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Abstract

Traditional video object segmentation methods operate
on the pixel domain, which require every frame in the
video sequence to be decoded into raw data. This incurs
additional processing and storage overhead which is un-
favourable in real-time application. Recently, video ob-
ject segmentation in the Compressed Domain, i.e. video
compressed using Motion Compensation, Discrete Cosine
Transform(DCT) and Quantization, have gained attention
because it only requires the compressed video to be parsed
to obtain the motion vectors and DCT coefficients for seg-
mentation. This paper outlines the features present in the
Compressed Domain that can be used in video object seg-
mentation, segmentation methods published by recent re-
searchers, and possible research areas in the future.

1 Introduction

Traditional video object segmentation is performed in
the pixel domain, in which pixel data are obtain from full
decoding of the video bitstream. The motion flow is ex-
tracted by comparing consecutive frames and the basic data
used is intensity value from each pixel. Although the tra-
ditional approaches have reached certain maturity and give
reasonable segmentation results, the processing and storage
overhead in decoding every frame from a video sequence
prevents these methods from application in real-time appli-
cations. Recently, Compressed Domain segmentation have
gained attention not only because it does not require full de-
coding of the compressed video, but the motion information
that are already present in the Compressed Domain could
help video object segmentation.

The term Compressed Domain in literature refers to
video compression methods in which motion compensation
and Discrete Cosine Transform (DCT) are used to reduce
the number of bits required to represent a video, exam-
ples include MPEG-1/-2/-4, H.261 and H.263. All of these
compression standards achieve compression by exploiting
two observations. Firstly, it is unusual for intensity val-
ues to change frequently over a small area(spatial redun-
dancy). Secondly, consecutive frames along time-ordered

sequence of frames are similar(temporal redundancy). The
Compressed Domain address the first observation with DCT
and Quantization and the second with Motion Compensa-
tion, both of which are described in the following two sec-
tions.

1.1 Intraframe Compression

Suppose we have a picture frame. Based on the first ob-
servation, the frame is divided into 8×8 macroblocks. Then
DCT is performed on each macroblock. Discrete Cosine
Transform turns the intensity values in a macroblock into
representation of sums of cosine functions oscillating at dif-
ferent frequencies. The transform used in video compres-
sion is a two-dimensional one, which transforms the array
of spatial intensity values to an array of DCT coefficients,
each coefficient denoting the value of vertical and horizon-
tal frequencies, i.e. frequencies of intensity change, in the
macroblock. The DCT coefficients are arranged in the array
in a way that the DC coefficient(constant) lies at the top-
left element of the array and elements further to the right
and down contains AC coefficients of cosine functions with
higher horizontal and vertical frequencies respectively.

Quantization is employed on each DCT-ed macroblock
in order to remove the high spatial frequency compo-
nents. Each coefficient in the macroblock is quantized by
a rounded division with a quantization value. To achieve
bias against high-frequency components, a quantization ta-
ble with higher quantization values towards the lower right
corner is used. The resulting macroblock usually has the
high-frequency components discarded. Finally, the DCT
coefficients are subjected to Entropy Coding.

1.2 Motion Compensation

According to the second observation, temporal redun-
dancy exists between consecutive frames in a video se-
quence. Even more bits can be saved using Motion Com-
pensation rather than encoding frames as a whole image (as
in Intraframe Compression). Again, the current frame is
divided into macroblocks. Each macroblock is compared
against the reference frame (a reconstructed frame previous
to the current frame) within a small neighbourhood search
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window for the best match, i.e. the position with the least
difference between current and reference macroblock. The
result is a predicted motion vector and a predicted mac-
roblock from the reference frame. Since the best match may
not be identical to the current macroblock, the difference
between the current macroblock and the predicted mac-
roblock gives a difference macroblock to denote the predic-
tion error. The difference macroblock undergoes DCT and
Quantization. Finally the motion vector and the difference
macroblock undergo Entropy Coding.

Note that to avoid propagation of error, the I-frame is
sent after a number of P-frames. The forms Group of Pic-
tures(GOP) structures of IPPP... frames. Also, MPEG stan-
dards employ Bidirectional Motion Compensation in ad-
dition to forward prediction. Another type of frame, the
B-frame, is introduced in addition to the P-frame so that
the GOP structure becomes IBB...PBB...PB... A B-frame
is constructed by predicting from its previous I/P-frame
and its next I-/P-frame such that two sets of motion vec-
tor and predicted macroblock are found. Both the predicted
macroblock and motion vectors are averaged and compared
against the current frame to generate the difference mac-
roblock.

