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Abstract

Community detection is a fundamental and widely-studied
problem that finds all densely-connected groups of nodes and
well separates them from others in graphs. With the prolifer-
ation of rich information available for entities in real-world
networks, it is useful to discover communities in attributed
graphs where nodes tend to have attributes. However, most
existing attributed community detection methods directly uti-
lize the original network topology leading to poor results due
to ignoring inherent community structures. In this paper, we
propose a novel embedding based model to discover commu-
nities in attributed graphs. Specifically, based on the observa-
tion of densely-connected structures in communities, we de-
velop a novel community structure embedding method to en-
code inherent community structures via underlying commu-
nity memberships. Based on node attributes and community
structure embedding, we formulate the attributed community
detection as a nonnegative matrix factorization optimization
problem. Moreover, we carefully design iterative updating
rules to make sure of finding a converging solution. Extensive
experiments conducted on 19 attributed graph datasets with
overlapping and non-overlapping ground-truth communities
show that our proposed model CDE can accurately identify
attributed communities and significantly outperform 7 state-
of-the-art methods.

Introduction
Communities are widely and naturally existed as functional
modules in real-world networks, such as social networks,
collaboration networks, and web graphs (Girvan and New-
man 2002). Community detection (graph clustering) algo-
rithms sever as the fundamental analysis tool for analyzing
and understanding large-scale networks. In the literature, nu-
merous studies are proposed to identify communities using
network structure, including metric-based algorithms (New-
man and Girvan 2004; Girvan and Newman 2002; Blon-
del et al. 2008; Shi and Malik 2000; Yang and Leskovec
2015) and generative models (Yang and Leskovec 2013;
Wang et al. 2011; Yang et al. 2009). Besides the network
topology, the entities modeled by the network nodes usually
have attribute information that is important for making sense
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(a) Using adjacency matrix A (b) Using community struc-
ture embedding matrix M

Figure 1: A comparison of the inherent community struc-
tures encoding performances of the adjacency matrix A and
community structure embedding matrix M

of communities. E.g., papers in citation networks have areas
of keywords. Such networks with node attributes are named
as attributed graphs (Yang, McAuley, and Leskovec 2013;
Huang, Cheng, and Yu 2015).

Due to two different kinds of information as network
structure and node attributes, it brings challenges to dis-
cover meaningful communities in attributed graphs. Several
approaches that combine structural and attributed informa-
tion have been proposed in (Atzmueller, Doerfel, and Mit-
zlaff 2016; Wang et al. 2016; Yang, McAuley, and Leskovec
2013; Huang, Cheng, and Yu 2016; Yang et al. 2009). How-
ever, in terms of unweighted networks, all of those meth-
ods directly utilize original network topology, which ig-
nores inherent community structures by assigning each edge
with the same value. Since nodes within a community are
densely connected, there exist numerous densely-connected
subgraphs in attributed graphs. Intuitively, edges that form
those densely-connected subgraphs are much more likely
to construct a corresponding community than edges that
connect separate subgraphs. Consider the example illus-
trated in Fig.1(a), there are two linked node pairs (v1, v3)
and (v1, v2), where v1 and v3 belong to the same commu-
nity while v1 and v2 do not. The original network topol-
ogy doesn’t reflect the discrepancy of those two pairs,
because both pairs are assigned with the same value, 1.
However, (v1, v3) is more important than (v1, v2) in con-
structing a community obviously. So utilizing original net-
work topology directly causes indiscriminately penalizing
node pairs whether in densely-connected structures or not
(Zhang, King, and Lyu 2015). While nodes in a commu-
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nity are densely-connected, they should also share homoge-
nous node attributes. As one of the state-of-the-art methods,
SCI (Wang et al. 2016) combines original network topology
and node attributes with a unified objective function. How-
ever, SCI doesn’t factorize the sparse node attributes matrix
but treats it as the basis to fit the community membership
(refer to equation (2) of (Wang et al. 2016)), which could
degrade the effectiveness of SCI due to the redundancy and
noise in node attribute matrix.

In this paper, we study the community detection problem
in attributed graphs, that is, to find all meaningful commu-
nities such that nodes are densely-connected and have ho-
mogeneous attributes in the same community. Communi-
ties are allowed to overlap, i.e., one node can present in
multiple communities. To address the problem of directly
using original network topology and leverage the node at-
tributes much more thoroughly, we propose a novel commu-
nity structure embedding based model for community detec-
tion incorporating community structures and node attributes.
Specifically, we propose a novel community structure em-
bedding method, based on the observation of densely-
connected structure in the community, to encode inherent
community structures via underlying community member-
ships. Then, leveraging on the information of node attributes
and the community structure embedding, we formulate the
attributed community detection as a nonnegative matrix fac-
torization optimization problem and carefully design updat-
ing rules to ensure finding a converging solution.

