisi yxbxq /)( 11 −−− +⋅← ; 

11:      while ))(( 21
2

11 −−−−− +⋅+⋅>+⋅⋅ iiisssi xbxbxybyq  do 
12:          111 −← −−−− sisi qq ; 
13:      end while 
14:      1

1
−−

−− ⋅⋅−← si
si byqxx ;  

15:      if ( 0<x ) then 
16:          1−−⋅+← sibyxx ; 
17:          111 −← −−−− sisi qq ; 
18:      end if 
19:  end for 
20:  xr ← ; 
21:  return ),( rq ; 
 
The classical modular multiplication is suitable for normal operations. 
However, when performing modular exponentiations, Montgomery 
multiplication shows much better performance advantage [7]. The 
following gives the Montgomery reduction and Montgomery 
multiplication algorithms. 
Let m be a positive integer, and let R and A be integers such that 

mR > , gcd(m, R) = 1, and RmA ⋅<≤0 . The Montgomery 
reduction of A modulo m with respect to R is defined as 1−⋅RA  mod 
m. In our applications, R is chosen as nb  to simply the calculation. 

Algorithm 7 Multiple-precision Montgomery Reduction 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  
nbR = , 1' −−= mm  mod b, and integer A with 2n radix b digits 

and RmA ⋅<  . 

OUTPUT: T = 1−⋅RA  mod m. 

1:    AT ← ; 
2:    for ( i from 0 to 1−n ) 
3:        'mTu ii ⋅←  mod b; 

4:        i
i bmuTT ⋅⋅+← ; 

5:    end for 
6:    nbTT /← ; 
7:    if ( mT ≥ ) then mTT −← ; 
8:    return T; 
 

Algorithm 8 Multiple-precision Montgomery Multiplication 

INPUT: non-negative integer m, x, y with n radix b digits, 
mymx <<  , , and gcd(m, b) = 1,  nbR = , 1' −−= mm  mod b. 

OUTPUT: T = 1−⋅⋅ Ryx  mod m. 

1:    0←T ; 
2:    for ( i from 0 to 1−n ) 
3:        ')( 00 myxTu ii ⋅⋅+←  mod b; 
4:        bmuyxTT ii /)( ⋅+⋅+← ; 
5:    end for 
6:    if ( mT ≥ ) then mTT −← ; 
7:    return T; 

3.3 Barrett Modular Reduction Algorithm 

Barrett Reduction is a method of reducing a number modulo another 
number. Barrett reduction by precomputing some values, one can 
easily far exceed the speed of normal modular reductions.  
Barrett reduction's benefits are most visible when it is used to reduce 
various numbers modulo a single number many times. Barrett 
reduction is not particularly useful when used with small numbers (32 
or 64 bits); it's benefits occur when using numbers that are 
implemented by multiple precision arithmetic libraries, such as when 
implementing the network coding in GF(232).  
Next I will give the implementation of the Barrett reduction 
algorithm. But first, keep in mind that Barrett Reduction can only 
reduce numbers that are, at most, twice as long (in words) as the 
modulus. We define the modulus, called m, which is k words long 
(numbered k-1...0, with 0 being the least significant word). First we 
need pre-calculate the value: u = �b2k m⁄ � where b is the "base" of 
the integers used. For example, if you represented the numbers as a 
sequence of 32-bit values, b is 232 , or 0x100000000. You will keep 
this value u across function calls so you can reuse it.  
Now, given a number x, which is an arbitrary integer of size (at most) 
2k words (2k-1...0), this procedure (in pseudocode) will return the 
value of x mod m:  

Algorithm 9 Barrett Modular Reduction Algorithm 

INPUT: positive integers 𝑥𝑥 = (𝑥𝑥2𝑘𝑘−1 … 𝑥𝑥1𝑥𝑥0)𝑏𝑏 , 𝑚𝑚 =
(𝑚𝑚𝑘𝑘−1 …𝑚𝑚1𝑚𝑚0)𝑏𝑏  (with 𝑚𝑚𝑘𝑘−1 ≠ 0), and 𝑢𝑢 = �𝑏𝑏2𝑘𝑘 𝑚𝑚⁄ �. 
 
