The Dynamics, Uncertainty and Heterogeneity in Network Embedding

Xiangliang Zhang

King Abdullah University of Science and Technology

Introduce myself

Experience:

```
2017-Present, Associate Professor - Computer Science CEMSE Division, KAUST
```

2011-2017, Assistant Professor - Computer Science CEMSE Division, KAUST

2010-2011, Research Scientist, CEMSE Division, KAUST

2010, ERCIM Research Fellow, NTNU, Norway

Education:

2006-2010, PhD, INRIA – University Paris Sud 11, France

2003-2006, MS, Xi'an Jiaotong University, China

1999-2003, BS, Xi'an Jiaotong University, China

KAUST in Saudi Arabia

KAUST in Numbers

Since September 2009

1000+ students (Masters + Ph.D. only)

~150 faculties

700+ Research scientist and Post-docs

100+ nationalities

3 Divisions, 11 Research Centers

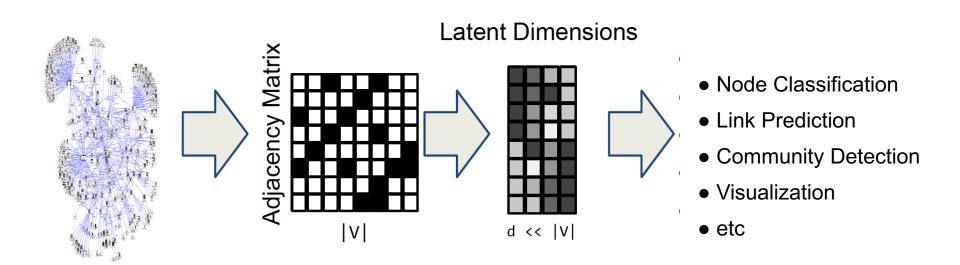
~25% female students

Outline

- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

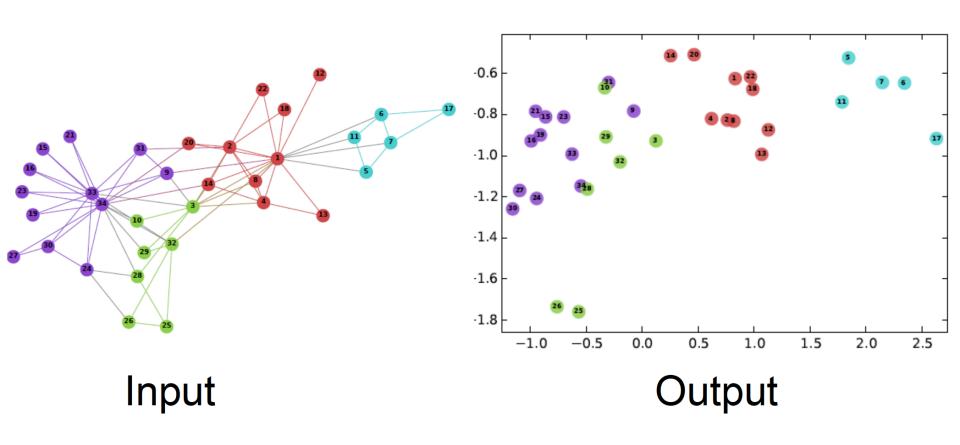
Network Embedding

Create features by transforming the graph into a lower dimensional latent representation.

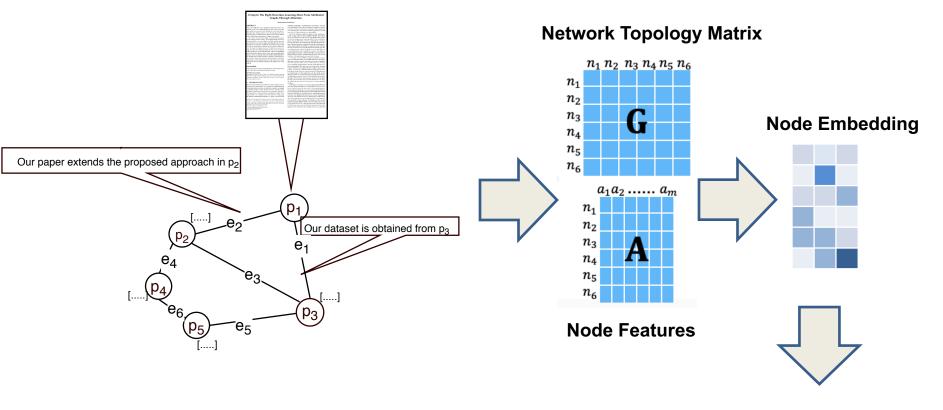


Visual Example

On Zachary's Karate Graph:

