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ABSTRACT
Graph-structured databases have numerous recent applica-
tions including the Semantic Web, biological databases and
XML, among many others. In this paper, we study the
maintenance problem of a popular structural index, namely
bisimulation, of a possibly cyclic data graph. To illustrate
the design of our algorithm, first, we present some chal-
lenges of bisimulation minimization of cyclic graphs. Sec-
ond, in the context of database applications, it is natural
to compute minimal bisimulation with merging algorithms,
as opposed to partition-refinement algorithms. We present
a maintenance algorithm for a minimal bisimulation of a
cyclic graph in the style of merging algorithm. Third, merg-
ing algorithms cannot determine the minimum bisimulation
without examining all possible SCCs. We propose a feature-
based optimization technique to prune the computation on
non-bisimilar SCCs. The features are constructed and main-
tained more efficiently than bisimulation minimization. Fi-
nally, we present an experimental study that verifies the scal-
ability of our algorithm and shows that our features-based
optimization pruned 50% unnecessary bisimulation compu-
tation on average and when compared to previous work, our
bisimulation can be 100% smaller, depending on the number
of bisimilar SCCs in the data graph.

1. INTRODUCTION
Graph-structured databases have a wide range of recent

applications, e.g., the Semantic Web, biological databases,
XML and network topologies. To optimize the query evalua-
tion in graph-structured databases, indexes have been pro-
posed to summarize the paths of a data graph. In particu-
lar, many indexing techniques, e.g., [4,5,7,12,17,19,24], have
been derived from the notion of bisimulation equivalence. In
addition to indexing, bisimulation has been adopted as a no-
tion of schemas for semi-structured data [3]. In recent works
on selectivity estimation [14, 20, 21], bisimulation has also
been used to construct synopses of graphs for path queries.

Two nodes in a data graph are bisimilar if they have the
same set of incoming paths. To illustrate the application
of bisimulation in graph-structured databases, we present a
simplified sketch of a popular graph used in XML research,
shown in Figure 1, namely XMark. XMark is a synthetic auc-
tion dataset: open_auction contains an author, a seller and
a list of bidders, whose information is stored in persons;
person in turn watches a few open_auctions. To model
the bidding and watching relationships, open_auctions ref-
erence persons and vice versa. The references are encoded
by IDREFs and represented by the dotted arrows in Figure 1.
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Figure 1: A simplified XMark

Without considering the references, XMark is a tree. It is
evident that the bisimulation (see Appendix A) is smaller
than the original data tree, which makes it a useful index
for path queries. As an index structure, the bisimulation
graph needs to be minimized.

In practice, data graphs are often cyclic (e.g., [1]) and sub-
jected to updates. Therefore, when compared to other ap-
plications of bisimulation, its maintenance problem is much
more important in database applications [13,22]. Our study
on the maintenance problem of bisimulation of possibly cyclic
graphs contributes to the current state-of-the-art in two as-
pects: (i) While there have been numerous applications on
bisimulation, there has been relatively few work on its main-
tenance; (ii) Previous works [13,22] on maintenance of bisim-
ulation of graphs mainly focus on directed acyclic graphs.
There has not been explicit handling of cyclic structures.

There are two key challenges in maintaining minimal bisim-
ulation of cyclic data graphs. Firstly, merging-based bisimu-
lation algorithm as opposed to partition refinement is more
natural for incrementally maintaining bisimulation. How-
ever, it is known [13] that merging-based algorithms fail to
determine the minimum bisimulation of cyclic graphs. This
is because the current merging step on a strongly connected
component (SCC) causes subsequent merging steps to miss
some bisimilar SCCs (to be detailed in Sections 3 and 4).
Consequently, bisimulation minimization needs to examine
many pairs of SCC as in the worst case there are exponen-
tially many SCCs in a cyclic graph. Secondly, the nodes of
SCCs must be considered together for checking bisimulation
between SCCs of a cyclic graph. In particular, a node of an
SCC can be bisimilar to a node of another SCC only if the
two SCCs are bisimilar. However, merging-based algorithms
compare one pair of nodes in each merging step.

In this paper, we carry out a comprehensive investigation
on how to incrementally maintain minimal bisimulation of
cyclic graphs. The first contribution is a study of some prop-



erties of bisimulation of cyclic graphs. These form the ba-
sis and terminologies of our discussions on the maintenance
algorithm and influence the design of our algorithms. In
particular, we study how a few nestings of cycles may af-
fect bisimulation minimization. Our observation is that (i)
determining the minimal bisimulation of cyclic graphs is te-
dious and subtle; and (ii) while it seems unlikely that there
are many bisimilar cycles in a real-world data graph, it may
not be reasonable to simply overlook them.

Second, we present a maintenance algorithm for minimal
bisimulation of cyclic graphs. Similar to [13], our algorithm
consists of a split and a merge phase. In the split phase, we
split and mark the index nodes (i.e., the equivalence parti-
tions) that are affected by an update. In the merge phase,
we apply a (partial) bisimulation minimization algorithm on
the marked index nodes. But different from [13], our algo-
rithm has an explicit handling of bisimulation between SCCs.
As such, our algorithm always produces smaller (if not the
same) bisimulation graphs when compared to [13].

The third contribution is on our feature-based optimiza-
tion for determining bisimulation between two SCCs. On the
one hand, the computation of bisimulation between two SCCs
can be costly. On the other hand, there may not be many
bisimilar SCCs. Hence, we aim at deriving structural fea-
tures from SCCs such that two SCCs are bisimilar only if they
have the same features. Feature-based pruning has been a
popular technique in determining subgraph isomorphism in
graph-structured databases, among many others. We shall
explore label-based, edge-based, path-based, tree-based and
circuit-based features, by studying their pruning power, con-
struction and maintenance efficiency.