Our main contributions are summarized as follows.
• We propose a novel community structure embedding

method to encode inherent community structures for
community detection purpose via underlying community
memberships.

• We leverage the information of node attributes and ex-
plore associated attributes for detected communities. Fur-
thermore, we integrate community structure embedding
matrix and node attributes matrix, and formulate our
Community Detection in attributed graphs: an Embed-
ding approach (CDE) model as an optimization problem
to identify all communities in attributed graphs.

• We carefully design iterative updating rules and theo-
retically prove the convergence of the proposed method.
Extensive experiments on 19 real-world attributed graph
datasets show that our proposed CDE significantly out-
performs 7 state-of-the-art methods.

Related Work
Works related to this paper include structural graph clus-
tering, attributed graph clustering, and network embedding.
Structural Graph Clustering. Graph clustering (Commu-
nity detection) algorithms are widely studied. We focus on
generative model based algorithms in this paper, which as-
sume that edges are generated with the probabilities depend-
ing on their community memberships. They design prob-
ability models to fit network structures, like (Yang and
Leskovec 2013; Wang et al. 2011; Yang et al. 2009). An-
other stream of related work for structural graph cluster-
ing utilizes the technique of nonnegative matrix factoriza-

tion (NMF), like (Wang et al. 2008; Yang et al. 2012;
Wang et al. 2016; Yang et al. 2012; Wang et al. 2011). Those
algorithms are based on the principle that the adjacency ma-
trix can be factorized into the linear combination of commu-
nity membership matrix. And, (Yang et al. 2012) factorizes
the smoothed version of adjacency matrix obtained by using
random walk.However, all of those methods directly utilize
original network topology that ignores the inherent commu-
nity structures.
Attributed Graph Clustering. In the literature, there ex-
ist several studies on attributed graph clustering (Atz-
mueller, Doerfel, and Mitzlaff 2016; Wang et al. 2016; Yang,
McAuley, and Leskovec 2013; Huang, Cheng, and Yu 2016;
Yang et al. 2009; He et al. 2017; Huang, Cheng, and Yu
2015).As one representative method, (Yang et al. 2009) pro-
poses a discriminative model to incorporate the node at-
tributes into the network structure model by choosing weight
vectors. Besides constructing generative models, some other
approaches use NMF techniques to combine network struc-
ture and node attributes. One of the state-of-the-art algo-
rithms is SCI (Wang et al. 2016) which uses NMF technique
to combine observed network structure and node attributes.
However, SCI directly factorizes the adjacency matrix and
doesn’t focus on factorizing node attributes matrix, which
overlooks the various significances of edges in forming com-
munity structures and causes failure to leverage the node at-
tributes thoroughly.

Different from all these structural graph clustering and at-
tributed graph clustering methods, we develop a novel com-
munity structure embedding matrix to encode inherent com-
munity structures instead of simply using the observed net-
work topology for community detection. In addition, our
work focuses on factorizing both community structure em-
bedding matrix and node attributes matrix simultaneously
to yield better performance for detecting communities in at-
tributed graphs.
Network Embedding. Our work relates to network em-
bedding that learns latent vectors for representing nodes,
like (Perozzi, Al-Rfou, and Skiena 2014; Cao, Lu, and Xu
2015; Grover and Leskovec 2016; Zhang et al. 2016). One
of representative works, DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), learns latent representations of nodes by treat-
ing random walks as the equivalence of sentences. In addi-
tion, (Wang et al. 2017) considers community structure in
learning node representations. Different from existing net-
work embedding methods, our work encodes inherent com-
munity structures for community detection purpose via un-
derlying community memberships.

Preliminaries
Problem Statement. Consider an undirected and weighted
attributed graph G = (V,E,W, T ), where V =
{v1, v2, ..., vn} is a set of n nodes, edges set E ⊆ V × V ,
Wij represents the weight value of edge (vi, vj), and T ∈
{0, 1}n×s is node attributes matrix with i-th row represents
the attribute value of node vi using an s-dimensional binary-
valued vector. In addition, we use the adjacency matrix
A ∈ {0, 1}n×n to represent the observed graph structure,
i.e., if an edge (vi, vj) ∈ E, Aij = 1; Otherwise, Aij = 0.
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Note that throughout this paper, we restrict our discussions
on undirected and unweighted attributed graphs, however,
our method can be easily extended to handle directed and
weighted attributed graphs. In the unweighted graph G, for
any pair of nodes vi and vj , the weight Wij = Aij ∈ {0, 1}.

