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Abstract—Reflection removal has been discussed for more than decades. This paper aims to provide the analysis for different
reflection properties and factors that influence image formation, an up-to-date taxonomy for existing methods, a benchmark dataset,
and the unified benchmarking evaluations for state-of-the-art (especially learning-based) methods. Specifically, this paper presents a
Slngle-image Reflection Removal Plus dataset “SIR2+ ” with the new consideration for in-the-wild scenarios and glass with diverse
color and unplanar shapes. We further perform quantitative and visual quality comparisons for state-of-the-art single-image reflection
removal algorithms. Open problems for improving reflection removal algorithms are discussed at the end. Our dataset and follow-up

update can be found at https://sir2data.github.io/.
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1 INTRODUCTION

OW to obtain a reflection-free image from a mixture image
Htaken through glass has attracted attention from computer
vision researchers. Removing the undesired reflection enhances
the visibility of target objects and benefits the performance of
image classification [1], and face recognition [2]. Similar to other
important image restoration problems [3], [4], reflection removal
aims at obtaining an estimation of clear background B from its
corrupted mixture image I by removing the interference caused
by reflection R using one or more shots.

Reflection removal has been studied for more than two
decades. Due to its ill-posed nature, earlier methods [5], [6]
address the difficulty by rotating the polarizer. With the polarizing
filter in different angles, the visibility of the background scene
among the captured images can be changed to some degree.
This polarizer-based setting provides independent observations
of the mixtures and makes the problem less ill-posed. In more
recent works, polarization cues are integrated with a deep learning
pipeline to increase the robustness [7], [8].

The assumption about the layer independence between B and
R proposed by pioneering polarizer-based works [5], [6] inspires
solving this problem using ordinary RGB image. One of the most
representative methods is proposed by Levin and Weiss [9]. They
show that the property of B and R can be well fitted in the
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gradient domain by the Gaussian or Laplacian distribution. By
modeling the independence assumption using the probability the-
ory, Levin’s method relaxes the requirement for extra devices, and
a large number of follow-up methods inherits its core assumption.
For example, by better exploring the relationship of B and R
in the gradient domain, earlier methods [10], [11] differentiate
B and R by using their different blur levels caused by the
non-uniform depth-of-field. The recently proposed deep-learning-
based methods [12], [13], [14], [15] also use gradient information
as the auxiliary information for network inference. The gradient
property also plays a crucial role in reflection removal methods
using multiple images (e.g., [16]).

The previous version [17] of this paper mainly focuses on
the solutions of non-learning-based methods, while there are
several new open problems and trends needed to be discussed
nowadays. For example, since deep learning becomes the silver
bullet for most reflection removal methods (e.g., [2], [12], [18]),
and different datasets (e.g., [2], [15], [19]) are also proposed
for various scenarios along with the data-driven solutions. The
trend brought by deep learning raises the need for a more up-
to-date taxonomy. Besides, since existing deep-learning-based
methods show degraded performance for unseen examples due
to their dependency on synthetic training data, it also becomes
necessary to evaluate their performance under different settings
and scenarios with a unified and systematic dataset.

To address above issues, this paper extends from its previous
version [17] in the following aspects:

e A reflection image formation analysis for clearly catego-
rizing existing methods.

e An up-to-date taxonomy by taking mainstream methods
for discussions.

o An extended dataset SIR?T with the new consideration
for in-the-wild scenarios and glass with diverse color and
unplanar shapes.

e A more comprehensive evaluation including the cross-
dataset investigation for existing methods and the corre-
sponding open problems considering the latest progress.
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Fig. 1: The physical (left), mathematical (middle) image formation models, and exemplar images (right) for three kinds of reflections.
The physical models for the in-focus reflection and out-of-focus reflection ignore the refractive effect of glass. For simplicity, we omit
the lens and use only one ray for the physical model of the ghosting effect. I, B, R, and kernel k are defined in Section 2.2. The red
boxes in exemplar images denote the regions with in-focus reflection, out-of-focus reflection, and ghosting effect, respectively.

2 ANALYSIS ON THE IMAGE FORMATION PROCESS

Reflection removal aims at recovering B from the mixture image
I. The image formation process for the reflection removal problem
can be concluded as follows:

I=y9(B)+ f(R), (D

where B and R denote the light emitted by background scenes and
reflection scenes, respectively; g(-) and f(-) denote the various
degradation for B and R during light transmission, respectively;
g(B) and f(R) denote background and reflection irradiance that
finally reach the camera sensor, respectively; and a mixture of
them forms I.

There are different definitions for I, B, and R among existing
methods. Most methods [12], [13], [14] call them as “image” or
“layer” by directly inheriting the meaning from the work proposed
by Levin et al. [9]. For them, they solve the reflection removal
problem from the aspect of image separation. Another category of
methods (e.g., [7], [8], [72], [73]) inherits the meanings from the
method proposed by Faried et al. [5], where the three parameters
are defined as the irradiance reflected off the scenes and received
by the sensors. In this section, we specifically denote them as
irradiance to discuss the potential influence during light transmis-
sion. In other sections, we do not deliberately differentiate the two
meanings.

2.1 Factors that influence f(-) and g(-)

Different factors may influence f(-) and g(-), which can be
summarized as follows:

Refractive effect. The refractive effect is related to the density of
glass [20] and mainly affects g(-) by causing pixel shifts between
g(B) and B. In general, such shifts cause the pixel misalignment
between the images captured with and without glass. The pixel
misalignment makes it challenging to directly utilize real image
pairs as the training data since pixel-wise loss functions heavily
rely on the well-aligned training pairs [14].

Absorption and reflectivity effect. When light travels through
a piece of glass, the light’s intensity is typically influenced by
the absorption and reflectivity effect. For colorless glass, the
low reflectivity of glass makes only a limited amount of R be
reflected by glass and received by the camera, and it also leads
to f(R) < R [21]. On the contrary, the high transmittance rate
and low absorption of glass [22] make g(B) almost a copy of B.
For tinted glass, since it selectively absorbs different frequencies
of visible light [23], g(B) is with the obvious difference to B. For
example, a piece of gray glass in Figure 2 transmits mainly blue
wavelengths of light while absorbing in other wavelengths, which
makes the captured image appear globally blue color.

Depth of field (DoF). Depth of field is the zone of acceptable
sharpness within a photo that appears in focus [24]. As an
important property of the camera, DoF influences blur levels of B
and R. Reflection scenes show different blur levels when they are
with different distances to the camera sensor. Since photographers
mainly focus on background scenes [11], the influence from g()
can be ignored in some scenarios with uniform distances from
background scenes to the camera sensor. However, if background
scenes are with non-uniform distances to the camera sensor, its
blur levels also become non-uniform, which makes it difficult
for existing methods (e.g., [10], [11]) designed for uniform blur
differentiate B and R properly.

Fig. 2: Three examples with low-transmitted reflections (labelled
by red boxes) caused by the regional property. The third one is
captured through tinted glass.
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2.2 Reflection property

Most methods (e.g., [2], [9], [11], [13]) also formulate Equa-
tion (1) using the following analytical form:

I=aB+3R®K), )

where « and 3 are weighting coefficients, and k is a convolutional
kernel representing the potential degradation. By studying the
factors in Section 2.1, we find that most reflections can be roughly
classified into four types.

In-focus reflection. As shown in Figure 1, the in-focus reflection
is mainly caused by DoF discussed in Section 2.1. When the
objects behind glass and the virtue images of reflected objects
are approximately in the same focal plane, their corresponding
background and reflection layers are more likely to have the same
sharp levels [11], [25]. In this situation, I becomes a linear additive
mixture of B and R, and the kernel k degenerates into a one-pulse
kernel 4.

Out-of-focus reflection. It is reasonable to assume that virtue
images of reflected objects and background objects behind glass
have different distances from the camera. Since taking the objects
behind glass in focus is more likely to be a common behavior
for most photographers [25], the observed image I is an additive
mixture of the sharp background layer and the blurred reflection
layer. The kernel k& depends on the camera’s point spread function,
which is parameterized by a 2D Gaussian function denoted as
h [26].

Ghosting effect. Both types above assume that glass’s refractive
effect is negligible, while a more realistic physical model should
also consider the influence from glass thickness. The ghosting ef-
fect is linked to the refractive effect [27]. As illustrated in Figure 1
(third row), the light rays from background scenes are partially
reflected on the outside facet of the glass. Then, the remaining
rays penetrate the glass and are reflected again from the inside
facet of the glass [28]. Such ghosting effects caused by thick glass
make the observed image I be a mixture of B and the convolution
of R with a two-pulse ghosting kernel & = ad; + Bd2, where «
and [ are combination coefficients and J- is a spatial shift of 7.

Regional property. Caused by the absorption and reflectivity
effect, the regional property makes the reflection only dominate
limited regions. As shown in Figure 2, for the regions with
g(B) > f(R), the background may dominate the final captured
image. Inversely, for the regions with g(B) ~ f(R), the reflection
may become obvious in the final captured image [21]. Further-
more, if g(B) < f(R), the reflection may even dominate the final
captured image. Specifically, we call the reflections in the regions
with g(B) > f(R) and g(B) ~ f(R\) as transmitted reflections,
since the light rays from background objects can transmit through
these regions. Correspondingly, the reflections in the regions with
g(B) < f(R) are denoted as low-transmitted reflections.