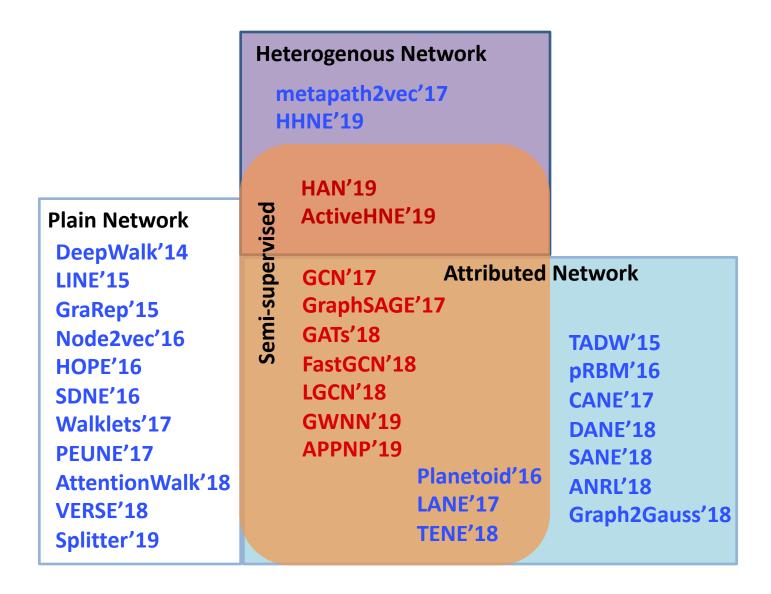


Attributed Network Embedding



- Node Classification
- Node Profiling
- Link Prediction
- Community Detection
- Visualization, etc

Recent Work of Network Embedding



Challenges

Information Space + Social Space Challenges big Info. **Space** dynamic **Interaction** hetero Social **Space** geneous **Interaction**

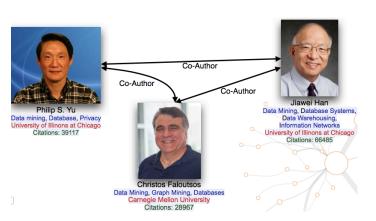
- 1. J. Scott. (1991, 2000, 2012). Social network analysis: A handbook.
- 2. D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge University Press, 2010.

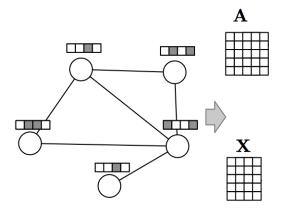
Outline

- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

Problem: Attributed Network Co-Embedding

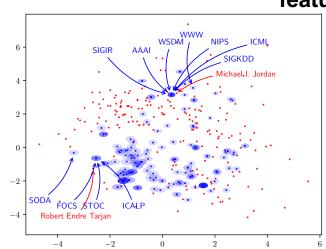
Goal: map nodes and features in the same space





Input: Attributed Network

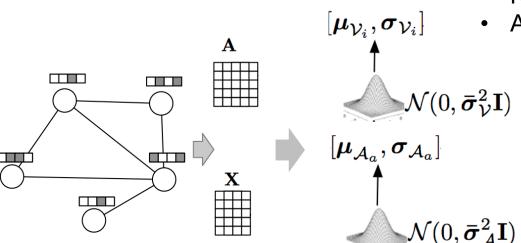
Output: Node and feature embedding



Problem: Attributed Network Co-Embedding

Our Co-embedding Model

- Represent both node and feature in the same space
 - > to quantitatively measure their relationship
- Represent node/attribute by a Gaussian distribution, not a single point
- to capture the uncertainty