Given an attributed graph G and the number of commu-
nities K, the community detection problem studied in this
paper is to find K groups of nodes G = {g1, . . . , gK} such
that: (1) in terms of structure (i.e., edge connections in G),
the nodes within groups are densely connected, while the
nodes in different groups are sparsely connected; and (2) in
terms of attribute (i.e., attribute values on the nodes in G),
the nodes within groups have homogeneous attribute values,
while the nodes in different communities may have diverse
attribute values. We note that the communities studied in this
paper are allowed to overlap, i.e., gi ∩ gj �= ∅ may exist.
Nonnegative Matrix Factorization. Given n nodes and the
number of communities K, we define the community mem-
bership matrix Un×K where each Uij presents the tendency
that i-th node belongs to j-th community for 1 ≤ i ≤ n
and 1 ≤ j ≤ K; Ui: presents i-th row of U . The ex-
pected number of edges between pairs of nodes represented
by UUT should approximate the visible network structure
represented by the adjacency matrix A. Thus, based on min-
imizing reconstruction cost, the problem of community de-
tection (SNMF (Wang et al. 2011)) can be formulated as fol-
lows.

min
U≥0

||A− UUT ||2F . (1)

SNMF using Eq.1 has an obvious limitation, it only utilizes
the observed network topology by directly factorizing the
adjacency matrix A. For every linked node pairs vi and vj ,
Aij = 1 whether they belong to the same community or
not. Thus, the inherent community structures cannot be rep-
resented by A. To solve this drawback, we design a novel
community structure embedding method in the next section.

Community Structure Embedding Method
In this section, we proposed a novel nonnegative matrix
factorization (NMF) based approach for community detec-
tion, which uses our novel community structure embedding
method to encode inherent community structures for com-
munity detection purpose.

Community Structure Embedding
To offer a good depiction of inherent community structures
in graphs, we propose a novel community structure embed-
ding method to quantify the structural closeness of nodes,
according to their potential community membership simi-
larities. Specifically, we design function F to measure com-
munity membership similarity. Then, based on the similarity
measurement, we adopt skip-gram with negative-sampling
(SGNS) (Mikolov et al. 2013) to explore the network struc-
ture and depict the underlying community structures. Fi-
nally, we obtain a community structure embedding matrix
that encodes the inherent community structures.
Community Membership Similarity. We start with a con-
cise and reasonable observation that each linked pair of
nodes should have a certain tendency to fall into the same

community because nodes are densely connected in a com-
munity. Consider two nodes vi and vj in graph G and the
product of community memberships Ui:U

T
j: ≥ 0, we de-

sign our similarity measurement function F(i, j) ∈ [0, 1)
using the sigmoid function σ to measure the similarity of
their community memberships as follows:

F(i, j) = 2σ(Ui:U
T
j: )− 1 = 2× (

1

1 + e−Ui:UT
j:

)− 1 (2)

The choice of the sigmoid function σ is mainly because it is
a bounded differentiable real function for all real input val-
ues. Since F(i, j) is the linear transformation of σ(Ui:U

T
j: ),

we focus on the term σ(Ui:U
T
j: ) in remaining discussion.

Community Structure Embedding Matrix (M ). Our com-
munity structure embedding method tries to maximize
σ(Ui:U

T
j: ) for connected nodes vi and vj , meanwhile min-

imizing σ(Ui:U
T
j: ) for a pair of randomly selected nodes vi

and vj . In the real-world life, most large networks are very
sparse and a pair of randomly selected nodes is likely to be
connected with a low probability. Thus, based on the skip-
gram with negative-sampling (SGNS) (Mikolov et al. 2013),
we formulate the negative sampling objective function for
nodes vi and vj as follows:

�(i, j) = Wij(log σ(Ui:U
T
j: )+κEjN∼PV

[log σ(−Ui:U
T
jN :)])

(3)
where κ is the number of negative samples, log

def
= loge,

and jN is the randomly sampled node with the empirical un-
igram distribution PV (i) =

di

D . di =
∑

j Wij is the degree
of node i and D =

∑
i di is the total degree for graph G.

Moreover, we can explicitly express the term EjN∼PV
and

rewrite Eq.3 as follows.

