
Abstract
Understanding the mechanisms governing how

one message acquires more popularity than another,
modeling how it gains popularity dynamically, and
determining the method for predicting its dynamics
popularity are of tremendous interest to related
decision support systems. The prediction of
information cascade begins benefiting from the
development of representation learning of graphs
using deep learning techniques. However, recent
studies are learning the representation of nodes in
the graph, which is not suitable of the information
cascade prediction problem as the information
cascades contain all nodes in the dissemination path
as a whole. Inspired by recent successes of deep
learning in various data mining tasks, we investigate
whether the whole network of information cascade
could be embedded in low dimension and whether it
could effectively predict the future size of cascades.
Besides the learning of each node in the cascade, we
design a method to automatically learn the
representation of each cascade graph as a whole by
building the content-based and structure-based
graph whose node refers to each whole cascade. Our
results on real datasets show the significant
improvement over baselines including
feature-based methods, node embedding methods
and cascade representation by attention mechanism.

1 Introduction
The ubiquity emergence of online social platforms, e.g.,

Twitter, Sina Weibo and Facebook, brings unprecedented
convenience for us to publish and deliver online content,
including tweets, microblogs, videos, and images, which are
placing the economy of attention in the center of this era.
When users constantly reshare the information posted or
shared by others he follows, information cascade will
become popular. Among the large number of information
cascades, only a small amount will receive most attention
from users, while most of these gain few reshares. Thus,
being able to accurately predict the future size of information
cascades, that is, how many reshares a give online content
will acquire, will benefit both users and the owners of
platforms a lot.

Though it is challenging to predict the popularity of
these contents as social platforms are generally large-scale
open system and may be affected by extrinsic factors, many
have proved the predictability of cascades and develop many
methods to solve it [Cheng et al., 2014; Zhao et al., 2015].
Generally, current methods fall into two categories:
generative approaches and feature-based approaches.
Generative approaches recognize the popularity of
information cascades over time as a dynamic time series
fitting problem [Gomez-Rodriguez et al., 2013; Gao et al.,
2015], and thus develop certain macroscopic distributions or
stochastic processes based on various strong assumptions.
Alternatively, feature-driven methods formulate it as a
classification or regression tasks and solve it by machine
learning techniques that incorporate extensive features. The
futures are usually designed based on the knowledge from
both social theory and empirical analysis, including content
features [Hong et al., 2011], sentiment features [Berger and
Milkman, 2012] and network structure [Zhang et al., 2013;
Gao et al., 2014] of the cascades. Among these, features
extracted from the network structure of the cascade are
shown to be powerful by multiple studies [Gao et al., 2014].

Though these features-driven approaches are proven to
outperform generative approaches for real prediction task,
there are still numerous features to be considered as the
performance heavily depends on the hand-crafted features.
The features are often based on human’s prior domain
knowledge and may be specific to particular platform.
However, there is no common methodology of designing and
measuring the features. To overcome this major deficiency of
feature-driven approaches, inspired by the recent success of
deep learning for network learning, one state-of-arts study
[Li et al., 2017] investigates an end-to-end learning method
for cascade prediction. It can automatically learn the most
predictive feature representations of the input cascade graphs,
under the framework of deep neural network, which is
actually mapping these representations to the final cascade
size.

While deep learning for graph learning have
demonstrated their ability of dealing with nodes in graph for
multiple tasks, including recommendation, node
classification or clustering, as well as cascade prediction
problem. Although, the architecture in [Li et al., 2017] can
represent the graph as a whole through an attention
component to aggregate the multiple representation of paths

Prediction of Information Cascades via Content and Structure Integrated Whole
Graph Embedding

Xiaodong Feng1, Qihang Zhao1, Zhen Liu2
1School of Public Affairs and Administration,University of Electronic Science and Technology of China

2School of Computer Science and Engineering,University of Electronic Science and Technology of
China

fengxd1988@hotmail.com,sxg1224@foxmail.com,quake@uestc.edu.cn

mailto:fengxd1988@hotmail.com
mailto:sxg1224@foxmail.com
mailto:quake@uestc.edu.cn


containing user nodes in the graph, it is still based on the
node-level embedding as the attention mechanism is
essentially seen as the weighted average of representation of
each node. Thus, how to design a robust system to learn the
representation of graph as a whole is still a challenging task,
since the future size of an information cascade corresponds to
the whole graph that depicts the process of the cascade, not
each node in the graph.

