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Abstract

In this study, we focus on the graph representa-
tion learning task in attributed networks. Different
from existing embedding methods that treat the in-
corporation of network structure and semantic as
the simple combination of two optimization objec-
tives, we propose a novel Semantic Graph Repre-
sentation (SGR) model to formulate the joint op-
timization of the two heterogeneous sources into
a common high-order proximity based framework.
Concretely, we first construct a new abstracted
weighted graph, where the complex (homogeneous
and heterogeneous) relations among nodes and at-
tributes (in the original network) are comprehen-
sively encoded. Conventional embedding methods
concerned topological proximity can then be eas-
ily applied to the newly constructed graph to learn
the representations of both node and attribute while
capturing the nonlinear high-order intrinsic correla-
tion inside or among network structure and seman-
tic. The learned attribute embeddings can also ef-
fectively support some semantic-oriented inference
tasks (e.g., semantic community detection), help-
ing to reveal the network’s deep semantic. The ef-
fectiveness of SGR is further verified on a series of
real networks, where it achieves impressive perfor-
mance over other state-of-the-art competitors.

1 Introduction
Graph (network) is an effective model and data structure to
describe the entities and relations of various complex systems
(e.g., social networks, communication networks, etc). Graph
representation learning (a.k.a. network embedding), which
aims to encode the network into a low-dimensional represen-
tation with the primary properties preserved, has emerged as
an important topic in the research of complex network analy-
sis [Bandy et al., 2018], due to its powerful ability to support
the downstream network inference tasks (e.g., community de-
tection, link prediction, etc.) [Cui et al., 2018].

As reviewed in [Khosla et al., 2019; Cui et al., 2018], net-
work structure (e.g., topology) is a significant information
source available for most graph representation approaches.

For instance, [Tang et al., 2015] explored the observed net-
work topology and the hidden neighborhood similarity (i.e.,
the first-order and second-order proximity) respectively in
two optimization objectives, while the high-order proximi-
ties (i.e., neighbor structures with k-step random walk) of
the network were comprehensively considered in [Perozzi et
al., 2014; Aditya Grover, 2016; Cao et al., 2015]. Besides
the microscopic structure (i.e., local neighbor proximity), the
mesoscopic community structure [Wang et al., 2017] can fur-
ther help to reveal the function and organization of the net-
work. Typical community-preserved representation methods
include [Liang et al., 2016; Wang et al., 2017].

In this study, we focus on the graph representation learning
in attributed networks, where network semantic (e.g., node
attribute) is another significant heterogeneous information
source. It’s strongly believed that network attribute carries or-
thogonal and complementary knowledge beyond the topology
[Jin et al., 2018], which can potentially enhance learned rep-
resentations and improve the performance of downstream net-
work inference tasks. Several methods have been proposed to
integrate such two heterogeneous sources, including the ma-
trix factorization (MF) based methods [Cheng et al., 2015;
Bandy et al., 2018; Huang et al., 2017] and the deep learning
based approaches [Jin et al., 2018; Cao et al., 2018]. Despite
their effectiveness, there remain several limitations.

First, most hybrid methods treat the integration of network
semantic as the auxiliary regularization (to existing models
only consider topology) or simply combine the respective
optimization objectives to learn features of the two sources,
where the nonlinear high-order correlation between network
structure and semantic is not fully explored. For example, if
node vi’s neighbors N(vi) have more shared attributes {aw},
vi is more likely to be semantically similar with N(vi) even
though it doesn’t directly have all the attributes in {aw}. Ex-
isting methods may fail to capture such high-order correlation
between the two heterogeneous sources in a nonlinear man-
ner, which can potentially lead to better performance for the
downstream applications.

Moreover, the representations learned by most existing ap-
proaches with topology and attribute may only be capable to
improve the performances of some simple network inferences
(e.g., community detection), but cannot be directly applied to
some advanced semantic-oriented downstream tasks, e.g., se-
mantic community detection [Wang et al., 2016b], where one



can obtain the corresponding semantic descriptions of each
community simultaneously when the community partition is
finished. For most existing embedding methods, additional
efforts still need to be taken after the basic inference (e.g.,
community partition) to generate such descriptions (in order
to explore the network’s semantic) with the undesired loss of
correlations between the two sources.

We introduce a novel Semantic Graph Representation
(SGR) model to alleviate the aforementioned limitations, in
which both the node and attribute (in original network G)
are treated as the entities in a new abstracted weighted graph
G′. Moreover, G′ comprehensively encodes 3 types of re-
lations (i.e., relations between (i) node pairs {(vi, vj)}, (ii)
attribute pairs {(aw, as)} and (iii) heterogeneous entity pairs
{(vi, aw)}). In this case, conventional high-order topology
based embedding methods (e.g., DeepWalk [Perozzi et al.,
2014]) can be easily applied to G′ to jointly learn the low-
dimensional representations of both nodes {vi} and attributes
{aw}, where the nonlinear high-order intrinsic correlations
among network topology and attribute are fully captured.
Besides the node representations, the attribute embeddings
learned by SGR can also be effectively used to support the
semantic-oriented inference (e.g., semantic community de-
tection), revealing the deep semantic of the network.

We summarize our main contributions as follow. (i) We
formulate the graph representation learning in attributed net-
works as the embedding task of an abstracted weighted graph
with heterogeneous entities, so that conventional high-order
proximity based methods can be used to explore the network
semantic. (ii) We proposed a novel SGR method, which can
not only fully utilize the attribute information to improve the
representation performance but can also generate the seman-
tic descriptions to support the advanced semantic-oriented
network inferences. (iii) An enhancement scheme based on
graph regularization is also introduced for SGR to explore the
effect of other side information (e.g., community structure).
(iv) To verify the effectiveness of SGR, we conduct extensive
experiments on a series of real networks, where SGR consis-
tently outperforms other state-of-the-art approaches.