1.3 Features for Motion Segmentation

Since image change detection could be seen as a clas-
sification problem [7], this section lists the features avail-
able in the Compressed Domain. While full decoding is
not required in the Compressed Domain, the motion vec-
tor(in interframes) and DCT coefficients(of image data in
intraframes and difference image in interframes) are re-
quired for video object tracking. Parsing, in which the in-
put binary bitstream is first entropy decoded then inverse
quantized, extracts these necessary information [6]. There-
fore, the information available in the Compressed Domain
is the DCT coefficients of the picture macroblocks in the
intraframes and difference macroblocks in the interframes,
and motion vectors associated with the predictive mac-
roblocks. Of particular importance is the motion vectors
and top row and and left column DCT coefficients in the I-
frames that denotes vertical and horizontal spatial frequency
respectively [5, 3].

Note that the motion vectors mentioned above are gen-
erated for the best match in the reference frame rather than
generated to denote video object motion. Including motion
vectors that are uncorrelated to true motion degrades seg-
mentation accuracy, which is discussed in the next section.
Several assumptions should hold for the following discus-
sion. Firstly, smooth and relatively small motion should ex-
ist in the input video otherwise most of the macroblocks
would be intracoded instead of intercoded and we would
have few motion vectors to work with. Secondly, the motion

Figure 1. Parsing from MEPG bitstream[6]

in the input video should span over more than one Group of
Pictures.

2 Related Work

2.1 Video object segmentation using motion vec-
tors

Since motion information in a video sequence is critical
in video object segmentation, sparse motion vectors present
in predictive macroblocks are used by many researchers
for video object segmentation. Their methods involve con-
structing dense motion field by accumulating sparse motion
vectors or obtaining average motion vectors over a series of
P- or B-frames. As the motion vectors in encoded video
sequences do not reflect object motion, outliers do occur.
Many segmentation algorithms([1], [5], [3]) remedies this
by median filtering or other methods.

Liu et al. [5] uses motion vectors to locate coarse video
object regions then DCT coefficients as spatial feature to
identify similar macroblocks. Firstly, the motion vectorsare
accumulated and median-filtered to obtain a motion field.
Secondly, based on the motion field, the macroblocks in
the object edge area of non-zero motion vectors are rec-
tified by similarities of of DCT blocks. Rectification re-
moves pseudo moving blocks(blocks out of a video object
but within non-zero motion field) from the segmentation
area and include pseudo still blocks(blocks within a video
object but out of non-zero motion field) in the segmented
video area and uses the belief that pseudo moving blocks
and pseudo still blocks appear mainly in edge areas to aid
rectification. It selects the moving blocks that appears in
the edge area as the center moving block and finds similar
blocks in the four-neighbourhood, if they do not exist then
the center moving block is deemed pseudo moving block
and be discarded from segmentation area. Otherwise, for
each still block from the four-neighbourboodof blocks, cal-
culate the distance between the features(the mean, horizon-
tal edge, vertical edge and diagonal edge) of the center mov-
ing block and the chosen moving block and the distance be-
tween the center moving block and the neighbouring mov-
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ing blocks; if the still block is closer to the center moving
block than the neighbouring moving blocks, it is deemed
as a pseudo still block and be included in the segmentation
area.

Figure 2. Four cases of edge area (a)Four
still blocks around a moving block (b)Three
still blocks around a moving block (c)Two
still blocks around a moving block (d)One still
block beside a moving block[5]

The experimental results of [5] show that the segmenta-
tion masks, while envelop the desired video objects, tend to
be a few macroblocks wider than ground truth. The reason
behind this is the inclusion of similar macroblocks(in terms
of DCT coefficients) as pseudo still blocks.

Hariharakrishnan and Schonfeld [4] used only motion
vectors as their segmentation feature. In [4], an adaptive
block matching algorithm is used. From the initial object
mask, macroblocks that lie entirely in the object are chosen
as seed motion blocks when the other macroblocks in the
object mask are labeled uncertain blocks. Then, from every
three frames before the current frame, backward motion es-
timation is performed so that the average motion between
consecutive frames is obtained. In case the average motion
is higher than a threshold, motion is estimated from the pre-
vious frame instead. Then the object mask for the current
frame is derived by motion compensated from the motion
obtained in the previous step, and detect for occlusion and
disocclusion. For disocclusion detection, the regions that
will be uncovered in the current frame is estimated from
previous frames using motion compensation. The uncov-
ered regions are tested against the object for motion consis-
tency, by first clustering motion vectors in the region using
k-means clustering then comparing it with the motion vec-
tor of the object. If the difference between the two motion
vectors is smaller than a threshold the uncovered region is
treated as disocclusion and included in the object. [4] views
occlusion and disocclusion as dual events, therefore occlu-
sion detection is similar to disocclusion, except covered re-
gions are obtained from the next frame and are tested for
motion dissimilarity.

