Random Walk Fundamental Tensor and Graph Importance Measures

Daniel Boley'* and Alejandro Buendia?®'

1'Univ. of Minnesota
2Microsoft Al Development Acceleration Program
boley @umn.edu, albuendi @microsoft.com

Abstract

Random walks over directed graphs are used to model
activities in many domains, such as social networks,
influence/trust propagation, and Bayesian graphical models.
They are often used to compute the importance or centrality
of individual nodes according to a variety of different criteria.

Here we show how a fundamental tensor, yielding a unified
treatment of a wide variety of importance measures for
graphs, can be obtained by precomputation of just one slice
of the tensor. This leads to quick ways to compute measures
such as the average number of visits to a given node and
various centrality and betweenness measures for individual
nodes, both for the network in general and in the case a subset
of nodes is to be avoided. This could lead to fast answers to
queries about major bottlenecks in the network.

Keywords: Networks, Big Data, Scalability

1 Introduction

Background. We consider random walks over a strongly
connected directed graph, corresponding to a recurring
Markov chain. A graph with n vertices can be fully described
by its n x n adjacency matrix A whose ij-th entry a;; is
the weight on the directed edge from i to j, or zero if there
is no such edge. Let 1 be the vector of all ones. We let
d = A - 1 be the vector of out-degrees, where d; = >_ j @ij»
and D = DI1AG(d) be the diagonal matrix with the entries of
d on the diagonal. Then the corresponding Markov chain has
transition probability matrix P = D~'A. It is well known
that if the graph is strongly connected, then P has a simple
eigenvalue A = 1 with corresponding eigenvector with all
positive entries @ = (my,...,m,)T, which can be scaled
to unit length in the 1-norm, i.e. the vector of stationary
probabilities for the random walk. We let IT = DIAG(7)
be the corresponding diagonal matrix. There are several
Laplacians that can be formed from this matrix as noted in

[3]:

L=I-P normalized Laplacian
L =II(I — P) random walk Laplacian (1)
L=D-A combinatorial Laplacian

*Contact Author
TResearch conducted while at Columbia University.

It is well known that these Laplacians play critical roles with
respect to undirected graphs. For undirected graphs, we have
d = - (volume), where volume is twice the number of edges
in the graph, and hence the combinatorial Laplacian is just a
scalar multiple of the random walk Laplacian. For a directed
graph, these “Laplacians” are no longer symmetric, but [3]
showed how they can still be used to compute interesting
properties of the graph.

Golnari et al. (see e.g. [11]) introduced the third-order
random walk fundamental tensor N = {N(i,7,k)}7; —,
where each entry N (i, j, k) is the expected number of visits
to intermediate node j on all walks starting from node @
before reaching target node k. This is an extension of the so-
called fundamental matrix /N of an absorbing Markov chain
[13], which is a matrix whose ij-th entry gives the expected
number of random walk passages through node j when
starting a random walk from node 7 before being absorbed.
Each slice N(:,:, k) of the tensor is the fundamental matrix
for the modified Markov chain where node & is turned into an
absorbing node. This tensor can be used to quickly compute
several centrality measures such as random walk closeness

> M = >2i; N (i, 5, k) for a node k [20], and random
walk betweenness >, ;. Pr(i — j — k) (i.e., the sum of
probabilities of a random walk passing an intermediate node

j averaged over all starting nodes ¢ and ending nodes k) [19;
16].

Contribution and Outline. In this paper we revisit
the random walk Laplacian [3] and show that we can
compute its pseudoinverse using one matrix inversion plus
other computations of O(n?) complexity. The complexity
of the matrix inversion is O(n3) using the usual off-
the-shelf algorithms, but we give an indication that one
can take advantage of the graph structure to reduce this
complexity. We then show how this pseudoinverse can be
used to efficiently calculate many useful properties of the
graph through the use of a fundamental tensor [11], which
leads to convenient calculation of hitting times, absorption
probabilities, and centrality measures. Finally, we show
how to use this tensor to quickly update these measures
when certain nodes are to be removed or avoided, leading
to possible ways to quickly identify local bottlenecks in a
network.

After the preliminaries, we sketch some properties of the

random walk Laplacian, formally define the random walk
fundamental tensor, and show how the tensor can be used
to compute properties of the underlying graph based on its
correspondence to the random walk.