2. RELATED WORK
Existing works on maintaining bsimulation can be catego-

rized into two: merging and partition-refinement algorithms.
There have been two previous merging algorithms [13,22] for
incremental maintenance of bisimulation of cyclic graphs.
The algorithm proposed in [13] contains a split and a merge
phase. Upon an update on the data graph, the bisimula-
tion graph is split to a correct but non-minimal bisimula-
tion of the updated graph. Next, the bisimulation graph
is minimized in the merge phase. For acyclic graphs, [13]
produces the minimum bisimulation of the updated graph.
If the graph is cyclic, [13] returns a minimal bisimulation
only. Since [13] considers merging pairs of nodes iteratively,
it does not minimize bisimulation between SCCs. Thus, to
support cyclic graphs, the minimum bisimulation is occa-
sionally re-computed from scratch. [22] can be considered
as a follow-up of [13]. [22] proposes a split-merge-split algo-
rithm with a rank flag for SCCs. The rank flag is originally
proposed in [6] and adopted by [22]. The algorithm also
returns a minimal bisimulation in response to an update of
a cyclic graph. In comparison, our algorithm also contains
the split and merge phases. A difference between our work
and the previous works is that we provide efficient handling
of SCCs and propose features to optimize bisimulation main-
tenance.

A recent partition-refinement algorithm [11] can be con-
sidered as a variant of Paige and Tarjan’s algorithm [18] – a
construction algorithm for the minimum bisimulation. The
algorithm proposes its own split to handle edge changes. It
has been extended to support maintenance of k-bisimulation.
Their experiment shows that [11] produces a bisimulation

that is always within 5% of the minimum bisimulation. It
has been shown, through a later experiment, that [13] may
produce even smaller bisimulations.

Bisimulation (relation) [16] has its root at symbolic model
checking, state transition systems and concurrency theories.
In a nutshell, two state transition systems are bisimilar if
and only if they behave the same from an observer’s point of
view. Bisimulation minimization has been extensively stud-
ied through experiments in [8], in the context of modeling
checking. A conclusion of [8] is that minimization may not
be worthwhile for model checking as it may easily be more
costly than checking invariance properties of systems. In
comparison, when bisimulation is used as an index structure
for query processing, bisimulation minimization and there-
fore its maintenance are far more important.

As discussed in Section 1, bisimulations have been recently
used in numerous database applications. Indexes for path
queries have been derived from bisimulation [5, 12, 17]. 1-
index [17] adopts bisimulation as an index for regular paths.
However, in practice, 1-index [17] can be large. A notion
of local bisimulation, namely k-bisimulation, has been pro-
posed to reduce index size. During query evaluation, local
bisimulations may be combined to determine the complete
path information. To balance query performance and index
size, [5] proposes to adaptively adjust the k in k-bisimulation
of subgraphs. [2, 4] consider bisimulation as a compressed
instance of an XML repository for efficient query process-
ing. In addition, bisimulation have been used as a summary
structure for path query selectivity estimation, e.g., [20,21].
It is evident that a study on maintenance of bisimulation
benefits all the above mentioned applications.

3. BACKGROUND
Next, we provide the background and the notations used.

Definition 3.1: A graph-structured database is a rooted
directed labeled graph G(V , E, r, ρ, Σ), where V is a set of
nodes and E: V × V is a set of edges, r ∈ V is a root node
and ρ : V → Σ is a function that maps a vertex to a label,
and Σ is a finite set of labels.

For clarity, we may often denote a graph as G(V ,E) when
r, ρ and Σ are irrelevant to our discussions.
Bisimulation. We recall the definition of bisimulation:

Definition 3.2: Given two graphs G1(V1, E1, r1, ρ1, Σ1)
and G2(V2, E2, r2, ρ2, Σ), an upward bisimulation ∼ is a
binary relation between V1 and V2:

1. If (i) v1 (resp. v2) is the root of G1 (resp. G2) and (ii)
ρ(r1) = ρ(r2), then v1 ∼ v2.

2. If (i) v1 (resp. v2) is not the root of G1 (resp. G2),
(ii) ρ(v1) = ρ(v2) and (iii) for each edge (v′

1, v1) ∈ E1

(resp. (v′

2, v2) ∈ E2), there is an edge (v′

2, v2) ∈ E2

(resp. (v′

1, v1) ∈ E1) such that v′

1 ∼ v′

2, then v1 ∼ v2.

Two graphs G1 and G2 are upward bisimilar if an upward
bisimulation can be established between G1 and G2.

Definition 3.2 presents upward bisimulation in the sense
that two nodes can be bisimilar only if their parents are
bisimilar. This is a recursive definition – two nodes can be
bisimilar only if their ancestors (up to the root) are bisim-
ilar. The definition can be paraphrased in terms of paths.
That is, two nodes are bisimilar if they have the same set



of incoming paths. This definition is often convenient to
simplify our discussions.

Proposition 3.1: Two nodes are upward bisimilar if and
only if the set of incoming paths of the two nodes are the
same.

A set of bisimilar nodes is often referred to as an equiva-
lence partition of nodes. Hence, a bisimulation of a graph is
also often described as a set of equivalence classes.