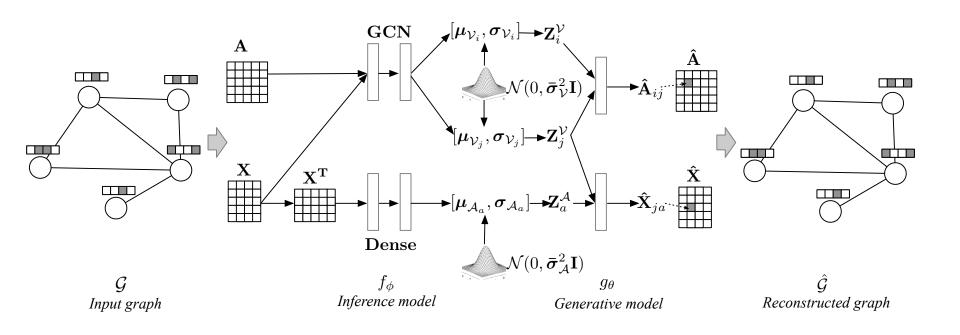


Output:

- Node representation
- Attribute representation

Co-Embedding Model for Attributed Network

The proposed model, CAN, based on VAE



Experimental Evaluation, datasets

	Datasets	#Nodes	#Edges	#Attributes	#Labels
ſ	Cora	2,708	5,429	1,433	7
Citation	Citeseer	3,312	4,660	3,703	6
	Pubmed	19,717	44,338	500	3
	-BlogCatalog	5,196	171,743	8,189	6
	Flickr	7,575	239,738	12,047	9
	Facebook	4,039	88,234	1,406	-
Co-author	= DBLP	12,213	131,713	172	-

Applications:

- Node classification
- Link Prediction
- Attribute Inference
- User Profiling

Experimental Evaluation, results

Method	Co	Cora		Citeseer		Facebook		Pubmed		Flickr		BlogCatalog	
	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP	
AANE	.767	.720	.785	.765	.842	.834	.783	.754	.709	.697	.711	.714	
GaphSAGE	.795	.763	.802	.791	.854	.846	.840	.829	.732	.728	.723	.702	
ANRL-WAN	.832	.843	.867	.848	.935	.912	.918	.897	.724	.763	.762	.758	
GAE	.914	.926	.908	.920	.980	.979	.944	.947	.828	.827	.821	.821	
CAN	.985	.984	.950	.958	.988	.986	.980	.977	.914	.922	.837	.837	

Link Prediction

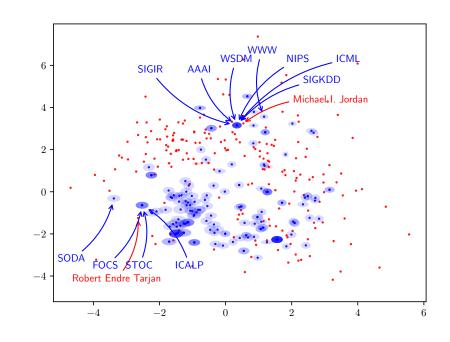
Method	Co	Cora		Citeseer		Facebook		Pubmed		Flickr		BlogCatalog	
	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP	AUC	AP	
EdgeExp	.682	.690	.707	.714	.671	.687	.586	.576	.678	.685	.684	.744	
SAN	.664	.672	.679	.675	.712	.723	.579	.572	.653	.660	.694	.710	
BLA	.808	.801	.854	.876	.868	.830	.622	.602	.730	.769	.787	.792	
CAN	.932	.916	.954	.939	.974	.971	.670	.652	.867	.865	.868	.867	

Attribute Inference

Experimental Evaluation, results

User Profiling

Top-4 conferences Experts Michael I. Jordan NIPS, UAI, ICML, ICASSP **Machine Learning Computer Vision** Geoffrey E. Hinton NIPS, ICML, ICCV, ICASSP Yann LeCun NIPS, ICCV, ICML, CVPR **Theoretical Computer** Robert Endre Tarjan FOCS, STOC, COLT, SODA **Science** Sanjeev Arora SODA, FOCS, ICALP, COLT