Related Work. This work was motivated by a long literature
of centrality and betweenness measures [4; 2; 19; 9; 16;
18], which have traditionally been difficult to compute.
Random walk-based centrality measures have improved on
other notions of centrality by accounting for propagation
through all possible paths between a source and target. This
is in contrast to previous metrics that have ranked agents
exclusively by geodesics or by maximum flow through a
particular choice of idealized paths [21; 10]. Random walk
probabilities of passages through individual nodes are also
used in influence propagation, such as in trust mechanisms
[15; 14; 17].

2 Random Walk Laplacian and its
Pseudoinverse

We consider a strongly connected directed graph G =
(V,E, A), where |V| = n. This digraph can be modeled
by an irreducible Markov chain with stationary probability
vector 7. By strongly connected we mean that there is a path
from any node to any other node within the directed graph.
For simplicity we assume the graph is unweighted, though
the development can easily be extended to the weighted case.
The probability transition matrix for the Markov chain is
calculated as P = D~ ! A, in which A is the adjacency matrix
and D = DIAG(A - 1) is the diagonal matrix of vertex out-
degrees.

The probability transition matrix for the random walk,
treated as a Markov chain, is

POC (&3 r o, a,n

p=(T) =(me Br) @
where « = {1,...,n — 1} is the index set corresponding
to all but the last vertex (in their arbitrary order), and n is
a chosen absorbing state. Later on, we split « = {3,~}
into two parts 8 & -y, with y temporarily treated as absorbing
states. This matrix is row-stochastic (i.e., P - 1 = 1), and the
vector of recurring probabilities m = (7y;...;m,) satisfies
P =x" 7 >0,...,m >0, |w||1 = 1. Here we use
“:” to denote vertical concatenation a la Matlab. If we were
to assume no self-loops, 7 would be zero.

The matrix P has a simple eigenvalue equal to 1 with right
eigenvector 1 and left eigenvector 77

P-1=1 nlp=nT
The left eigenvector is scaled by [|w|; = > ;m; = 1
so that it is the vector of stationary probabilities for the
recurring Markov chain. The fact that this eigenvalue is
simple is implied by the assumption that the underlying graph
is strongly connected.

The normalized Laplacian is L. = I — P and the random
walk Laplacian is L = TII(I — P). Both of these have
rank n — 1 and nullity 1. The left and right annihilating
vectors for L are exactly the left and right eigenvectors of P

corresponding to eigenvalue 1, namely 7 and 1, respectively.

The annihilating vectors for L are both 1 (on both sides):
L-1=0 1'L=0".

This makes it particularly easy to write down its

pseudoinverse. These properties are summarized in [3].

We use the following lemma based on [3, Lemma 1]
regarding the Moore-Penrose inverse of matrices with nullity
1.

Lemma 1. Suppose we have an invertible (n — 1) x (n — 1)
matrix L, o and two (n — 1)-vectors u,v. Then there is a
unique n X n matrix L with nullity 1 (rank n — 1) of the form

_ La,a loc,n
L - lr:,;,oz lnn
La [e% _La,av
- —uT’La o« ull, av) (3)
]nfl

= _uT> La,oz (Infh _V)

having left and right annihilating vectors satisfying
(u', 1)L =0, L(v;1)=0. (4)

Furthermore the Moore-Penrose pseudoinverse M = LT
can be written in terms of L, , u, v as follows:

M — M%,a ma,n>
Ry

= -1
1+vTv

(where M, , is the upper-left (n — 1) x (n — 1) block of M)
with

or) Lk (R izt

Ma,a = RVL;LRU My,n = _Ma,au (6)
mz;,oz = _VTMa,a Mpn = VTMa,oz“,
where Ry = (I,—1 +uu?)~! = (I,,_1 — 1+ﬁuuT), and
Ry =(In-1+ VVT>_1 = (In,1 - Hﬁva)

Proof (Sketch).