We should remark that there have been other notions of
bisimulation that have been applied in indexing/selectivity
estimation but have not been the focus of this paper. The
details of these definitions can be found in Appendix B. Our
techniques can be extended to support them with some mod-
ifications. For presentation simplicity, we use bisimulation
to refer to upward bisimulation, unless otherwise specified.

In this work, we consider the notion of bisimulation mini-
mality presented in [13]. We paraphrase its definition below.

Definition 3.3: Given a bisimulation B of a graph G, B

is minimal if for any two equivalence partitions I, J ∈ B,
either (i) the nodes in I and J have different labels, or (ii)
merging I and J results in some equivalence partition K ∈
B unstable.

Cyclic graphs. We present the definitions needed to dis-
cuss bisimulation of cyclic graphs. A strongly connected com-
ponent (SCC) in a graph G(V , E) is a subgraph G′(V ′, E′)
whose nodes is a subset of nodes V ′ ⊆ V where the nodes
in V ′ can reach each other. The strongly connected compo-
nents of a graph can be determined by classical algorithms,
e.g., Gabow’s algorithm, in O(|V |+|E|).

Graph contraction has been a popular technique for pro-
cessing cyclic data graphs. It is often convenient to use graph
contraction in our discussions. Intuitively, given a cyclic
graph, graph contraction reduces each strongly connected
component into a supernode iteratively until an acyclic graph
is obtained. Queries are often first processed on the reduced
acyclic graph and then the supernodes (the strongly con-
nected components). To present graph contraction, we recall
the notion of exits and entries of SCCs.

Definition 3.4: A node n of an SCC G′(V ′, E′) of a graph
G(V , E) is an exit node if there exists an edge (n, n1) where
n ∈ V ′ and n1 6∈ V ′. Similarly, n is an entry node if there
exists an edge (n0, n) where n0 6∈ V ′ and n ∈ V ′.

In general, an SCC can have multiple entry and exit nodes.

Definition 3.5: Given an SCC G′ of a graph, a one-step
graph contraction reduces G′ into a supernode n and each
incoming (resp. outgoing) edge to G′ is modified to be an
incoming (resp. outgoing) edge to n.

The nestings of strongly connected components of a graph
affect bisimulation minimization. To illustrate this, we de-
fine cycle height to describe the nestings of cycles.

Definition 3.6: The cycle height h (or simply height) of a
graph is h if the height of its SCCs is at most h. The height
of an SCC can be inductively defined as follows: A trivial SCC
(a graph with a single node and no edge) has a height 0. An
SCC s has a height h + 1 if the height of the SCCs in s is at
most h.

The cycle height of the nodes in G can be computed in
O(h × (|E|+|V |)), where h is the cycle height of the graph.
It is straightforward that the cycle height of a node is not
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unique, which depends on the graph contraction steps.

4. BISIMULATION OF CYCLIC GRAPHS
In Subsection 4.1, we discuss bisimulation minimization

in the presence of cyclic structures . In Subsection 4.2, we
present a minimization algorithm for bisimulation of cyclic
graphs, which is a major component of the maintenance al-
gorithm presented in Section 5.

4.1 Properties of Bisimulation of Cyclic Graphs
We show a few properties of bisimulation of cyclic graphs.

They shred some lights that it seems unlikely that merg-
ing algorithms could determine the minimum bisimulation
between SCCs without examining many possible sub-SCCs.

Property 4.1: SCCs with the same cycle height may not be
bisimilar. SCCs with different cycle heights can be bisimilar.

The first part of this property is straightforward whereas
the second part may require some elaborations. Consider
a simple example shown in Figure 2(a). Consider the two
SCCs in the figure. The cycle height of the SCC on the left
is 1 while that on the right is 2 (Figure 2(b)). The dotted
arrows in Figure 2(a) show a possible bisimulation between
the two SCCs.

Property 4.2: Two bisimilar SCCs with different numbers
of entry nodes can be bisimilar.

A simple example is sketched in Figure 3. As discussed in
Section 1, a possible bisimulation is {(b1 ∼ b3), (b2 ∼ b4),
(b2 ∼ b5)}. In another words, b1 and b3 have the same set
of incoming paths and similarly, b2, b4 and b5 have the same
set of incoming paths.

Property 4.3: Two bisimilar SCCs may have the different
number of simple cycles. Two SCCs with the same number
of simple cycles may not be bisimilar.

The first part of this property can be illustrated with Fig-
ure 2(a). The second part of the property can be illustrated
with Figure 4. Both graphs in Figure 4 consist of 6 simple
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cycles but are non-bisimilar. In addition, on LHS of Fig-
ure 4, the nodes of a cycle may be a subset of the nodes
of other cycles. In comparison, on RHS of Figure 4, the cy-
cles are overlapping but not contained in each other. When
determining a bisimulation of a cycle, part of other cycles
are involved. Hence, in the worst case, one may need to
consider all sub-SCCs together, in the style of partition re-
finement [18].

Merging algorithms for bisimulation minimization are iter-
ative in nature. Any merging algorithm could not return the
minimum bisimulation since the current merging step of a
simple cycle may affect other cycles. Therefore, to compute
a minimal bisimulation of cyclic graphs, existing merging
algorithms need to examine many possible SCCs.