3 A REFLECTION REMOVAL TAXONOMY

This section first presents the mathematical form of the layer
independence assumption. Then, we categorize existing meth-
ods hierarchically and intuitively. We first classify each method
according to the number of input images and then by different
constraints imposed for solving this problem.

3.1 Single-image methods

From Equation (1), the difficulties of this problem are mainly
from two parts - the number of unknowns is twice the number

3

of equations. Besides, the similarities between background and
reflection’s properties make it difficult to remove the reflection
and restore the background simultaneously.

Single-image methods mainly address the two difficulties
based on the independence assumption between the background
layer and the reflection layer [9] as follows:

P(B,R) = P1(B) - P»(R), ©)

where P is the joint probability distribution, and P; and P, are
the distributions imposed on B and R, respectively. Equation (3)
assumes that the properties of background and reflection layers
can be approximated by specific probability distributions and the
two distributions are mutually independent. Then, by imposing
different constraints and priors on B and R, different kinds of
methods are proposed.

3.1.1 Non-learning-based methods

The non-learning-based methods aim at modeling P; and P, by
using handcrafted priors and then solve Equation (3) based on
various mathematical tools. We summarize non-learning-based
methods in Table 1 and classify them based on the priors they
use.

Sharpness priors are motivated by the fact that reflection
and background layers may have different sharpness due to dif-
ferent DoF settings. The non-learning-based methods embed the
sharpness prior into their optimization process by utilizing the
natural image gradient with heavy-tailed distributions. The pioneer
method [9] imposes two same Laplacian mixture distributions
(P1 = P») on B and R to separate the two parts by manually
labeling their edges. Despite its effectiveness, its requirement for
manual annotations of background and reflection edges limits
its practicality. With more assumptions for background and re-
flection edges, the manually labeling process can be done more
automatically by the DoF difference [11] (WS16), the gradient
profile sharpness [52], [53], the total variation [29], and multi-
view images [54], [55].

However, as shown in Figure 1 (out-of-focus reflection), since
we are likely to focus on background objects when taking photos,
it is reasonable to assume that the background and reflection layers
in the final captured image have different sharpness levels. Since
the sharp background B and the blurred reflection R usually
have different shapes in the gradient domain [10], it becomes
inappropriate to impose the same distributions on B and R.. Some
methods [10], [30], [56] introduce a more robust statistical model
for background and reflection gradients by assuming P; # Ps.
P, is designed to model the gradient distribution of B with large
gradient values, so it drops slower than P» designed to model the
gradient distribution of R with small gradient values.

Gradient-based sharpness priors show promising results, espe-
cially in examples with inconsistent sharpness or blur levels. By
combing it with other specific priors, it can also be used to remove
reflection with special property (e.g., the repetitive pattern [28]
caused by the ghosting effect). Besides the non-learning-based
methods discussed above, it is also adopted by the deep-learning-
based methods [12], [13], [15], [35], [37], [39], [50], [57] to dif-
ferentiate reflection and background layers better. However, since
it cannot deal with more complex situations (e.g., the in-focus
reflection and the low-transmitted reflection in Figure 1), where
the reflection and background are with similar sharpness, more
specific priors are needed to remove the reflection with complex
properties. However, even for the methods using more specific
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TABLE 1: Summary of non-learning-based single-image reflectio

n removal methods. The third column denotes the methods or priors

that may inspire the method in the first column. “N.C.” means that the method in the first column proposes new strategies or scenarios,

which are Not Covered by previous methods.

Estimate B from I = aB + 8(R ® k) by using different assumptions on & and constraints on B and R
Notations: P(B,R) = P1(B) - P2(R), where P; and P> are the priors enforced on B and R, respectively
Method Gradient Related to Key Assumptions
AYO07 [9] Not used N.C. P; = P», user assistance to label the edges of B and R
CCO09 [29] Used AYO07 [9] P = P, blur differences to label the edges of B and R automatically
LB14 [10] Used N.C. P, # P, different gradient priors to describe to describe P; and Pa
SK15 [1] Not used N.C. Py # P», Py is described by the ghosting priors
WS16 [11] Used AYO07 [9] P1 = P», blur differences to label the edges of B and R automatically
NR17 [30] Used LB14 [10] P; # Ps, remove reflection in Laplacian domain
WS17 [31] Used N.C. P1 = P», estimate B by using the information from the reference image
WSI18 [32] Used WS17 [31] P # P», estimate B by using the regional property and self-similarity inside the image
YW19 [33] Used LB14 [10], NR17 [30] P # P, a partial differential equation with gradient thresholding
HQ20 [28] Used SK15 [1] P # P», a wavelet-transform-based regularization to distinguish repetitive patterns

TABLE 2: Summary of deep-learning-based reflection removal methods. “T-data” and “E-data” denote the training and evaluation
datasets, respectively. For “T-data” column, “S”, “Half-S”, and “Mixed” denote “Synthetic data”, “Half-synthetic data”, and “Mixed
data”, respectively. The second column denotes the methods or priors that may inspire the method in the first column. “N.C.” means
that the method in the first column proposes new strategies or scenarios, which are Not Covered by previous methods.

Estimate B from I = aB + S(R ® k) by using the data-driven methods
Notations: P(B,R) = P1(B) - P2(R), where P; and P are all leaned by the convolutional neural network.
[ Single-image methods |
Method Related to T- E-data Key Assumptions
data
CNI17 [34] AYO07 [9] S Net images Supervised] CNN to label edges and then a non-learning way to remove reflection
CEILNet [12] AYO07 [9] S Net images Supervised| A two-stage CNN framework under the supervision of edges
LY18 [35] CycleGAN [36] S Net images Weakly-Supervised| The categories of B and R are known
CRRN [37] AYO07 [9] Half-S SIR? Supervised| A concurrent CNN framework under the guidance of gradients
ZN18 [38] GP Mixed Real20 Supervised| Estimate B based on the adversarial framework
CoRRN [13] CRRN [37] Half-S SIR? Supervised| Explore the higher order statistics to differentiate B and R
ERRNet [14] N.C. Mixed SIR?, Real20 Supervised| Use the high level features to handle the pixel misalignment
MW19 [39] CycleGAN [36]| Half-S SIR? Weakly-Supervised| A joint model to generate and separate reflection
SIRRBL [40] N.C. S SIR? Supervised| A learning-based strategy to synthesize mixture image
CR19 [41] FY20 [42] Half-S Real Text images Supervised| A specific model for text image by embedding the text priors
KH19 [43] N.C. S SIR?, Real 100 Supervised| A physically based rendering to synthesize the training images
LL19 [44] N.C. S SIRZ, Real20 Supervised| A high-level semantic guided framework
IBCLN [19] RNN S SIRZ, Nature Supervised| LSTM network to iteratively refine the reflection removal process
CL21 [45] GP S SIRZ, Real20 Supervised| Reflection classifier to distinguish R from B
RAGNet [46] IBCLN [19] S SIRZ, Real20, Nature Supervised| R-aware guidance to distinguish the R-dominated regions
7X20 [47] IBCLN [19] S SIRZ, Real20, Net45 Supervised| R-aware framework to distinguish the R-dominated regions
7521 [48] N.C. S SIRZ, Nature Supervised| A two-step solution that considers the absorption effect
HZ21 [49] N.C. S Natural Supervised| Utilize panoramic images with auxiliary contextual cues of R
Multiple-image methods
FY20 [42] N.C. S SIR? Unsupervised| Two images with same B and different R as the input
FIRR [2] N.C. Half-S Real face images Supervised| A specific model for face images by embedding the facial priors
LL20 [50] XR15[16] S Real sequences [50] Supervised| Estimate the motion flow field based on deep neural network
OF21 [51] N.C. Mixed Reall57 Supervised| Guided by an image taken in a dark room with only a flash on

priors, the gradient-based sharpness prior is still considered by
many methods as a complementary constraint to improve the
model robustness.

Semantic priors focus on the restoration of missing con-
tents [31], instead of simply separating B and R. Along this
direction, by modeling P; and P, in Equation (3) using more
discriminative priors, various frameworks are proposed, includ-
ing the GMM patch prior [1] (SK15), sparsity-based frame-
work [31] (WS17), and region-aware framework with non-local
priors [32] (WS18). For example, WS18 [32] adopts the non-local
image prior to better approximate the background statistics P;
in Equation (3) and a complementary gradient prior to model the
reflection statistics P, respectively. The non-local prior borrows
information from regions surrounding the reflection to recover the
missing background.

Compared with sharpness priors, semantic priors are more
effective in removing the reflection with similar gradient prop-
erties to the background. For example, SK15 [1] is claimed to
be effective for the reflection with ghosting effects. WS17 [31]
and WS18 [32] can handle all situations shown in Figure 1 if the
clean patches with similar contents can be found. However, the
methods using semantic priors are mainly patch-based. Instead of
regarding the input image as a whole, they divide the whole image
into several patches and process them one by one. This strategy
is computationally expensive and causes additional artifacts in the
final result.