OUTPUT: 𝑟𝑟 = 𝑥𝑥 mod 𝑚𝑚 
1: q1 = �𝑥𝑥 𝑏𝑏𝑘𝑘−1⁄ �, 𝑞𝑞2 = 𝑞𝑞1 ∙ 𝑢𝑢, q3 = �𝑞𝑞2 𝑏𝑏𝑘𝑘+1⁄ �; 
2: 𝑟𝑟1 = 𝑥𝑥 mod 𝑏𝑏𝑘𝑘+1, 𝑟𝑟2 = 𝑞𝑞3 ∙ 𝑚𝑚 mod 𝑏𝑏𝑘𝑘+1, 𝑟𝑟 =  𝑟𝑟1 − 𝑟𝑟2; 
3: if (r < 0) then  𝑟𝑟 =  𝑟𝑟1 + 𝑏𝑏𝑘𝑘+1; 
4: while (𝑟𝑟 ≥ 𝑚𝑚) do 𝑟𝑟 =  𝑟𝑟𝑟𝑟 − 𝑚𝑚; 
5: return r; 

 
Note that the divisions and modular reductions in this procedure can 
be replaced by right shifts and AND operations because the b is 232 . 
This results in the remaining operations being addition and 
multiplication, both of which are much cheaper than division for 
multiple precision integers. 

3.4 Multiplicative Inversion 
Traditionally multiplicative inversion is obtained through extended 
Euclidean algorithm. In order to avoid the expensive multiple-
precision division operations, we implement multiple-precision 
multiplicative inversion using an extended binary GCD algorithm. 

Algorithm 10 Multiple-precision Multiplicative Inversion 

INPUT: odd prime number m with n radix b digits, positive 
integer a with n radix b digits, ma <  . 

OUTPUT: integer mb Ζ∈  such that 1≡⋅ba  (mod m) . 

1:    mu ← ; av ← ; 0←B ; 1←D ; 
2:    while u is even 
3:        2/uu ← ; 
4:        if B is even then 2/BB ← ; 
5:        else 2/)( mBB −← ; 
6:    end while 
7:    while v is even 
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8:        2/vv ← ; 
9:        if D is even then 2/DD ← ; 
10:      else 2/)( mDD −← ; 
11:  end while 
12:  if ( vu ≥ ) then  vuu −← ; DBB −← ; 
13:  else uvv −← ; BDD −← ; 
14:  if 0==u then return D; 
15:  else go to Step 2. 

3.5 Modular Exponentiation 
Algorithm 11 Multiple-precision Montgomery Exponentiation 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  
nbR = , positive integer x with n radix b digits and mx < , and 

positive integer e = 20 )( eet  . 

OUTPUT: ex  mod m. 

1:    2( , )x Mont x R  mod m← ;  
2:    RA←  mod m; 
3:    for ( i from n down to 0) 
4:        ( , )A Mont A  A← ; 
5:        if 1==ie  then ( , )A Mont A  x←  ; 
6:    end for 
7:    ( , 1)A Mont A  ← ; 
8:    return A; 
 

3.6 Exponentiation with Multi-Exponentiation 
There exist multi-exponentiation algorithms which perform much 
better than calculating the exponents individually. The following 
algorithm is a variation of Straus’s algorithm [5], by integrating the 

Montgomery method. To evaluate 
1

0 i

i
k e

i
g

−

=∏  where the maximum 

bit-length of all the exponents is n, we first form a k n×  bit matrix 

whose rows are the binary representations of 
i

e , 0 1i k≤ ≤ − . Let 

j
C  be the non-negative integer whose binary representation is the jth 

column, 1 j n≤ ≤ , of the bit matrix, where the least significant bit is 
at the top of the column. 