4.2 Minimizing Bisimulation of Cyclic Graphs
Our algorithm bisimilar_cyclic for minimizing bisimu-

lation of cyclic graphs is shown in Figure 5, which is a com-
ponent of our maintenance algorithm. We assume the exis-
tence of a procedure next_nodes_top_order(G) of a node n

which returns the next n’s child in topological order in G.
The algorithm can be divided into two parts. First, Lines

01-06, if n1 and n2 are not both in some SCCs, we com-
pute bisimulation between n1 and n2 in the sytle of a merg-
ing algorithm. In this case, we recursively invoke bisimi-

lar_cyclic, for handling of cycles reachable from n2.
Second, if both n1 and n2 are in some SCCs, Lines 07-21

check if S1 and S2, as opposed to simply n1 and n2, can be
bisimilar. We prune non-bisimilar SCCs by using the feature-
based optimization presented in Section 6, in Line 08. For
presentation clarity, we assume that n1 and n2 are in two dif-
ferent SCCs. Then, we break the SCCs and check bisimulation
recursively, in Lines 09-16. The main idea is illustrated with
Figure 6. More specifically, we redirect the incoming edges of
n1 in n′

1 SCC (Lines 09-11) to an artificial node n′

1. Similarly,
we redirect the incoming edges of n2 to n′

2 (Lines 12-14). We
clone the current bisimulation relation determined thus far
(Line 15). Assuming that n1 and n2 are bisimilar, we check
the possible bisimulation between the children of n1 and n2

by calling bisimilar_cyclic recursively (Lines 16-19). If
we can construct a possible bisimulation between n′

1 and n′

2

(Line 20), then we declare that S1 and S2 are bisimilar.
The main difference between bisimilar_cyclic and [13]

is that bisimilar_cyclic explicitly breaks a cycle when de-
termining bisimulation between SCCs whereas [13] does not
check bisimulation between SCCs and between SCCs’ descen-
dants. bisimilar_cyclic may be recursively called due
to nested SCCs (Line 18). Without breaking a cycle, the
feature-based optimization (Line 07) may always derive fea-
tures of the “topmost” SCC. As verified by experiments (Fig-
ures 10(b) and 10(c)), the optimization will be essential for

Procedure bisimilar_cyclic

Input: Nodes n1 and n2 where ρ(n1) = ρ(n2), n1 ∈ G1

and n2 ∈ G2; B, the current bisimulation relation
Output: An updated bisimulation relation B′

01 if n1 and n2 are not both in some SCC

02 if ∀p1 ∈ n1.parent ∃p2 ∈ n2.parent s.t. p1 ∼ p2 then

03 add (n1, n2) to B
04 for all c1 in n1.next_nodes_top_order(G1)
05 for all c2 in n2.next_nodes_top_order(G2)
06 B = bisimilar_cyclic(c1, c2, B)

07 else /* check bisimulation of the two SCCs */
08 assume n1 and n2 are in SCCs S1 and S2, respectively

if feature_pruning(S1, S2) return B /* Sec. 6*/

09 clone S1 to S′

1
; create an artificial node n′

1
for n1

10 for all (n, n1) ∈ S′

1
.E

11 replace (n, n1) with (n, n′

1
) ∈ S′

1

12 clone S1 to S′

1
; create an artificial node n′

2
for n2

13 for all (n, n2) ∈ S′

2
.E

14 replace (n, n2) with (n, n′

2
) ∈ S′

2

15 clone B to B′

16 add (n1, n2) to B′ /* assume n1 ∼ n2 */

17 for all c1 in n1.next_nodes_top_order(S′

1
)

18 for all c2 in n2.next_nodes_top_order(S′

2
)

19 B′ = bisimilar_cyclic(c1, c2, B′)
20 if (n′

1
, n′

2
) in B′ then B = B ∪ B′ /* S1 ∼ S2 */

21 return B

Figure 5: Bisimulation minimization of cyclic graphs
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Figure 6: Breaking one cycle in an SCC

early backtracking in determining possible bisimulations be-
tween SCCs.

Analysis. For presentation clarity, bisimilar_cyclic did
not incorporate with classical indexing techniques. bisimi-
lar_cyclic runs in O(|E|2) due to the for loops at Lines 04-
06 and Lines 17-19, assuming that feature_pruning can be
performed more efficiently than bisimilar_cyclic. With
classical indexing on nodes, the inner loop can be performed
in O(log(|V |)) and the overall runtime is O(|E|log(|V |)).

5. MAINTENANCE OF BISIMULATION
We present an overall maintenance algorithm in this sec-

tion. For simplicity, we present an edge insertion algorithm
insert in Figure 7. Edge deletions are discussed at the end
of this section. Our algorithm consists of a split phase and
a merge phase, and with an explicit handling of SCCs. The
merge phase is essentially bisimulation minimization, which
has been detailed in bisimilar_cyclic in Section 4. In the
following, we focus on the split phase.

The split phase. The split phase is presented in Lines 05-
20. We maintain two variables to record two kinds of nodes
that are needed to be split. More specifically, we use S to
record the nodes of SCCs needed to be split and Q to record
the nodes that are not in any SCCs but needed to be split.