�(i, j) = Wij log σ(Ui:U
T
j: ) + κ

didj
D

log σ(−Ui:U
T
j: ) (4)

To optimize Eq.4, we can find Eq.4 partial derivative with
respect to variable Ui:U

T
j: as:

∂�(i, j)

∂(Ui:UT
j: )

= Wijσ(−(Ui:U
T
j: ))− κ

didj
D

σ(Ui:U
T
j: ) (5)

Finally, we obtain the optimal community structure embed-
ding for arbitrary pair of nodes by comparing the derivative
in Eq.5 to 0, and reach that as:

Ui:U
T
j: = log

WijD

didj
− log κ (6)

The Eq.6 could be negative. It suggests that we should
shift those negative results to 0 by selecting the maximum
value of Ui:U

T
j: and 0.

Overall, based on the above analysis results, we define
a new community structure embedding matrix Mn×n ∈
Rn×n with the following formulation:

Mij = max{Ui:U
T
j: , 0} = max{log WijD

didj
− log κ, 0} (7)

For disconnected pairs of nodes vi and vj with Wij = 0,
we set the corresponding Mij = 0.
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The community structure embedding matrix M is able to
encode latent densely-connected subgraphs and explore in-
herent community structures. In addition, it can be easily
extended to all kinds of networks (directed/undirected and
weighted/unweighted networks), which shows the wide ap-
plications of our community structure embedding method.
Example. We present a toy example to demonstrate the su-
periority of our community structure embedding matrix M
(κ = 2) in encoding proper inherent community structures
within unweighted graphs.

Fig.1(a) illustrates an unweighted graph with two com-
munities (marked by different shapes). Since the adjacency
matrix sets the same value for each edge (1 in Fig.1(a)), it
cannot determine which edges are more important when de-
tecting two communities. Whereas our community structure
embedding matrix can assign more weights to the connec-
tions within each community while assigning less weight
to the connection between two communities, as is shown
in Fig.1(b). Specifically, our community structure embed-
ding method reduces the weights of connections between
nodes with high degrees, for they are more likely to play
key roles in dividing communities. For example, in Fig.1(a),
both nodes v1 and v2 have the maximum degree. Therefore,
the edge (v1, v2) is eliminated in Fig.1(b) (Mv1v2

= 0).

Structure Embedding based Optimization.
Unlike previous NMF-based studies (e.g. SNMF) that di-
rectly utilize visible graph structure by the adjacency matrix
A, we use the community structure embedding matrix M to
depict inherent community structures in graphs here.

The problem of community detection using community
structure embedding matrix M without the consideration of
attributes can be formulated as

min
U≥0

L(U) = ||M − UUT ||2F . (8)

CDE Model
In this section, we propose CDE model to address the
problem of community detection on attributed graphs using
structural information and node attributes.

Community Attributes.
Recall that in the attributed graphs, the communities should
not only have densely-connected structure but also have ho-
mogeneous attributes. Besides, different communities pre-
fer different attributes. To model these, we define the
community-attribute matrix C ∈ RK×s where Cir repre-
sents the preference of i-th community for r-th dimension
of node attributes.

We formulate the discovery of community membership
and community attributes as a nonnegative matrix factoriza-
tion problem below, which optimizes both community mem-
bership matrix U and community-attribute matrix C by fac-
torizing node attributes matrix T .

min
U≥0,C≥0

L(C) = ||T − UC||2F + α
∑

i

||C:i||21. (9)

where α is a nonnegative parameter to control the sparsity
of C.

Since different communities tend to prefer different at-
tributes, and even worse, some attributes themselves show
mutual exclusive. To address this problem, we involve the l1
norm sparsity to each column of C, which reduces interfer-
ence from unimportant node attributes for each community.

Unified Objective Function for CDE
In the attributed graph G, the goal of CDE is to find K com-
munities such that nodes within communities are densely
connected and have homogeneous attribute values. By in-
corporating the objective functions for community struc-
tures embedding and node attributes respectively as Eq.8 and
Eq.9, we define the unified objective function for our CDE
model as follows.

min
U≥0,C≥0

L(U,C) = ||T−UC||2F +α
∑

i

||C:i||21+β||M−UU
T ||2F (10)

where β is a positive parameter to balance the contribu-
tions of node attributes matrix T and community structure
embedding matrix M . Specifically, bigger β leads to more
reliance on the factorization of community structure embed-
ding matrix M for determining communities.
Identify Communities by U . For node vi, we define a set
of communities containing vi as ψ(i) ⊆ {1, . . . ,K}. Af-
ter solving the optimization problem in Eq.10, we obtain
the optimal community membership matrix U . To identify
non-overlapping communities, we find exactly one com-
munity that vi achieves the maximum value of Ui:, i.e.,
ψ(i) = argmax1≤j≤KUij . As for detecting overlapping
communities, we identify that node vi belongs to the j-th
community when Uij is higher than a predefined threshold
ε, i.e., ψ(i) = {1 ≤ j ≤ K|Uij > ε}. Following (Zhang,
King, and Lyu 2015), we set ε = 0.1 in our experiments.