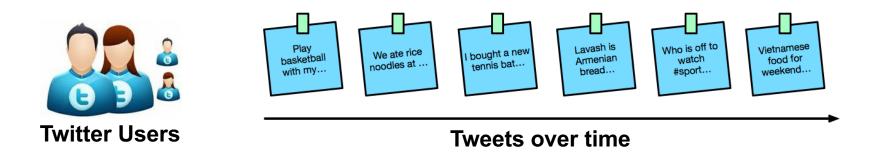


Outline

- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

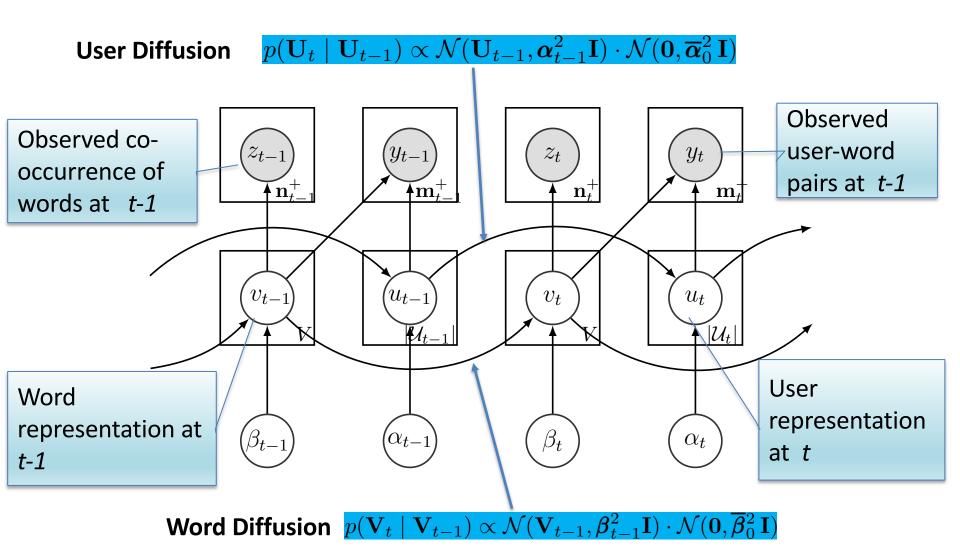
The Task

Input: A stream of tweets generated across the time



Output: A set of keywords to profile the user at different point in time

Dynamic User and Word Embedding



S. Liang, X. Zhang, Z. Ren, E. Kanoulas. Dynamic Embeddings for User Profiling in Twitter. KDD 2018

DUWE model inference

- Apply the skip-gram filtering for the inference (Bamler et al. 2017) and the variational inference algorithm to obtain the embeddings
- Posterior distribution over $\mathbf{U}_{\leq t}$ and $\mathbf{V}_{\leq t}$ conditional on the statistics information $\mathbf{m}_{\leq t}^{\pm}$ and $\mathbf{n}_{\leq t}^{\pm}$ as follows:

$$p(\mathbf{U}_{\leq t}, \mathbf{V}_{\leq t} \mid \mathbf{m}_{\leq t}^{\pm}, \mathbf{n}_{\leq t}^{\pm}) = \frac{p(\mathbf{m}_{\leq t}^{\pm} \mathbf{n}_{\leq t}^{\pm}, \mathbf{U}_{\leq t}, \mathbf{V}_{\leq t})}{\iint p(\mathbf{m}_{\leq t}^{\pm} \mathbf{n}_{\leq t}^{\pm}, \mathbf{U}_{\leq t}, \mathbf{V}_{\leq t}) d\mathbf{U}_{\leq t} d\mathbf{V}_{\leq t}}$$

positive and negative indicator matrices for all user-to-word pairs

positive and negative indicator matrices for all word-to-word pairs

where we have:

model transition for users

model transition for words

$$p(\mathbf{m}_{\leq t}^{\pm} \mathbf{n}_{\leq t}^{\pm}, \mathbf{U}_{\leq t}, \mathbf{V}_{\leq t}) = \prod_{t'=1}^{t} \left(p(\mathbf{U}_{t'} \mid \mathbf{U}_{t'-1}) p(\mathbf{V}_{t'} \mid \mathbf{V}_{t'-1}) \right)$$

