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ABSTRACT
Data summarization that presents a small subset of a dataset to users

has been widely applied in numerous applications and systems.

Many datasets are coded with hierarchical terminologies, e.g., the

international classi�cation of Diseases-9, Medical Subject Heading,

and Gene Ontology, to name a few. In this paper, we study the

problem of selecting a diverse set of k elements to summarize an

input dataset with hierarchical terminologies, and visualize the

summary in an ontology structure. We propose an e�cient greedy

algorithm to solve the problem with (1−1/e) ≈ 62%-approximation

guarantee. Preliminary experimental results on real-world datasets

show the e�ectiveness and e�ciency of the proposed algorithm for

data summarization.

1 INTRODUCTION
Graphs consisting of nodes and edges are commonly used as a vi-

sualization tool for depiction and presentation of complex datasets.

Graph representation o�ers direct, simpli�ed, intuitive and human-

friendly images to help users understand the overview of an an-

alyzed dataset [4]. However, graph visualization works only if

the complexity of the displayed dataset is within human cognitive

capacity.

In real applications from various domains, a large number of

datasets are coded with hierarchical terminologies. For example, in

biomedicine, log datasets obtained from literature search tools or

electronic health records (EHR) are usually aggregated by events,

such as occurrences of diseases or �ndings, or entries of search

terms [3, 4]. �e events are typically represented by ontology-based

terminologies, such as Gene Ontology
1
, Disease Ontology

2
, the

International Classi�cation of Diseases-9 (ICD-9), Medical Subject

Heading (MeSH), and Systematized Nomenclature of Medicine-

Clinical Terms (SNOMED CT). However, users may have di�-

culty in understanding the essence of terminologies in situations

where the summary graph contains numerous terminologies, even

with the aid of a good visualization tool. For instance, as of 2011,

SNOMED CT contains more than 311,000 medical concepts;
3
it is

1
h�p://www.geneontology.org/

2
h�p://disease-ontology.org

3
h�ps://en.wikipedia.org/wiki/SNOMED CT
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Figure 1: A running example

impossible to visualize them all in a single graph. �erefore, de-

signing e�cient and e�ective algorithms for data summarization

and visualization faces signi�cant challenges [4, 10].

In the aforementioned applications, terminologies with hier-

archical structures are o�en modeled as trees or directed acyclic

graphs. In this study, we focus on tree structures. For instance, Fig-

ure 1(a) shows one sample example of disease ontology. �e nodes

r ,A,a1, ... represent disease terminologies. �e edges represent the

instance relationship, e.g., (r ,A) indicates that A is an instance of r .
In general, the disease (node r ) includes mental health disease (node

A), syndrome disease (node B), and cellular proliferation disease

(node C). Furthermore, the diseases of cellular proliferation (node

C) have one instance of cancer (node c0). In the third level, the

types of cancers (node c0) can be categorized into cells (node c1),
organ systems (node c2), and so on. Given a table of frequencies

that record the occurrence of diseases in a hospital (see the table in

Figure 1(a)), one may seek a summary report that presents a clear

structure of frequent diseases.

Obviously, if we show all diseases in the disease ontology, it is

beyond the human cognition ability to distinguish any clear struc-

ture. �us, we consider how to select a small set of k (e.g., k = 5)

important and representative elements to summarize the entire

dataset. �e simplest approach is to pick the most frequent ele-

ments. However, as this approach does not make use of hierarchical

terminologies, we cannot see the inter-relationships between the

selected elements in the resulted summary (see Figure 1(b)). An

improved approach is to also include all the ancestors of the top-k
elements in the terminological structure (see Figure 1(c)). While

this improved approach provides a more intuitive summary, it still

su�ers from two drawbacks. First, the summarization may lack

diversity and miss speci�c but small groups (e.g., c1, c2, c3, and c4),
which might yield limited aspects and inaccurate summarization for

users. Second, similar elements are not summarized in a high-level

concept. Moreover, to show all ancestors of frequent elements, a

large graph might be resulted, e.g., Figure 1(c) has 7 nodes, which

is greater than the given k . In contrast, Figure 1(d) depicts a be�er
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summarization of the input dataset that describes four types of

diseases (including A, a1, b1, and c0), where element a1 with the

highest frequency represents a large proportion of type-A diseases.