Iteratively Updating Rules for CDE
As the Eq.10 is not convex, we provide an iteratively up-
dating rules for CDE, which are based on Majorization-
Minimization framework in (Hunter and Lange 2004). For
each iteration, we update U with C fixed and then C with U
fixed.

For updating U with C fixed, we extract terms related to
U in Eq.10 as follows:

min
U≥0

L(U) = β||M − UUT ||2F + ||T − UC||2F . (11)

After the initialization of U , we can use following updat-
ing rule for U with guarantee of convergence:

Uij ← Uij(
(TCT − UCCT + 2βMU)ij

(2βUUTU)ij
)

1
4 (12)

When it comes to updating C with U fixed, we have
to solve the following optimization problem extracted from
Eq.10:

min
C≥0

L(C) = ||T − UC||2F + α
∑

i

||C:i||21. (13)
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According to (Kim and Park 2008), this optimization prob-
lem equals to following formulation:

min
C≥0

L(C) = ||( U√
α
e

)C − (
T

0

)||2F (14)

Where 
e is a row vector with the same length of rows in U ,
in which all elements are equal to 1. And
0 is a 0 vector with

the same length of rows in T . We define U ′ = (
U√
α
e

) and

T ′ = (
T

0

), then we write the updating rule for C in Eq.14

as follows.

Cij ← Cij
(U ′TT ′)ij
(U ′TU ′C)ij

(15)

For Eq.12, the complexity depends on the term MU , which
is O(n2K). When it comes to Eq.15, the complexity relies
on U ′TC ′ which is O(nsK) with the condition that n ≤ s
or O(n2K) otherwise. So the complexity for each iteration
is O(nsK) when n ≤ s or O(n2K) otherwise.

Since the embedding matrix M , the node attributes ma-
trix T and the community-attribute matrix C are very sparse
for large attributed graphs, e.g. Flickr (Ruan, Fuhry, and
Parthasarathy 2013), we speed up our iteratively updating
rules (Eq.12, Eq.15) by only storing positive elements and
parallelizing matrix multiplication using 64 processors on
our server.
Proof of Convergence. We now prove the convergence of
updating rule for U using the auxiliary function approach
and updating rule for C respectively.

Before proving the convergence of updating rule for U ,
we introduce the definition of auxiliary function and Lemma
1 in (Lee and Seung 2001).
Definition 1 (Lee and Seung 2001) Ũ ∈ Rn×K is an auxil-
iary matrix for U , function Q(U, Ũ) is an auxiliary function
of L(U) if Q(U, Ũ) ≥ L(U) and Q(U,U) = L(U) for any
U, Ũ .
Lemma 1 (Lee and Seung 2001) If Q(U, Ũ) is an auxiliary
function of L(U), L(U) is non-increasing under the updat-
ing rule U t+1 = argminUQ(U,U t).

To design an auxiliary function Q(U, Ũ) for Eq.12, we
rewrite it as follows:

L(U) =tr(TTT − UCTT − TCTUT + UCCTUT )

+βtr(MMT − 2MUUT + UUTUUT ) (16)

Derived from Lemma 5 and 6 (Wang et al. 2011), we ob-
tain the following upper bounds for two positive terms in
Eq.16:

tr(UUTUUT ) ≤ tr(PŨT Ũ) ≤ tr(RŨT Ũ ŨT )

tr(UCCTUT ) ≤ 1

2
tr(CCTY T Ũ + CCT ŨTY )

Where Pij =
(UTU)2ij
(ŨT Ũ)ij

, Rij =
U4

ij

Ũ3
ij

and Yij =
U2

ij

Ũij
.