In the rest of this paper, we first give the formal problem
definition regarding graph representation learning in Section
2, and then elaborate the SGR model in Section 3. The ex-
periments are described in Section 5, which includes the per-
formance evaluation on real network datasets and case study
about the semantic description. Section 6 concludes this pa-
per and indicates our future work.

2 Problem Definition
In this study, we generally consider the graph represen-
tation learning problem of undirected networks with dis-
crete node attributes. Assume that there are n nodes and
e edges in the network, and the total number of attributes
is m. An attributed network can be formally described as
a 4-tuple G = (V,E,A, F ), where V = {v1, · · · , vn} is
the set of nodes; E = {(vi, vj) |vi, vj ∈ V } is the set of
edges; A = {a1, · · · , am} is the set of attributes; F =
{f(v1), · · · , f(vn)} represents the attribute map from V to
A, with f(vi) ⊂ A as the attribute set of node vi.

Figure 1: Sketch of the proposed SGR model, where we first (i) con-
struct the abstracted heterogeneous graph according to original net-
work’s topology and attribute, and then (ii) use high-order proximity
based embedding methods and manifold regularization techniques to
learn the representations of both node and attribute.

Given G, the goal of the representation learning task in at-
tributed networks is to learn a function f : {vi} 7→ {xi ∈
<1×k} that maps each node vi to a k-dimensional vector xi
(with k � min{n,m}), in which the significant properties of
network structure and semantic (hidden inE and F ) are com-
prehensively preserved. Namely, the node pair (vi, vj) with
similar properties (e.g., community membership, semantic,
etc.) should have similar vector representations (xi,xj).

Especially, we formulate the above representation learning
problem as the embedding task of a corresponding abstracted
weighted network G′, where each node vi and attribute aj (in
original network G) are represented as the heterogeneous en-
tities (i.e., abstracted nodes). Concretely, we use a 2-tuple
G′ = {V ′, E′} to described the abstracted weighted net-
work, where V ′ = V ∪ A is the set of heterogeneous entities
and E′ = {E1, E2, E3} is the set of relations, with E1 =
{W (vi, vj)|vi, vj ∈ V }, E2 = {W (vi, aw)|vi ∈ V, aw ∈ A}
and E3 = {W (aw, as)|aw, as ∈ A} as the set of weighted
edges between (original) node pairs {(vi, vj)}, heteroge-
neous entity pairs {(vi, aw)} and attribute pairs {(aw, as)},
respectively. Based on G′, the goal of SGR is to learn a func-
tion f ′ : {vi, aj} 7→ {x′vi ,x′aj ∈ <1×k} that maps each
node/attribute vi/aj into a k-dimensional hidden space repre-
sented by vector x′vi /x

′
aj , in which the primary properties

of G′ are comprehensively encoded. Given the learned repre-
sentations {x′vi ,x′ai}, one can treat {x′vi} as the final result
(i.e., the node vectors) of the embedding task, while {x′ai}
can also be utilized to generate the semantic descriptions for
each node or (node) cluster by selecting the top nearest at-
tribute entities of the specific node or cluster center in the
mapped hidden space.

3 The Model
We propose a novel Semantic Graph Representation (SGR)
method to tackle the embedding problem of attributed net-
works. For the convenience of discussion, we first present the
sketch of the model in Figure 1 based on the problem defini-
tion in Section 2.

As illustrated in Figure 1, the key of SGR is to integrate
3 different types of relations (i.e., node relation E1, hetero-
geneous relation E2 and attribute relation E3) into a unified
weighted graph G′ (i.e., construct the heterogeneous adja-



cency matrix), where the topology and semantic of the orig-
inal attributed network G are comprehensively encoded in
G′’s weighted topology. The deep knowledge of G′ is then
fully explored and embedded in a low-dimensional hidden
space by utilizing some random walk based representation
methods and the graph regularization techniques on G′. We
elaborate the details of SGR in the rest of this section.

Modeling the Node Relation. The node relation E1 in
G′ represents the topological structure of G. Generally, it
can be described by an adjacency matrix A ∈ <n×n, where
Aij = Aji = 1 if there is an edge between the node pair
(vi, vj) and Aij = Aji = 0, otherwise. For SGR, we utilize
A to represent the homogeneous relations among the nodes
entities {vi ∈ V } (i.e., the node relations E1) in G′.

Modeling the Attribute Relation. The attribute relation
E3 (i.e., the homogeneous relations among the attribute en-
tities {aw ∈ A}) in G′ describe the similarity between each
attribute pair (as, aw). In general, the network semantic of G
can be described by a node attribute matrix R0 ∈ <n×m,
where (R0)iw = 1 if node vi’s attribute set has aw and
(R0)iw = 0, otherwise. (R0)iw can also be defined as the
occurrence frequency or IF/IDF value of aw in vi’s attribute
set. Particularly, (R0):,w describes the node membership of
a certain attribute aw (i.e., which nodes have aw in their at-
tribute sets). Hence, we define the similarity between each
attribute pair (as, aw) as the normalized similarity between
their node memberships ((R0):w, (R0):s) and introduce the
node similarity matrix P ∈ <m×m, where

P = D−1/2P0D
−1/2, (1)

with (P0)ws = [(R0)
T
:,w(R0):,s]

/
[|(R0):,w| · |(R0):,s|] and

D = diag(
∑m
s=1 (P0)1s, · · · ,

∑m
s=1 (P0)ms).