$$\left(\prod_{k,l=1}^{V} p(\mathbf{n}_{k,l,t'}^{\pm} \mid \mathbf{v}_{k}, \mathbf{v}_{l}) \right) \cdot \left(\prod_{i=1}^{|\mathcal{U}_{t'}|} \prod_{k=1}^{V} p(\mathbf{m}_{u_{i},k,t'}^{\pm} \mid \mathbf{u}_{i}, \mathbf{v}_{k}) \right) \right)$$

skip-gram model for words

skip-gram model for user and words

An Example User's Dynamic Profiling Results over Time

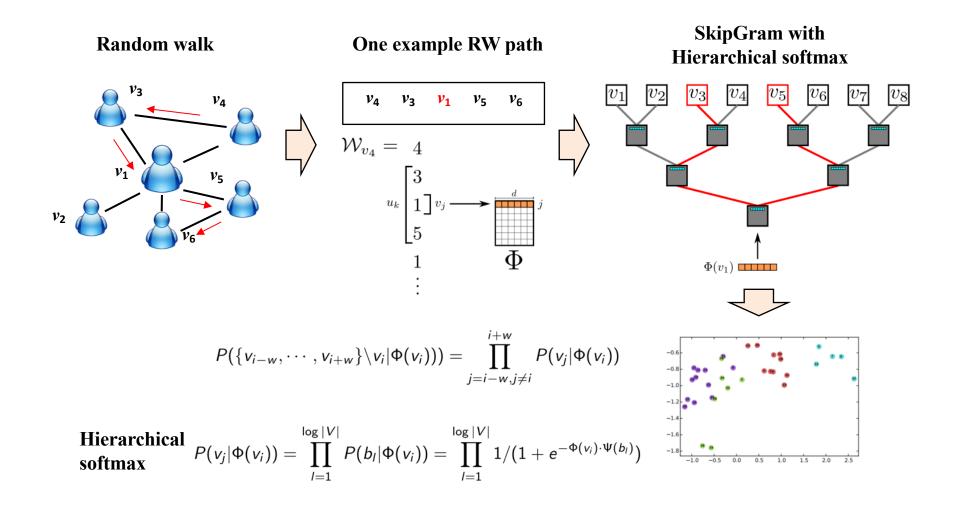
Top-6 keywords of an example user's dynamic profile, whose interests cover a number of aspects and dramatically change over time, from Sport, fitness, kitchen, exercise, to education.

	Apr. 2014 to Jun. 2014	Jul. 2014 to Sep. 2014	Oct. 2014 to Dec. 2014
Ground	badminton leaf basketball	muscle apple heart kiwi	freezer fly toaster cock-
Truth	flower bicycling root	lungs pomelo	roach cabinet ant
DPDR	badminton sky basketball	heart apple ankle pomelo	freezer water muffin fly
	herb coach grass	finger peach	toaster cockroach
DUWE	badminton flower basket-	heart apple muscle kiwi	freezer ant dishwaster fly
	ball leaf bicycling fruit	breath pomelo	toaster cockroach

Outline

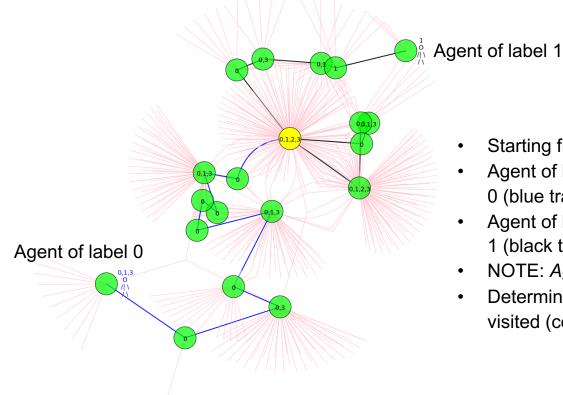
- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