Algorithm 12 Montgomery Multi-Exponentiation 

INPUT: integers 
0 1 1
, , ...,

k
g g g

−
, 

0 1 1
, , ...,

k
e e e

−
, R , and m. 

OUTPUT: 
1

0 i

i
k e

i
g

−

=∏  mod m. 

1:    for ( i from 0 to 2 1k −  ) 

2:        
1

0
( )j

j

k i

i j
G g R

−

=
← ∏  mod m, where 

1 0 2
( )

k
i i i

−
=   

3:    end for 
4:    A R←  mod m; 
5:    for ( j from 1 to n) 
6:        ( , )A Mont A A← ; 

7:        if 0
j

C ≠  then ( , )
iCA Mont A G←  ; 

8:    end for 
9:    ( , 1)A Mont A  ← ; 
10:   return A; 

The above algorithm requires at most 2 2( 2)k n+ − multiplication 

operations, with a memory space of 2 1k − . The optimal value of k 
depends on the value of n, and it is usually small for contemporary 
cryptography applications.  
Given the structure of homomorphic hash function, we can divide the 

product 
1

( ) i

m
e

i
i

h e g
=

=∏  into groups of multi-exponentiations: 

( 1 )

( 1)1
1

/

( ) ( )i k j
k e

i k jj
i

m k

h e g − +

− +=
=

  

= ∏ ∏ , and assign each multi-exponentiation 

to an individual processing core.  

3.7 Exponetiation with Precomputation 
When applying homomorphic hash function in network coding 
enabled P2P applications, the same homomorphic hash function, i.e., 
with the same set of parameters, will be used for a large data set such 
as a whole file or a video streaming session. Under this special 
circumstance, it is possible to speed up the modular exponentiations 

by precomputation [8]. To calculate eg , we first represent the 

exponent e using radix 2kb = : 
1

0

n i

ii
e a b

−

=
= ∑ , where 0 ia b≤ <  

and 1 0na
−
≠ . It is easy to see that 2( log 1) /n e k= +       . The 

fast modular exponentiation algorithm requires the precomputation of 
2ki

g mod m for 1 1i n≤ ≤ − . Then we can use the following 

algorithm to calculate eg  mod m. 

Algorithm 13 Exponentiation with Precomputation 

INPUT: integers m, g, 
1

0

m i

ii
e a b

−

=
= ∑ ,  R , and 2kiRg mod m for 

1 1i n≤ ≤ −  

OUTPUT: eg  mod m. 

1:    ,A R  B R← ← ; 
2:    for ( j from 1b −  down to 1) 
3:        for i from 0 to 1m −  

4:            if ia j==  then 2( , )kiB Mont B Rg←  mod m; 
5:        end for 
6:       ( , )A Mont A B← ; 
7:    end for 
8:    ( ,1)A Mont A← ; 
9:    return A; 
As shown by [8], the above algorithm takes 3m b+ −  
multiplications. For e with 257-bit, the optimal value of b is 16, 
which takes only 78 multiplications in the worst case, as compared 
with 512 multiplications required by the binary method. 

4. Implementation Multiple-precision Integer 
library on GPUS 
 
This chapter, we will discuss the use of memory with alignment 
approach to the implementation of Multiple-precision integer 
numbers. In the GPU, in order to achieve maximum access to 
bandwidth, we need a CUDA half-warp access the data inside the 
data, when, in accordance with coalescing way to access memory.  



Next part we will discuss the way, how the half-warp access the 
memory by coalescing . 