3.1.2 Deep-learning-based methods

Deep learning techniques are employed by recent methods to
model reflection properties more comprehensively. Despite the
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TABLE 3: Summary of motion-based reflection removal methods.

[ Estimate B from {I; = «;B; + 8;(R; ® ki) }i=1...n, where n denotes the number of input images ]

Method Motion estimation Key Assumptions
GS12 [58] Affine Estimate the motions and mixing coefficients of each layer
LB13 [55], SL16 [54], SC15 [59] SIFT flow Use multiple images to label the edges of B and R
GC14 [60] Homography Low rank property to remove R from aligned B
XR15 [16] Pixel-wise flow Same gradient priors to describe P; and P»
YL16 [61] Optical flow A double-layer brightness consistency assumption to constrain B and R
HS18 [62] Co-saliency Low-rank matrix completion to remove reflections from aligned images
AB19 [63] Defocus-disparity The defocus-disparity cues to align image pairs captured by a dual-pixel sensor
ACI19 [64] N.C. 3D CNN to capture appearance and motion patterns
FY20 [42] N.C. Two images with same B and different R to learn the background property
FIRR [2] Optical flow A specific model for face images by embedding facial priors
LL20 [50] Dense optical flow Estimate the motion flow field based on deep neural network

effectiveness of sharpness priors and semantic priors, they are
often violated in real-world scenarios since they only describe
a limited range of reflection and background properties and may
project the partial observation as the whole truth. For example, the
performance of SK15 [1] largely drops if the ghosting effect is
not observed, and LB14 [10] has difficulties in removing the in-
focus reflection. Actually, in real-world scenarios, the situations
in Figure 1 and more complex situations (e.g., R in focus and B
not in focus) may all exist in one image. Thus, it is inappropriate
to cover all possibilities by using one or two specific priors. As
advanced learning techniques, deep learning techniques can learn
P; and P; in a data-driven manner, which improves modeling
ability.

Low-level-based methods embed low-level image features
into deep learning networks by finding optimal solutions from
the image formation process and its resulted physical properties.
One category continues to leverage advantages from the gradient
difference between B and R by using the gradient information
as the auxiliary features during the network inference process
(e.g., CEILNet [12], CRRN [37], CoRRN [13], and WM19 [39])
or measuring the feature difference in the gradient domain [15],
[81]. Some recent methods try to jump out from the constraints
of the gradient prior. For example, by considering the absorption
effect, ZS21 [48] proposes a two-step solution by first estimating
the absorption effect from a mixture image and then taking the
mixture image and its corresponding absorption effect as the input
for the second stage.

High-level-based methods utilize high-level computer vision
to refine reflection removal results. It is important for the meth-
ods with the requirement for the accuracy of recovered results.
For example, the reflection removal model for face images [2]
utilizes the features estimated by the face recognition model to
keep face identity consistency between the estimated result and
its corresponding reference. The text image reflection removal
method [41] also makes use of the text recognition model to
achieve a similar goal. Besides the models for specific purposes,
some recently proposed methods (e.g., [44]) also utilize the
semantic information estimated by the segmentation network to
ameliorate the performance. CL21 [45] further utilizes the image
classifier to differentiate the background and reflection. Besides,
some methods also estimate the background by relying on data-
driven features. For example, ERRNet [14], ZN18 [15], and
Chi et al. [82] all embed the features from the pre-trained VGG
model [83] into the whole estimation process. Hong et al. [49]
relieve the content ambiguity problem in reflection removal by
utilizing panoramic images containing auxiliary contextual cues

of reflection scenes.

Region-aware methods address the difficulties by consid-
ering the regional property. To avoid the potential degradation
to non-reflection areas, region-aware methods restrict reflection
removal to be effective in reflection-dominated areas. The ear-
lier method [32] localizes reflection-dominated regions by using
the gradient differences between B and R. To complement the
limitations of handcrafted features, the recent methods [46], [47]
localize reflection-dominated regions using the recurrent neural
network.

From Table 2, deep-learning-based methods can also be clas-
sified by their training strategy. The majority of deep-learning-
based methods solve this problem in a supervised manner (e.g.,
CEILNet [12], CRRN [37], CoRRN [13], ZN18 [15], YDI8 [84],
and CR19 [41]), which requires a massive number of paired
samples as training data. Due to the difficulty in obtaining enough
paired images from the real world, most methods use synthetic
images for training, while it again causes the domain gap problem,
which leads to performance degradation on unseen examples. To
complement the limitation of synthetic data, ERRNet [14] train the
supervised scheme by measuring the difference of unaligned real-
world training pairs in the feature domain. Recent methods lever-
age advantages from image translation [36] to recover the back-
ground based on the weakly supervised framework [35], [39], and
the unsupervised framework [42]. The weakly supervised frame-
works in [35], [39] leverage advantages from CycleGAN [36] to
estimate the background B without the requirement for paired
training data. Due to the ill-posed nature of reflection removal,
the unsupervised framework in [42] relies on the reflection motion
difference between two images with the same B but different R
for their separation.

3.1.3 Strategy for training data generation

For deep-learning-based methods, the training dataset plays a vital
role in network training. We discuss each strategy for training data
generation in this section and summarize them in Table 2.

Synthetic strategy. The synthetic strategy aims at synthesizing
a mixture image by adding a background image and a reflection
image. Based on Equation (2), earlier non-learning-based methods
(e.g., LB14 [10]) directly utilize images from public datasets
(e.g., COCO [85]) by adding some blurring effects to reflection
images. This simple strategy has obvious limitations. For example,
it lacks consideration for the regional property. To address this
issue, instead of simply adding two images, the CLIP method
proposed in CEILNet [12] subtracts a value from the mixture
image to simulate the reflection layers’ regional property. The
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CLIP method [12] is used by CEILNet [12], ZN18 [15], ERR-
Net [14], FY20 [42], and IBCLN [19]. Besides, instead of only
considering the regional property, the recently proposed rendering-
based strategy [43] renders four different images by considering
the glass-effect and lens-effect.

Though the synthetic strategy shows promising results, it
is still difficult to cover all complicated real-world scenarios.
Besides, its blurring effect for different reflection images mainly
comes from fixed parameters, leading to over-fitting issues.
Half-synthetic strategy. Instead of solely relying on two images
without relationship to the “capturing-though-glass” process, the
half-synthetic strategy uses the real-world reflection images cap-
tured by putting a black sheet of paper behind glass. Since the
reflection images are all from the real world, they cover almost all
reflection properties. Such coverage helps overcome the domain
gap caused by the synthetic strategy. However, the linear additive
relationship used to add background and real reflection images still
leads to the domain gap problem since it cannot model the non-
linear relationship of light rays received by the camera sensor. The
half-synthetic strategy is considered by CRRN [37], CoRRN [13],
MW19 [39], CR19 [41], and FIRR [2].

Learning-based strategy. Instead of using fixed weighting coef-
ficients, the learning-based strategy proposed in [43] synthesizes
mixture images using deep networks. By considering the non-
linear relationship between B and R, the learning-based synthetic
strategy can add two images with spatially varying weighting
coefficients estimated by deep networks.

Mixed strategy. The mixed strategy utilizes real and synthetic
images as training data. The real images from the real world help
alleviate the domain gap issues. The challenge for its utilization
mainly comes from the curse of the refractive effect discussed
in Section 2.1. Since the pixel shifts caused by the refractive
effect may lead to artifacts during the training process, real images
cannot be directly used to train the network. Some methods
alleviate this issue by using the perceptual loss [14] or training
the network in a weakly supervised manner [39]. This strategy is
considered by ERRNet [14], ZN18 [15], and MW 19 [39].

3.2 Multiple-image methods

The multiple-image methods adopt more than one image as
the input. The images are taken with different conditions (e.g.,
illuminations, viewpoints, different focuses, or varied polarizer
angles). Due to more available information, the limitations that
exist in single-image methods are partially solved. We summarize
existing motion-based multiple-image methods in Table 3.

The first category of multiple-image methods exploits the mo-
tion cues between the background and reflection using at least two
images of the same scene from different viewpoints. Assuming
glass is closer to the camera, the projected motion of the back-
ground and reflection is different due to the visual parallax. The
motion of each layer can be represented using parametric models,
such as the translative motion [86], the affine transformation [58]
and the homography [60]. In contrast to the fixed parametric
motion, the dense motion field provides more general modeling
of layer motions represented by per-pixel motion vectors. Existing
reflection removal methods estimate the dense motion field for
each layer using optical flow [61], [87], SIFT flow [54], [55],
[59], the pixel-wise flow field [16] and co-saliency [62]. Recently,
there are also methods [2] using FlowNet [88] to estimate the
motion relationship between different input images. For the image
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sequence from a video clip, AC19 [64] models the appearance
and motion patterns among different frames by using 3D CNN.
Besides, the recent method [50] also utilizes a deep network to
estimate the dense optical flow.

The second category of multiple-image methods can be repre-
sented as a linear combination of the background and reflection:
The i-th image is represented as I, = «a;B; + 5;(R; ® k),
where weighting coefficients «; and (; can be estimated by
taking a sequence of images using special devices or in different
environments, e.g., by rotating the polarizer [6], [7], [8], [69], [70],
[71], [72], [73], repetitive dynamic behaviors [74], and different
illuminations [75].