Procedure insert

Input: an insertion of an edge (n1, n2) a data graph G
and its minimal bisimulation B

Output: An updated graph G′ and
its updated minimal bisimulation B′

01 G′ = insert (n1, n2) into G
02 if n2 is new

then create a new inode In2
; insert In2

into B; mark In2

else if In2
is not stable

03 S = {(In2
, n2) | n2 is in an SCC}

04 Q = {In2
| n2 is not in any SCC}

05 while Q 6= ∅ or S 6= ∅

/* split the relevant SCC */
06 if S 6= ∅ then

07 pick a node (In, n) from S; remove (In, n) from S
08 while In is not stable or a singleton
09 split In into I1 = In - {n} and I2 = {n}
10 mark I1 and I2
11 S = S ∪ {(Ins

,ns) | ns is child of ni, ni ∈ I2
and ns in the SCC of n}

12 Q = Q ∪ {Inq
| nq is a child of ni, ni ∈ I2

and nq not in any SCCs}

/* split nodes not related to SCCs */
13 if Q 6= ∅ then

14 pick a node In ∈ Q; remove In from Q
15 if In is not stable or a singleton
16 split In into a stable set I // [13]
17 for each I in I
18 mark I
19 S = S ∪ {(Ins

,ns) | ns is a child of ni, ni ∈ I
and ns in the SCC of n}

20 Q = Q ∪ { Inq
| nq ∈ child of ni, ni ∈ I

and nq not in any SCCs}

21 Gabow(G′) //update the SCC information in G′

/* merging the marked inodes */
22 (G′, B′) = bisimilar_cyclic_marked(G, B)
23 return (G′, B′)

Figure 7: Insertion for minimal bisimulation of
cyclic graphs

Similar to previous work, we call an equivalence partition,
which contains a set of bisimilar nodes, inodes, denoted with
I. During the split phase we mark the affected inodes which
will be examined in the merge phase.

Assume the insertion makes an inode of n2 not stable. To
initialize S (Line 03), we set S to the inode of n2 and n2,
i.e., {(In2

, n2)}, if n2 is in some SCC. Otherwise, S is empty.
Similarly, we initialize Q to In2

if n2 is not in any SCC and
empty otherwise (Line 04).

Next, we split the inodes recursively until S and Q are
empty (Line 05).

(1) We process the nodes in S as follows (Lines 06-12): We
select a node n from S and retrieve its inode In. We split
n from In as the SCC of n is potentially non-bisimilar to the
SCC of other nodes in In (Line 09). We mark the split inodes
so that they will be checked in the merge phase (Line 10). In
Lines 11-12, we insert the children of the split inode that are
involved in some SCC(s) into S and the remaining children
into Q.

(2) The handling of Q is shown in Lines 13-20. We select an
inode In from Q (Line 14). If In is not stable, we split In into
a set of stable inodes I, as in other works for maintaining

bisimulation of acyclic graphs, e.g., [13] (Lines 15-16). We
mark inodes in I in Line 18. In Lines 19-20, we update the
affected nodes S and Q, similar to Lines 11-12.

The split phase essentially traverses the bisimulation graph
B and SCCs in the data graph to spilt and collect the inodes
that are affected by the update. SCCs themselves may be af-
fected by an update. In Line 21, we call Gabow’s algorithm
to update SCC information of a graph, which is needed in
the merge phase.

The merge phase. The merge phase can be done by ap-
plying the minimization algorithm presented in Section 4.2
Figure 5. A simple optimization is that we do not apply
merging on all inodes of the bisimulation graph but simply
on the inodes that are marked in the split phase.

Example 5.1: We illustrate Algorithm insert with an ex-
ample. A cyclic data graph is shown in Figure 8(a). For
simplicity, we assume the node in the data graph has the
same label. We show the node ids next to each node. Its
minimal bisimulation is shown in Figure 8(b). We use {}
to denote an inode. Assume that we insert an edge (20,17)
into the data graph. Algorithm insert initially puts {12,17}
into Q (Line 04). Then, in Line 16, node 17 is split from
{12,17}. The split inodes are marked, with a “*” sign in the
figure. The split phase proceeds recursively and finally pro-
duces the graph in Figure 8(c). We call Gabow’a algorithm
to update the SCC information of the data graph. By call-
ing bisimulation minimization, we obtain the bisimulation
graph at Figure 8(d).

It should be remarked that while the previous work [13]
produces the same split graph (Figure 8(c)). But, it returns
Figure 8(c) as the final bisimulation graph. This is because
it lacks the handling on SCCs as discussed in Section 4. Sub-
sequently, any subgraph that is connected to the SCC with
nodes 17, 18, 19 and 20, e.g., node 21, will not be merged,
as the SCC is not merged.

Analysis. The recursive procedure in Lines 05-20 traverses
the graph O(|E|). With optimization in [18], stablizing a
set can be done in O(log(|V |)). Hence. the split phase
runs in O(|E|log(|V |). Gabow’s algorithm in Line 21 runs
in O(|V | + |E|). The merge phase with optimization runs in
O(|E|log(|V |). Thus, the overall runtime of Algorithm in-

sert is O(|E|log(|V |).

Edge deletions. While our discussions focused on inser-
tions, our technique can be generalized to support edge dele-
tions with the following modifications. (i) In Line 01, we
delete the edge from the data graph. (ii) If n2 is connected
after the deletion, we check the stability of In2

in Line 02,
initialize S and Q and then invoke the split phase as before.

6. FEATURE-BASED OPTIMIZATION
As discussed in the previous section, determining if two

SCCs are bisimilar can be computationally costly O(|E|log(|V |)).
However, in practice, many SCCs may not be bisimilar. This
motivates us to optimize bisimulation minimization of cyclic
graphs by proposing features to prune computations on non-
bisimilar SCCs.

In particular, we exploit the following property of a bisim-
ulation between SCCs.