We present a novel deep learning framework to predict
the size of information cascade, which first constructs a new
graph (noted as graph2) with each cascade graph is analogous
to the vertices in graph2.To design the edges in graph2, we
respectively develop content-based (noted as DeepCon) and
structure-based (noted as DeepStr) ways to measure how
much each pair of two cascade graphs share the identical
influential users and how similar the dynamic process of
cascade is. Then the embedding of a cascade graph as a
whole is learned by feeding graph2 into a second order
random walk to generate cascade sentence as the input of
semi-supervised Skip-gram, followed by a Multiple Layer
Perception (MLP) to map the learned embeddings to the
growth size of information cascades. The proposed method is
evaluated on real information cascade datasets by comparing
with baselines including features-driven approach, node
embedding as well as graph embedding using attention
mechanism.

2 Related Work
Our work lies in the cross road of cascade prediction and

graph representation, so the recent studies in these fields will
be briefly introduced.

2.1 Cascade Prediction
The information cascade prediction methods mainly fall

into two groups: feature-driven approaches and generative
approaches. Feature-driven approaches treat it as a
classification [Gao et al., 2014] or regression [Pinto et al.,
2011] task and apply machine learning techniques to model
the contribution of the informative features for future
popularity. They have empirically revealed the power of
temporal features, content features, topological structure of
cascade and profile of users engaged in the cascade.
Generative approaches typically consider the gain of cascade
popularity as a cumulative stochastic process [Yu et al.,
2015], modelling it as a parametric model and then
estimating the parameters mainly based on the observed time
series data. However, these generative methods are directly
designed to model the popularity and not to predict it. The
models are usually involving strong assumptions, which are
oversimplifying the reality and thus they generally
underperform in real tasks.

For feature-driven approaches, the performance heavily
depends on the hand-crafted features, which may not be
directly applied when they are outside particular context and
are thus hard to be generalized. DeepCas [Li et al., 2017] was
proposed to automatically learn the representations of a
cascade without manual feature design taking advantage of
recent deep network technique as an end-to-end cascade

prediction method. DeepHawkes [Cao et al., 2017] extended
it to consider the time decay effect by means of Hawkes
process. Though these two methods have proven magically
powerful for cascade prediction, both were actually learning
representation of identities of nodes in cascade graph not the
graph as a whole, which may limit the performance.

2.2 Graph Representation
Graph representation to learn embedding the nodes in a

graph, is instrumental for machine learning tasks that focused
on network data, and has gained much attention over the past
decades from different communities. It can be traced back to
graph embedding for manifold learning such as Laplacian
Eigenmaps [Belkin and Niyogi, 2002]. Recently, Word2Vec
[Mikolov et al., 2013] was proposed to learn distributed
dense representation of words from sparse text corpus based
on Skip-Gram, which can place semantically similar words
near each other in space. Inspired byit, DeepWalk [Perozzi et
al., 2014] was first proposed to learn the language model
from a network by using random walks to generate sequences
of nodes from a network. In the learned embedding space,
nodes close in the network tend to be near. To capture a
diversity of network structures, node2Vec [Grover and
Leskovec, 2016] generated biased second order random
walks rather than uniform ones. Different from learning the
embedding for identifying local context of nodes, truc2vec
[Ribeiro et al., 2017] can learn the representations for the
structural identity of nodes. Also, some others exploited deep
learning frameworks, such as autoencoder [Wang et al., 2016;
Gao and Huang, 2018] to learn the embedding of network.

Although there are recently many works focusing on the
graph representation learning, they are mostly learning the
embedding of each node in the graph. We will try to extent
these works to learn the embedding of a whole graph for
cascade prediction.

3 Methodology
In this section, we begin with the formal definition of

cascade prediction studied in this paper, and then introduced
the proposed model.

3.1 Problem Definition
Definition 1 (global network).Given a snapshot of a

social network as G = (V, E) where V is the set of vertices and
E ⊂ V × V is the set of edges. A node i represents an actor,
e.g., a user in Twitter or an author in the academic paper
network, and an edge (i, j) ∈ E represents a social tie, e.g.,
retweeting or citation between nodes i and j.