Note that there may exist the magnitude difference between
A and P when integrating them intoG′, unfairly affecting the
learned the heterogeneous representations. To eliminate such
difference, we use the Max-Min normalization to rescale the
elements in P into the range [0, 1] (with the result notated as
P̃). Given a specific vector/matrix input s (e.g., P), the Max-
Min normalization (notated as MNorm) is defined as follow:

s̃ = MNorm(si) = (si − smin)/(smax − smin), (2)
where smin and smax are the minimum and maximum ele-
ments in s, respectively.

Modeling the Heterogeneous Relation. In this study, we
utilize motif [Benson et al., 2016], a substructure that reveals
the higher-order organization and function of the network, to
represent the heterogeneous relation E2 between each het-
erogeneous entity pair (vi, aw). Generally, we consider 3
basic motif instances M0 = {(vi, aw)|vi ∈ V, aw ∈ A},
M1 = {(vi, aw), (vj , aw)|vi, vj ∈ V, aw ∈ A} and M2 =
{(vi, aw), (vi, as)|vi ∈ V, aw, as ∈ A}, which are illustrated
in Figure 2 with circle and square representing node entity
and attribute entity, respectively.

In the 3 motif instances, M0 is the directly observable
relation described by R0, while M1 and M2 represent the
higher-order structures that encode the deep knowledge of
the heterogeneous relation (e.g., nodes shared with more at-
tributes should be more similar in their properties). To fur-
ther describe the higher-order structure of M1 and M2, we

Figure 2: The entity motifs considered in this study with circle and
square representing node entity and attribute entity, respectively.

introduce another two relation matrices R1 ∈ <n×m and
R2 ∈ <n×m, where (Rt)iw is the co-occurrence counts of
node vi and attribute aw in motif Mt (t ∈ {1, 2}) (i.e., the
instance number of Mt containing (vi, aw)) or the cumula-
tive sum of (vi, aw)’s weight (i.e., (R0)iw) in Mt. In this
case, R1 and R2 can be considered as the rescaling of R0’s
observed relations, where relation (vi, aw) may have large
weight (Rt)iw if it can reflect the significant property of Mt.

We further conduct normalization on {R0,R1,R2} (with
results notated as {R̃0, R̃1, R̃2}), since there remains mag-
nitude difference among them. Moreover, we use the combi-
nation of {R̃0, R̃1, R̃2} to consider the comprehensive effect
of different motifs by setting

R = δ0R̃0 + δ1R̃1 + δ2R̃2, (3)

with {δ0, δ1, δ2} as parameters to control different compo-
nents. We let δ0 = δ1 = δ2 = 1 as the default setting, where
{M0,M1,M2} have the same contribution in (3) without spe-
cific prior knowledge. Better performance can be achieved by
fine-tuning δ0, δ1, δ2 ∈ {0, 1} according to our experiments
(see Section 4.1), representing the introduction of other auxil-
iary priors. Similar to P, we also conducted another normal-
ization on R to further eliminate the magnitude difference
between R and {A, P̃} (with result notated as R̃).

The Unified Model. We can construct the abstracted graph
G′ with the weighted topology described by the following
heterogeneous adjacency matrix B ∈ <(n+m)×(n+m):

B =

[
A R̃

R̃T P̃

]
, (4)

where {A, P̃, R̃} are considered as different blocks of B, and
Bij is the edge weight of entity pair (ei, ej) (ei, ej ∈ V ∪A).
In this case, conventional high-order topological proximity
based graph representation methods (e.g., DeepWalk [Perozzi
et al., 2014]) can be easily applied to G′ to fully explore both
the information sources of network structure and semantic.

In this study, we adopt the following equivalent matrix fac-
torization (MF) objective of DeepWalk [Qiu et al., 2018] as
an example to derive the embeddings of SGR:

Z = log(vol(G′) · (1
o

∑o

r=1
(D−1B)

r
)D−1)− log b, (5)

where o is the content window size (i.e, step/order of ran-
dom walk); b is the number of negative sampling; D =
diag(d1, d2, · · · , dn+m) is the degree diagonal matrix with
di =

∑n+m
j=1 Bij as the degree of entity ei; vol(G′) =∑n+m

i=1 di is the volume of G′. Based on Z, the graph rep-
resentation learning task can then be generally represented as



Algorithm 1: Semantic Graph Representation (SRG)
Input: A, R0

Output: {X∗,Y∗}
1 construct node similarity matrix P via (1)
2 normalize P via (2) (with the result notated as P̃)
3 construct relation matrices {R1,R2} according to motifs {M1,M2}
4 normalize {R0,R1,R2} via (2) (with the result notated as {R̃0, R̃1, R̃2})
5 construct relation matrix R via (3)
6 normalize R via (2) (with the result notated as R̃)
7 construct heterogeneous adjacency matrix B via (4)
8 construct the optimization objective (5)
9 get the solution of (6) (i.e., {X∗,Y∗}) by using SVD (i.e., (8))

the following MF-based optimization problem:

argmin
X,Y

∥∥Z−XYT
∥∥2
F
, (6)

with X ∈ <(n+m)×k and Y ∈ R(n+m)×k as two low-
dimensional matrices. The singular value decomposition
(SVD) techniques can be utilized to get the optimal solution
of (6), which is defined as follow:

Z = UΣVT ≈ U:,1:kΣkV
T
:,1:k. (7)

In (7), Σ = diag(θ1, θ2, · · · , θn+m) is the diagonal matrix of
singular values with θ1 ≥ θ2 ≥ · · · ≥ θn+m. Particularly, we
use the top-k singular values to approximatively reconstruct
Z, so the solution of (6) can be derived by setting

X∗ = U:,1:k

√
Σk, Y∗ = V:,1:k

√
Σk, (8)

where we adopt X∗ as the final representation result of SGR.
In summary, we conclude the above process in Algorithm 1.