Equation (3) is a simple consequence of (4). Regarding M,
it can be verified by direct calculation and some simplification
that ML and LM are symmetricc LML = L, and
MLM = M, satisfying the conditions for the Moore-
Penrose pseudoinverse. |
Corollary 2. [3] Suppose M is an n x n matrix partitioned as
in (6) with the upper (n —1) x (n — 1) block M, , invertible,
and satisfying (v7,1)M = 0 and M(u;1) = 0. Then the
upper-left (n — 1) x (n — 1) block of L = M satisfies

Loo = By'™MooRy*
= (In-1+v)M, o(I—1 +uu?) 7
_ (I <Ma,a moz,n) <In1> ()
- nebo _V) mz,(x Mpn _uT ’

This corollary leads directly to an algorithm to compute
the random walk Laplacian and its pseudoinverse using only
one matrix inverse.

Algorithm 3 Compute Moore-Penrose pseudoinverse of
random walk Laplacian.

Input: Adjacency Matrix A for a strongly connected digraph.
Output: pseudo-inverse M of random walk Laplacian.

1. Compute probability transition matrix P = D~! A, where
D = DIAG(A - 1) is the diagonal matrix of out-degrees.

2. Compute normalized Laplacian L = I — P partitioned as
in (3).

3. Compute some representation of the inverse of the upper
(n—1) x (n—1)part Ly o

4. Solve the linear system (71, ...,mTp—1) = —L;}ala,nwn,
where 7, is scaled after the fact to satisfy ||7||; = 1.

5. Form diagonal matrix IT = DIAG(7) and random walk
Laplacian L = IT- L = II(I — P), itself partitioned as in
3.

6. Compute the inverse of the upper-left block of L, namely
L;L = (I—Pao)"'TI " using the previously computed

inverse, where I} = DIAG(7y, ..., Tp—1).
e Elementwise: [L; 1]i; = [L3L]i; /7).
7. Compute desired pseudoinverse M according to Lemma
I:
M = M%,a MmMen
mn,a Myp

(8)

R
= 1;T> L.k (Ry, S11),
n

where we have used the fact that the left and right
annihilating vectors for L and M are both 1,,, so the
vectors in (4) are u = v = 1,,_1. We also have the
identity R11 = (I,_; — +117)1 = 11,

This can be computed step-by-step as follows:

a. Compute b =}/, Ly ,1and c” =}/, 1TL L.

b. Compute M,, , = L} —b~1T—1-cT+°TTlllT,

oo

or elementwise [Mq,q]ij = [Lg L]i; — [bli — [c]; +
<1
n T T
c. Computem, ,, =b—121 m! =c7—<2117,
T T
_cf1 _ 1%b

We remark that in the case of undirected graphs, 7 is a
multiple of the vector of vertex degrees, hence step 2 would
be free, but we would still need the inverse in step 5.

3 Fundamental Tensor
Fundamental Matrix. If we set sT = 0,7 = 1 in (2), we
turn the recurring Markov chain into an absorbing Markov

chain with corresponding probability transition matrix P,
where the last node £k = n is a single absorbing node. In
this case the fundamental matrix N [13] is the matrix

N(a,a,n) = L;}a =(I - Pao) !, (9)

*The inverse could be represented in terms of its LU factors, but
later we need the entries of the inverse itself.

whose ij-th entry is the average or expected number of
passages through node j in random walks starting from node
+ which are absorbed by node k.

Fundamental Tensor. We would like to compute the
fundamental tensor N = {N(i,j,k)}ijk=1,. n Where
N (i,j,k) is the average number of passages through
intermediate node j for random walks starting from ¢ before
reaching k. This would be the fundamental matrix in a
Markov chain in which node & is made absorbing instead
of node n. In Algorithm 3 we have shown how to
compute the pseudoinverse of the random walk Laplacian
from the fundamental matrix N = N(a,a,n) obtained
when node n is made absorbing. We would now like to
do the reverse: obtain the fundamental matrix N from the
pseudoinverse M of the random walk Laplacian without any
more matrix inversions. Since the choice of absorbing node n
is arbitrary, this method will also yield a method to compute
the fundamental matrix N (:,:, k) obtained when any other
node k£ # n is made absorbing. In this way we can fill in the
entire fundamental tensor.

