
When Structure Meets Keywords: Cohesive Attributed
Community Search

Yuanyuan Zhu, Jian He, Junhao Ye

School of Computer Science, Wuhan University

{yyzhu,2017282110267,junhao_ye}@whu.edu.cn

Lu Qin

Centre of AI, University of Technology, Sydney

lu.qin@uts.edu.au

Xin Huang

Hong Kong Baptist University, Hong Kong, China

xinhuang@comp.hkbu.edu.hk

Jeffrey Xu Yu

The Chinese University of Hong Kong, Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT
As an online, query-dependent variant of the well-known commu-
nity detection problem, community search has been studied for years

to find communities containing the query vertices. Along with the

generation of graphs with rich attribute information, attributed
community search has attracted increasing interest recently, aim-

ing to select communities where vertices are cohesively connected

and share homogeneous attributes. However, existing community

models may include cut-edges/vertices and thus cannot well guar-

antee the strong connectivity required by a cohesive community. In

this paper, we propose a new cohesive attributed community (CAC)

model that can ensure both structure cohesiveness and attribute
cohesiveness of communities. Specifically, for a query with vertex

vq and keyword set S , we aim to find the cohesively connected

communities containing vq with the most shared keywords in S .
It is nontrivial as we need to explore all possible subsets of S to

verify the existence of structure cohesive communities until we

find the communities with the most common keywords. To tackle

this problem, we make efforts in two aspects. The first is to reduce

the candidate keyword subsets. We achieve this by exploring the

anti-monotonicity and neighborhood-constraint properties of our

CAC model so that we can filter out the unpromising keyword

subsets. The second is to speed up the verification process for each

candidate keyword subset. We propose two indexes TIndex and

MTIndex to reduce the size of the candidate subgraph before the

verification. Moreover, we derive two new properties based on these

indexes to reduce the candidate keyword subsets further. We con-

ducted extensive experimental studies on four real-world graphs

and validated the effectiveness and efficiency of our approaches.

KEYWORDS
attributed graphs; community search; truss model

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412006

ACM Reference Format:
Yuanyuan Zhu, Jian He, Junhao Ye, Lu Qin, Xin Huang, and Jeffrey Xu

Yu. 2020. When Structure Meets Keywords: Cohesive Attributed Com-

munity Search. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), October 19–23,
2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3340531.3412006

1 INTRODUCTION
Graph is a powerful model to represent complex structural rela-

tionships among objects, which has been widely used in real-world

applications. In most of these applications, communities naturally

exist within which vertices are densely interconnected. Existing

studies on communities mainly fall into two categories: community
detection [10] [28] [18] to find all the communities in a network,

which has been extensively studied for decades; community search
[13] [17] [24] to find the communities containing the query vertices,

which has attracted increasing attention from researchers recently.

Motivation. In this paper, we study community search in attributed
graphs, to find the structure cohesive and attribute cohesive com-

munities for a given query, in which vertices are densely connected

and share homogeneous attributes. Such attributed communities

naturally exist in many real-world graphs with rich attribute in-

formation such as social networks, collaboration networks, and

biological networks. Finding such communities can help to cap-

ture the properties of the targeted vertices. Recently, two models

[9] [14] have been proposed to depict the attributed community.

[9] finds k-core communities in which vertices have degrees at

least k and share the most attributes. However, k-core cannot give
any guarantee on the connectivity of a community, which means

even deleting one edge may disconnect the community. In other

words, cut-edges may exist in the community. Subsequently, [14]

finds (k ,d)-truss communities with the maximum attribute score

based on a higher-order graph motif, triangle, rather than primitive

vertices/edges. A (k ,d)-truss is a subgraph such that each edge is

contained in at least k − 2 triangles, and the distance from each

vertex to the query vertex is no more than d . It it is also a (k − 1)-
core and a (k − 1)-edge connected subgraph [7], i.e., all vertices