Enhancement of Side Information. Besides the observed
network topology and attribute (described by {A, R̃}), some
other latent side information (e.g., community structure) can
be utilized to further enhance the representations learned
by SGR, potentially resulting in better performance for the
downstream network inference applications. For the conve-
nience of discussion, we call such effect as side-enhancement
in the rest of this paper.

We use the graph regularization framework to leverage the
side information based on the objective (6). For a certain in-
formation source (notated as Il), the corresponding regular-
ization term is defined as follow:

Regl(X,Tl) =
1
2

n∑
i,j=1

(Tl)ij ‖Xi,: −Xj,:‖22 = tr(XTLlX), (9)

where Tl ∈ <(n+m)×(n+m) is the matrix encoding the pri-
mary properties of Il and Ll = (Dl −Tl) is Tl’s Laplacian

matrix with Dl = diag(
n+m∑
j=1

(Tl)1j ,
n+m∑
j=1

(Tl)2j , · · · ). In fact,

(9) can be considered as the penalty given by Il, in which
{Xi,:,Xj,:} are regularized to have similar representations if
(Tl)ij has a relatively large value.

In this study, community structure and attribute similarity
are adopted as two available sources of side information.

We utilize the modularity matrix Q ∈ <n×n [Jin et al.,
2018] to represent the community structure of G, where

Qij = Qji = Aij − didj/(2e), (10)

with di =
∑n
j=1 Aij as the degree of node vi and e as the

number of edges in G. Q encodes the primary properties
of G’s community structure by measuring the difference be-
tween the exact edge numbers and the expected number of
such edges over all node pairs. Concretely, Qij (Qji) with
larger value indicates that edge (vi, vj) is more likely to be
preserved in a certain community (but not to be cut) when
conducting a graph-cut (node clustering) process.

Furthermore, we utilize the cosine similarity between the
attribute lists of each node pair (vi, vj) to describe the at-
tribute similarity of G, where we introduce the attribute sim-
ilarity matrix S ∈ Rn×n with

Sij = Sji = [(R0)i,:(R0)
T
j,:]
/
[|(R0)i,:| · |(R0)j,:|]. (11)

The overall optimization objective of side-enhancement
can then be generally formulated as follow:

argmin
X,Y

O(X,Y) =
∥∥Z−XYT

∥∥2
F
+

L∑
l=1

λlRegl(X,Tl), (12)

where λl is the parameter to adjust the effect of the l-th side
information. In this study, we set L = 2 and let

T1 =

[
Q̃ 0
0 0

]
,T2 =

[
S̃ 0
0 0

]
, (13)

with {S̃, Q̃} as the normalized results of {S,Q} via (4).
To obtain the solution of (12) (notated as {X′∗,Y′∗}) in a

relatively fast way, we first use (6)’s result (i.e., (8)) to initial-
ize {X,Y}, and use certain rules to update their values.

For X, we first derive the partial derivative of O(X,Y)
with respect to X:

∂O(X,Y)/∂X = 2(XYTY − ZY + LX), (14)

with L =
L∑
l=1

λlLl. By setting ∂O(X,Y)/∂X = 0, we have

X′
∗
= (In + L)†ZY(YTY + Ik)

†, (15)

in which M† denotes the pseudo-inverse of matrix M, while
In represents an n-dimensional identity matrix.

With regard to Y, we first derive O(X,Y)’s partial deriva-
tive with respect to the Y:

∂O(X,Y)/∂Y = 2(YXTX− ZTX). (16)

Similarly, we can obtain Y’s updating rule by setting
∂O(X,Y)/∂Y = 0:

Y′
∗
= (ZTX)(XTX)†. (17)

In general, the solution {X′∗,Y′∗} can be obtained by
continuously update {X,Y} via (15) and (17) (after initial-
ization) until converge. According to our pre-experiments,
the relative error of objective function (12) (with respect to
previous iteration) is less than 10−6 just after the first itera-
tion, and (14)’s value keep stables in the subsequent iterations
on most real networks. Hence, we just use (15) and (17) to
update {X,Y} once after initialization to get the solution in a
fast way. Similar to (8), we utilize X′

∗ as the final embedding
result. As a conclusion, we summarize the overall process of
side-enhancement in Algorithm 2.



Algorithm 2: Side-Enhancement of SGR
Input: A, R0, {X∗,Y∗}
Output: {X′∗,Y′∗}

1 construct the modularity matrix Q via (10)
2 normalize Q via (2) (with the result notated as Q̃)
3 construct the attribute similarity matrix S via (11)
4 normalize S′ via (2) (with the result notated as S̃′)
5 construct {T1,T2} via (13) (according to {S̃′, Q̃})
6 use the result of (6) (i.e., (8)) to initialize {X,Y}
7 update X via (15) (with the result notated as X′∗)
8 update Y via (17) (with the result notated as Y′∗)

Table 1: Statistics details of the real attributed networks.

