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Preliminaries

Directed graph represented by adjacency matrix A = [aij ] with

aij =

{
wij weight on directed edge i → j

0 if no edge exists

Markov chain over digraph has probability transition matrix
P = D−1A, for diagonal matrix D of vertex out-degrees

Let the digraph be strongly connected: strongly connected
⇐⇒ no absorbing states in the Markov chain

Let π be the vector of stationary probabilities for the random
walk, scaled to unit length in the 1-norm, and let
Π = Diag(π) be the corresponding diagonal matrix.
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Random walk fundamental tensor

The fundamental matrix N = [nij ] of an absorbing Markov
chain gives the expected number of random walk passages
through node j starting from node i .

Golnari et al. [1] introduce the third-order random walk
fundamental tensor N = N(i , j , k), where entry N(i , j , k)
gives the expected number of passages through intermediate
node j when starting a random walk from node i absorbed by
node k .

Each slice of the tensor is a fundamental matrix N for a
random walk over the digraph, treating node k as the
absorbing state.

4 / 13



Example digraph

We define N(i , j , k) = 0 for i = k 6= j and N(i , j , k) = 1 for j = k .

5 / 13



Laplacian and its extension to digraphs

Several Laplacians exist in the literature (see e.g. [2])

Consider a random walk Laplacian L = π(I − P) with rank
n − 1 and nullity 1 (L · 1 = 0 and 1TL = 0T )

The Moore-Penrose pseudoinverse of L provides an efficient
way to compute the random walk fundamental tensor: we
show an algorithm using a single matrix inverse of complexity
O(n3) and other lower-order computations of complexity
O(n2).
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Computing the Moore-Penrose pseudoinverse of the
random walk Laplacian

Algorithm 3 (Computation of pseudoinverse)

1 Compute probability transition matrix P = D−1A

2 Compute normalized Laplacian L = I − P

3 Compute inverse of the upper (n− 1) × (n− 1) part of L, Lα,α

4 Solve the linear system (π1, . . . , πn−1) = −L−1α,αlα,nπn, where
πn is scaled so that π has unit length

5 Form Π = Diag(π) and L = Π(I − P), partitioned as in (3)

6 Compute the inverse of the upper-left block of L,
L−1α,α = (I − P−1α,α)Π−11 , using the previously computed inverse

7 Compute desired pseudoinverse M of L using Lemma 1 from
[2], exploiting that the annihilating vectors for L and M are
both 1

7 / 13



Computing the random walk fundamental tensor

A corollary of Lemma 1 [2] provides an efficient formula to go
from pseudoinverse M to fundamental matrix N = N(α, α, n).

Elementwise, we can then derive the formula

N(i , j , k) = (mij −mkj −mik + mkk)πj (1)

Computing from scratch, we require one matrix inverse O(n3)
and other O(n2) operations to compute M . The fundamental
tensor N can then be computed via (1) in constant time per
entry N(i , j , k).
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Applications to centrality measures

Hitting times and centrality measures are easily computed from the
random walk fundamental tensor and useful in quantifying the
importance of nodes within the graph:

Hitting time: Expected time for a random walk starting at
source i to reach k is

H(i , k) =
∑
j

N(i , j , k)

Random walk closeness [3]:

closeness(k) =
∑
i

H(i , k) =
∑
i ,j

N(i , j , k)

Random walk betweenness [4, 5]:

betweenness(j) =
∑

i 6=j ,k 6=j

Pr(i → j → k)
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Further reductions in complexity

Cohen et al. [6] show that 1
2(L + LT ) can be considered the

Laplacian for an undirected graph with the same link structure
as the original digraph.

An approximate sparse LU factorization for L whose fill is
linear in the fill of the original L can be found with high
probability [7].

Though a fast exact algorithm for the general matrix inverse
does not exist, this leads to an approximate algorithm with
complexity slightly over O(n2) to find an approximation to the
inverse of Lα,α.
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Experiment on small-world graphs

Certain graph structures naturally lead to fast deterministic
algorithms.

Small-world networks are characterized by a high clustering
coefficient but small expected path length (e.g. social
networks).

Using preferential attachment, we generate synthetic
small-world networks and construct digraphs by randomly
deleting edges.

We compute a deterministic LU factorization with the
approximate minimum degree ordering.
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Experiment on small-world graphs (cont.)

Computation of the LU factorization takes O(n2) time and space,
leading to faster generation of the inverse matrix.
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