have degree at least k − 1 and remain connected when less than

k − 1 edges are removed. However, this problem is NP-hard, and

due to the non-monotonicity and non-submodular properties of

the attribute score, the approximate ratio cannot be guaranteed by

the heuristic solution in [14]. Moreover, even with the distance con-

straint d , the structure cohesiveness of the (k ,d)-truss may still be

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1913

https://doi.org/10.1145/3340531.3412006
https://doi.org/10.1145/3340531.3412006
https://doi.org/10.1145/3340531.3412006

 v1

 v3

 v4

v5

 v8

 v6

 v7

{DB,CV}

{DM,CV} {AI,CV,DM}

{CV,ML,DM}

{CV,DB,DM}

{ML,CV,DM}

{CV,DM}

{DM,CV}

 v2

v9

{CV,DM}

{CV,DM}

v10

v11v12

{DM,AI,CV}

{DM,CV}

Figure 1: An example of attributed graph
weak as one vertex deletion could also disconnect the community,

i.e., cut-vertices may exist in the community no matter how large

k is. We illustrate such limitations by the following example.

Example 1. Consider an example collaboration network in Fig. 1.
For a query specified by vertexv4 and keyword set S = {DM ,CV ,ML},
if k = 3, subgraphH1 induced by {v2,v3, . . . , ,v12} with two common
attributes DM and CV will be returned in the core based community
search [9]. H1 can be easily disconnected if we delete the cut-edge
(v5,v6). In the (k ,d)-truss communitymodel [14], fork = 4 andd = 2,
subgraph H2 induced by {v2,v3,v4,v5,v10,v11,v12} with the largest
attribute score is returned. However, H2 can also be disconnected if
we remove the cut-vertex v3. In fact, vertices v10, v11, and v12 are not
cohesively connected with v4 due to this cut-vertex.

From the above example, we can see that the existence of cut-

edges/vertices violates the requirements of a cohesive community

[3]: vertices are well reachable with short distance and good con-

nectivity. Thus, in this paper, we revisit the attributed community

search problem and propose a cut-edge/vertex free cohesive attrib-
uted community (CAC) model to find both structure cohesive and
attribute cohesive community. We ensure the structure cohesive-

ness by the triangle connected k-truss model in which any two

edges either belong to the same triangle or are reachable from each

other through a series of adjacent triangles [13] [1]. Here two trian-

gles are adjacent if they share a common edge. This model can well

capture the characteristic of short distance and good connectivity of

cohesive communities, because cut-edge/vertex can be successfully

avoided (see proof in Section 2) and the diameter is well bounded

by ⌊ 2n−2k ⌋ for a k-truss with n vertices [7]. Benefiting from the

triangle connectivity constraint, such a community usually has a

much smaller n compared with a connected k-truss community in

practice. We ensure the attribute cohesiveness by the number of

common attributes in the community.

Example 2. For the example data in Fig. 1, given a query with
vertex v4 and keyword set {DM ,CV ,ML}, if k = 4, subgraph H3

induced by {v2,v3,v4,v5} with two common attributes DM and CV
will be returned by our CAC model, which includes no cut-edge/vertex.
Vertices v10, v11, and v12 are excluded from this community as their
adjacent edges cannot be triangle connected with vertex v4.

Challenges. Finding cohesive attributed communities in large

graphs is very challenging. A straightforward solution is to enumer-

ate all the keyword combinations and return the triangle connected

k-truss communities with the most shared keywords. However, the

number of keyword subsets to enumerate can be as large as 2
l − 1

for l keywords. It is impractical for large attributed graphs in an

online manner, given the fact that 2
l − 1 can be up to 1 million

even for l = 20 and the complexity of each triangle connected k-
truss community search isO (m1.5) wherem is the number of edges

in the candidate subgraph to verify [13]. Although O (m1.5) can
be reduced to the output size if an appropriate index is equipped

for non-attributed graph (e.g., EquiTruss [1]), it is also impractical

to build such index for every keyword subset due to the costly

truss decomposition involved in each index construction. It is also

impractical to build index for a candidate subgraph induced by a

keyword subset and dynamically maintain it for other keyword

subsets, because the subgraphs induced by different keyword sub-

sets vary substantially and the maintenance costs even more than

reconstruction from scratch for a small portion of change for most

real-world datasets [1] [30]. Note that the techniques used com-

munity search based on k-core [9] and k-truss with no triangle

connectivity constraint [14] also cannot solve our problem due to

the inherent problem difference.