Generalization of Fundamental Tensor. In later sections
below, we consider Ng, = N(f5,7,n), namely the
submatrix of N = N(«, «,n) consisting of rows indexed
by index set 5 and columns by index set y. We also later
discuss other tensors of visit counts such as (with i, j € 3)

(a) N(i,j,{7,n}) = expected number of visits to j
before reaching any node in {v,n},
starting from ¢

(b) N(i,j,n,v) = expected number of visits to j
before reaching n starting from 4,
counting only walks that avoid ~y

Corollary 2 provides the formula to go from M to N =
N (o, a,n). From (6), it follows that

N=(I-Pyo) ' =L, =L II; = R{'M, Ry 'TI

o,

A little algebra yields
N (I +117M, (I +117)11,

s

Moz,a My n I
S a S (m

n,o

— (I, -1)M (_iT) M,

or elementwise N (4, j) = (m;; — My j — My, + My,) ; for
1 <4,57 < n — 1. This yields the values for the ¢j-th entries
in the n-th slice of the tensor, N (7, j, n), including the values
when ¢ = n or 7 = n. We are free to reorder the nodes
because the left and right annihilating vectors of L remain
the same regardless of the order (namely, the vector of all
ones). By reordering the nodes, we obtain the corresponding
formula for every other slice in terms of the entries of IM:

N(@j, k) = (mij — My — My + mkk)ﬂj (10)

Cost. Using Algorithm 3, we can compute the pseudo inverse
of the Laplacian in O(n?) time plus the cost of one matrix
inverse. The entire remaining part of the fundamental tensor
N can then be computed by formula (10) in constant time
per entry N (i, j, k). The cost of the matrix inverse is O(n?)

number of time in csec |

vertices [edges | LU fill LU [backsolve|
1,024 4,059 20,620 5 2
2,048 8,140 66,851 2 <1
4,096 | 16,314 205,826 4 <1
8,192 | 32,671 763,440 12 1
16,384 | 65,402 2,804,208 56 5
32,768 (130,884 | 10,740,194 | 250 19
65,536 ({261,882 | 43,504,911 [1,363 82
131,072 (523,920 |168,455,437 {7,989 328

Table 1: Cost of Gaussian elimination for a sample of synthetic
scale-free graphs using Matlab R2018a.

using the usual off-the-shelf algorithm [12]. However, it
has been shown in [6] that the random walk Laplacian L
satisfies the property that »(L + L) can be considered
as the Laplacian for an undirected graph with the same link
structure as the original directed graph. Cohen et al. [7] use
this property to find an approximate sparse LU factorization
for L whose fill (number of non-zero entries) is linear in
the fill of the original L, with high probability. This leads
to a stochastic preconditioner for an iterative method to
approximately solve linear systems involving Laplacians for
strongly connected graphs. The end result is a stochastic
process to find an approximation to the inverse of L, with
theoretical complexity a little over O(n?), depending on the
the conditioning of the system and the desired accuracy.
Certain graph structures naturally lead to fast deterministic
algorithms. We illustrate this with so called scale-free graphs
enjoying the small-world property, commonly found in many
real-world social networks [1]. Small-world networks are
characterized by a high clustering coefficient but have a
small expected path length. Hence, the expected path length
between pairs of nodes is small relative to the number of
nodes in the network. We generate synthetic scale-free
graphs using preferential attachment (Albert-Barabasi model
[1]) of varying sizes, and construct a directed graph by
randomly deleting some edges. Table 1 shows the results
using a deterministic LU factorization with the approximate
minimum degree ordering [8]. For these simple examples,
the process takes only O(n?) time and space, leading to faster
generation of the inverse matrix. Using iterative methods and
approximate factorizations could further reduce this cost with
high probability [7].

To obtain the generalizations N (3, 3,n,7), it will be
seen later that we need to compute Lgé = (I — Pgg)~t.

The following holds for any invertible (n — 1) x (n — 1)
matrix L, o = N ! whose principal submatrix Lg s is also

invertible. Suppose the rows/columns are ordered WLOG
with f={1,...,n1},y={n1+1,...,n — 1}. Then

Lo N (LB,B Lm) , (Nw Na,y> _ (I 0>.
’ Lyg Lyy Nyg Nyy 0 I

Twithout loss of generality

From this relation we see that
@ LpgpNp~y+LgyNyy = 0, (11)
(b) LgpNpp+LpyNyp = Ipp.