Proposition 6.1: An SCC G1(V1, E1) is not bisimilar to
another SCC G2(V2, E2) if and only if there is a node v in
V1 s.t. it is not bisimilar to any nodes in V2.
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Figure 8: (a) A cyclic data graph; (b) the minimal bisimulation graph; (c) the split bisimulation graph; and
(d) an updated minimal bisimulation graph

In this section, we adopt feature-based techniques for fil-
tering computation on two non-bisimilar SCCs. The main
idea is to derive a set of features from SCCs such that two
SCCs can be bisimilar only if their features are the same
or bisimilar. The features are ideally discriminative enough
to reduce the computation on non-bisimilar graphs. In addi-
tion, while the maintenance of bisimulation is non-monotonic
in nature, we design features that can be readily incremen-
tally maintained. In the followings, we explore the details of
label-based, edge-based, path-based, tree-based and circuit-
based features.

Label-based or edge-based features. The label-based
and edge-based features are straightforward and have many
alternatives. For example, we may use all label and edge
types that appeared in an SCC as an SCC feature. Obviously,
two bisimilar graphs must contain the same type of labels
and edges. In our experiments, we found that the incom-
ing label or edge sets of an entry node are relatively concise
and effective in distinguishing non-bisimilar SCCs. For ex-
ample, in Figure 1, the incoming label set of the entry node
open_auction is {open_auction, watch} and that of the en-
try node watches is {person, bidder}. The construction
and maintenance of such labels can be efficiently supported
by hashtables.

Path-based features. Regarding path-based features, one
may be tempted to use all simple paths in an SCC. However,
determining all simple paths of a cyclic graph is in PSPACE

[15] and its maintenance is technically intriguing.

Proposition 6.2: Two SCCs are bisimilar only if they have
the same set of simple path(s) from their entry node(s).

There are other notions of paths that do not seem to be
appropriate for our problem. For example, determining the
longest paths of a cyclic graph is NP-complete.

In this work, we propose to use the set of incoming paths
with a length at most k (or simply k-paths) as a feature of
the entry nodes, where k is a user parameter. The value
of k may be increased when maintenance of bisimulation
spends substantial time on bisimulation computation. From
Proposition 3.1, two bisimilar graphs must have the same
set of k-paths. Contrarily, two graphs with different sets of
k-paths must be non-bisimilar graphs. Hence, k-paths can
be used as a feature. It is straightforward that k-paths can
be efficiently constructed and maintained.

A remark is that k-paths may not consist of the node(s)
that are not bisimilar to any nodes in any other SCC (Propo-

sition 6.1). Another remark is that a node in an SCC may
appear in a k-path set multiple times. Next, we propose a
spanning tree as a feature of an SCC.

Feature of canonical spanning tree. First, we define
the weight used in determining the canonical spanning tree.
The weight of an edge (n1, n2) is directly proportional to the
count of (ρ(n1), ρ(n2))-edges in the graph. We exploit a
popular trick to perturb the weight of the edges such that
each kind of edges has a unique weight.

Given the weight defined above, we can compute a min-
imum spanning tree, in the style of a greedy breath first
traversal in O(|V |+|E|). As the weight is defined to be di-
rectly proportional to the edge count, a minimum spanning
contains more infrequent edge kinds of a graph. However,
minimum spanning trees of a directed graph are often dif-
ficult to maintain. In comparison, maintenance of span-
ning trees of an undirected graph is much simpler, e.g., in
amortized time O(|V |1/3log(|V |)) [10]. Hence, we perform
a couple of tricks on the data graph when constructing the
spanning tree. First, we ignore the direction of the edges.
Second, we adopt Prim’s algorithm to construct the mini-
mum spanning tree of the undirected graph. From the root
of the minimum spanning tree, we derive the edge direc-
tion, which gives us the canonical spanning tree. (The edge
direction is simply needed to check bisimulation between
canonical spanning trees.) The direction of the edges in the
canonical spanning tree may differ from that of the edges in
the original graph.

Proposition 6.3: Two SCCs are bisimilar only if their min-
imum canonical spanning trees returned by Prim’s algorithm
are bisimilar.

It should be remarked that SCCs are often nested. In the
worst case, the total size of the spanning trees of all possi-
ble entry nodes of an SCC is O((|V | + |E|)2). In addition,
computing bisimulation between large canonical spanning
trees can be costly. Therefore, we introduce a termination
condition to the Prim’s algorithm – we do not expand the
spanning tree further from a node n when there is an ances-
tor of n having the same label as n. The total size of the
canonical spanning trees is then O(|V | + |E|).

Example 6.1: We illustrate the construction of a canoni-
cal spanning discussed above with an example shown in Fig-
ure 9. Figure 9(a) shows a simplified SCC of open_auction
from XMark with a scaling factor 0.1. The count of each edge
type is shown on the edge. We perturb the weight to make
each weight in the SCC unique. We ignore the direction of
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Figure 9: The construction of the canonical span-
ning tree from a simplified open_auction

the edges, shown in Figure 9(b). Then, it is straightforward
to compute the spanning tree (shown in Figure 9(c), where
the number on an edge shows the order of the edge is re-
turned by Prim’s algorithm). Finally, the direction of the
edges are derived from the root of the tree open_auction.

Circuit-based features. Finally, we discuss the feature of
circuit bases, which contains much more structural informa-
tion than spanning trees. It has been shown that the min-
imum circuit bases of directed graphs is unique [9]. Hence,
one may be tempted to use circuit bases as a feature to prune
computation on non-bisimilar graphs.

Proposition 6.4: Two SCCs are bisimilar if their circuit
bases are bisimilar.

However, determining the circuit bases is essentially O(|V |3).
It is therefore more efficient to simply compute the bisimu-
lation of two SCCs than using the feature of circuit bases.