DeepWalk and its extensions



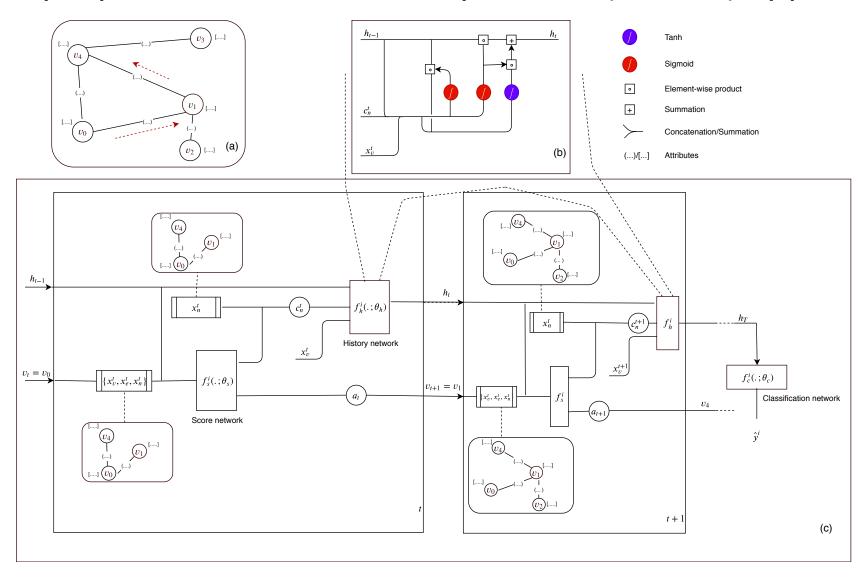
Walking with reinforcement?

- Task: walking to classify nodes
- Solution: learn node embedding in semi-supervised way with reinforcement (earning rewards to classify correctly)



- Starting from the yellow node, with labels {0, 1, 2, 3}
- Agent of label 0 visited a number of nodes with label
 0 (blue trajectory)
- Agent of label 1 visited a number of nodes with label
 1 (black trajectory)
- NOTE: Agents do not know labels when walking.
- Determine where to go by knowing what has been visited (content of previously visited nodes)

Our proposed Multi-Label-Graph-Walk (MLGW) approach



Evaluation Results

	$\mid V \mid$	$\mid E \mid$	$\mid L \mid$	$ V^L $
DBLP	28,702	68,335	4	28,702
Delve-R	1,229,280	4,322,275	20	131,991

					DBLP						Delve-R	
			Tr	-1		Tr-1						
	prec	ision	Recall		F1		precision		Recall		F1	
	macro	micro	macro	micro	macro	micro	macro	micro	macro	micro	macro	micro
BR	79.9	81.1	70.0	72.4	74.5	76.5	80.9	87.8	66.5	76.6	72.5	81.8
LP	77.7	79.1	70.5	73.4	73.7	76.1	75.1	83.3	64.2	75.0	69.0	78.9
CC	76.8	77.8	7.02	74.5	74.2	76.1	78.8	86.3	68.5	78.0	72.9	81.9
Rk	77.7	79.1	70.5	73.4	73.7	76.1	75.1	83.3	64.2	75.0	69.0	78.9
MLKNN	68.3	70.7	60.7	63.5	64.2	66.9	65.6	74.0	46.2	58.1	53.2	65.1
MARM	55.6	52.1	55.8	62.8	48.2	56.9	9.4	22.7	5.3	19	2.4	20.7
GF	70.7	73.0	62.4	65.5	66.1	69.0	65.7	74.1	46.3	58.2	53.3	65.2
GraphSAGE_mean	73.7	75.9	73.5	75.1	73.5	75.5	59.6	72.0	74.6	81.3	65.2	76.4
GraphSAGE_GCN	78.3	79.8	65.6	67.5	71.2	73.1	51.3	62.6	66.5	75.4	57.3	68.4
GraphSAGE_maxpool	76.8	78.6	71.6	73.3	74.1	75.8	60.0	72.0	77.0	83.4	66.4	77.3
GraphSAGE_meanpool	72.2	74.4	73.4	74.4	72.4	74.4	59.4	71.2	76.4	82.9	65.9	76.6
GraphSAGE_LSTM	70.5	73.2	73.8	75.4	71.9	74.3	58.1	69.9	75.4	82.4	64.9	75.6
MLGW-I_TRANS	80.4	81.7	74.0	76.2	76.8	78.8	78.0	85.5	75.0	84.3	76.0	84.9
MLGW-I_IND	80.4	81.5	73.9	76.3	76.7	78.8	78.0	85.5	74.9	84.3	76.0	84.9