Yokoyama et al. [10] uses Vector-featured Images ob-
tained in the MPEG sequence to discover and track moving

video objects. In each image, macroblocks are classified
into five types: the Current Block, the Reference Block, the
Background Block, the Moving Block and the Unmoving
Block. The Reference Block is a macroblock in the I-frame
associated to an initial point of a motion vector; the Cur-
rent Block is a macroblock associated to the end of a mo-
tion vector; the Moving Block is created at the overlap of
Current Block and Reference Block and indicates a mov-
ing region; the Unmoving Block serves to keep track of re-
gions that momentarily stop. An Unmoving Block is cre-
ated when a Current Block generates zero motion, and de-
crease its brightness on successive frames, until its maxi-
mum life expires. When the object resumes motion, if the
Moving Blocks overlaps with the Unmoving Blocks, the
Unmoving Blocks are updated to Moving Blocks. Under
this scheme, motion is detected if from the Moving Blocks
if the Moving Region is large enough, otherwise the union
of Moving and Unmoving Blocks is used instead. The mov-
ing object candidate is compared with previously registered
objects to achieve object tracking.

Figure 3. Extracted flower bed object from [1]
(above) and segmentation result from [2] (be-
low). A portion of the sky is included in their
segmentation masks.

It is observed from the experimental results of [1] and
[2] that the segmentation masks tend to cover areas other
than the video objects. This is more prominent in areas with
similar texture. It is because the encoder looks for the best
match in the block matching process rather than true object
motion. In addition, the motion field in P-frames, due to
larger temporal distance to reference frames, are less reli-
able [8]. Therefore, contaminated with erroneous motion
vectors, the aggregated motion field would not give a cor-
rect boundary. The system in [4] avoids this slightly since
it has an initial segmentation mask to work with(it uses a
four-band multi-valued segmentation followed by a lattice
partition operator) and it switches to calculating the motion
from the next frame when the average motion over the next
three frames is higher than a threshold, and [10] imposes a
minimum bounding rectangle to prevent inclusion of uncor-
related motion. Still, there should be some form of confi-
dence measure that ensure a motion vector is approximated
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to real object motion, which is addressed in the following
subsections.

2.2 Porikli et al.’s investigation in the Compressed
Domain

The previous assertion that motion vectors alone do not
suffice in accurate video object segmentation finds ground
in an article by Porikili et al[6]. They proposed a video
object segmentation system that experimented with almost
all of the information present in the Compressed. The sys-
tem uses the DCT coefficients in the I-frame motion vectors
of P-frames in a Group of Pictures to construct Frequency-
Temporal(FT) data structures for each macroblock in the
GOP. The FT data consists of the following:

• The DC parameters(for Y, U, V channels) of the I-
frame

• A subset of low vertical and horizontal frequency AC
values

• A spatial energy term(total magnitude of AC coeffi-
cients) measuring spatial variance

• Aggregated motion flow of the corresponding mac-
roblock

The aggregated motion flow of the macroblock is the mean
of aggregated pixel motion vectors, which is obtained by
interpolation of the filtered motion vector in a macroblock
for all P-frames in a GOP then back-propagate from the
last frame to the first. Porikli et. al [6] includes two seg-
mentation approaches in their article. One uses FT volume
growing, in which macroblock with the lowest local vari-
ance(derived from the energy in the local spatial and tempo-
ral neighbourhood) is chosen as the seed block and the vol-
ume is grown in both 2D spatial and temporal dimensions.
The other employs Multi-Kernel Mean-Shift Segmentation,
one in spacial-temporal dimension, one in aggregated mo-
tion vector space, one in DCT coefficient space. The pro-
cess shifts these kernels at the same time computes their
gradient, until their sink points are found. It goes on linking
sink points closer than than a preset value from each other in
the joint domain, to form clusters of sink points. The points
in the clusters constitutes a segmentation volume. Both ap-
proaches would have volumes of negligible size removed
and remaining volumes inflated. Finally, hierarchical clus-
tering is performed and a partition tree is built by iteratively
merging pairs of most similar volumes.