6.1 Offline vs Online Feature Construction
Offline construction. The features of SCCs can be com-
puted offline and used and maintained online (in Line 08 Fig-
ure 5). It has been known that determining all SCCs of a
graph runs in exponential time. Therefore, we compute the
features for possible entry nodes of SCC. To determine pos-
sible entry nodes, we apply Gabow’s algorithm recursively.
Gabow’s algorithm returns the set of non-overlapping largest
SCCs (therefore their entry nodes) of a graph. For each SCC,
we remove an incoming edge of an entry node and apply
Gabow’s algorithm until no new entry nodes can be de-
termined. The overall runtime of this method is evidently
O(|E|×(|V | + |E|)) and it returns all possible entry nodes.
Finally, we compute the features for each possible entry node
as discussed.

Online construction. Since the proposed features can be
constructed efficiently, they may also be constructed during
bisimulation computation, i.e., runtime. During runtime,
we may incorporate the features with the partial bisimula-
tion constructed so far for constructing features, for a higher
pruning power. Specifically, since some nodes have been as-
sociated with an inode, we propose to use the id of inodes
as opposed to the label alone to build features.

For example, consider the nested cycles on LHS of Fig-
ure 4. Assume all nodes have the same label. The cycles
of (3,4,5) and (12,13,14) are obviously not bisimilar. How-
ever, the label/edge-based and path-based features cannot
distinguish these two cycles. In runtime, when computing
the bisimulation between (3,4,5) and (12,13,14), we have
determined nodes 2 and 11 are not bisimilar. Hence, when

we construct the label-based feature in runtime, node 3 has
{A{2},...} and node 12 has {A{11},...}. Thus, determining
bisimulation between (3,4,5) and (12,13,14) is not needed.

7. EXPERIMENTAL EVALUATION
We present an experimental study on our algorithms. We

modified the implementation of Ke et al. [13] to implement
our algorithms. We used XMark [23] to obtain a group of
graphs with one large SCC, denoted as Large. We decom-
posed Large to obtain another group of graphs with numer-
ous SCCs, denoted as Cyclic. Details are in Appendix D.
Large and Cyclic are needed to illustrate different aspects
of our techniques.

Figures 10(a) and 10(b) show the performance of bisim-
ilar_cyclic without feature-based optimization on Large

and Cyclic with a scaling factor (s.f.) ranging from 0.01
to 0.1 (i.e., 1MB to 10MB). Since there is some random-
ness in the SCCs of Large and Cyclic, we ran 100 graphs for
each s.f. Figures 10(a) and 10(b) show that the runtimes are
roughly linear to s.f. At the same s.f. (hence same graph
size), the runtime for Large is longer than that for Cyclic.
The reason is that in Cyclic, there are many smaller random
SCCs, which are often non-bisimilar, and bisimilar_cyclic

can identify them relatively earlier. In comparison, bisim-
ilar_cyclic in Large may spend more time in checking
substructures in a large SCC.

Next, we verify the effectiveness of the features by using
each feature on 100 Cyclic graphs for each s.f. The features
were computed in runtime and k in the path-based feature
is 4. We skipped the edge-based feature as its performance
is similar to the label-based feature in Cyclic. The results
are shown in Figures 10(c), 10(d) and 10(e). The y-axis is
the percentage of non-bisimilar SCCs that were pruned by a
feature. The label-based, path-based and canonical-tree fea-
ture pruned (on average) 14%, 62% and 73%, respectively.
Figure 10(f) shows the runtime of bisimilar_cyclic with
features. On average, it is 4% faster than that without fea-
tures (Figure 10(b)). However, we remark that on average,
7.7% of the runtime is due to online feature construction.

Lastly, we present an experiment on Algorithm insert.
We connect two Large graphs with a s.f. 0.01 and randomly
remove 120 edges from the SCCs to form the base graph,
denoted as Base. We insert the removed edges (randomly)
one-by-one to Base. The result is shown in Figure 10(g).
Figure 10(g) shows the size of the minimal bisimulation pro-
duced by insert and Ke et al. [13]. We did not show the re-
sult from Paige and Tarjan (the minimum) as insert always
produces a bisimulation that is within 2% of the minimum.
Initially, both insert and [13] are very close to the mini-
mum. After some number of insertions, the two bisimilar
SCCs in the original Large graph are recovered. We ran this
experiment multiple times and find that this occurred ran-
domly between 100th and 120th insertion. As shown in Fig-
ure 10(g), insert identifies the two bisimilar SCCs that lead
to a bisimulation graph roughly 100% smaller than the one
produced by [13]. We remark that the performance differ-
ence (in terms of bisimulation size) between insert and [13]
depends on how many bisimilar SCCs are there in a graph.

The runtime of insert is shown in Figure 10(h). The
runtime increases as we insert more edges into Base. After
many insertions, insert runs slower because the two SCCs in
Base become very similar. bisimilar_cyclic checks many
nodes before it declares the SCCs are not bisimilar. The
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Figure 10: Scalability test of the minimization algorithm on XMark; the effectiveness of features; and the
efficiency of the maintenance algorithm

runtime of [13] is close to 0s as it does not process SCCs.

8. CONCLUSIONS
In this paper, we studied the maintenance problem of min-

imal bisimulation of cyclic graph. To tackle the problem,
we first presented a few properties about bisimulation on
cyclic graphs. Second, we presented a bisimulation mini-
mization algorithm that explicitly handles SCCs. Third, we
presented a maintenance algorithm for minimal bisimulation
of cyclic graphs. Fourth, we propose a feature-based opti-
mization to avoid computation of non-bisimilar SCCs. We
present an experiment to verify the scalability of our algo-
rithms. In addition, our experiment shows that on average,
the features can prune 50% unnecessary bisimulation com-
putation. Our maintenance algorithm can return smaller
bisimulation graphs (up to 100%) than previous work, de-
pending the number of bisimilar SCCs in the data graph.
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APPENDIX

A. BISIMULATION OF XMARK TREE
A sketch of the bisimulation (graph) of the XMark tree

(shown in Figure 1 with dotted edges ignored) is shown in
Figure 11, where bisimilar nodes are placed in an equivalence



partition (enclosed by a rounded rectangle).