Datasets N E M C Datasets N E M C
Cornell(CO) 195 283 1,588 5 Gplus(GP) 700 28,055 887 4
Texas(TE) 185 280 1,501 5 Cora 2,708 5,278 1,432 7
Washington(WA) 217 366 1,578 5 Citeseer(Cite) 3,264 4,598 3,703 6
Wisconsin(WI) 262 459 1,623 5 UAI2010(UAI) 3,061 28,308 4,973 19
Twitter(TW) 155 3,442 1,470 7 BlogCatalog(BL) 5,196 171,743 8,189 6
Facebook(FA) 475 10,066 507 9 Flikr(FL) 7,575 239,738 12,047 9

4 Experimental Evaluation
4.1 Real Network Evaluation
The Datasets. To verify the effectiveness of SRG, we applied
it to 12 real attributed networks. The statistics details of the
datasets after necessary pre-processing are shown in Table 1,
where n, e, m and c are the number of nodes, edges, (node)
attributes and clusters/categories, respectively.

Cornell (CO), Texas (TE), Washington (WA) and Wiscon-
sin (WI) are 4 sub-networks of the WebKB dataset1, which
contains the hyperlinks and content of the web pages col-
lected from the computer science departments in 4 American
universities. Twitter (TW), Facebook (FA) and Gplus (GP)
are respectively the subsets of the attributed ego-networks
(a.k.a. social circles) Twitter2, Facebook3 and Google+4 in
the Stanford Network Analysis Project (SNAP). Cora5 [Sen
et al., 2008] and Citeseer6 (Cite) [Sen et al., 2008] are 2
science publication networks with the citation relations and
paper content, while UAI2010 (UAI) [Sen et al., 2008] is
a Wikipedia article citation network including the reference
relations and feature lists. BlogCatalog7 (BL) [Huang et
al., 2017] is a dataset collected from the blogger community
BlogCatalog8 containing the interactive relations and interest
tags of users. Flickr9 (FL) [Huang et al., 2017] is a social
network of the online photo sharing platform Flickr10, which
includes the friend relation among the users and the photos
tags of each node.

Baseline Methods. We utilized 11 state-of-the-art graph
representation approaches as the baselines, which can be clas-

1http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
2http://snap.stanford.edu/data/ego-Twitter.html
3http://snap.stanford.edu/data/ego-Facebook.html
4http://snap.stanford.edu/data/ego-Gplus.html
5http://www.cs.umd.edu/ sen/lbc-proj/data/cora.tgz
6http://www.cs.umd.edu/ sen/lbc-proj/data/citeseer.tgz
7http://github.com/xhuang31/AANE MATLAB/blob/master/BlogCatalog.mat
8http://www.blogcatalog.com
9http://github.com/xhuang31/AANE MATLAB/blob/master/Flickr.mat

10https://www.flickr.com

sified into 3 different types. First, DeepWalk11 (DW) [Per-
ozzi et al., 2014], node2vec12 (N2V) [Aditya Grover, 2016],
LINE13 [Tang et al., 2015], SDNE14 [Wang et al., 2016a],
GraRep15 [Cao et al., 2015] and AROPE16 [Zhang et al.,
2018] are methods that explore the high-order proximity of
the network topology. Second, DNR [Liang et al., 2016] and
M-NMF17 [Wang et al., 2017] are approaches that integrate
the community structure of networks. Moreover, TADW18

[Cheng et al., 2015], AANE19 [Huang et al., 2017] and FSC-
NMF20 (FSC) [Bandy et al., 2018] are the embedding meth-
ods which incorporate the network structure and attribute.

To ensure the fairness of comparison, we set the dimension
of the representation vector to be 64 (i.e., k = 64) for all the
methods to be evaluated. Furthermore, we utilized the open
source implementation given by the authors for each competi-
tor and adopted its default parameter setting.

With regard to SGR, we adopt community structure and
attribute similarity (represented by Q and S, respectively)
as the available side information (see Section 3). Also, we
utilize motifs {M0,M1,M2} (see Figure 2) to formulate the
heterogeneous relations E2 = {(vi, aw) |vi ∈ V, aw ∈ A}.
To effectively illustrate the effect of the hyper-parameters
(i.e, {δ1, δ2, δ3}, {λ1, λ2}) and the side-enhancement effect,
we respectively recorded the evaluation metrics with (i) the
default parameter setting (i.e., δ0=δ1=δ2=1), (ii) the fined-
tuned parameters (i.e., adjust δ0, δ1, δ2 ∈ {0, 1}) and (iii) the
side-enhancement (i.e., adjust λ1, λ2 ∈ {0, 1}). Correspond-
ing results are notated as SRG(0), SRG(1) and SRG(R).

Performance Evaluation. In the evaluation, we adopted
node clustering (a.k.a. community detection) and node clas-
sification as the testing downstream applications.

For node clustering, we applied the k-means++ algorithm
to the representations learned by all the methods and utilized
the normalized mutual information (NMI) [Cao et al., 2018]
as well as accuracy (AC) [Cao et al., 2018] as the evalua-
tion metrics. Moreover, we set the number of clusters in k-
means++ according to the ground-truth of each dataset. With
regard to node classification, we utilized the support vector
machine (SVM) implemented by the LibLinear package21

[Fan et al., 2008] as the downstream classifier. For each
dataset, we randomly select 10% of the nodes to train the
classifier, with the rest nodes as the test data. Accuracy (AC)
[Cui et al., 2018] and Macro-F1 [Cui et al., 2018] are adopted
as the quality metrics.