Then we can verify the formula for the inverse of Lg g as
follows, assuming the indicated inverses exist:
Lg,p [Na,g = Npy N7 Ny g] B
= Ipp—LpyNyp— LgsNg Ny o Nyp

v (12)
= Ipp—LpyNyp+ LpyNyyNioNy g
= Igp
We have (where (13b) follows from (11b)):
(a) L;}ﬁ = Nzp— N&WN;;NW,B (13)
(b) = Ngg+ LB,BLﬁv"/N’Yﬁ

4 Applications

Hitting Time. The expected time for a random walk starting
at source ¢ to reach target k is

H(ik) =Y N(i,j.k) = mpe —mip+ 3 _(mi; —my;)m;.
- :

J

The expected round-trip commute time between nodes ¢ and
k is

= Mgg + My — My — M.

These can easily be computed directly from the Laplacian
(see e.g. [3] and references therein).

Centrality Measures. It is easy to compute a variety of
centrality measures such as the average round-trip commute
time from a given node £ to all other nodes

Ck) = 22 C k) n =3, ;(N (i, j, k) + N(k, j, i) /n
= (mgr + TRACE(M))/n,

where we have used TRACE(M) = >, m;; and the fact that
> My = » . mi; = 0. Another measure of the importance
of individual nodes in terms of bottleneck or influence is
random walk closeness [Noh and Rieger, 2004]:

closeness(k) = Z H(i, k)= Z N(i,j,k).
i]

The fundamental tensor can also be used to compute
betweenness measures such as random walk betweenness
[19; 16]:

betweenness(j) = Z Pr(i — j — k),
i#5,k#]

where Pr(i — j — k) denotes the probability of passing j
before reaching k in a random walk starting at s.

Probability of passage before another node. The
fundamental tensor can be used to obtain the probability
of passing through a node j before reaching a node k,
denoted Pr(i — j — k). This is the key concept behind the
personalized hitting time trust mechanism [5]. We have the
following result.

Theorem 4. (Probability of ordered passage) The probability
of passing through j on a random walk through the entire
network starting from node ¢ and before reaching k is

Pr(i = j = k) = N(i,5,k) / N (5,3, k)-

Proof. We show WLOG Pr(i —» (n —1) - n) = N(i,n —
1,n) / N(n—1,n—1,n). Consider a recurring Markov chain
with transition probabilities P (an n X n matrix), partitioned
as

where @ is (n—2) X (n—2), r1, ry are column (n—2)-vectors,
and s sI" are row (n — 2)-vectors.

To count how many times we pass through node n — 1
before reaching n, turn node n into an absorbing node and
follow the prescription in [13]. Set so = 0, t2; = 0, tag = 1,
and follow [13] to find the average number of visits to any
node j starting from ¢ via the fundamental matrix:

[I-Q -r 1TV [W x
e e I A RCE)

partitioned conformally (so z is a scalar). In particular, x;
is the expected number of passages through node n — 1
before reaching node n when starting from node ¢, and z is
the expected number of passages through node n — 1 when
starting from node n — 1. So we have x; = N(i,n — 1,n)
and 2 =N(n—1,n—1,n).

From

I-Q) -1 W x| (I 0
—sT 1—tn| |y" =z| |07 1

we have (I — Q)x — zr; =0, or
x=2z(I —Q) 'ry. (15)

Now sets; = 0, t11 = 1, t12 = 0, turning both n — 1, n
into absorbing states, and follow [13] to find the vector of
probabilities of reaching n — 1 before n (starting from any
node i = 1,...,n —2)as by = (I — Q) 'ry, which from
(15) is just x/z. |
Avoiding nodes. We now consider the average hitting time
to a given node assuming we avoid a certain subset of nodes.
Specifically, we divide the set of nodes into three subsets,

6:{1?---5’”‘1}’ ’7:{”1—"_1""7”_1}’ {n}’

such that « = {f,7} = {1,...,n — 1} in (2). We consider
the case where, starting from some node ¢ in 3, we would
like to obtain the average hitting time to node n, conditioned
on avoiding any node in 7. We denote the expected number
of passages through an individual node j, starting at ¢,
before reaching n, and avoiding v as N (4,j,n,v). Then
this desired conditional average hitting time is H (i,n,v) =
> jep IN(i,j,n, 7). Letting avoiding nodes ~ vary over the
major nodes in the network could be a way to satisfy a query
seeking major bottlenecks. Assume WLOG that the nodes are

ordered so that the probability transition matrix is partitioned
as

P, P, P,
Pool Pon 8,8 By B.n
P:(P’ P7>: Pyp Pon | Prn
n,o nn Pn,ﬂ oy ‘ o

If node n is temporarily treated as an absorbing node, we
obtain the (n — 1) x (n — 1) matrix of visit counts to any
individual node in « before reaching node n shown in eq. (9).
In general, we use the following result from [13, chap. 111:
Proposition 5. Fori,j € 3, £ € {y,n}:

(I — Ps,p) " i = N(i,j, {v,n}) .
= expected number of passages through j starting from ¢

before leaving (8
(I —Pgp)t Ppplie =Pr(i = [{y,n}—{¢}])

= Pr(/ is first node reached outside of 3, starting from 7)

Proposition 6. For any j € [such that n is reachable from
j without passing through -, the average number of return
visits to the starting node j before reaching n and avoiding ~y
is

N(j7j7n77) - N(]v.]a {’Yan}) - [(I - Pﬁﬁ)il}jj' (16)

That is, when counting return visits, the condition to avoid
certain nodes makes no difference, compared to making them
absorbing.

Proof. Starting from j, consider the three mutually exclusive
events with corresponding probabilities

e p = Pr(pass j before reaching 7, n),
e ¢ = Pr(reach y before reaching j, n),
e r = Pr(pass n before reaching j,v),

with p + ¢ + r = 1. We have the following probabilities,
starting from j and wandering among nodes in 3 only:
e a := Pr(pass j exactly k times, then reach n before)
e b := Pr(eventually reach n before)
=r/(qg+r)=r/(L-p)=r3 ;0"
e ¢ := Pr(pass j exactly k times, then reach n or)
=p"(1-p)
Hence the probability of passing j exactly k times
conditioned on eventually reaching n is

Pr(pass j exactly k times, given reach n before v) = a/b = ¢

Since the probability distributions over k& match, their
expected values match. |

Proposition 7. For any ¢, j € (3 such that n is reachable from
¢ without passing through -,

N(i,j,n,7) = Pr(i = j — navoiding 7) - N(j. j, {v,n}).

(17)
The quantity Pr(¢ — j — n avoiding) is the probability
that a random walk starting from ¢ will visit intermediate
node j before reaching n, conditioned on the random walk
never visiting any node in 7. This proposition says that
the expected number of passages through j is equal to the
probability of reaching j initially times the expected number

of return visits to j once it is reached. We have the following
for the probability of reaching j initially:

Proposition 8. For any ¢, j € § such that n is reachable from
1 without passing through ~,

Pr(i — j — n avoiding ~)
_Pri=j—={yn}) -Pri—on—{4}). (18)
Pr(i = n— {y})

Proof (Sketch). To derive (18), we temporarily treat all the
nodes in v, {n} as absorbing states. The numerator of the
fraction in (18) is the joint probability that starting from ¢, the
random walker passes j before absorption into any of 7, {n},
and once at j the walker is absorbed by n as opposed to any
node in v. The denominator is the probability that starting
from 4, the walker is absorbed by n as opposed to any node in
- .

We plug in the formulas from Proposition 5 into (18) to get
the probability of passing j in terms of (I — Pg)%
Proposition 9. For any i, j € 3,

Pr(i — j — n avoiding) =
CPrG—=n— {4}
Pr(i = n— {y}) (19)

= Pr(i = j—={y,n})

_ I =Psp) My [T =Pss) ' Pslin
(I - Psp)~ "5 (I — Psp)~ " PsJin

Proposition 7 gives a formula for the average counts
conditioned on avoiding certain set of nodes. If we plug
in formulas from Propositions 6 and 9, we see that all the
terms can be written in terms of (I — Pg)~ and closely
related quantities. If we wish to compute these quantities
for a variety of 3’s and +’s representing various subsets of
vertices in the network, it is useful to know how to quickly
obtain (I — Pz 5)~! from the original Fundamental Tensor
N (i, j, k) (10). In the following, we assume WLOG that the
nodes are ordered so that & = n.

Proposition 10.