To summarize, this paper makes the following contributions:

• We formally study the problem of selecting a diverse set of

elements to summarize an input log-data set with hierarchi-

cal terminologies. We de�ne the kVDO-problem for �nding

a set of k elements for graph Visulization from log-Data us-
ing Ontology concepts. �is new problem formulation takes

into account the representativeness, diversity, and high-score

coverage simultaneously (Section 3).

• We analyze the formulated objective score function, and for-

mally prove its monotonity and submodularity properties,

which o�er the prospects for developing e�cient and approxi-

mate algorithms (Section 4).

• We provide a novel method of summarizing large log-data by

reducing the original dataset to a manageable size. It intends

to depict, highlight, and distinguish the important nodes and

links within the hierarchal structure. We propose an e�cient

algorithm that can achieve at least (1 − 1/e) of the optimal in

terms of our objective function (Section 5).

• We conduct experiments on real-world datasets to validate

the e�ciency and e�ectiveness of our proposed algorithm

(Section 6).

2 RELATEDWORK
Work closely related to our paper can be categorized into top-k
diversi�cation, data summarization and graph visualization.

Top-k diversi�cation. In the literature, a large number of work

studies the diversi�cation of top-k query results [1, 5, 8, 11]. A

comprehensive survey of top-k query processing can be found

in [2]. �e key distinction with these existing studies is that our

approach takes a �exible method to �nd a summary graph with

diversi�cation and visualize it in an ontology structure.

Data summarization and graph visualization. �ere exist sev-

eral studies on data summarization and graph visualization [3, 4,

7, 9, 10]. [4] investigates the problem of graphical visualization

using ontology terminologies by �ltering the nodes whose aggre-

gate frequencies are less than a given threshold. [10] �nds a set

of k high-quality and diverse representatives for a surface, which

does not consider the ontology structure associated with the data.

Di�erent from the above studies, our work considers the problem of

data summarization using ontology terminologies, and formulates

it as an optimization problem.

3 PROBLEM STATEMENT
In this section, we de�ne basic notions and formalize our problem.

3.1 Preliminaries
We consider a �nite set of n elements, V , where the elements

with inter-relations are organized into a tree-like structure. Let an

undirected and unweighted tree T = (V,E) be rooted at r ∈ V ,

where E = {(v,u) : v,u ∈ V} is the edge set. Tree T contains

n = |V| nodes and n − 1 = |E | edges. For each node v in T , we
respectively denote the ancestors of node v by anc(v) and the set

of descendants of node v by dec(v). Note that, we let anc(v) and
dec(v) always contain v throughout this paper, i.e., v ∈ anc(v) and
v ∈ dec(v). �e node with no children is called leaf.

De�nition 3.1 (Node Level). Given a treeT rooted at r , the level of
a tree node v ∈ V is the number of hops between v and r , denoted
by l(v).

For example, consider a tree T in Figure 1(a). For node C , the set
of descendants of C is dec(C) = {C, c0, c1, c2, c3, c4}, and the set of

ancestors is anc(C) = {r ,C}. �e level of node C is l(C) = 1, and

the level of node c2 is l(c2) = 3.

Desiderata of a good summarization. Given a tree T = (V,E)
and a �nite set of input elements I ⊆ V with a non-negative

real-valued function feq, our goal, intuitively, is to select a small

set of elements S fromV that depicts a good summarization of the

high-score data of I by satisfying the following three criteria:

1. (Diversity) �e elements of S should not be very similar;

2. (Small-scale) �e size of S is small enough to be visible;

3. (High-score Coverage and Correlation) A summary score

function fS(I) that measures the coverage and correlation

of S in input nodes of I is high.

3.2 Summary Score Function
In this subsection, we propose a summary score function fS(I)
by formalizing the desiderata of diversity, high-score coverage,

and correlations in a uni�ed way. We �rst give the de�nitions of

coverage and correlation below.