Both the clustering and classification process were re-
peated 100 times for each method and dataset. The aver-
age results in terms of NMI, (clustering) AC, (classification)
AC and Macro-F1 are shown in Table 2, 3, 4 and 5 respec-

11https://github.com/phanein/deepwalk
12https://github.com/adityagrover/node2vec
13https://github.com/tangjianpku/LINE
14https://github.com/shenweichen/GraphEmbedding
15https://github.com/ShelsonCao/GraRep
16https://github.com/ZW-ZHANG/AROPE
17https://github.com/thumanlab/M-NMF
18https://github.com/albertyang33/TADW
19https://github.com/xhuang31/AANE MATLAB
20https://github.com/benedekrozemberczki/FSCNMF
21https://www.csie.ntu.edu.tw/c̃jlin/liblinear



Table 2: Evaluation result of node clustering in terms of NMI(%)

CO TE WA WI TW FA GP Cora Cite UAI BL FL
DW 6.79 5.79 7.22 7.41 33.98 58.37 32.38 36.91 14.20 33.38 19.22 16.64
N2V 6.56 5.55 6.13 6.81 32.34 56.49 33.12 40.67 21.03 34.31 20.42 17.27
LINE 12.24 18.56 21.19 10.79 35.18 42.84 34.97 25.08 10.80 12.12 4.10 0.65
SDNE 13.78 16.85 24.42 8.98 28.02 28.22 27.73 10.96 4.04 11.44 9.62 3.96
GraRep 8.64 12.12 5.03 8.41 34.34 53.80 38.92 36.66 11.54 33.83 22.08 16.39
AROPE 9.08 10.29 9.63 6.36 29.32 25.42 19.45 8.85 4.54 13.63 14.37 8.40
DNR 11.91 18.70 24.29 9.46 32.45 31.29 25.47 16.09 6.48 5.66 13.28 4.42
MNMF 12.90 18.07 22.88 8.94 32.86 40.53 40.38 10.34 5.18 19.36 17.25 14.76
TADW 11.49 8.45 10.67 13.15 25.34 46.34 5.56 29.71 19.29 25.33 7.85 2.27
AANE 30.63 30.32 38.11 40.91 33.72 49.76 37.72 17.78 19.82 41.18 28.26 39.30
FSC 10.67 14.72 11.25 15.06 9.94 29.71 25.69 13.89 18.83 44.24 1.46 0.37
SGR(0) 31.67 33.97 40.23 40.29 36.75 61.45 20.01 49.33 39.62 47.70 31.87 20.66
SGR(1) 35.59 36.57 45.19 41.63 37.06 - - 50.09 - 47.97 32.80 20.47
SGR(R) 36.80 38.59 46.78 45.72 31.93 - 54.35 - 38.48 - - 55.20

Table 3: Evaluation result of node clustering in terms of AC(%)

CO TE WA WI TW FA GP Cora Cite UAI BL FL
DW 38.31 50.37 44.60 43.65 41.89 68.53 56.96 51.55 40.79 36.49 35.44 30.87
N2V 37.50 47.02 40.97 38.92 36.74 57.93 54.53 54.95 44.00 37.69 36.81 31.42
LINE 38.98 54.79 56.16 43.74 42.36 37.58 56.58 42.37 26.96 16.49 25.24 13.09
SDNE 42.12 54.95 62.35 47.43 36.06 26.83 55.27 31.25 22.51 19.17 26.88 15.52
GraRep 32.25 35.39 31.25 33.21 44.79 51.90 53.18 50.43 33.17 37.47 38.79 29.18
AROPE 42.95 56.02 48.91 46.51 37.63 27.58 55.87 32.68 23.05 21.24 28.18 18.27
DNR 37.59 52.42 55.34 42.71 44.57 31.57 53.31 33.56 23.67 12.89 32.57 18.52
MNMF 39.26 54.82 60.19 45.98 40.02 35.81 54.28 32.44 23.30 24.27 33.90 28.35
TADW 47.79 57.63 50.71 50.34 43.81 56.68 43.37 46.32 38.26 28.01 23.26 14.15
AANE 51.49 53.76 52.76 59.23 43.48 69.88 65.34 36.44 43.07 40.72 45.14 38.57
FSC 45.73 58.41 50.62 51.95 35.52 41.37 60.55 35.14 41.38 41.15 18.92 11.81
SGR(0) 54.56 59.16 66.00 64.87 45.41 71.37 54.64 60.92 62.78 45.61 41.85 33.56
SGR(1) 56.25 63.50 66.65 60.32 46.95 - - 62.44 - 46.04 43.10 33.43
SGR(R) 59.11 60.97 71.41 70.85 52.68 - 83.22 - 59.92 - - 61.91

tively, where the best metric is in bold and the second-best
is underlined. Especially, ’-’ denotes there is no perfor-
mance improvement (for the parameter adjustment or side-
enhancement) in comparison with the basic version of SGR.

For the application of node clustering, SGR (including
SGR(0), SGR(1) and SGR(R)) has the best performance on
all the 12 datasets in terms of NMI and outperforms other
baselines on 11 datasets in terms of AC (with the average im-
provement of 25.31% and 21.22% compared to the second-
best baselines). With regard to node classification, SGR
achieves the best performance on 10 and 11 datasets for the
metrics of AC and Macro-F1, respectively (with the average
improvement of 3.74% and 9.39% compared to the second-
best baselines).

In comparison with SGR(0) and SGR(1), the performance
of both node clustering and classification can be further im-
proved on most of the datasets via the side-enhancement (i.e.,
SGR(R)), but such improvement cannot be ensured for all the
datasets (e.g., Facebook, UAI2010, Cora and BlogCatalog).
It can be reasonably interpreted that the incorporation of the
side information (e.g., community structure) may not only
bring complementary knowledge of the network, but also in-
troduce inconsistent features or noise (relative to the applica-
tion’s ground-truth) into the learned representations, affecting
the performance of the downstream application. We intend to
further explore such effect in our future work.