B. OTHER NOTIONS OF BISIMULATIONS
There has been a notion of downward bisimulation. Since

its definition is very similar to Definition 3.2, we only high-
light the difference between upward and downward bisim-
ulations. Consider the second condition in Definition 3.2.
Downward bisimulation, in contrast, states the following: if
for any edge (v1, v′

1) (resp. (v2, v′

2)), there is an edge (v2,
v′

2) (resp. (v1, v′

1)) such that v′

1 ∼ v′

2 and ρ(v′

1) = ρ(v′

2),
then v1 ∼ v2. This definition has been adopted for data
graph compression [2, 4], among others.

A local notion of bisimulation has been proposed, namely,
k-bisimulation. Specifically, two nodes are k-bisimilar only
if two nodes have the same set of incoming paths up to the
length k. In other words, k-bisimulation considers bisimula-
tion up to k steps only. While k-bisimulation may lose some
path information, the size of k-bisimulation graph can often
be small, in practice.

C. PROOF SKETCHES
Proof (sketch) of Proposition 6.3. The proof can be
established by an induction on the run of Prim’s algorithm
on the graphs. The hypothesis is that the intermediate min-
imum spanning tree (or simply intermediate tree) of the size
k returned by Prim’s algorithm of G1 is bisimilar to an in-
termediate tree of G2 if G1 and G2 are bisimilar.

The base case is k = 1, where the intermediate tree with
the root node only. Obviously, the base case is true. Suppose
that the hypothesis is true up to the tree size of a size m

and the tree for G1 and G2 are T1 and T2, respectively.
w.l.o.g, suppose that Prim’s algorithm adds an edge to T1

to form T ′

1 which makes T ′

1 6∼ T2. We want to prove that the
next intermediate T ′

2 by Prim’s algorithm, where T ′

2 6∼ T2, is
bisimilar to T ′

1. Suppose that the previous edge added to T ′

1

and T ′

2 are (a1, a′

1) and (a2, a′

2). Due to the hypothesis, a1

∼ a2. Since G1 and G2 are bisimilar, there must be a node
a′′

2 such that (a2, a′′

2 ) ∈ G2 and a′

1 ∼ a′′

2 . If a′′

2 = a′

2, then T ′

1

∼ T ′

2. Otherwise, let a′′

2 6= a′

2. If weight(a′′

2 ) < weight(a′

2),
then Prim’s algorithm adds (a2, a′′

2 ), not (a2, a′

2), to T2. If
weight(a′′

2 ) > weight(a′

2), then Prim’s algorithm would not
have returned T ′

1 (contradiction).

Proof (sketch) of Proposition 6.4. Consider that two
bisimilar graphs G1 and G2. Assume that C1 and C2 are the
minimum circuit bases of G1 and G2, respectively. w.l.o.g,
assume c1 ∈ C1 is the smallest circuit such that c1 6∼ c2 for
all c2 ∈ C2. Let p1 be a simple path from the root of G1 to
the “first” node n1 in c1. Then, n1 is not bisimilar to any
node in G2 because we can always find a path p1.c

i
1, where i

is an integer representing the repetition of c1, to distinguish
n1 and any node in G2.

D. ADDITIONAL INFORMATION FOR EX-
PERIMENTS

The implementation used in the experiment is available at
http://code.google.com/p/minimal-bisimulation-cyclic-graphs/.
The program is written in JDK 1.5. The implementation is
run on a laptop computer with a dual CPU at 2.0 GHz and
2GB RAM running Ubuntu hardy.

We used the XMark dataset [23] to test variou aspects of
our algorithms. The cycles in XMark is essentially composed
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Figure 11: Bisimulation of the tree of XMark

by IDREFs of open_auction to person and vice versa. We
ran Gabow’s algorithm on XMark. We note that there are
few very large SCCs. It is easy to verify that very few, or
none, of the SCCs are bisimilar. Hence, we modify the cycles
of XMark in the following way: We define a parameter s to
set the average number of open_auction nodes and another
parameter r to define the ratio between open_auction and
person nodes in an SCC. For example, when s and r are set
to 10 and 1.2, respectively, an SCC contains approximately
10 open_auctions and 12 persons.

In our experiment, the dataset generated directly from
XMark is referred to Large. We set s and r to 10 and 1.2,
respectively. The decomposed Large is refered to Cyclic.

In the experiment on Algorithm insert, we generated a
dataset Base to test the performance difference between in-

sert and Ke et al. The performance difference may be
hardly shown systematically with Large because it only con-
tains one large SCC. Cyclic contains numerous random non-
bisimilar SCCs. In both cases, insert and Ke et al. return
very similar bisimulation graphs. Therefore, we design Base

to demonstrate the performance difference between the al-
gorithms.
Base is constructed by connecting to XMark graphs with

a s.f. 0.01 and removing 120 edges from the graph. Prior
the removal of the edges, the graph has two bisimilar SCCs.
When the edges are inserted by Algorithm insert, the bisim-
ilar SCCs will be recovered and merged.
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