The third category of multiple-image methods takes a set of
images under special conditions and camera settings, such as using
flash and non-flash images [76], [77], [78], different focuses [79],
light field camera [65], [66], [67], [68], images captured by dual-
pixel sensors [63], and two images taken by the front and back
camera of a mobile phone [80]. The recently proposed method [51]
solves this problem by using a pair of images with a normal image
and a flash-only image taken in a dark environment with only a
flash on.

Due to the additional information from multiple images, the
problem becomes less ill-posed or even well-posed. However,
special data capture requirements (e.g., observing different layer
motions or using polarizers) limit such methods for practical use,
especially for mobile devices or images downloaded from the
Internet.

3.3

As discussed in Section 2, the meanings of I, B, and R differ
depending on context. The relationship among the three param-
eters can either be defined by looking at from the images after
camera ISP (nonlinear w.r.t. scene radiance) or raw images (linear
w.r.t. scene radiance) that record irradiance received by the sensor
(e.g., works [71], [89] following [5]). Among the latter category,
the two methods proposed by Lei et al. [51], [73] further explore
the physical and linear relationship using the RAW data. They
also introduce a new dataset [90] with the consideration for
RAW images. The two categories are all reasonable under specific
context. Obviously, if the three parameters are defined as the
irradiance, the RAW data can avoid the influence from camera
ISP. Based on our surveys, the polarizer-based methods [6], [7],
[8], [69], [70], [71], [72], [73] denote I, B, and R as “irradiance”
to better discuss the influences caused by the polarizer, while
almost all other methods denote the three parameters as “image”
or “layer”.

Image vs. Irradiance

4 BENCHMARK DATASET

To investigate the image formation process and the performance
of existing methods, we extend our previous SIR? to SIR?T . We
summarize the three parts of SIR?* in Table 4.

4.1 Indoor dataset

The indoor dataset is purposely designed to include common
priors with organized parameters for the thorough evaluations
of state-of-the-art methods (e.g. [1], [9], [10], [11]). The images
inside are captured using a Nikon D5300 camera with a 300 mm
lens. For the indoor dataset, we use three steps to capture a triplet
of images: 1) The mixture image captured through glass; 2) the
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TABLE 4: Details of the proposed dataset. “Original res.” denotes
the original image resolution. “Resized res.” denotes the image
resolution for experiments. TIN denotes the number of total
images. SN denotes the number of scenes.

Original res. | Resized res. TIN SN

Outdoor 540 x 400 224 x 288 300 100
Indoor 540 x 400 224 x 288 1200 40
In-the-wild 540 x 400 224 x 288 200 100

ground truth of R by putting a sheet of black cloth behind glass;
and 3) the ground truth of B by removing glass. The indoor dataset
contains 40 indoor scenes composed of solid objects (20 scenes)
and postcards (20 scenes) with 1200 images in total. 20 scenes
among the indoor dataset are composed of a set of solid objects.
We use commonly available daily-life objects (e.g., ceramic mugs,
plush toys, fruits, etc.) for both background and reflection scenes.
Another 20 scenes of the indoor dataset use different postcards as
the background and reflection scenes. The indoor dataset mainly
explores the influence of the in-focus reflection, the out-of-focus
reflection, and the ghosting effect by considering the following
aspects:

Camera DoF. We use seven different aperture sizes {Fll, F13,
F16, F19, F22, F27, F32} to create various DoFs for our data
capture and choose seven different exposure time {1/3s, 1/2s,
1/1.5s, 1s, 1.5s, 25, 3s} corresponding to the seven aperture
settings to make the brightness of each picture approximately
constant. We denote such variation as “F-variance” for short and
keep using the same glass with 5 mm thickness when varying
DoF. The “F-Variance” mainly influences reflection blur levels.
The reflection layers taken under F32 are the sharpest, and the
reflection layers taken under F11 have the greatest blur.

Glass thickness. To explore how different glass thickness affects
the effectiveness of existing methods, we place three different
glass with the thickness of {3mm, 5mm, 10mm} (denoted as
{T3, T5, T10} and “T-variance” for short thereafter) one by
one during the data capture under a fixed aperture size F32 and
exposure time 3 s. The reflections taken with T10 and T3 show the
largest and smallest spatial shift, respectively.

4.2 Outdoor dataset

For the outdoor dataset, we bring our setup out of the lab to
capture images with real-world objects of complicated reflectance
(car, tree leaves, glass windows, efc.), various distances and scales
(residential halls, gardens, and lecture rooms, etc.), and different
illuminations (direct sunlight, cloudy skylight, and twilight, ezc.).
The outdoor dataset contains 100 image triplets with 300 images.
To better investigate the influence of the properties and effects dis-
cussed in Section 2.1, we categorize examples into four categories
as: in-focus reflection (35), out-of-focus reflection (62), ghosting
effect (16), and low-transmitted reflection (23)!.

4.3

The in-the-wild dataset is proposed to cover more diverse prop-
erties resulted from real-world scenarios (e.g., the glass color
and curvatures). The glass in this dataset could be from various
scenarios (e.g., showcase, window, or windshield), which facilitate

In-the-wild dataset

1. Due to each category’s overlap, the total number of image triplets in all
categories does not equal the number of image triplets in this dataset.
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the evaluation for different algorithms under purely wild scenarios.
Due to the special environment, the in-the-wild dataset contains
more examples captured through tinted glass. From the examples
shown in Figure 2, the blue and light gray glass changes the
property of the light rays from background scenes. The in-the-wild
dataset contains 100 image pairs with 200 images. We categorize
examples into four categories: In-focus reflection (26), out-of-
focus reflection (58), low-transmitted reflection (16), and tinted
glass (55).

4.4 Differences between SIR?t and other datasets

One recent work [90] also proposes a new large-scale dataset,
which specifically considers the RAW data. Besides, we both
feel it is essential to address the influence of tinted and curved
glass. However, the categorization for different glass thickness
and reflection types in SIR?T can also help find the bottleneck of
mainstream methods under specific settings. On the other hand,
our dataset also contains the images captured through obscure
glass.

5 EXPERIMENTS

In this section, we use the SIR2T dataset to evaluate repre-
sentative single-image reflection removal algorithms, LB14 [10],
WS16 [11], NR17 [30], CEILNet [12], CoRRN [13], ZN18 [15],
YDI8 [84], YW19 [33], ERRNet [14], and IBCLN [19] for both
quantitative accuracy (w.r.t. to the ground truth) and visual quality.

For each non-learning-based method, we use their original
codes. Since almost all deep-learning-based methods have used
SIR? dataset in their experiments, we first test their performance
on the indoor and outdoor datasets inherited from SIRZ [17].
Then, we evaluate their cross-dataset performance by testing their
released models on the in-the-wild dataset. Finally, we also fine-
tune their models using new images to evaluate different strategies
for training data generation. To investigate the damage to non-
reflection regions, we use the error metric values between the
mixture image and the ground truth image as the baseline similar
to previous settings [13], [32]. The evaluation images are all
resized to 224 x 288. We show the execution time for this image
size of each method in Table 6.

5.1 Error metrics

We consider the perceptual similarity as the complement to PSNR,
which cannot faithfully measure the similarity of two images in a
way that coincides with human judgment [18].

We first adopt the perceptually-motivated error metric
SSIM [91], which evaluates the similarity of two images from
the luminance, contrast, and structure components. By consid-
ering the structure distortion for the image assessment, SSIM
models the human visual system with high sensitivity to structure
distortion [92], [93]. On the other hand, we also use Structure
Index (SI) [13], [32] to focus more on the structural similarity by
removing the components for luminance and contrast in SSIM.
Besides, we further adopt LPIPS [18], which better models the
humane judgement by extracting the features from the pre-trained
image classification network.

Moreover, due to the regional property of the reflection, SSIM
designed for the whole image plane may not reflect the perfor-
mance of reflection removal unbiasedly on local regions. We,
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TABLE 5: Summary for existing reflection removal datasets. The following properties are considered: the image are captured manually
or downloaded from the Internet (Source); whether the dataset has the background ground truth (Background GT) and Reflection GT or
not; whether the dataset considers regular factors and tinted glass or not; the dataset is designed for single- or multiple-image methods;
the number of image sets (Image set) and the total number of images (Image number). Regular factors in this place mean the gradually
changing settings for the image capture (e.g., the glass with different thickness).