In the experiments, we first fixed δ1 = δ2 = δ3 = 1
and adjusted the proximity order o ∈ {1, 2, · · · , 10} for each
dataset, with the best metric reported for SGR(0). Based on
the selected setting of o, we tuned δ0, δ1, δ2 ∈ {0, 1} for
SGR(1). Moreover, the side-information is further incorpo-
rated (based on the parameter setting of SGR(0) and SGR(1))
by adjusting λ1, λ2 ∈ {0, 1} for SGR(R). Due to the space

Table 4: Evaluation result of node classification in terms of AC(%)

CO TE WA WI TW FA GP Cora Cite UAI BL FL
DW 32.31 47.34 38.85 40.66 48.42 84.44 85.91 68.24 45.32 45.71 59.63 44.54
N2V 31.85 47.40 39.83 40.60 48.54 85.38 87.10 72.53 50.18 48.50 59.94 45.99
LINE 37.19 57.39 53.07 48.64 46.88 83.56 90.08 71.06 44.90 35.05 32.35 12.39
SDNE 38.01 56.62 59.36 48.25 45.22 75.04 89.32 38.66 23.35 26.55 56.37 31.73
GraRep 36.00 50.99 41.74 46.03 51.12 84.98 88.45 73.96 48.75 52.61 65.87 50.24
AROPE 37.69 55.37 50.50 46.30 48.67 81.78 93.90 65.14 43.13 45.42 67.12 57.17
DNR 38.46 57.37 58.63 50.24 46.88 72.09 91.88 44.49 27.31 17.90 40.79 17.80
MNMF 37.94 57.85 46.86 46.67 50.35 83.56 91.03 69.57 46.94 45.26 66.45 53.29
TADW 45.07 52.14 48.73 50.42 46.74 79.57 83.77 67.26 56.89 55.43 89.76 56.65
AANE 60.91 65.01 69.33 72.34 37.18 71.55 84.85 72.62 65.60 61.29 82.19 85.97
FSC 54.14 65.84 64.14 68.11 41.63 72.45 81.85 61.01 62.57 69.86 73.11 49.45
SGR(0) 55.61 63.89 67.11 69.26 48.69 85.76 94.74 80.03 67.62 70.72 90.11 84.25
SGR(1) 57.36 65.07 71.20 72.10 50.73 - - 80.29 - 70.91 90.18 84.36
SGR(R) 58.82 71.17 69.64 74.14 50.82 - 90.17 - 71.31 - - 89.02

Table 5: Evaluation result of node classification in terms of F1(%)

CO TE WA WI TW FA GP Cora Cite UAI BL FL
DW 20.05 21.15 20.79 24.22 25.87 54.86 53.69 66.86 41.95 37.68 59.11 43.61
N2V 19.55 20.32 21.03 24.61 18.29 54.46 51.44 70.82 45.96 39.42 59.30 44.71
LINE 24.10 27.36 28.17 28.72 25.18 54.19 55.85 69.20 40.51 24.33 27.89 10.42
SDNE 22.63 25.69 30.08 26.02 24.56 44.88 64.81 22.41 10.32 20.18 55.63 27.59
GraRep 25.48 29.50 24.48 28.76 27.41 54.97 59.48 72.76 45.20 43.10 65.22 49.73
AROPE 24.44 28.89 26.89 28.33 25.74 46.28 71.52 63.47 39.36 35.09 65.79 55.58
DNR 19.18 25.70 28.32 22.59 24.57 30.01 63.09 29.26 17.28 7.71 39.61 13.40
MNMF 23.20 30.50 24.77 27.94 27.10 54.89 65.39 67.20 42.81 35.73 65.54 52.46
TADW 29.02 21.89 27.00 29.56 26.60 45.90 50.15 65.02 52.79 43.87 89.59 55.90
AANE 39.95 31.50 36.68 44.02 11.29 26.53 43.91 69.16 59.12 40.99 81.75 85.63
FSC 36.18 36.01 38.78 44.64 20.67 28.58 42.86 58.29 55.95 55.21 72.61 46.16
SGR(0) 38.58 37.77 40.33 43.41 25.13 57.83 73.38 78.54 62.52 57.85 89.96 84.06
SGR(1) 40.08 38.40 42.42 46.94 25.99 - - 78.74 - 58.24 90.04 84.16
SGR(R) 44.34 45.86 44.43 52.78 27.12 - 66.25 - 63.05 - - 88.64

limit, we demonstrate the parameter adjustment (in terms of
NMI and Macro-F1 for node clustering and classification) of
Cornell and Citeseer as 2 examples in Figure 3, where ’NR’
represents the baseline performance of SGR(1) (compared
with SGR(R)).

According to Figure 3 and our records, different settings
of o may result in significantly different performances for a
certain dataset, indicating that the order of random walk on
G′ is a primary factor that affects the incorporation of net-
work topology and semantic. Moreover, the best performance
in one application (e.g., node clustering or classification)
doesn’t mean the best result in other applications with respect
to a certain parameter setting (e.g., (δ0, δ1, δ2) = (0, 1, 0) for
Citeseer and (λ1, λ2) = (1, 1) for Cornell). For each dataset,
we determine the best parameter setting by comprehensively
considering the performances (or performance improvement)
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Table 6: Average Running Time(s) of SGR

CO TE WA WI TW FA GP Cora Cite UAI BL FL
SGR 1.57 1.34 1.61 1.81 1.20 0.35 1.19 16.39 66.46 100.06 462.93 1259.32
SGR(R) 2.46 1.89 3.22 4.26 3.12 0.51 1.62 27.87 118.40 270.37 1146.97 9997.84

of both node clustering and classification. Although it’s hard
to find a fixed parameter setting that can ensure the best per-
formance for all the datasets, we recommend to set o = 4 and
δ0=δ1=δ2=1, in which SGR can achieve a relatively high
performance (despite not the best) for most datasets. Better
result can be obtained by fine-tuning δ0, δ1, δ2 ∈ {0, 1} and
utilizing the side-enhancement (i.e., adjust λ1, λ2 ∈ {0, 1}).