Coverage. Given two nodes x ,y in tree T , we say x covers y if

and only if x is one ancestor of y, i.e., y ∈ dec(x). In the concept

tree T , x covers y, indicating that x is a more general concept than

y. �is shows x can be a summary representative of y in a higher

level of concept understanding. For instance, in Figure 1(a), node c0
covers a set of nodes {c1, c2, c3, c4}, which means c0 can be a good

summary of all concepts in {c1, c2, c3, c4}.
Representative Impact. Based on the de�nition of coverage, we

de�ne the representative impact as follows.

De�nition 3.2 (Representative Impact). Given two elements x ,y
and y ∈ dec(x), we de�ne the representative impact of x on the

element y using a function repx :

repx (y) = feq(y) · disx (y),
where disx : V → R≥0 is the summarized relevance function.

Here, x serves as a candidate representative ofy. �e summarized

impact of x on y is proportional to feq(y), the score of y, and is

discounted by disx (y). Speci�cally, the summarized relevance of

x achieves the maximum at y = x , and decreases for y further

away from x . Note that, if x does not cover y, i.e., y < dec(x), then
disx (y) = 0 and certainly repx (y) = 0. In this paper, we suggest

one natural choice of correlation function

disx (y) =


1

l(y) − l(x) + 1 , i f y ∈ dec(x)

0, otherwise
(1)

For example, consider the tree T and the frequency function of

elements as feq(·) in Figure 1(a). For nodes B and b1 with the

level l(B) = 1 and l(b1) = 2, the summarized relevance of B on
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b1 is disB (b1) = 1/2, and thus representative impact of B on b1 is
repB (b1) = feq(b1) · disB (b1) = 30 × 1/2 = 15. On the other hand,

the summarized relevance of r on b1 is disr (b1) = 1/3, and the

representative impact repr (b1) = 10 < repB (b1), indicating that B
is a be�er summarized representative outperforming r , due to the

more speci�cation of B compared to r . Our models can adopt other

se�ings of disx (y) satisfying the principle of summarized relevance,

and also our proposed techniques can be easily extended to solve a

variant of problems with di�erent disx (y) functions.
Summary Score. Given a set S ⊆ V of representative elements,

we de�ne the summary score of S on an input element y ∈ V ,

denoted by smyS (y), as the maximum impacty among all individual

representatives:

smyS (y) = max

x ∈S∩anc(y)
repx (y). (2)

Intuitively, each input element y is to be represented by some

ancestor of y that appears in S (a.k.a. x ∈ S ∩ anc(y)) and has

the maximum summary impact on y. Based on the de�nition of

summary score, the total summary impact of S on all elements of

I is de�ned as:

g(S) =
∑
y∈I

smyS (y) =
∑
y∈I

max

x ∈S∩anc(y)
(feq(y) · disx (y)). (3)

To recap, the problem of graph Visulization of log-Data using
Ontology concepts (kVDO-problem) studied in this paper can be

formally formulated as follows.

kVDO-problem. Given a tree T = (V,E), a set of input elements

I ⊆ V with a non-negative real-valued function feq, and a number

k > 0, �nd a set of representatives S ⊆ V , such that S achieves the

maximum score g(S) with |S | = k .

Example 3.3. We use the example in Figure 1 to illustrate our

kVDO-problem (k = 5) for visualizing the large dataset I in Figure

1(a) with the summary graph S = {r ,A,a1,b1, c0} in Figure 1(d). For
nodea1 ∈ I , the best representative of S isa1 and the summary score

of S on a1 is smyS (a1) = 40×1 = 40. Overall, the summary graph in

Figure 1(d) achieves the score of g(S) = 40+ 50+ 30+ 10+ 30 = 160.

4 PROBLEM ANALYSIS
In this section, we analyze the properties of the objective score

function of our problem.

Monotonity and Submodularity A set function f : 2
U → R≥0

is said to be submodular provided for all sets S ⊂ T ⊂ U and

element x ∈ U \T , f (T ∪ {x}) − f (T ) ≤ f (S ∪ {x}) − f (S), i.e., the
marginal gain of an element has the so-called “diminishing returns”

property.