For negative terms in Eq.16 that involve U , we use
Lemma 2 and 3 (Wang et al. 2011) to derive the lower

bounds as follows:

tr(MUUT ) ≥ tr(ŨTMZ) + tr(ZTMŨ) + tr(ŨTMŨ)

tr(TCTUT ) = tr(UCTT ) ≥ tr(CTTZ) + tr(CTT Ũ)

Where Zij = Ũij log(
Uij

Ũij
). Then we construct our auxiliary

function Q(U, Ũ) for Eq.12:

Q(U, Ũ)
def
= tr(TTT + βMMT ) + βtr(RŨT Ũ ŨT )

−2tr(CTTZ)− 2tr(CTT Ũ)− 2βtr(ŨTMZ)

−2βtr(ZTMŨ)− 2βtr(ŨTMŨ)

+
1

2
tr(CCTY T Ũ + CCT ŨTY ) (17)

Applying the KKT condition to our constructed Q(U, Ũ),
we obtain the updating rule for U (Eq.12), which could guar-
antee convergence.

As for the convergence of the updating rule for C (Eq.15),
the proof is provided in (Kim and Park 2008).

Thus, for each iteration, our iteratively updating rules
guarantee no increase for Eq.10.

Experiments
In this section, we performed extensive experiments to eval-
uate the effectiveness of our proposed CDE on 19 real graph
datasets with ground-truth communities. We believe that it
is hard to compare the quality of community results when
the numbers of communities are different for baseline meth-
ods. Thus, we set the number of detected communities K
as the number of ground-truth communities. Moreover, we
conducted our CDE on each dataset with 10 different initial-
izations and reported the average of 10 results.

Our algorithms are implemented in Matlab and C++, and
all experiments are conducted on a Windows Servers with
Xeon 64-core CPU (2.70 GHz) and 128G main memory.

Datasets
We use 19 attributed graph datasets with ground-truth com-
munities for evaluation in our experiments. The network
statistics are reported in Table 1.

For Non-Overlapping Ground-truth Communities, we use
6 datasets of Citeseer, Cora, Cornell, Texas, Washington,
and Wisconsin, which are available at the website1.

When it comes to Overlapping Ground-truth Commu-
nities, we use graph datasets from 3 different domains,
Philosophers network (Ahn, Bagrow, and Lehmann 2010),
Flickr (Ruan, Fuhry, and Parthasarathy 2013), and Face-
book. The Facebook dataset is a set of Facebook ego-
networks. It contains 10 different ego-networks with man-
ually identified circles (Leskovec and Mcauley 2012). The
information of user profiles is treated as node attributes, and
social circles formed by friends are regarded as ground-truth
communities. In addition, we merge these 10 Facebook ego-
networks into one entire Facebook network with 4039 nodes
and 88234 edges.

1http://linqs.cs.umd.edu/projects/projects/lbc/
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Dataset |V | |E| s K AS AN

Non-overlapping
Cornell 195 283 1703 5 39 1
Texas 187 280 1703 5 37.4 1
Washington 230 366 1703 5 46 1
Wisconsin 265 459 1703 5 53 1
Cora 2708 5278 1433 7 386.86 1
Citeseer 3312 4536 3703 6 552 1

Overlapping
FB ego-network 0 348 2852 224 24 13.54 0.93
FB ego-network 107 1046 27783 576 9 55.67 0.48
FB ego-network 1684 793 14810 319 17 45.71 0.98
FB ego-network 1912 756 30772 480 46 23.15 1.41
FB ego-network 3437 548 5347 262 32 6 0.35
FB ego-network 348 228 3416 161 14 40.5 2.49
FB ego-network 3980 60 198 42 17 3.41 0.97
FB ego-network 414 160 1843 105 7 25.43 1.11
FB ego-network 686 171 1824 63 14 34.64 2.84
FB ego-network 698 67 331 48 13 6.54 1.27
Facebook 4039 88234 10 193 21.93 1.03
Philosophers 1218 5972 5770 1220 10.97 10.99
Flickr 16710 716063 1156 5436 273.10 88.84

Table 1: Dataset Statistics. |V |: number of nodes, |E|: num-
ber of edges, s: number of node attributes, K: number of
communities, AS: average size of communities, AN: aver-
age community memberships, FB: Facebook dataset.