We used MATLAB to implement SGR. The average run-
ning time with and without the side-enhancement on a server
(Intel Xeon CPU E5-2680 v4 @2.40GHz and 32GB main
memory) are shown in Table 6. To further speed up the com-
putation, some distributed fast SVD approaches (e.g., [Iwen
and Ong, 2016]) and optimized matrix operation libraries
(e.g., OpenBLAS22) can be utilized. We intend to consider
such improvement in our future work.

4.2 Case Study
We utilized the LastFM dataset23 [Cantador et al., 2011] to il-
lustrate SGR’s ability to generate the semantic description of
network and adopted semantic community detection [Wang et
al., 2016b] as the testing application, where we can generate
one or more wordclouds for each community when the com-
munity partition is finished. The dataset was collected from
the online music platform last.fm24, including the friend rela-
tions and interest tags of the users. After pre-processing, the
dataset contains 1, 892 users (nodes), 12, 717 friend relations
(edges) and 9, 749 tags (attributes).

In the experiments, we obtained the node embeddings and
attribute embeddings (notated as {x′vi} and {x′aw}) by set-
ting o = 4, δ0=δ1=δ2=1 for the basic version of SGR (i.e.,
SGR(0)). We further utilized t-SNE [Der Maaten and Hinton,
2008] to map the representations {x′vi ,x′aw} into a 2D space
with the result visualized in Figure 4 (a), where {x′vi , x′aw}
are well mapped into a common hidden space, indicating the
comparability of the heterogeneous embeddings. Namely,
the distance between (x′vi ,x

′
aw) can be used to measure the

property similarity between node vi and attribute aw. Further-
more, we applied the advanced X-means algorithm [Ishioka,
2000] to determine the proper number of clusters and the
corresponding clustering membership respectively for {x′vi}
and {x′aw}. Finally, we set the number of topology clusters
and attribute clusters (i.e., K1 and K2) to be 16 and 15. The
cluster centers of both {x′vi} and {x′aw} are also mapped
into a 2D space via t-SNE. The corresponding visualization
result is shown in Figure 4 (b), in which each community (i.e.,
node cluster) may have one or more nearest attribute cluster
centers (with relatively close distance in the hidden space),
indicating that it’s possible for a community to have more
than one relevant semantic topics.

22http://www.openblas.net
23https://grouplens.org/datasets/hetrec-2011
24http://www.lastfm.com
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We adopted two different strategies to generate the descrip-
tions. First, we selected the top-5 relevant keywords for each
community by calculating and ranking the distance between
each node cluster center and attribute embedding x′aw , where
each community only have one comprehensive description.
The single wordcloud of community #15 is illustrated in Fig-
ure 4 as an example. Second, we selected the most rele-
vant topics for each community by measuring the distance
between the cluster centers of node and attribute, and then
generated the top-5 keywords for each topic. In this case,
each community may have more than one descriptions, with
each one reflecting a specific aspect of semantic (i.e., topic).
As an instance, 2 relevant descriptions of community #1 are
presented in Figure 4 (d) and (e).

To verify the semantic relation among the top words
in each wordcloud, we used them as the query words of
Wikipedia25 to refer to other related materials. In Figure 4
(c), metal music is the primary topic, just as ”finnish death
metal”, ”prog heavy metal” and ”symphonic heavy metal”
infer. ”post-ironic beardcore” and ”burpcore” are both words
used to describe the genre of metalcore music, which is a fu-
sion genre of hardcore punk and extreme metal. For Figure 4
(d), Pop music should be the hidden topic, where ”emotional
pop” is directly related to it. ”desnudate” and ”my girls” may
refer to the songs of American pop singer Christina Aguil-
era in album Bionic, which is characterized with the genres
of electropop and futurepop. Moreover, ”madonna” may in-
dicate the American singer Madonna Louise Ciccone, who
is referred to as the ”Queen of Pop”. The topic of Figure 4
(d) is Latin music, where ”pop latino”, ”brazilian metal” and
”portuguese” are related to the music and language in Latin
America. Furthermore, ”curitiba” is a city in Brazil, while
”tango” is a popular dance originated in Latin America.

5 Conclusion
In this paper, we introduced a novel SGR model to gener-
ally formulate the graph representation learning in attributed
networks as a high-order (topology) proximity based embed-
ding task of an abstracted weighted graph with heterogeneous
entities. The proposed model could not only comprehen-

25https://en.wikipedia.org/



sively capture the high-order proximity inside and among net-
work structure and semantic, but also jointly learn the low-
dimensional representations of both node and attribute, ef-
fectively supporting the advanced semantic-oriented down-
stream applications (e.g., semantic community detection).
The effectiveness of SGR was also verified on a series of real
attributed networks for several network inference tasks.

In our future work, we intend to explore a more compre-
hensive but simpler parameter adjustment strategy to effec-
tively reduce the hyper-parameters’ search space, with the
guarantee of performance. Moreover, to further reduce SGR’s
computation time via the distributed SVD techniques and op-
timized matrix operation libraries is also our next focus.
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