Source Backgound GT | Reflection GT | Regular factors Tinted glass Single/Multiple| Image set | Image number
Seql2 [10] Captured X X X X Multiple 12 55
Seq2 [16] Captured v v X X Multiple 2 14
Real20 [15] | Captured v X X X Single 109 218
Net45 [14] Internet X X X X Single 45 45
SIR? [17] Captured v v v X Single 500 1500
Seql62 [63] | Captured v X X X Multiple 162 636
Face90 [2] Captured X X X X Multiple 90 180
Nature [19] | Captured X X X X Multiple 200 400
Reall00 [43] | Captured v X X X Single 100 200
CDR [90] Captured v v X v Single 1063 3189
P&N [49] Captured v v X X Single 40 80
SIR2+ [17] | Captured v v v v Single 600 1700

Ground truth

Input image

ERRNet

PSNR: 25. 87 PSNR: 25.21 PSNR: 17.05 PSNR: 27.35 PSNR: 24.68 PSNR: 20.48
¥ = i — | | i 8

PSNR: 24.49 PSNR: 21.27 PSNR: 25.27 PSNR: 27.94 PSNR: 22.67

R

PSNR: 23.68 PSNR: 2ll.80 PSNR: 23.80 PSNR: 24.88 PSNR: 23.99 PSNR: 21.01
L]

Out-of-focus

n
1

Ghosting effect

PSNR: 27.25 PSNR: 26.95 PSNR: 25.75 PSNR: 30.76 PSNR: 30.22 PSNR: 23.11
]
g &l
% PSNR: 21.87 PSNR: 22.00 PSNR: 23 48 PSNR: 22.73 PSNR 22.98 PSNR: 11.37
g. - - - - - -.
4

PSNR: 19.99 PSNR: 19.54 PSNR: 28.74 PSNR: 18.36 PSNR: 23.65 PSNR: 20.73

Fig. 3: Examples from the outdoor dataset with four types of reflections. We show the results obtained by NR17 [30], YW19 [33],
CoRRN [13], ZN18 [15], ERRNet [14], and IBCLN [19]. We adjust the contrast of the result obtained by IBCLN [19] in low-transmitted
reflection (fifth row) to show the dark-hole effect lablled by blue box in this case.

therefore, adopt the regional SSIM, denoted as SSIM,., to com- 5.2 Evaluations on the outdoor dataset
plement the limitations of SSIM. We manually label reflection-  w eyajyate the overall performance on the outdoor dataset using

d,o rr}lnated reglons and evaluate SSIM values at these regions ho error metrics above and show their quantitative performance
similar to previous methods [13], [32]. At last, we also adopt in Table 6

LMSE and NCC as error metrics for reference. From the overall performance in Table 6, deep-learning-based
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TABLE 6: The average error metric values on the outdoor and in-the-wild dataset. The execution speed on an image with size 224 x 288
is shown next to each method in the first column. 1" and | denote the higher and lower values are better, respectively.

Outdoor dataset In-the-wild dataset
SSIMT | SIT SSIM,-f| LPIPS]] PSNRf| NCCt| LMSE]}| SSIM?T | SIt SSIM,-f| LPIPS]] PSNR1| NCC?T| LMSE/

Baseline 0.895 | 0.923| 0.815 0.089 | 2449 | 0.930 | 0.187 0.799 | 0.864| 0.750 0.162 | 19.13 | 0.891 | 0.285

LB14 [10] (1.112s) 0.877 | 0.946| 0.838 0.111 | 21.14 | 0913 | 0.213 0.687 | 0.856| 0.659 0.203 1490 | 0.873 | 0.325
WSI16 [11] (7.012) 0.901 0.938| 0.859 0.095 | 23.49 | 0.906 | 0.222 0.775 | 0.851| 0.745 0.192 | 18.12 | 0.847 | 0.351
NR17 [30] (29.539s) 0.858 | 0.894| 0.844 0.093 | 23.80 | 0.934 | 0.160 0.785 | 0.852| 0.749 0.178 | 18.99 | 0.886 | 0.294
YW19 [33] (0.129s) 0.877 | 0.922| 0.846 0.096 | 22.34 | 0.899 | 0.221 0.780 | 0.859| 0.750 0.177 | 17.83 | 0.843 | 0.365
CoRRN [13] (0.024s) 0.902 | 0.929| 0.878 0.071 24.59 | 0.947 | 0.126 0.741 0.861| 0.715 0.175 15.57 | 0.892 | 0.280
ZN18 [15] (0.288s) 0.883 | 0.926| 0.834 0.093 | 2345 | 0.935 | 0.149 0.758 | 0.860| 0.722 0.178 | 17.09 | 0.876 | 0.313
YD18 [84] (0.018s) 0.871 0.924| 0.849 0.094 | 21.01 | 0.941 | 0.243 0.757 | 0.863| 0.721 0.185 17.82 | 0.872 | 0.443
ERRNet [14] (3.179s) 0.895 | 0.922| 0.832 0.085 | 25.18 | 0.935 | 0.188 0.764 | 0.862| 0.727 0.164 | 18.11 | 0.899 | 0.248
SIRRBL [40] (0.013s) | 0.830 | 0.867| 0.768 0.161 | 20.85 | 0.883 | 0.275 0.746 | 0.826| 0.707 0.219 | 17.43 | 0.851 | 0.358
IBCLN [19] (1.692s) 0.896 | 0.918| 0.823 0.086 | 24.33 | 0.940 | 0.940 0.784 | 0.858| 0.739 0.168 | 18.846| 0.87 0.348

TABLE 7: Benchmark results using indoor dataset with F-variance and T-variance. The light blue and gray rows indicate non-learning-
based methods and deep-learning-based methods, respectively.

Fovar SSIM 1 SIt SSIM, 1 LPIPS] PSNRT NCCT LMSE/

FI11 | F32 | FIl | F32 | FIl | F32 | FIl | F32 | FIl F32 FI1 | F32 | FIl F32
Baseline 0.884| 0.867| 0.917| 0.898| 0.837| 0.811] 0.111] 0.136] 21.966 | 22.155 | 0.959 | 0.958| 0.101 | 0.101
LB14[10] | 0.832] 0.812] 0.907| 0.883| 0.815| 0.783] 0.135| 0.161| 17.604 | 18.029 | 0.953 | 0.951| 0.116 | 0.115
SKI5[1] | 0.820| 0.811| 0.867| 0.857| 0.803| 0.808| 0.190| 0.199| 19.177 | 19.458 | 0.867 | 0.874| 0.231 | 0.218
WS16 [11] | 0.869] 0.840| 0.916] 0.891| 0.837| 0.819] 0.121| 0.146| 20.988 | 21.106 | 0.952 | 0.949] 0.110 | 0.115
NR17 [30] | 0.863| 0.844| 0.902| 0.880| 0.843| 0.810] 0.112| 0.142] 21.426 | 21.578 | 0.960 | 0.957| 0.107 | 0.109
YW19 [33] | 0.873| 0.859] 0.910] 0.894| 0.858| 0.832] 0.111] 0.137| 21.173 | 21.330 | 0.953 | 0.948| 0.113 | 0.118
CoRRN [13] | 0.909| 0.888] 0.933] 0.912] 0.891| 0.854| 0.085| 0.107| 21.064 | 21.230 | 0.973 | 0.968| 0.080 | 0.088
ZNI8 [15] | 0.882] 0.853| 0.922| 0.897| 0.866| 0.819] 0.124| 0.162] 19.937 | 19.518 | 0.965 | 0.963| 0.083 | 0.085
YDI8 [84] | 0.893| 0.876] 0.917| 0.902| 0.865| 0.840| 0.105| 0.122] 21.872 | 21.900 | 0.958 | 0.958| 0.117 | 0.123
ERRNet [14] | 0.904| 0.874| 0.925| 0.890| 0.864| 0.815| 0.100| 0.133| 23.453 | 23.078 | 0.961 | 0.955| 0.085 | 0.100
SIRRBL [40] | 0.813| 0.793| 0.848| 0.828| 0.771| 0.743| 0.206| 0.229| 18.857 | 18.849 | 0.889 | 0.886| 0.219 | 0.227
IBCLN [19] | 0.902] 0.879] 0.922] 0.908| 0.898| 0.865| 0.115| 0.127| 23.162 | 22.962 | 0.970 | 0.964| 0.067 | 0.079
Tvar SSIM + SIf SSIM,+ LPIPS] PSNRT NCCt LMSE]

T3 | TI0 | T3 | Tl0 | T3 | Tl0 | T3 | TI0 | T3 T10 T3 | T10 | T3 T10
Baseline 0.868| 0.869] 0.898| 0.899| 0.816] 0.819| 0.138| 0.134| 22.143 | 22.160 | 0.956 | 0.956| 0.104 | 0.103
LB14[10] | 0.811] 0.812| 0.882] 0.884| 0.783| 0.782] 0.177| 0.168| 17.737 | 18.000 | 0.949 | 0.948| 0.121 | 0.123
SK15[1] | 0.803] 0.815| 0.849] 0.862| 0.781] 0.793| 0.204| 0.193| 19.368 | 19.648 | 0.860 | 0.873| 0.236 | 0.219
WS16 [11] | 0.842] 0.854| 0.889| 0.880| 0.820| 0.824| 0.149| 0.144| 21.045 | 21.061 | 0.947 | 0.947| 0.118 | 0.117
NR17 [30] | 0.845| 0.847| 0.880| 0.881| 0.813| 0.816] 0.144| 0.141| 21.584 | 21.560 | 0.955 | 0.955| 0.112 | 0.112
YW19 [33] | 0.884| 0.860| 0.893| 0.895| 0.832| 0.834] 0.140| 0.137| 21.283 | 21.260 | 0.947 | 0.948] 0.120 | 0.119
CoRRN [13] | 0.890| 0.892] 0.915| 0.903| 0.864| 0.864| 0.108| 0.105| 21.273 | 21.318 | 0.966 | 0.965| 0.089 | 0.091
ZNI8 [15] | 0.853] 0.884| 0.893] 0.897| 0.821| 0.820] 0.162 0.158| 19.490 | 19.741 | 0.962 | 0.964| 0.086 | 0.081
YDI8 [84] | 0.897| 0.875| 0.903| 0.902| 0.845| 0.841| 0.123| 0.123| 21.841 | 21.909 | 0.957 | 0.960| 0.125 | 0.120
ERRNet [14] | 0.874| 0.873| 0.881] 0.889| 0.821| 0.822] 0.134| 0.134| 23.140 | 23.132 | 0.956 | 0.955| 0.098 | 0.102
SIRRBL [40] | 0.796] 0.793| 0.829] 0.827] 0.752] 0.751| 0.138| 0.134| 18.848 | 18.932 | 0.884 | 0.889| 0.234 | 0.224
IBCLN [19] | 0.878] 0.879] 0.885| 0.900| 0.898| 0.835| 0.123| 0.120| 22.868 | 23.149 | 0.961 | 0.963| 0.085 | 0.081

methods achieve more promising results than non-learning-based
methods since the handcrafted prior cannot describe the compli-
cated properties of outdoor scenes (e.g., non-uniform reflection
blur levels). Moreover, since almost all methods achieve lower
values than the baseline performance, they may cause damage to
non-reflection regions.