Lemma 4.1. g is monotone, i.e., for all S1, S2 ⊆ V such that S1 ⊆
S2, we have g(S1) ≤ g(S2).

Proof. �e proof is trival and thus ommited. �

Given a summary node x ∈ S, let the set of nodes that take x as

their summary node, denoted byΦS (x) = {y ∈ dec(x) : smyS (y) =
repx (y)}.

Lemma 4.2. g is submodular.

Algorithm 1 GVDO (T , I , k)

Require: A tree T = (V, E), a query I ⊆ V , a number k .
Ensure: A set of k summary elements S .
1: Let S ← ∅;
2: while |S | < k do
3: x ∗ ← argmaxx∈V/S 4д (x |S );
4: S ← S ∪ {x ∗ };
5: return S ;

Proof. Give two sets S ⊂ T ⊂ V and an element x ∈ V \ T ,
let T ′ = T ∪ {x} and S ′ = S ∪ {x}. We establish the correctness of

Lemma 4.2 by following three facts below.

First, for any elementy ∈ V , smyT (y) ≥ smyS (y) and smyT ′(y) ≥
smyS ′(y) holds. Second, ΦT ′(x) ⊆ ΦS ′(x). Since ∀y ∈ ΦT ′(x), we
have repx (y) = smyT ′(y) ≥ smyS ′(y) and repx (y) ≤ smyS ′(y) for
x ∈ S ′. As a result, we obtain repx (y) = smyS ′(y) and y ∈ ΦS ′(x).
�erefore, ΦT ′(x) ⊆ ΦS ′(x) holds. �ird, we have g(T ′) − g(T ) =∑
y∈V (smyT ′(y)−smyT (y))=

∑
y∈ΦT ′ (x )(repx (y)−smyT (y)). �us,

we can obtain g(S ′) − g(S) = ∑
y∈ΦS′ (x ) (repx (y) − smyS (y)) ≥∑

y∈ΦT ′ (x )) (repx (y)−smyS (y)) ≥
∑
y∈ΦT ′ (x )) (repx (y)−smyT (y))

= g(T ′) − g(T ). As a result, g(S ′) − g(S) ≥ g(T ′) − g(T ). �

5 GVDO ALGORITHM
In this section, we �rst give the framework of our greedy algo-

rithm called GVDO. �en, we show its approximation guarantee

and present several techniques for improving its e�ciency.

Marginal gain. We begin with marginal gain. Monotonicity of

function g implies that for any S ⊆ V and x ∈ V , we have

4д(x |S) = д(S ∪ {x}) − д(S) ≥ 0. �e term 4д(x |S) is called the

marginal gain of x to the set S . We would like to add the node with

the largest marginal gain into the answer. �is greedy strategy

motivates the following algorithm GVDO.

Algorithm overview. GVDO starts out with an empty solution

set S = ∅. In each subsequent iteration, GVDO iteratively adds

one more summary node x∗ to solution S , which grows the answer

set by one. �is summary node x∗ is chosen from the remaining

candidate elementsV/S such that it achieves the largest marginal

gain, i.e., x∗ ← argmaxx ∈V/S 4д(x |S). Finally, GVDO returns S
a�er |S | = k . �e detailed description is presented in Algorithm 1.

Computing 4д(x |S). We present an e�cient algorithm (Algorithm

2) for computing the marginal gain 4д(x |S). Let S ′ = S ∪ {x}, and
Tx be a subtree ofT rooted at x (lines 1-2). �e procedure computes

ΦS ′(x) by performing one traversal of treeTx and �nding all nodes

regarding x as its new summary node. A�erwards, if we can �nd

the nearest ancestor z of x in S , i.e. anc(x)∩S , ∅, and calculate the
marginal gain 4д(x |S) =

∑
y∈ΦS′ (x )(repx (y) − repz (y)); otherwise,

if such an ancestor z does not exist, the algorithm directly returns

4д(x |S) =
∑
y∈ΦS′ (x ) repx (y).

Approximation Analysis. [6] shows that a greedy algorithm

provides a (1 − 1/e)−approximation for maximizing a monotone

submodular set function with cardinality constraint. Our method

GVDO is one instantiation of this algorithm for kVDO-problem.