Definition 2 (cascade graph). Let C be the set of
cascades, containing numbers of cascades as C={c}. Each
snapshot of cascade c at time t is described by a subgraph gct
=(Vct, Ect) ∈ G, Vc is a subset of nodes in V that have
contributed for the cascade c at observed time, an edge (ic, jc)
∈ Ect denotes the link between ic and jc.

Definition 3 (growth size). It can be described as the
increment of the size of cascade c after a given time interval



Δt, denoted as ΔVc=|Vct+Δt |-|Vct|. The growth size of a
cascade is exactly what we are concerned about and to
predict given global network G and cascade graph g.

The framework of our model takes the cascade graph as
input and outputs growth size (shown as figure 1). It first
constructs a new graph to describe how cascades are virtually

connected with each other. Then we generate the cascade
context by means of a second-order random walk, and learn
the embeddings of cascades using Skip-gram. Finally, the
embeddings are fed into a Multiple Layer Perception to fit the
growth size of cascades.

Figure 1: The framework of proposed DeepCon and DeepStr.

3.2 Constructing High order Graph containing
Cascades
To learn the embedding of cascade graph as a whole

using language model, the context of cascade graphs has to
be first constructed. Thus, we construct a high order weighed
graph containing all the cascades as vertices.

Definition 4 (High order cascade graph: Graph2).
Given a cascade set C, we define the high order cascade
graph to encode the similarity between cascades as Graph2=
(C, E2, W), where E2 is the extracted similarity-based links
between cascades and W is the corresponding weight.

Content-based Graph2

The cascades are typically passed through nodes and
different nodes have different social influence for cascades,
e.g. the role of opinion leaders in information dissemination.
Naturally, the growth size of a cascade highly depends on
nodes who propagates the cascades (e.g. retweeting tweets
and citing academic papers), which are the nodes in the
cascade graph at observation time. Thus, we assert that
cascades sharing more identical nodes in the propagation
path will be more likely to have similar growth size in future.
Accordingly, we first propose to measure the similarly
between cascades based on how similar the nodes in them are
close, as content similarity.

Let g1= (V1, E1), g2= (V2, E2) denote two cascade graphs
with V1, V2 denoting the vertex sets and E1, E1 denoting the
edge sets correspondingly. The content similarity between
them is determined by how many common nodes shared in V1
and V2weighted by the influence of nodes, formulated as:

1 2

1 2_ ( , ) ( )
v V V

w con g g deg v
 

  (1)

where deg(v) denotes the degree of node v in global network
G. Then we can link two cascades with similarity between
them exceeding the average similarity of all pair cascades
and set corresponding similarity be weight as Graph2_con.
Structure-based Graph2

For all cascades, the graph between nodes can be
abstracted into different topological structures, such as tree,
star and network. It has been empirically examined by
hand-crafted features that different topological structures
may result in different potential dissemination trend of
cascades, and thus make difference for growth size.
Therefore, we then propose to measure the structural
similarity between different cascade graphs to automatically
learn the structural features from the High order cascade
graph (Graph2_str) based on it. To measure the structural
similarity of two cascade graph g1 and g2, we refer to [Ribeiro
et al., 2017] to compute the structural similarity, defined as
follows.

Let Rk(u) denote the set of nodes at distance (hop count)
exactly k≥ 0 from u in cascade graph gc. Note that R1(u) is
exactly the set of neighbors of u and R0(u) is u itself. Let s(S)
denote the ordered degree sequence of a set S ⊂ V of nodes.
Let r1 and r2 be the root nodes (e.g. the users who publish the
original information or the author of the academic paper to be
cited) of cascades g1 and g2, respectively. The structural
similarity of these two cascades can be measured by
summing the distances between the degree sequence of nodes
at all possible distance k to root nodes as:



1 2( , )
1 2

1 2 1 2
0:

_ ( , )
( , ) ( ( ( )), ( ( ))))

D r r

k k
k K

w str g g e
D r r l s R r s R r







 
, (2)

where l(s1, s2) measures the distance between sequences s1
and s2. Note that Rk(r1) and Rk(r2) are only defined when there
both exists nodes at distance k to r1 and r2, so the K should be
the minimum value of two maximum distances K1 and K2
over all nodes to the root nodes. The weights are inversely
proportional to structural distance, and assume values equal
to 1 only if l(Rk(r1), Rk(r2)) =0 at all k.