(I = Pgp)~" = N(B,8,{v,n})

= [(I - Pa,a) I]Bﬁ [A]
- [(I - Pa,a)il]ﬁ,’y ’ H(I - Pa,a)il]%v]il [B]
: [(I - a,a)_l]%,@ [C]

= N(67[37ﬂ) 7N(5,’}/7TL)N(’)/,"}/,TL)71 N(7757n)

[A] [B] [C]

= [(I - Pa,a)il]ﬂﬂ [A]
— (I = Ppp) " (Psy) [B]
’ [([- Pa,a)il]%ﬂ [C]

where the individual entries in the last expression represent

[A];; = expected number of passages through node j € 3
starting at ¢ €

[B]l;, = Pr(¢e~ is the first node visited outside of S,
starting at ¢€3)

[Cly; = expected number of passages through node j € 3
starting at [€ y

In all three cases the walks stop when they reach n. Here
the notation IN (3, y,n) denotes the sub-matrix of N (:,:,n)
consisting of the rows indexed by 5 and columns indexed by

Y-

Proof (Sketch). The first equality is just a rewrite of (13a)
and the last equality is a rewrite of (13b). The interpretation
of [B];, as the indicated probability comes from Proposition
5 and (13b). |
In the above formulas, if the avoidance set -y is relatively
small, then the cost of the above formulas will be modest, at
most quadratic in n once (I — P, o)~ ! has been obtained.

5 Examples

Ilustrative Example. We give a small example with four

nodes.
® e @
N

® - @

We define a visit to a node j as one departure from that node.
Hence the visit counts for target nodes are zero: N (¢, j, k) =
0 for i = k or j = k. In this case the probability transition
matrix and normalized Laplacian are

0 Y Y% 0 1 Y% —Y% 0
|1 0 0 o0 =1 1 0 o0
P=lo 0o o 1] =10 o 1 =1
1 0 0 0 -1 0 0 1
8 -3 -3 -10
o L0 21 -7 —u

“og|-8 —11 17 10]°

0o -7 -7 U4
where the recurring probabilities are 7w = (0.4; 0.2; 0.2; 0.2).
The computed tensor is then

0 00 O 2 01 1
S R (R
0 0 0 1 2 0 1 2Algorithm
21 00 21 10
Nao=lo 00 0] M=lo 010
2 1 01 00 00

Trust Mechanism. We consider the personalized hitting
time (PHT) trust mechanism, which is one way to model
the propagation of trust through a network of actors [17;
5]. Consider the network of Fig. 1 with probability transition
matrix

0 0340 0 0510 0 0.150

0170 0 0425 0255 0 0.150

O 0 0 0 0850 0150
P=1lg45 0 0 0 0425 0150 | 20

0170 0 0680 0 0 0.150

0.200 0.200 0.200 0.200 0.200 O

Here we seek to infer trust values for every node from
the viewpoint of every other node, where vg is an outside
evaporation node to enforce proximity in the trust values
(See [17; 5] for details). The personalized hitting time trust
mechanism value is defined as

PHT(i,j) = Pr(i — j — 6).

Figure 1: Sample network for trust mechanism model. Node vg is
used to model the global evaporation node.

According to Theorem 4, this can be computed as
PHT(i,j) = N(i,4,6) / N(j,],6). For example, from the
viewpoint of node 4, the trust values for nodes 1,...,5 are

PHT(4,1:5) = (0.5962, 0.2913, 0.5332, 1.0, 0.6573),

where node 5 enjoys the highest trust value from the point
of view of node 4. If we instead consider only paths that
avoid node 2 (for instance, node 2 is known to be a bad
actor), we can compute the PHT values based on the restricted
matrix of counts N (:,:,6,2) instead of IN(:,:,6), to obtain
the modified trust values

PHT, (4,1 : 5) = (0.5962, 0.0000, 0.3872, 1.0, 0.5426),

where it is seen that the node with the highest trust value has
changed to node 1.

6 Conclusions

We have sketched a streamlined algorithm to compute a
fundamental tensor for a strongly connected directed graph.
This tensor encodes the number of visits to each node given
a particular starting and ending node in a directed graph,
based on the random walk model. We have illustrated
how this tensor can be used to quickly compute many
importance measures and related queries for the graph and
for small modifications of the graph if a few nodes are
corrupted or removed. The algorithm has concentrated the
parts of high complexity into a single matrix inverse of a
principal submatrix of the graph Laplacian. This means a
fast algorithm for this one piece of higher complexity would
yield a low-complexity algorithm for all the subsequent
applications. Though a fast exact algorithm for the general
matrix inverse does not exist, we have indicated that an
approximate algorithm which takes advantage of the special
structure of the Laplacian is possible.