Theorem 5.1. Let S be the answer obtained by GVDO, and S∗ be
the optimal answer, g(S) ≥ (1 − 1

e ) · g(S∗) holds.
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Algorithm 2 Computing 4д(x |S)
Require: A tree T , a query I , a summary set S , a node x ∈ V .

Ensure: 4д (x |S ).
1: S ′ ← S ∪ {x };
2: Compute ΦS ′ (x ) = {y ∈ dec(x ) : smyS ′ (y) = repx (y)};
3: if anc (x) ∩S , ∅ then
4: Let z ∈ S be the nearest ancestor of x ;
5: 4д (x |S ) =

∑
y∈ΦS′ (x )(repx (y) − repz (y));

6: else
7: 4д (x |S ) =

∑
y∈ΦS′ (x ) repx (y);

8: return 4д (x |S );
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Figure 2: �ality evaluation on physician and nurses data

Complexity Analysis. �e overall time complexity of Algorithm

1 is O(n2k) time in worst cases. �e space complexity is O(n).

6 EXPERIMENTS
In this section, we test our algorithms in experiments.

Datasets. We use a real-world dataset of tree T containing hier-

archical terminologies that are extracted from the Medical Entity

Dictionary (MED) [4]. �e tree contains 4,226 nodes. In addition,

we use two datasets of I, where one dataset physician contains

the information about how physicians query online knowledge

resources, and the other dataset nurses contains the query informa-

tion of nurses. �ese two datasets contain 2,425 records and 2,034

records, respectively. Each record consists of a MED term with a

frequency count of its occurrence in the log �le.

Methods Compared. To evaluate our algorithm GVDO, we eval-

uate and compare three algorithms – FEQ , AGG, and CAGG. Here,
FEQ is a baseline approach, which selects k nodes with the highest

frequencies [4]. �e algorithm AGG picks a set of k nodes with the

highest aggregate frequencies, where the aggregate frequency of a

node x is de�ned as AF (v) = ∑
y∈dec(x ) feq(y). CAGG is a variant

method of AGG using another metric of contribution ratio. For

a node x , the contribution ratio of x is de�ned by R(v) = AF (x )
AF (y)

where y is the parent of x . Given a ratio threshold θ , CAGG selects

the k nodes that have the highest aggregate frequencies and the

contribution ratio no less than θ . We set θ = 0.4 by following [4].

For all methods, we set the parameter k = 30 by default.

Evaluation Metrics. To evaluate the quality of summary result

S found by all algorithms, we randomly generate a set of query

nodes Q following the frequency distribution of input nodes, and

measure the closeness distance between query Q and summary S ,
denoted by D(Q, S) = ∑

q∈Q minx ∈S distT (q,x), where distT (q,x)
is the number of edges connecting q and x in tree T . �e smaller is

D(Q, S), the be�er is the summary.
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Figure 3: Scalability test on synthetic data
�ality Evaluation. Figures 2(a) and 2(b) show the quality evalu-

ation on physician and nurses data by all algorithms. All approaches

achieve smaller closeness distance with the increased k . Our ap-
proach GVDO is a clear winner of all competitors. It signi�cantly

outperforms the other methods for a smaller k , which is a great help
to shrink large datasets for data summarization and visualization.

�e similar results can be observed in Figure 2(b).

Scalability Test. In this experiment, we evaluate the scalability of

GVDO by varying the size of tree |V|. We randomly generate 5

trees with size varying from 10
5
to 10

6
. In addition, to verify the

e�ciency of computing 4д(x |S) by Algorithm 2, we compare one

approach Baseline that follows Algorithm 1 by computing 4д(x |S)
from scratch. �e results of running time are shown in Figure 3.

As we can see, GVDO is scalable very well with the increased size

of tree nodes |V|. Meanwhile, GVDO is much more e�cient than

Baseline, indicating the e�cient strategy of Algorithm 2.

7 CONCLUSION
In this paper, we study the problem of ontology-based graph sum-

mary for visualization, and propose an e�cient greedy algorithm

with quality guarantee. Experiments on real-world datasets demon-

strate the superiority of our proposed algorithm.
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