Figure 2: Fixing α = β = 1 then varying κ from 1 to 100
on Wisconsin dataset

Parameter Sensitivity Analysis
In this section, we perform parameter sensitivity analysis of
CDE on Wisconsin dataset. Similar results can also be found
using other datasets. CDE has three parameters: α is a non-
negative constant that controls the sparsity of community-
attribute matrix C, β is a positive constant to balance the
contributions of node attributes and community structure
embedding, and κ determines the number of negative sam-
ples for community structure embedding method. We first
set α = β = 1 to treat node attributes and community struc-
ture embedding with the same importance. Then, we test
CDE on Wisconsin by varying parameter κ from 1 to 100.
Fig.2 shows CDE achieves better performances in the range
of κ = 22 through κ = 29. More specifically, CDE achieves
the maximum scores of AC = 0.6645 and NMI = 0.409
when κ = 25, which suggests that a suitable number of sam-
pling nodes could improve the performance of CDE.

In terms of the parameters α and β, we set κ = 25 and
vary α and β from 1 to 50 respectively. Figure 3 shows the

(a) NMI (b) AC

Figure 3: Fixing κ = 25 then varying α and β from 1 to 50
respectively on Wisconsin dataset

corresponding results on Wisconsin dataset, in which CDE
achieves maximum scores of AC = 0.7321 and NMI =
0.4284 when α = 1 and β = 2. Those results indicate
our community structure embedding method could extract
essential structural information in separating different com-
munities from the original network topology, and further
demonstrate the superiority of our community structure em-
bedding method in encoding inherent community structures.

Evaluation on Overlapping Communities
In this experiment, we evaluate the effectiveness of our pro-
posed CDE on attributed graphs with overlapping ground-
truth communities. We use 13 datasets including 10 Face-
book ego-networks, Facebook network, Philosophers, and
Flickr.

We compare CDE with 4 state-of-the-art meth-
ods:Bigclam (Yang and Leskovec 2013), Circles (Leskovec
and Mcauley 2012), CESNA (Yang, McAuley, and Leskovec
2013) and SCI (Wang et al. 2016).

Note that all comparison methods make use of net-
work structure with node attributes as well, except for
Bigclam (Yang and Leskovec 2013) that only uses net-
work structures. Since Bigclam (Yang and Leskovec 2013)
achieved better performances among other baseline algo-
rithms on several datasets, we also chose it as one of our
baseline algorithms.

For all baseline methods, we use the implementations pro-
vided by their authors and set their parameters by default.
Both CDE and SCI (Wang et al. 2016) set the threshold ε
to be 0.1 for identifying community membership. In addi-
tion, our method CDE sets the parameters α = 1, β = 2 and
κ = 5.

To evaluate the quality of discovered communities, we
use two evaluation metrics of F1-score and Jaccard Simi-
larity respectively to reflect the alignment between discov-
ered communities and ground-truth communities. We adopt
the same evaluation procedure used in (Yang and Leskovec
2013) that every detected community is matched with its
most similar ground-truth community. Given a set of discov-
ered communities C and a set of ground-truth communities
C∗, a unified formulation of F1-score and Jaccard Similar-
ity is defined as:
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F1-Score Jaccard Similarity
Dataset Bigclam CESNA Circles SCI CDE Bigclam CESNA Circles SCI CDE
FB ego-network 0 0.2632 0.2638 0.2845 0.2104 0.3190 0.1617 0.1635 0.1844 0.1255 0.2022
FB ego-network 107 0.3593 0.3526 0.2722 0.1932 0.3755 0.2589 0.2512 0.1755 0.1203 0.2677
FB ego-network 1684 0.3652 0.3850 0.3022 0.2290 0.5798 0.2655 0.2656 0.1947 0.1405 0.4457
FB ego-network 1912 0.3542 0.3506 0.2694 0.2787 0.3798 0.2443 0.2417 0.1744 0.1872 0.2694
FB ego-network 3437 0.2109 0.2125 0.1004 0.1909 0.2191 0.1226 0.1311 0.0545 0.1130 0.1272
FB ego-network 348 0.4917 0.4943 0.5209 0.4469 0.5389 0.3649 0.3684 0.3937 0.3068 0.4092
FB ego-network 3980 0.4468 0.4312 0.3277 0.3502 0.5040 0.3147 0.3041 0.2127 0.2336 0.3967
FB ego-network 414 0.5703 0.6181 0.5090 0.5617 0.6531 0.4446 0.4878 0.3670 0.4270 0.5392
FB ego-network 686 0.3583 0.3638 0.5242 0.4340 0.5252 0.2272 0.2372 0.3828 0.2915 0.3679
FB ego-network 698 0.5276 0.5222 0.3715 0.4323 0.5744 0.3898 0.3811 0.2400 0.2942 0.4614
Facebook 0.2867 0.3277 NA 0.0770 0.3609 0.1977 0.2265 NA 0.0413 0.2502
Philosophers 0.3871 0.3929 NA 0.3313 0.4217 0.2478 0.2544 NA 0.2244 0.2813
Flickr 0.0833 0.1014 NA 0.0512 0.1326 0.0445 0.0543 NA 0.0231 0.0723

Table 2: Quality evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping ground-truth commu-
nities. NA means that the task is not completed in limited time.