Porikli et. al’s experimental results show that both seg-
mentation approaches produce similar results. Also, a slight
over segmentation using DCT coefficients followed by ag-
gregated motion based clustering produces more accurate

Figure 4. Porikli et al.’s segmentation results
at the corresponding clustering levels. Note
the volume growing process could not blend
the lower part of the arm into other regions
since its DCT coefficients were also signifi-
cantly different.[6]

boundaries than single stage joint segmentation. They at-
tribute this to the fact that motion boundaries tend to be
deformed and erroneous. Also, using all of the DCT co-
efficients do not necessarily provide a stable segmentation
in that the mean-shift algorithm becomes sensitive when
AC components and spatial energy term are included. Note
that the best combination stated above renders the system to
segment video objects with similar average intensity value
and texture, which in turn sensitive to intensity differences;
in addition, the proposed algorithm favours moderate mo-
tion since spatial-temporal volumes would be disjoint in the
presence of large motion.

2.3 Approximation of Optical Flow and confi-
dence measure

Coimbra [3] tries to approximate optical flow from mo-
tion vectors and DCT coefficients in MPEG-2 Compressed
Domain, in comparison to the Lucas-Kanade algorithm. It
reasoned that the optical flow and eigenvalues for confi-
dence measure is parallel to motion vectors and AC coeffi-
cients found in Compressed Domain respectively. The pro-
posed method obtains a smooth dense motion field from a
Group of Pictures, in which motion vector magnitude is nor-
malized and motion vector from the previous macroblock is
interpolated to macroblocks that have no motion informa-
tion. The motion obtained from this method is smoothed by
median filtering to remove isolated motion vectors. Then
the first vertical AC coefficient and the first horizontal AC
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coefficient (AC[1] and AC[8] in a macroblock) in the I-
frame macroblocks is used as a confidence map. The confi-
dence update step will have a 8×8 macroblock referencing
a 16×16 image block in the I-frame, and the confidence of
the motion vector of the macroblock is the weighted aver-
age of confidence in the 16×16 window. The optical flow
estimation technique in [3] is employed in [9] to estimate
motion for each macroblock in a video sequence to achieve
action recognition and localization.

Figure 5. Comparison of the LK and MPEG-2
system[3]

The experimental results in [3] clearly demonstrates the
effects of employing confidence measure on the obtained
motion field. The motion vectors after harmonization step
and median filtering have motion information uncorrelated
to object displacement caused by illumination noise and
aperture problem. After the confidence update step mo-
tion vectors with high confidence measure(usually those at
boundary areas) are kept.

2.4 Pixel precision edge refinement in raw domain

While they are not working entirely in the Compressed
Domain, the systems proposed by Babu et al. [1] and Chen
and Bajic [2] can further refine their coarse segmentation
results to achieve segmentation with pixel precision. Both
algorithms first identify the edge macroblocks within the
segmented area, then perform edge refinery to obtain the
precise object boundaries. Both algorithm requires the edge
macroblocks to be fully decoded in the edge refinement
step. The algorithms still perform faster than raw domain
segmentation algorithms, despite the fact that full decoding
is performed the blocks.

The algorithm in [1] performs coarse segmentation by
first obtaining a dense motion field by accumulating motion
vectors over a few frames forward and backward then ap-
plying a 2D median filter and a Gaussian filter. Only reliable
motion vectors i.e. vectors that correspond to macroblocks
that have total DCT error energy less than a threshold is

used in the process. If the macroblock is unreliable or in-
tracoded, motion corresponding to the block is interpolated
from the neighbouring blocks. Next it uses the Expectation
Maximization(EM) Algorithm to compute the likelihood of
each pixel to a number affine motion models, which is de-
termined using k-means clustering. The result of the EM
Algorithm is the coarse segmentation result. Edge refine-
ment in [1] involves decoding the edge blocks and their
eight neighbourhood, computing representative motion vec-
tors for the block, defining a search range based on the mo-
tion vector, and matching a small pixel block against the
previous frame within the search region.