As s(Rk(r1)) and s(Rk(r2)) could be of different sizes, we
adopt Dynamic Time Warping (DTW) [Salvador and Chan,
2007] to measure the distance l(s1, s2) between two ordered
degree sequences, a technique that can cope better with
sequences of different sizes and loosely compares sequence
patterns. DTW aims to find the optimal alignment between
two given sequences of different lengths, so that the total
distances between two sequences is the smallest given a
distance function d(a, b) for two scalars. Here, we adopt the
same function as in [Ribeiro et al., 2017]: d(a, b)= max(a, b)/
min(a, b)-1. Obviously, d(a, b)=0 when a=b, implying that
distance of two identical ordered sequences will be 0.

Based on the definition of weight function, we connect
two cascades <g1, g2> in Graph2_con if w_str (g1, g2)
exceeds the average similarity over all pair cascades and set
corresponding similarity corresponding weight.

3.3 Learning a Semi-supervised Language Model
Making an analogy between cascade in Graph2 and

words in document, we can sample cascade sequences from
Graph2 as to be analogous to sentences. Existing ways of
generating paths from network are mostly based on random
walk. The biased random walk in Node2Vec that considers
both breadth-first and depth-first sampling strategies is
applied to generate context for cascades from Graph2.

Let N(g) be a neighborhood list of cascade c generated
through a neighborhood sampling strategy. Supposing the
embedding representation is denoted as H={h1, h2,…hn},
where n is the number of cascades and hg∈ dR denotes the
embedding of cascade graph g. By extending the Skip-gram
framework to cascades, the following objective can be
optimized to maximizes the log-probability of observing the
cascade neighborhood N(g) for all g∈ C, as:

1 2, ,{ } ( )
max ( log )

n

skip gram
g p g

g C p Nh h gh
O Z h h

 

    （ ）. (3)

The per-cascade normalization factor, Zg = Σp∈C exp(hp∙hg) is
expensive to compute for Graph2 with large number of
cascades and we approximate it using negative sampling as in
Node2Vec. Besides the optimization of (3) to encode the
similarity between cascades, to predict the growth size
accurately, the labeled growth size of cascades in training set
can regularize the learning process to generative
discriminative embeddings, as a semi-supervised machine
learning method. Accordingly, we integrate to minimize the
square loss between predicted growth size and ground truth
into Eq. (3), where we exploit a multi-layer perception (MLP)
as an end-to-end prediction as:

1 2

2

{ }

2

, ,
min ( )

log ( 1)
( )

n tt
c ch h h

c

lo

C

c

c

s

c

s

c

y yO

y
y MLP h

V














 





, (4)

where Ct denotes the set of cascades in training set. We take
log-transformation for the ground truth growth size as the
original square loss could be easily affected by outliers [Li et
al., 2017].

Thus, the semi-supervised language model is reached by
optimizing the following objective as:

1 2,{ , }
min +

nt

skip gram los

h

s

h h
O O


 , (5)

where λ>=0 is the weight to balance the weight between them.
Eq. (5) can be optimized using stochastic gradient ascent
over the model parameters defined in features H.

4 Experiments
In order to evaluate the performance of proposed

method, we conducted a comprehensive experiment using
data sets from the real world.

4.1 Data sets and Evaluation Metric
We adopted two data sets altogether. In the first scenario,

we evaluate the prediction of the cascades of scientific papers.
We refer to the AMINER data set that [Li et al., 2017]
collated and use the simplified version downloaded from
https://github.com/chengli-um/DeepCas. The data set
consists of a global network and three cascade network sets.
There are 9860 nodes and 560 cascade graphs in the data set,
each node representing the author of a paper, simultaneously,
a cascade graph composes by the author and the citer of a
paper. The global network G based on citations between
1992 and 2002. The training set consists of papers published
from 2003 to 2007. Papers published in 2008 and 2009 are
used for validation and testing.

The second data set is from Weibo, which is organized
from [Cao et al., 2017] in June 1, 2016. In order to fit our
needs, we reorganize the Weibo data set. We have sorted out
and selected 1565 cascade graphs, which contain 108839
nodes. Each node represents a Weibo user. Then, according
to the selected cascade graphs, we construct a global social
network G, which contains the relevant information how all
nodes are connected. Next, we randomly selected 1200
diagrams from 1565 cascade diagrams as training set, 195
diagrams as validation and 170 diagrams as testing.