Outline

- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

ActiveHNE: active heterogeneous network embedding

- Semi-supervised has promoted the learned embedding for multilabel classification, in *homogenous* network.
- Heterogenous network? However
 - Labels are difficult to obtain ->

Active Learning, iteratively query the most valuable batch of nodes to label and add for training

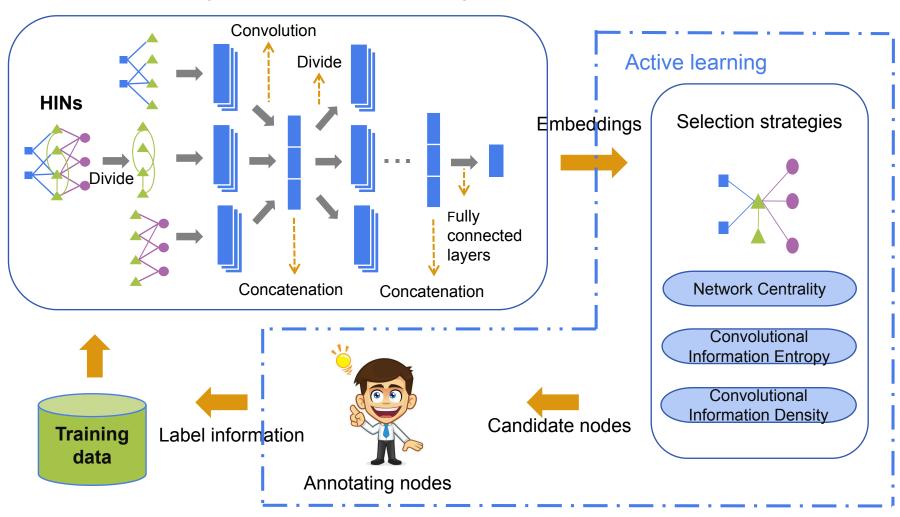
Nodes are in different types →

Decompose the original HIN into

homogeneous networks + bipartite networks

ActiveHNE architecture

Discriminative Heterogeneous Network Embedding (DHNE)



Active Query in Heterogeneous Network (AQHN)

Active Query in Heterogenous Network

Three active selection strategies based on uncertainty and representation:

Network Centrality, e.g., Degree Centrality

$$\phi_{nc}(v_i) = |\mathcal{N}_i|$$

Convolutional Information Entropy (node representation uncertainty)

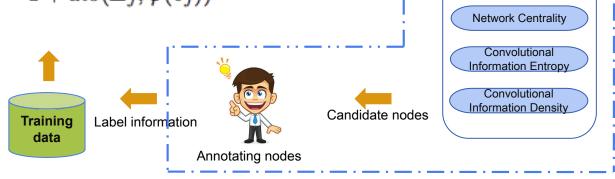
$$\phi_{cie}(v_i) = \sum_{v_i \in \{v_i \mid |\mathcal{N}_i\}} w_j(-\sum_{c=1}^C \mathbf{F}_{jc} \log \mathbf{F}_{jc}) \qquad \text{importance of a node} \\ w_i = tanh(\frac{n_i}{N} + \frac{m_i}{V_T})$$

The uncertainty of v_i is a weighted sum of the uncertainties of its neighbors and itself.

Convolutional Information Density (measuring the node representativeness)

$$\phi_{cid}(v_i) = \sum_{v_j \in \{v_i \bigcup \mathcal{N}_i\}} w_j \frac{1}{1 + dis(\mathbf{E}_j, \varphi(v_j))}$$

Which one or which ones to choose?