From the comparison in Table 8, the increasing reflection
intensity or decreasing reflection blur level leads to worse per-
formance. For example, almost all methods achieve better results
on out-of-focus reflections than that on both in-focus and low-
transmitted reflections. It can also be observed from Figure 3,
where the out-of-focus reflection is more effectively removed.
Besides, the low-transmitted reflection also poses challenges for
each method, since SSIM,. values for this type are obviously
lower than the values for other types in Table 8 and it also

cannot be effectively removed from the results in Figure 3. Though
IBCLN [19] successfully removes a part of the low-transmitted
reflection, it fails to recover the background and leads to the dark-
hole effects in Figure 3. Finally, though each method achieves
the best results on examples with ghosting effects in Table 8, it
is partly because the examples with ghosting effects are mainly
with small intensity. From the fourth row in Figure 3, the ghosting
effects do not benefit the reflection removal process. Most methods
effectively remove the out-of-focus reflection but fail to remove
the reflection with the ghosting effect (labeled by the green box).

5.3 Evaluations for generalization ability

From discussions in Section 5.2, the performance of each method
tends to decline as the reflection becomes sharp. To better in-
vestigate the generalization ability of each method to different
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TABLE 8: The overall evaluations for the categorized outdoor dataset. The light blue and gray rows indicate non-learning-based

methods and deep-learning-based methods, respectively. 1 and | denote the higher and lower values are better, respectively.

In-focus reflection Out-of-focus reflection
SSIM1 | SSIM, 1| LPIPS] | PSNRT | NCCt | LMSE] | SIt SSIM1 | SSIM,-1| LPIPS| | PSNR{| NCCt LMSE] | SIT
Baseline 0.878 0.777 0.119 23964 | 0919 0.246 0.904| 0.908 0.838 0.076 24947 | 0.945 0.136 0.937
LB14 [10] 0.819 0.768 0.130 20.721 | 0.909 0.226 0.903| 0.843 0.814 0.099 21418 | 0934 0.169 0.933
WS16 [11] 0.880 0.816 0.113 23.584 | 0917 0.243 0.913| 0.894 0.857 0.084 23.598 | 0.902 0.206 0.934
NR17 [30] 0.868 0.809 0.116 23346 | 0917 0.221 0.901| 0.897 0.872 0.079 24203 | 0.947 0.120 0.932
YWI19 [33] 0.860 0.804 0.119 22.263 | 0.901 0.245 0.901| 0.889 0.868 0.082 22485 | 0.899 0.207 0.932
CoRRN [13] | 0.884 0.836 0.093 23.218 | 0.934 0.168 0.911| 0.913 0.900 0.059 25415 | 0.956 0.102 0.941
ZNI18 [15] 0.868 0.801 0.115 22.672 | 0918 0.185 0.909| 0.894 0.851 0.079 23.950 | 0.948 0.125 0.937
YD18 [84] 0.855 0.813 0.115 21.205 | 0.931 0.276 0.908| 0.884 0.870 0.080 21.090 | 0.949 0.219 0.936
ERRNet [14] | 0.871 0.783 0.114 24.268 | 0.909 0.296 0.901| 0.913 0.861 0.068 25.817 | 0.953 0.124 0.938
SIRRBL [40]| 0.810 0.714 0.182 20.351 | 0.870 0.297 0.847| 0.847 0.797 0.147 21.290 | 0.893 0.255 0.883
IBCLN [19] | 0.875 0.785 0.113 23.666 | 0.923 0.220 0.899| 0911 0.844 0.071 24.853 | 0.952 0.128 0.933
Ghosting effect Low-transmitted reflection
SSIM1 | SSIM, 1| LPIPS] | PSNRT | NCCt | LMSE] | SIt SSIM1 | SSIM,-1| LPIPS| | PSNR{| NCCt LMSE] | SIT

Baseline 0.919 0.862 0.078 25.305 | 0.940 0.141 0.936| 0.860 0.724 0.122 24.096 | 0.867 0.285 0.862
LB14 [10] 0.864 0.838 0.078 21.358 | 0.930 0.165 0.938| 0.791 0.721 0.154 21.671 | 0.856 0.255 0.864
WS16 [11] 0.913 0.902 0.079 24.036 | 0.886 0.225 0.941| 0.864 0.775 0.136 24.007 | 0.863 0.298 0.872
NR17 [30] 0.905 0.900 0.085 24.106 | 0.936 0.145 0.928| 0.856 0.777 0.132 23.756 | 0.866 0.248 0.869
YWI19 [33] 0.893 0.898 0.089 22.365 | 0.859 0.271 0.928| 0.847 0.774 0.139 22.576 | 0.847 0.284 0.869
CoRRN [13] | 0.900 0.901 0.074 25.000 | 0.931 0.162 0.932| 0.868 0.815 0.110 23.957 | 0.883 0.190 0.873
ZN18 [15] 0.879 0.834 0.099 23.048 | 0914 0.202 0.926| 0.864 0.773 0.128 23.665 | 0.873 0.194 0.873
YD18 [84] 0.904 0.895 0.083 20.892 | 0.931 0.271 0.934| 0.845 0.806 0.117 21.582 | 0.890 0.297 0.878
ERRNet [14] | 0.920 0.873 0.068 25.197 | 0.937 0.165 0.938| 0.855 0.732 0.139 24.288 | 0.850 0.368 0.856
SIRRBL [40] | 0.857 0.810 0.157 21.757 | 0.886 0.261 0.880| 0.792 0.693 0.208 20.814 | 0.808 0.340 0.809
IBCLN [19] | 0914 0.860 0.078 24.374 | 0.937 0.170 0.930| 0.865 0.744 0.133 24.064 | 0.873 0.249 0.858

Input image Ground truth NR17 YW19

F-variance

PSNR: 23.10

T-variance

PSNR: 23.84 PSNR: 23.00

CoRRN ZN18 ERRNet

PSNR: 25.07 PSNR: 26.27

PSNR: 24.62 PSNR: 25.12 PSNR: 24.49 PSNR: 19.66

Fig. 4: Examples from the indoor dataset with regular settings. We show the results obtained by NR17 [30], YW 19 [33], CoRRN [13],

ZN18 [15], ERRNet [14], and IBCLN [19].

reflections, we first conduct more experiments by using the indoor
dataset with regular settings. Then, we conduct several experi-
ments to evaluate the generalization ability of each method using
our in-the-wild dataset.

5.3.1 Generalization ability to reflection regular settings

As an important prior for reflection removal, the reflection blur
level is considered by both non-learning and deep-learning-
based methods. Since our indoor dataset has considered both

“T-variance” and “F-variance”, we test the performance of each
method on the categorized indoor dataset to evaluate their gener-
alization ability to different blur levels.

From the results in Table 7, except CoORRN [13], YD18 [84],
and ERRNet [14], almost all methods introduce new artifacts to
final results due to the lower error metric values compared with the
baseline. Besides, deep-learning-based methods achieve generally
better performance than non-learning-based methods.

For results on F-variance, except SK15 [1], all methods show
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TABLE 9: The overall evaluations for the categorized in-the-wild dataset. The light blue and gray rows indicate non-learning-based
methods and deep-learning-based methods, respectively. 1 and | denote the higher and lower values are better, respectively.