We use the mean square error (MSE) of the test data set
to evaluate the accuracy of the prediction, which is a
common choice for regression tasks and was used in previous
cascade prediction works. Denote



y a prediction value, and y
is the true value, the MSE is:

21 ( )
sC

c c
c

yM ySE
n





  , (6)



where Cs is the cascade set of testing set. Clearly, lower MSE
implies better performance.

4.2 Baseline Methods and Parameter Settings
In order to compare with the above methods, we select 3

baselines, including methods that based on nodes
embeddings, features of graph used for cascade prediction.

Feature-linear. We select several features of cascade
graph and using linear regression with L2 regularization to
predict. The features include: Number of leaf nodes (leaf
nodes refer to nodes whose degree is equal to 1 in a graph);
Node number (the number of nodes in a graph); Edge number
(the number of edges in a graph); average degree (the ratio of
the degree of all nodes to the number of nodes in the graph);
Density of edge (the ratio of the number of edges to possible
edges as n*(n-1)/2. Table 1 shows the statistics of these
features of two datasets.

Features sets AMINER Weibo

Avg. Number of leaf
nodes per graph

train 0.7 70.9
val. 0.2 87.0
test 1.6 87.3

Avg. Node number
per graph

train 19.7 75.5
val. 17.8 92.2
test 20.3 92.2

Avg. Edge number
per graph

train 73.6 75.1
val. 57.6 92.1
test 65.6 91.6

Avg. Average degree
per graph

train 6.7 1.9
val. 6.2 1.9
test 5.8 1.9

Avg. Density of edge
per graph

train 0.4 0.1
val. 0.4 0.1
test 0.4 0.1

Table 1: Statistics of extracted futures of two datasets.
Node2vec [Grover and Leskovec, 2016] is selected as a

representative of node embedding methods. We learn two
embedding vectors from global graph and cascade graph, and
join them together to form a new embedding for each node.
The average of embeddings of all nodes in a cascade graph is
fed into MLP to make the prediction.

DeepCas [Li et al., 2017] is an end-to-end neural
network framework that takes as input of the cascade graph
and predicts the growth size.

We use DeepCon, DeepStr and DeepCon+DeepStr to
denote the three variants of our proposed methods, which
take the embedding from Graph2_con, Graph2_str and both
two as the input of MLP.

We sample K = 200 paths each with length T = 10 from
the cascade graph for DeepCas as suggested. For proposed
DeepCon and DeepStr, we set T=14. The iteration number is
1000. For DeepCas, consistent with [Li et al., 2017], the mini
batch size is set to 32 and the smoother  is set to 0.01. The
node2vec hyper parameters p and q are set to 1. The final
sizes d of embedding when fed into a 4-layer MLP for the

both data set are set to 64. The corresponding number of
neurons of different layers in MLP is a 64*32*16*1.

4.3 Overall Performance
The overall performance of all competing methods

across data sets is displayed in Table 2. Note that the values
in Table 2 are logarithmically processed, and if they are
converted to normal values, they will be larger than the
values in the Table 2. ‘DeepCas+DeepCon’ denotes the
method to take the embedding from both deepCas and
DeeCon as the input of MLP, the same way for
“DeepCas+DeepStr” and “DeepCas+DeepCon+DeepStr”.
It is demonstrate that our prosed DeepCon and DeepStr
outperform embedding-based approaches Node2Vec and
DeepCas, showing the power of learning the embedding of
the whole cascade graph as a whole for prediction.

methods AMINER Weibo
Feature-linear 1.34 2.46
Node2vec 2.00 5.90
DeepCas 2.08 17.08
DeepCon 1.68 3.3
DeepStr 1.59 2.33

DeepCon+DeepStr 1.38 2.30
DeepCas+DeepCon 1.42 1.39
DeepCas+DeepStr 1.33 1.28

DeepCas+DeepCon+DeepStr 1.27 1.30
Table 2: Compared performance measured by MSE.
Among all competitors, DeepCas + Con + Str is the best

one, which is what we expected since it makes use of the
node embedding of cascade graphs, the structural similarity
and content similarity between cascade graphs.