AC NMI
Dataset SNMF NC PCL-DC SCI CDE SNMF NC PCL-DC SCI CDE
Cornell 0.3692 0.3538 0.3512 0.4769 0.6154 0.0762 0.0855 0.0873 0.1516 0.3403
Texas 0.4019 0.4545 0.3850 0.6096 0.6150 0.1022 0.0706 0.0729 0.2153 0.3208
Washington 0.3009 0.4348 0.4608 0.5173 0.6696 0.0321 0.0591 0.1195 0.1304 0.4079
Wisconsin 0.3773 0.3170 0.3773 0.5283 0.7321 0.0842 0.0507 0.0778 0.1823 0.4284
Cora 0.4323 0.2622 0.5823 0.4121 0.6555 0.2996 0.1731 0.4071 0.2138 0.5037
Citeseer 0.3079 0.4094 0.4682 0.3260 0.5827 0.1044 0.1998 0.2246 0.0758 0.2985

Table 3: Quality evaluation (in terms of AC and NMI) on networks with non-overlapping ground-truth communities.

1

2|C∗|
∑

C∗
i ∈C∗

max
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δ(C∗
i , Cj) +

1

2|C|
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∗
i , Cj).

When δ(C∗
i , Cj) is defined as the harmonic mean of C∗

i
and Cj , it is the F1-score metric; On the other hand, when
δ(C∗

i , Cj) =
|C∗

i ∩Cj |
|C∗

i ∪Cj | , it is the Jaccard Similarity metric.
Both metrics with larger values are better.

We report the F1-score and Jaccard Similarity of all meth-
ods in Table 2. The results indicate that CDE outperforms all
comparison algorithms in the overlapping community detec-
tion task, except one case of facebook ego-network 3437
of Facebook measured by Jaccard Similarity. Since Cir-
cles (Leskovec and Mcauley 2012) cannot handle networks
with more than 1200 nodes in a reasonable time, we only
test it on 10 small Facebook ego-networks.

Moreover, the running time of CDE on Flickr is less than
baseline methods’ except for Bigclam. However, CDE out-
performs Bigclam in the quality evaluation on all datasets in
Table 2.

Evaluation on Non-Overlapping Communities
To evaluate the accuracy of identified non-overlapping com-
munities, we compare CDE with 4 state-of-the-art commu-
nity detection algorithms. We implemented SNMF (Wang et
al. 2011) and used source codes of Normalized Cut(NC) (Shi
and Malik 2000), PCL-DC (Yang et al. 2009) and
SCI (Wang et al. 2016) provided by authors.

To measure the accuracy of identified communities, we
use the metrics of Accuracy (AC), which measures the per-

centage of correct community memberships obtained (Wu
and Liu 2010), and Normalized Mutual Information (NMI).
Note that each node is assigned to one community.

We compare CDE with four other baseline methods us-
ing the 6 networks, Cornell, Texas, Washington, Wisconsin,
Cora, and Citeseer, with non-overlapping ground-truth com-
munities. In our experiments, we set α = 1, β = 2 and var-
ied κ from 1 to 30 to get the maximum AC and NMI . In ad-
dition, the running time of CDE for each experiment is less
than 40 seconds. The results reported in Table 3 show that
CDE clearly outperforms 4 other baseline methods on all
datasets with significant improvements. Furthermore, the re-
sults of comparison algorithms on the same datasets are also
available in their papers, which once-again demonstrates the
performance improvements achieved by CDE.

Conclusion
In this paper, we studied the problem of community detec-
tion in attributed graphs. Specifically, we proposed a novel
community structure embedding method to encode inherent
community structures for community detection purpose and
showed its superiority in separating different communities
in contrast with original network topology. Furthermore, we
learned the associated attributes for underlying communi-
ties from the given node attributes. Based on the commu-
nity structure embedding and node attributes matrix, we for-
mulated our CDE model as a nonnegative matrix factoriza-
tion optimization problem. Finally, extensive experiments
on 19 real-world attributed graph datasets showed that our
CDE model can effectively discover the overlapping and
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non-overlapping communities, significantly outperforming
7 state-of-the-art baseline methods.
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