Embeddings

Active learning

Selection strategies

Selecting candidate nodes

- Multi-armed bandit machine: Choose one or several arms to maximize the cumulative reward
- View each selection strategy as an arm, and approximate the importance of each strategy by estimating the expected reward (i.e., utility) of the corresponding arm

The empirical reward of arm λ in iteration r is estimated as

$$\hat{\mu}_r(\lambda) = rac{\Delta_r(\lambda)}{\Delta_r(igcup_{\lambda=1}^{\Lambda} \lambda)}$$

where

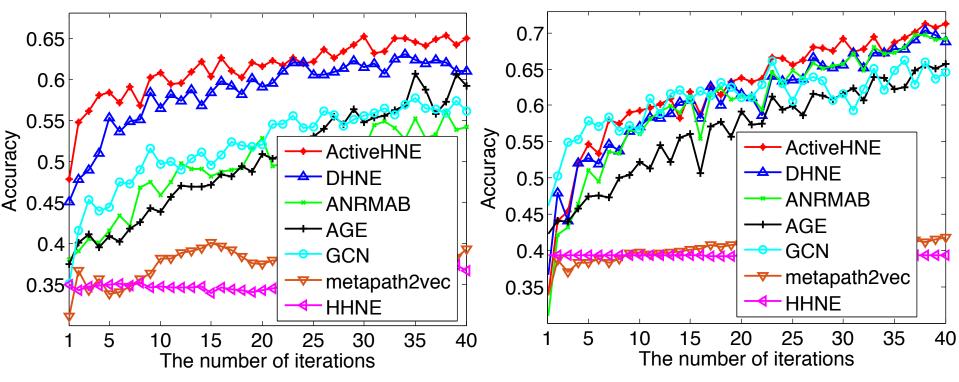
$$\Delta_r(\lambda) = \sum_{v_i \in \mathcal{Q}^{\lambda}_r} \sum_{v_j \in \mathcal{N}(v_i)} dis(\mathbf{E}^r_j, \mathbf{E}^{r-1}_j)$$

is the local **embedding changes** caused by arm λ in iteration r.

• Finally, select the top b nodes (from $\bigcup_{\lambda=1}^{\Lambda} C_r^{\lambda}$) with the highest $\tilde{\mu}_r^*(v_i)$

$$ilde{\mu}_r^*(v_i) = \sum_{\lambda=1}^{\Lambda} ilde{\mu}_r(\lambda) (b - rank_r^{\lambda}(v_i))$$

Results, Active HNE vs baselines



MovieLens dataset: 9.7K movies, 12K writers, 4.9K directors, 0.6K users, and 1.5K tags, with a total of 140K links

Cora with 25K authors, 19K papers, and 12K terms, with 146K links

Outline

- Introduction of Network Embedding
- Co-embedding of Attributed Network for User Profiling
- Dynamic Embedding for User Profiling
- Walking with Reinforcement for Semi-supervised
 Embedding learning from Attributed Network
- Active Heterogenous Network Embedding
- Future work Discussion

Challenges and future directions

- Incompleteness and noise in graph
- Scalability on big graphs
- Attacks and Robustness of graph embedding
- Other applications, in biology, chemistry, etc.

Our other papers at IJCAI 2019

1. ActiveHNE: Active Heterogeneous Network Embedding

Xia Chen, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Zhao Li, Xiangliang Zhang

Presentation: Tuesday Aug 13, 10:50 - 12:20ML | AL - Active Learning 1

2. Improving Cross-lingual Entity Alignment via Optimal Transport

Shichao Pei, Lu Yu, Xiangliang Zhang

Presentation: Tuesday Aug 13 16:30 - 18:00ML | DM - Data Mining 3

3. Multi-View Multiple Clustering

Shixin Yao, Guoxian Yu, Jun Wang, Carlotta Domeniconi, Xiangliang Zhang

Presentation: Friday Aug 16 09:30 - 10:30ML | C2 - Clustering

Acknowledgement

My PhD students, visiting students and collaborators

- Basmah Altaf
- Uchenna Akujuob
- Shichao Pei
- Lu Yu
- Qianan Zhang
- Zhuo Yang
- Yufei Han

- Qiang Yang
- Hongyan Bao
- Peng Han
- Zaiqiao Meng
- Shangsong Liang
- Guoxian Yu
- Pinghui Wang

We are hiring!

My group website http://mine.kaust.edu.sa

Thank you for your attention!

Lab of Machine Intelligence and kNowledge Engineering (MINE): http://mine.kaust.edu.sa/