4.1 Data Structure of Multiple-precision Integer 

There are two ways to organize the data, one way is the CPU data 
structure, one is suitable for GPU data structures. We define large 
numbers over more than 64bit or 32bit, so we need to re-definition of 
the structure of the big integer. It based on  232 , each element of big 
integer is 32bit, according to 232  as a binary, a total number of bits 
into the data structure of the last one. In our implementation, each of 
a large numbers are all composed of two parts, first part is the actual 
data of large numbers, the second part of the numbers of bits, these 
two can be separated is placed, it is not released to the same array. 
The first way is to put the data in accordance with the habit of CPU, 
in order, put each number into a 32bit memory inside. Another way 
to put the data in accordance with GPU appropriate manner, and put 
32 large numbers in each row, each a large numbers of data are 
arranged according to the column.  
Our actual calculations will be used simultaneously to both structures, 
a number of constants, or only once the data, we can put inside GPU 
computing, or stored in a number of high-performance memory 
inside, place the data in accordance with the first approach. Be 
counted some of the data, we will follow for GPU-series data to store 
data 

4.2 Using Constant Value with Cache Memory 

In the calculation process, we usually use to duplicate data, or to be 
multiple uses of data. The data we need to try to put to efficient 
memory cache inside. In Nvidia's GPU we can use texture and 
constant memory storage of constants. Texture and the constant has 
two caches, multiple use of the data will be loaded into the cache 
inside, so that you can efficiently use the constant data. For example, 
exponentiation of the base, or are seeking modules modulus. 

4.3 Using Shared Memory for Temp Value 

We can see that some of the above formula to the process need 
to use temporary variables. Because the performance of local 
memory and global memory as well, so this part of the 
variable we will use shared memory to be stored. All of the 
intermediate process is the need to reiterate the use of 
variables. And then passed to a function as a temporary 
variable to use it. 

4.4 Balance the Computing Resource 

Balance the number of threads for each block, making a 
maximum of active threads. CUDA programming model 
Stream Multiprocessor each one simultaneously active 8 
blocks, but the need to registers for each block and the shared 
memory used in the calculation. The need to co-inside with the 
4.3, sometimes without direct use of shared memory as global 
memory can achieve higher performance 

4.5 Example Implementation in GPUs 

This part, we design a example for benchmarking this library. There 
is a vector array A multiplication with big integer matrix B, and then 
mod 1024bit big integer. Large numbers in the original matrix 
arranged in memory when the inside is based on a lump sum for each 
line to represent. A lump sum for each of a lump sum and the next 
will be the location of 256bit interval, so that the GPU inside the 
access and causing access can't be merged. This will allow each half-
warp access memory produce 16 times the time to visit. Each visit is 
approximately 500 cycle, if it is can be merged into one visit, then 
these 16 threads will be merged into one visit, which will reduce the 
access time period, increasing access to bandwidth.  
So in this case, we have designed to store large numbers under the 
column of the memory layout. Can see the figure below, we show 
that the yellow unit One-big-integer-256bits, says that a large 
numbers. So, 16 threads to access the matrix B when the alignment 
means in accordance with the order would be to visit each of the first 
data row, so that you can make 16 threads to access the data 
alignment. 

 

Figure 1. Vector A multiplication with Big integer matrix B 

 Because the vector A will be used multiple times, so we will 
put into the vector A into constant memory, because there will 
be two constant caches, you can speed up the data read 

5. Implementation and experimental Result 

We have implemented this function using CUDA. We 
tested these implementations on XFX GTX280 graphic card 
which contains an NVIDIA GeForce GTX280 GPU. The 
GTX280 GPU uses the GT200 architecture with 240 
processing cores working at 1.24 GHz. 

5.1 Result of the Example 

Figure 2 shows the results of our CUDA version of 
network coding encoding with GT200 GPU. Since most of the 



computing task is the modular, the throughput is almost 
independent of the value of m. The encoding speed about 400 
MBPs. 

 

Figure 2． Network Coding Encoding Speed with CUDA 

6. Conclusions 

Multiple-precision modular is an important component in 
public-key cryptography for encrypting and signing digital 
data. In this paper, we describe the design, implementation 
and optimization of multiple-precision modular using GPU 
and CUDA. Especially in the case of dealing with large 
amounts of data, how to optimize the access speed of GPU, we 
have changed the traditional way of their large numbers of 
memory, which is more suitable for GPU access the memory 
data. 
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