Unlike [1], [2] obtains dense motion field using Mo-
tion Vector Integration, in which coherent motion inte-
gration(backward summing up of normalized MVs over
frames) and incoherent motion integration(adding of MV
magnitude over successive coherent integrations) are com-
bined. Coarse segmentation is achieved using k-means clus-
tering and blocks are identified as a boundary block if the
block’s eight neighbourhoodare from more than one region.
[2]’s edge refinement involves Pixel-based MV Integration,
in which the pixels in a macroblock acquire the MV of their
corresponding macroblock in the previous frame, to inter-
polate MV into boundary regions in order to increase their
MV density, Canny Edge detector and morphological oper-
ations to obtain object boundary in pixel accuracy.

3 Observations

Several observations can be obtained from the above seg-
mentation methods. To use motion vectors as a suitable in-
diction of object motion, a dense motion field should be
constructed from the sparse motion vectors present in inter-
coded macroblocks. [1], [2], [5], [6] and [3] either use mo-
tion accumulation or use motion aggregation to deduce the
resulting motion field over frames. In addition, [1], [5], [6]
and [3] clearly state that Motion Compensation in the en-
coding process only gives motion vectors of the best match
macroblock but not the actual motion in the video sequence.
This is particularly prominent when compensating large ob-
jects with similar interior texture. Also, the Motion Com-
pensation step is suspectable to aperture problem as the pro-
cess concerns only with displacement of texture in the mac-
roblock. While median filtering removes outlying motion
vectors, the filtering is also blind. The confidence measure
introduced in [3] ensures to some degree that the motion
vectors in macroblocks with high vertical and horizontal
edge energy is trustable, and [1] chooses the motion vec-
tors of inter-coded macroblocks that has DCT error energy
lower than a threshold to be reliable motion vectors. For
macroblocks that are intra-coded, motion vectors are inter-
polated to them from negihbouring regions.

While motion accumulation, motion vector interpolation
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and filtering guarantee a dense motion field, repetitive mo-
tion over large sequences of frames leads to motion cance-
lation. [2] migitate this by summing motion vector mag-
nitudes over a series of frames. The segmentation method
in [10] does not face this problem since it uses vector im-
ages to memorize object trajectory, but loses the benefit of
filtering out unreliable motion vectors.

In addition to motion vectors, DCT coefficients from
both intra-coded macroblocks and difference macroblocks
are chosen as a segmentation feature in some aforemen-
tioned methods. [5] uses DC the component and AC edge
energy as features for calculation of distance between mac-
roblocks, and [6] uses DC component, AC edge energy and
spatial energy to construct a feature vector for each mac-
roblock. Note that the DC coefficient (in both intra-coded
and inter-coded macroblocks) is not used as a determining
feature since DC coefficient denotes average energy over an
8×8 block. Also, the AC coefficients used in [3], i.e. the
first horizontal and vertical AC coefficients, are convincing
measure of edge strength and can be used to identify object
boundaries.

4 Conclusion

In this paper, we have introduced some recent meth-
ods on video object segmentation in the Compressed Do-
main. Compressed Domain video object segmentation
involves first obtaining the motion vectors(in inter-coded
frames) and DCT coefficients of macroblocks from the in-
put video sequence by parsing then constructing object ar-
eas or boundaries from a dense motion field. To summa-
rize the methods listed in this paper, a Compressed Domain
motion segmentation should perform the following: upon
receiving the parsed input video sequence, motion is accu-
mulated over several frames so that dense motion are cap-
tured, motion vectors that are associated with a macroblock
with error higher than a threshold is discarded and mo-
tion vector is interpolated from the block’s neighbours [1];
the accumulated motion is subjected to confidence thresh-
olding using confidence map obtained by [3]; moving ob-
jects are segmented from the initial frame, either by clus-
tering macroblocks into motion models [1] or identify mac-
roblocks that has high horizontal or vertical AC energy as
edge block candidates then rectify the boundary by remov-
ing pseudo moving/still macroblocks [5]; the coarse ob-
ject mask is detected for occlusion/disoccusion by discov-
ering covering/uncovering regions and test for motion con-
sistency/inconsistency [4]; finally edge refinement is per-
formed on the coarse segmentation mask, in which the edge
blocks and their eight neighbourhood are decoded, com-
puting representative motion vectors for the block, defining
a search range based on the motion vector, and matching
a small pixel block against the previous frame within the

search region [1].
While current Compressed Domain technique greatly re-

duce the processing and storage complexity of segmenta-
tion, due to fact that the block matching process in video
compression is sensitive to changes of intensity values and
problems associated with optical flow such as the aperture
problem. Also not discussed in this paper are method to es-
timate motion in the presence of camera motion and video
object segmentation in the presence of scene cuts. Both are
interesting problems that worth investigation.
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