In-focus reflection Out-of-focus reflection
SSIM1 | SSIM, 1| LPIPS] | PSNRT | NCCt | LMSE] | SIt SSIM1 | SSIM,-1| LPIPS| | PSNR{| NCCt | LMSE| | SIT

Baseline 0.767 0.692 0.216 16.988 | 0.835 0.401 0.830| 0.840 0.814 0.111 19.652 | 0.945 0.135 0.899
LB14 [10] 0.669 0.616 0.247 14.242 | 0.819 0.426 0.820| 0.734 0.725 0.154 15.699 | 0.931 0.177 0.893
WS16 [11] 0.749 0.693 0.230 16.568 | 0.812 0.428 0.815| 0.809 0.803 0.154 18.539 | 0.889 0.228 0.884
NR17 [30] 0.752 0.695 0.224 16.802 | 0.831 0.404 0.817| 0.825 0.813 0.133 19.634 | 0.941 0.151 0.887
YWI19 [33] 0.754 0.701 0.221 16.396 | 0.811 0.422 0.825| 0.817 0.811 0.133 18.324 | 0.889 0.245 0.893
CoRRN [13] | 0.719 0.675 0.222 14.927 | 0.839 0.364 0.826| 0.782 0.776 0.129 16.313 | 0.943 0.172 0.893
ZN18 [15] 0.731 0.672 0.225 16.010 | 0.821 0.413 0.828| 0.806 0.790 0.128 17.788 | 0.929 0.159 0.893
YD18 [84] 0.743 0.685 0.220 16.133 0.815 0.526 0.833| 0.789 0.780 0.147 7.232 0.916 0.222 0.895
ERRNet [14] | 0.717 0.654 0.231 16.158 | 0.833 0.419 0.814| 0.808 0.793 0.118 18.718 | 0.948 0.122 0.897
SIRRBL [40] | 0.715 0.654 0.264 15.679 | 0.802 0.465 0.792| 0.785 0.770 0.176 17.936 | 0.901 0.213 0.859
IBCLN [19] | 0.752 0.679 0.223 16.653 2.090 0.310 0.823| 0.828 0.808 0.116 19.327 | 0.937 0.139 0.895

Low-transmitted Tinted glass
SSIM1 | SSIM, 1| LPIPS] | PSNRT | NCCt | LMSE] | SIt SSIM1 | SSIM,-1| LPIPS| | PSNRT| NCCt | LMSE| | SIT

Baseline 0.758 0.666 0.209 16.288 | 0.826 0.497 0.828| 0.750 0.667 0.204 14753 | 0.852 0.367 0.848
LB14 [10] 0.631 0.575 0.257 12.603 0.811 0.530 0.824| 0.645 0.592 0.235 12.419 | 0.832 0.404 0.843
WS16 [11] 0.740 0.662 0.226 15.829 | 0.755 0.582 0.816| 0.732 0.664 0.217 14.388 | 0.803 0.427 0.837
NR17 [30] 0.747 0.662 0.214 16.250 | 0.823 0.488 0.818| 0.740 0.670 0.206 14.955 | 0.847 0.373 0.838
YWI19 [33] 0.741 0.659 0.218 15.526 | 0.740 0.602 0.823| 0.734 0.667 0.208 14.321 | 0.809 0.427 0.843
CoRRN [13] | 0.685 0.617 0.219 13.626 | 0.822 0.458 0.822| 0.690 0.636 0.206 12.966 | 0.862 0.331 0.850
ZNI18 [15] 0.696 0.624 0.226 14.291 0.811 0.557 0.823| 0.710 0.646 0.213 13.871 | 0.842 0.379 0.848
YD18 [84] 0.723 0.629 0.222 15.177 | 0.819 0.979 0.826| 0.719 0.654 0.213 14.626 | 0.840 0.452 0.850
ERRNet [14] | 0.749 0.684 0.175 15.574 | 0.872 0.286 0.843| 0.719 0.651 0.200 14.210 | 0.864 0.345 0.847
SIRRBL [40] | 0.701 0.618 0.262 15.342 | 0.807 0.565 0.786| 0.698 0.631 0.254 13.975 | 0.812 0.419 0.810
IBCLN [19] | 0.739 0.649 0.218 15.607 | 0.791 0.761 0.820| 0.736 0.655 0.208 14.526 | 0.847 0.389 0.843

a clear decreasing tendency on it. It is mainly because these
methods all assume different blur levels between the background
and reflection when designing priors or generating training data.
Moreover, with the decreasing blur levels, the reflection becomes
more similar to the background, and such similarity also increases
the difficulty of differentiating the two layers. For SK15 [1], it
is difficult to tell how F-variance influences its results because
it relies on the ghosting effect instead of reflection blur levels.
However, it achieves better performance in F32 of SSIM,. results
due to more apparent spatial shifts of reflections.

For the performance on T-variance, from Table 7, since the
performance on glass with different thicknesses does not show
noticeable differences, the ghosting effect seems not to be a key
influential factor for existing methods. As a method specifically
designed for the ghosting effect, SK15 [1] shows generally better
performance on T10, where the ghosting effect of reflection is the
most obvious. Since SK15 [1] needs to estimate the spatial shift
distances of reflections with ghosting effects, the larger distance
may make this detection easier and lead to better performance.

The images in Figure 4 also prove the observations from Ta-
ble 7. With decreasing reflection blur levels, the refections labeled
by the red boxes in Figure 4 become more difficult to be removed.
Meanwhile, from the regions labeled by the yellow boxes in Fig-
ure 4, it is difficult to find an obvious difference from the results
obtained under different “F-variance”.

5.3.2 Generalization ability to in-the-wild scenes

Since most existing deep-learning-based methods are fine-tuned
by considering the reflection properties of existing datasets, we
further evaluate their cross-dataset generalization ability on the
newly collected in-the-wild dataset. From the results in Table 6

and Figure 5, the performance on this unseen dataset becomes
relatively worse. Besides, from error metric values in Table 6,
the gap between non-learning-based methods and deep-learning-
based methods becomes closer. The examples in Figure 5 also
prove this observation. Both the learning and non-learning-based
methods cannot remove low-transmitted reflections (the bottom
part in Figure 5). The non-learning-based methods even achieve
better results than the deep-learning-based methods (e.g., the
regions labeled by the red boxes in the first part of Figure 5).
Then, since existing methods are mainly designed for colorless
glass, they cannot handle tinted glass, where the light rays from
background scenes are also seriously corrupted (e.g., the last
example in Figure 5).

From Figure 5 and Table 9 , the results on the categorized
in-the-wild dataset also show that tinted glass introduces more
difficulty to existing methods since they are mainly designed for
colorless glass. Besides, since all scenes in this dataset are unseen
to each method, they do not show apparent differences for each

type.

5.3.3 The influences of reflection types

In this section, we summarize the influences of reflection types on
different methods. Almost all methods show superior performance
on out-of-focus reflections due to their assumption for this type.
For example, as the non-learning-based methods, LB14 [10],
WS16 [11], NR17 [30], and YW19 [33] all utilize the gradient
difference caused by different blur levels between R and B. Other
deep-learning-based methods also assume blurred reflection when
generating their training data.

The ghosting effect does not obviously affect the results since
all methods show similar performance on the glass with different
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Fig. 5: Examples with four types of reflections from the in-the-wild dataset. We show the results obtained by NR17 [30], YW19 [33],
CoRRN [13], ZN18 [15], ERRNet [14], and IBCLN [19]. The last example is with the low-transmitted reflection and color distortion.

TABLE 10: The results obtained by CoRRN [13], ZN18 [15], ERRNet [14], and IBCLN [19] based on by the synthetic strategy, mixed
strategy with images captured through tinted glass (Mixed strategy with t-image), mixed strategy without images captured through
tinted glass (Mixed strategy w/o t-image), and learning-based strategy.

Synthetic strategy Mixed strategy with t-image

SSIM?T| SSIM,-f| LPIPS]| PSNRT| NCCt| SIf LMSE|| SSIMT| SSIM,f| LPIPS]| PSNRT| NCCt| SIT LMSE|
CoRRN [13] | 0.821 0.807 0.121 21.04 | 0.871 | 0.873 | 0.296 | 0.829 | 0.837 0.111 24.07 | 0.883 | 0.882 | 0.286
ZN18 [15] 0.835 | 0.793 0.138 | 21.48 | 0.869 | 0.874 | 0.162 | 0.877 | 0.847 0.111 25.64 | 0921 | 0.896 | 0.150
ERRNet [14] | 0.827 | 0.797 0.132 | 20.75 | 0.871 | 0.869 | 0.167 | 0.885 | 0.869 0.077 | 24.65 | 0.925 | 0911 | 0.154
IBCLN [19] | 0.829 | 0.770 0.150 | 20.63 | 0.872 | 0.871 | 0.287 | 0.841 0.819 0.134 | 22.14 | 0.885 | 0.881 | 0.265

Mixed strategy w/o t-image Learning-based strategy

SSIM?T| SSIM,-f| LPIPS]| PSNRT| NCCt| SIf LMSE|| SSIMT| SSIM,f| LPIPS]| PSNRT| NCCT| SIT LMSE|
CoRRN [13] | 0.814 | 0.811 0.118 | 2236 | 0.874 | 0.869 | 0.290 | 0.712 | 0.709 0.136 19.72 | 0.837 | 0.838 | 0.411
ZN18 [15] 0.841 0.826 0.125 | 2256 | 9.876 | 0.875 | 0.158 | 0.721 0.712 0.132 19.94 | 0.857 | 0.845 | 0.34]
ERRNet [14] | 0.858 | 0.829 0.113 | 21.26 | 0.873 | 0.872 | 0.156 | 0.728 | 0.718 0.139 18.54 | 0.814 | 0.800 | 0.496
IBCLN [19] | 0.823 | 0.805 0.143 | 20.16 | 0.870 | 0.870 | 0.271 0.738 | 0.729 0.152 19.80 | 0.841 | 0.867 | 0.386

thicknesses. Besides, the second row of Figure 4 also illustrates
that the reflection with ghosting effect can also be removed if it is
blurred.