Feature-linear, as a traditional and elementary
prediction method, it works well and outperforms Node2Vec,
DeepCas and DeepCon. This shows that if we can find
several better features of cascade graph, we can use this
method to predict and obtain higher accuracy. At the same
time this method is obviously uncertain and unstable. If we
cannot find suitable features, the final prediction results will
be very inaccurate. Carefully designed features from the
literature have already been powerful in capturing the critical
properties of cascade graphs. The benefit of deep learning
comes from the end-to-end procedure, which is likely to learn
high-quality features that can better represent these network
properties.

Node2vec, as a node embedding technology, doesn’t
work well on both of AMINER and Weibo data set. It only
takes the average value of node embedding vectors, that is,
only the nodes in the graph are used to represent the network,
while ignoring other structural and content information in
cascades.

DeepCas, an end-to-end neural network framework that
takes as input of node sequence of the cascade graph,
performs worse than proposed DeepCon and DeepStr. Also,
Node2Vec and DeepCas work so poor in Weibo Data.
Comparing the structure feature statistics in Table 1, we find



cascade in Weibo dataset is much shallower (edge number is
close to number of leaf nodes) and sparser (density of edge is
0.1) than AMINER. It reveals that node embedding can not
perform well for sparse and shallow graph as the context
generated from the node sequence will be limited.

DeepCon and DeepStr have achieved good results on
both datasets, and are superior to existed deep neural
network-based approaches in accuracy and robustness on
both spare and dense graph from these two datasets.
DeepCon works somehow poor on Weibo, which can be
explained by the powerful effect of structure similarity of
smaller number of shared nodes between cascades in this
dataset, which would lead to sparse content similarity-based
Graph2_con and insufficient cascade context.

4.4 Computational Cost
Table 3 shows the computation time for each method to

train the model.
methods AMINER Weibo
Node2vec 21.83 275.63
DeepCas 1417.6 3675.66
DeepCon 33.2 309.59
DeepStr 33.69 238.81

DeepCon+Str 28.18 228.48
DeepCas+Con 1498.63 3915.15
DeepCas+Str 1526.85 3720.43

DeepCas+Con+Str 1584.57 3781.61
Table 3: Computation time measured by seconds.
It is shown that DeepCas takes much longer time than

other methods. Our DeepCon and DeepStr improve the
accuracy and stability while greatly reducing the
computation time.

4.5 Convergence Analysis

Figure 2: Comparison of convergence of different methods.
We compare the convergence (how the MSE on tested

cascades changes over each iteration) of proposed methods
with another end-to-end method DeepCas, as in Figure 2.

It is shown that proposed methods (DeepCon\ DeepStr \
DeepCon+DeepStr) will gain a low MSE very fast after
about 80 iterations. However, the MSE of DeepCas will

reach low level after about 200 iterations. Furthermore, the
MSE is not robust as it will be raised after about 400
iterations due to overfitting on training set, which can be
magically avoided in the iteration of our proposed methods.

4.6 Parameter Sensitivity
In order to evaluate how performance changes to the

parameterization of our methods, we examined the parameter
sensitivity by change the size of embedding vector (d) and
the length of cascades in each random walk sequence (T)
when fixing other parameters, as shown in Figure 3. It is
found that with the increase of T, the prediction declines at
first and keep stable. This was can be explained that as the
number of cascades in the sequence increase, the effect of
each walk would capture more context within cascades and
will reach a boundary. For d the optimal size is 64 as smaller
vector will ignore some potential features and larger vector
contains some redundant information.

(a) MSE v.s. walk length on AMINER (b) MSE v.s. vector size on AMINER

(c) MSE v.s. walk length on Weibo (d) MSE v.s. vector size on Weibo
Figure 3: Parameter sensitivity analysis.

5 Conclusion
We present a end-to-end deep neural network model for

cascade prediction by learning the embedding of the cascade
as a whole rather than aggregating embeddings of each nodes
in cascade. A high-order graph is firstly constructed to
capture the node-content and structure similarity, followed
by a semi-supervised skip-gram model by integrating
minimization of the estimated loss of training cascades with
MLP predictor. The proposed method can perform better
than feature-based and node embedding-based methods, with
lower computation cost and robust results over iterations.

One important future work would be how to encode
other rich information if available in addition to the graph
structure and node identities of cascades, such as text, time
series, and how to exploit other deep neural network, e.g.



autoencoder, recurrent neural network, to improve the
prediction accuracy.