References

[1] Réka Albert and Albert-L4szl6 Barabdsi. Statistical
mechanics of complex networks. Rev. Mod. Phys.,
74:47-97, Jan 2002.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Marc Barthélemy. Betweenness centrality in large
complex networks. The European Physical Journal B,
38:163-168, 2004.

Daniel Boley, Gyan Ranjan, and Zhi-Li Zhang.
Commute times for a directed graph using an
asymmetric Laplacian. Lin. Alg. & Appl., 435:224-242,
2011.

Ulrik Brandes. A faster algorithm for betweenness
centrality. The Journal of Mathematical Sociology,
25:163-1717, 2001.

Alejandro Buendia and Daniel Boley. Optimized graph-
based trust mechanisms using hitting times. In AAMAS
Intl Workshop on Trust in Agent Societies, May 2017.

Michael B. Cohen, Jon Kelner, John Peebles, Richard
Peng, Aaron Sidford, and Adrian Vladu. Faster
algorithms for computing the stationary distribution,
simulating random walks, and more. In IEEE 57th
Annual Symp. on Found. Comput. Sci. (FOCS), pages
583-592, Oct 2016.

Michael B. Cohen, Jonathan Kelner, Rasmus Kyng,
John Peebles, Richard Peng, Anup B. Rao, and
Aaron Sidford. Solving directed laplacian systems
in nearly-linear time through sparse LU factorizations.
arxiv.org/abs/1811.10722, 2018.

Timothy A. Davis, John R. Gilbert, Stefan 1. Larimore,
and Esmond G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw.,
30(3):353-376, September 2004.

Francois Fouss, Alain Pirotte, Jean-Michel Renders,
and Marco Saerens. Random-walk computation of
similarities between nodes of a graph with application
to collaborative recommendation. IEEE Transactions
on Knowledge and Data Engineering, 19(3):355-369,
2007.

Linton Freeman, Stephen Borgatti, and Douglas White.
Centrality in valued graphs: A measure of betweenness
based on network flow. Social Networks, 13:141-154,
1991.

Golshan Golnari, Zhi-Li Zhang, and Daniel Boley.
Markov fundamental tensor and its applications to
network analysis. Linear Algebra and Appl., 564:126—
158, 2019.

G. H. Golub and C. F. Van Loan. Matrix Computations.
Johns Hopkins Univ. Press, 4th edition, 2013.

Charles M. Grinstead and J. Laurie Snell. Introduction
to Probability. American Mathematical Society, 2012.

Chung-Wei Hang and Munindar P. Singh. Trust-
based recommendation based on graph similarity. In
Proceedings of the 13th AAMAS Workshop on Trust in
Agent Societies (Trust). AAMAS, 2010.

John Hopcroft and Daniel Sheldon. Manipulation-
resistant reputations using hitting time. In Algorithms
and Models for the Web-Graph. WAW, 2006.

[16] U. Kang, Spiros Papadimitriou, Jimeng Sun, and
Hanghang Tong. Centralities in large networks:
Algorithms and observations. In SIAM Intl Conf Data
Mining, 2011.

[17] Brandon Liu, David Parkes, and Sven Seuken.
Personalized hitting time for informative trust
mechanisms despite sybils. In Int’l Conf. Auto.
Agents & Multiagent Sys. (AAMAS), 2016.

[18] Charalampos Mavroforakis, Michael Mathioudakis, and
Aristides Gionis. Absorbing random-walk centrality.
arxiv.org/abs/1509.02533, 2015.

[19] M. E.J. Newman. A measure of betweenness centrality
based on random walks. Social Net., 27(1):39-54, 2005.

[20] Jae Dong Noh and Heiko Rieger. Random walks on
complex networks. Physical Review Letters, 92(11),
2004.

[21] Karen Stephenson and Marvin Zelen. Rethinking
centrality: Methods and examples. Social Networks,
11(1-37), 1989.