The low-transmitted reflection is another challenge for almost
all methods since the image formation model they rely on does
not explicitly consider this type. More discussions related to the
low-transmitted reflection can be found in Section 6.1.

Though deep-learning-based methods are proposed to address
the limited description ability of handcrafted priors, the depen-
dence on training images leads to their poorer generalization
ability to unseen examples. Since the out-of-focus reflection is

employed as the backbone for synthesizing training data, almost
all deep-learning-based methods show promising results on exam-
ples with the out-of-focus reflection and degraded performance
for other types. This problem can be alleviated by employing
real images for training. From the results shown in Table 8, the
methods (ERRNet [14] and ZN18 [15]) trained based on the mixed
strategy show more consistent results than others.

5.4 Evaluations for training data strategy

In this section, we conduct several experiments to evaluate the
strategy for training data generation. For fairness, we train each
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Fig. 6: Examples from the outdoor dataset and the in-the-wild dataset, respectively. We show the results obtained by NR17 [30],
YW19 [33], CoRRN [13], ZN18 [15], and ERRNet [14]. The red boxes in the first part indicate the regions with low-transmitted
reflections. The yellow boxes in the second part indicate the regions with out-of-focus reflections. “M strategy t” denotes the mixture
strategy with tinted images. “M strategy w/o t” denotes the mixture strategy without tinted images.

method with different image sizes (96 x 128, 128 x 196, and 224 x
288) to avoid potential over-fitting issues. We choose four rep-
resentative methods with available training codes, CoRRN [13],
ZN18 [15], ERRNet [14], IBCLN [19] to evaluate the effective-
ness of each strategy. Each method is trained with its default batch
size and 400 epochs, a number larger their default epoch sizes, to
ensure the final convergence.

5.4.1 Synthetic strategy

We first train each network by only using the synthetic data
generated by CLIP [12] and the half-synthetic strategy. From the
results shown in Figure 6, since CLIP [12] mainly considers out-
of-focus reflections, the networks trained on this strategy show
acceptable results on the examples with out-of-focus reflections
(e.g., the blurred reflections labeled by yellow boxes in the in-the-
wild scenes of Figure 6). However, it shows degraded performance
for other types (e.g., the low-transmitted reflections labeled by
the red boxes and the color distortion in the in-the-wild scenes
of Figure 6). Besides, since existing data synthesis methods cannot
generate images with the color distortion effect, the models trained
on the synthetic strategy cannot generalize to examples captured
through tinted glass.

5.4.2 Mixed strategy

Then, we train the network by combing the synthetic dataset with
real images from Real20 [15] and Nature dataset [19]. Besides,
200 real image pairs are captured using the three-step way similar
to SIR2™ for the training purpose. Among these captured images,
about 150 image pairs are captured through tinted glass. From
the results shown in Table 10 (Mixed strategy with t-image), the
models trained using real images achieve better performance than
the models without real images. From Figure 6, the models trained
by the mixed strategy with t-image show better removal perfor-
mance for the low-transmitted reflection and in-focus reflection.
For example, the low-transmitted reflections labelled by red boxes
in Figure 6 are successfully removed, and the in-focus reflections
are also attenuated. For the examples captured through tinted

glass, the mixed strategy with t-image also shows more promising
results. From the examples shown in the last row of Figure 6,
the models trained with the mixed strategy with t-image remove
reflections and recovers color information.

We further train a network by only using synthetic images and
the real images from Real20 [15] and Nature dataset [19]. From
the results in Table 10 (Mixed strategy w/o t-image), the models
trained on this strategy cannot outperform the models trained by
the mixed strategy with t-image though they are still better than the
models trained by the synthetic and learning-based strategies. This
is mainly due to the poor ability to handle the background color
distortion caused by tinted glass. From Figure 6, for the images
captured through tinted glass, the reflections can be suppressed,
but the color distortion cannot be corrected. The experiments also
further prove that our SIR?™ contains more diversified scenarios
that existing datasets cannot cover.

5.4.3 Learning-based strategy

We further evaluate the learning-based strategy proposed in [40].
The synthetic images are generated by the method proposed
in [40]. From the results shown in Figure 6, the models trained
by this learning-based strategy also show some promising results
(e.g., the results in the second row for ERRNet [14] Figure 6).
However, since the reflections always distribute unevenly across
the whole image plane, the deep network may not learn reflection
properties properly. It leads to the additional artifacts shown
in Figure 6, which worsen the error metric values.

6 OPEN PROBLEMS FOR EXISTING METHODS

Based on our benchmark dataset and evaluation, we list several
open problems in existing methods to inspire future research on
single-image reflection removal.

6.1

Since existing reflection removal methods mainly focus on the
transmitted reflection, it leads to failure cases with the low-

Transmitted vs. low-transmitted
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transmitted reflection in Figure 3 and Figure 5. For the low-
transmitted reflection, since light rays from background objects are
almost occluded, the classical reflection removal strategy inherited
from layer separation methods may not successfully recover the
background layer from a mixture image.

Instead of solely regarding reflection removal as an image
separation problem, future methods may leverage advantages from
inpainting problems to handle the low-transmitted reflection. For
example, by using the contextual attention [94] designed for
the image inpainting problem, the reflection removal methods
can utilize surrounding information to restore low-transmitted
regions. The obstacle is that the regions to be recovered for image
inpainting are assumed to be known, while they are unknown
for reflection removal. Some recent methods [46], [47] have been
proposed to localize reflection regions, which show the dawn for
this problem.

6.2 The dependence for training data

From discussions in Section 5.4, existing deep-learning-based
methods show degraded performance for unseen examples. It may
be due to the low generalization ability of their synthetic training
data. The synthetic images mainly consider the blurring effect and
the regional property [12]. The two properties are not enough to
cover the various phenomena in the real world. Though the mixed
strategy ameliorates the performance by including real images for
training, it is still difficult to obtain real images with a sufficiently
large diversity.

One possible direction is to consider the domain adapta-
tion/generalization [95] in the data synthesis stage. An example is
the learning-based strategy [40] discussed in Section 5.4.3, which
utilizes the generative framework to synthesize mixture images.
However, since reflections always distribute unevenly and sparsely
across the whole image plane, the deep network may not learn
reflection properties properly. It also makes the generalization
for the reflection removal problem more difficult than that for
other tasks (e.g., image deraining and image dehazing) with dense
degradation distribution. How to extract features properly from
unevenly distributed reflections should be considered by future
methods.

Ground truth Type 2 Type 3 Type 4

Fig. 7: One example captured through four different obscure glass.
The first row denotes the image before processing and the second
row contains the images after processing.

6.3 General vs. specific

Most methods are designed for general scenes with irregular and
diverse properties. The difficulty in handling the general scenarios
is related to the dependency for training data discussed in Sec-
tion 6.2. Since the synthetic training images can only cover limited
properties, this dilemma makes it difficult for existing methods
to generalize to unseen general scenarios. Besides, the changing
background scenes under general scenarios further increase the
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difficulty to estimate the missing details occluded by reflections,
especially by low-transmitted reflections.

Instead of solely focusing on general scenes, future methods
may address the reflection removal problem on specific scenes
(e.g., the face images [2] or text images [41] taken through glass).
A more stable environment may facilitate the solution of this
problem under specific scenarios. Besides, it is also easier to
analyze the reflection property in specific scenes.

6.4 Background degradation

Reflection removal aims at seeing through glass by improving
the background scene visibility. From this aspect, it should
be able to handle the interference caused by g(-) and f(R)
in Equation (1). The examples captured through tinted glass in
SIR?* have shown their limitations in handling the background
color distortion caused by ¢(-). A more challenging example can
be found in Figure 7, where obscure glass significantly changes
the background appearance and the existing method fails on it.

The background degradation caused by g(-) introduces new
difficulties for reflection removal. To handle more complicated
background degradation, reflection removal should adopt new
strategies. Our experiments have shown that existing models can
perform better for examples with color distortion by using training
images with the similar distortion. For the more challenging
example in Figure 7, future methods may leverage advantages
from NLOS problem [96], [97] by using electromagnetic radiation
to recover the appearance.

We capture 30 examples through obscure glass when collect-
ing data. Since these images are beyond the settings of existing
methods, we do not use them for benchmarking purposes. Though
one related method [98] has been proposed for this problem, the
30 examples are still the first dataset for obscure glass. We provide
it for future researchers.

7 CONCLUSIONS

As an extension of our previous work [17], we aiming at providing
a more comprehensive survey by exploring the reflection proper-
ties and discussing the recently proposed deep learning methods.
Then, to investigate the performance of the mainstream methods
surveyed in our paper, we expand and rearrange our previous
SIR? dataset [17] to a SIR?>T dataset with additional images
from the wild environment. Finally, we discuss the performance
of existing methods from the results on the SIR?* dataset and
propose several open problems for future researchers.
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