References
[Balasubramanian and Schwartz, 2002] Mukund

Balasubramanian and Eric L Schwartz. The ISOMAP
algorithm and topological stability. Science,
295(5552):7–7, 2002.

[Belkin and Niyogi, 2002] Mikhail Belkin and Partha Niyogi.
Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in neural
information processing systems, pages 585–591, 2002.

[Berger and Milkman, 2012] Jonah Berger and Katherine L.
Milkman. What makes online content viral? Journal of
marketing research, 49(2):192–205, 2012.

[Cao et al., 2017] Qi Cao, Huawei Shen, Keting Cen, Wentao
Ouyang, and Xueqi Cheng. Deephawkes: bridging the
gap between prediction and understanding of information
cascades. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages
1149–1158. ACM, 2017.

[Cheng et al., 2014] Justin Cheng, Lada Adamic, P. Alex
Dow, Jon Michael Kleinberg, and Jure Leskovec. Can
cascades be predicted? In International Conference on
World Wide Web, pages 925–936. ACM, 2014.

[Gao and Huang, 2018] Hongchang Gao and Heng Huang.
Deep attributed network embedding. In International
Joint Conference on Artificial Intelligence, pages
3364–3370, 2018.

[Gao et al., 2014] Shuai Gao, Jun Ma, and Zhumin Chen.
Effective and effortless features for popularity prediction
in microblogging network. In International Conference
on World Wide Web, pages 269–270. ACM, 2014.

[Gao et al., 2015] Shuai Gao, Jun Ma, and Zhumin Chen.
Modeling and predicting retweeting dynamics on
microblogging platforms. In ACM International
Conference on Web Search and Data Mining, pages
107–116, 2015.

[Gomez-Rodriguez et al., 2013] Manuel Gomez-Rodriguez,
Jure Leskovec, and Bernhard Sch¨olkopf. Modeling
information propagation with survival theory. In
International Conference on Machine Learning, pages
666–674. IMLS, 2013.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 855–864. ACM, 2016.

[He and Niyogi, 2004] Xiaofei He and Partha Niyogi.
Locality preserving projections. In Advances in neural

information processing systems, pages 153–160, 2004.
[Hong et al., 2011] Liangjie Hong, Ovidiu Dan, and Brian D.

Davison. Predicting popular messages in twitter. In

International Conference on World Wide Web, pages
57–58, 2011.

[Li et al., 2017] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and
Qiaozhu Mei. Deepcas: An end-to-end predictor of
information cascades. In Proceedings of the 26th
international conference on World Wide Web, pages
577–586. International World Wide Web Conferences
Steering Committee, 2017.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their
compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[Pinto et al., 2013] Henrique Pinto, Jussara M. Almeida, and
Marcos A. Goncalves. Using early view patterns to
predictthe popularity of youtube videos. In ACM
International Conference on Web Search and Data
Mining, pages 365– 374, 2013.

[Ribeiro et al., 2017] Leonardo FR Ribeiro, Pedro HP
Saverese, and Daniel R. Figueiredo. struc2vec: Learning
node representations from structural identity. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 385–394. ACM, 2017.

[Salvador and Chan, 2007] Stan Salvador and Philip Chan.
Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis, 11(5):561–580, 2007.

[Wang et al., 2016] Daixin Wang, Peng Cui, and Wenwu Zhu.
Structural deep network embedding. In Proceedings of
the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1225– 1234.
ACM, 2016.

[Yu et al., 2015] Linyun Yu, Peng Cui, Fei Wang, Chaoming
Song, and Shiqiang Yang. From micro to macro:
Uncovering and predicting information cascading process
with behavioral dynamics. In 2015 IEEE International
Conference on Data Mining, pages 559–568. IEEE, 2015.

[Zhang et al., 2013] Jing Zhang, Biao Liu, Jie Tang, Ting
Chen, and Juanzi Li. Social influence locality for
modeling retweeting behaviors. In International Joint
Conference on Artificial Intelligence, pages 2761–2767,
2013.

[Zhao et al., 2015] Qingyuan Zhao, Murat A. Erdogdu, Hera
Y. He, Anand Rajaraman, and Jure Leskovec. SEISMIC:
a self-exciting point process model for predicting tweet
popularity. Computer Science, pages 1513–1522,2015.