Contributions.We tackle the cohesive attributed community search

problem by making efforts in two aspects. The first is to reduce the

number of verifications of the triangle connected k-truss commu-

nity by filtering out unpromising keyword subsets, and the second

is to accelerate the verification process by reducing the size of

the candidate subgraph. To reduce the number of verifications, we

explore two properties of our CAC model. The first is the anti-

monotonicity property, i.e., if there is no triangle connected k-truss
community for a keyword subset, we can avoid the verification of

its superset directly. The second is the neighborhood-constraint

property so that we can filter out the unpromising keyword subsets

directly without the triangle connected k-truss community veri-

fication. To accelerate the verification process, we develop a new

index TIndex by utilizing the trussness and attribute information.

Moreover, based on TIndex, we further derive two new properties,

neighborhood-trussness constraint and neighborhood-disjoint con-

straint, to filter out more keyword subsets. We also propose an

improved index MTIndex to further reduce the number of verifi-

cations and accelerate the verification process, and develop the

incremental and decremental search algorithms based on MTIndex
for different kinds of graphs. In summary, the main contributions

of this paper are:

• We study the CAC search problem to find triangle connected

k-truss communities with the most shared attributes for

the first time to capture both the structure and attribute

cohesiveness, which is also solvable in polynomial time.

• We explore four properties of the CAC model and develop

a new index TIndex to prune unpromising keyword subsets

and accelerate the verification process.

• We propose an improved indexMTIndex to further reduce

the number of verifications and accelerate the verification

process, and develop two efficient incremental and decre-

mental search algorithms for different kinds for graphs.

• We conducted extensive experimental studies on real-world

datasets, and validated the efficiency and effectiveness of our

models and algorithms.

Roadmap. Section 2 formulates the problem. Section 3 presents

a basic solution. Section 4 gives a new index and new search al-

gorithms. Section 5 presents the improved index and algorithms.

Section 6 discusses the experimental results. Section 7 discusses

the related work and Section 8 concludes this paper.

2 PROBLEM STATEMENT
Given a set of attributes Σ, a simple undirected attributed graph is

represented as G = (V ,E,A), where V is the vertex set, E ⊆ V ×V

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1914

is the edge set, and A is an attribute function which assigns each

vertex a set of attributes A(v) ⊆ Σ. For a graph G, we use V (G)
and E (G) to denote vertex set and edge set, and use |V (G) | and
|E (G) | to denote vertex number and edge number. For a vertex v
in G, let NG (v) = {u ∈ V |(u,v) ∈ E} denote its neighborhood

and dG (v) = |NG (v) | denote its degree. A triangle △uvw is a sub-

structure such that (u,v), (v,w), (u,w) ∈ E. The support of an edge

e = (u,v) in graph G is the number of triangles containing e , de-
fined as supG (e) = |{△uvw |w ∈ V (G)}|. In the following, we use

sup (e), N (v), and d (v) instead of supG (e), NG (v), and dG (v) for
simplification if the context is clear.

Definition 1. (k-Truss) A connected k-truss in G is a connected
subgraph H ⊆ G, such that ∀e ∈ E (H), supH (e) ≥ k − 2.

The trussness of a subgraph H ⊆ G is the minimum support of

all the edges in H plus 2, defined as τ (H) = mine ∈E (H) supH (e) + 2.
The trussness of an edge e ∈ E (G) is the maximum trussness of sub-

graphs containing e , i.e., τ (e) = maxH ⊆G∧e ∈E (H) τ (H). Consider a
k-truss H ⊆ G . If there exists no supergraph H ′ of H (H ⊆ H ′ ⊆ G)
such that τ (H ′) = τ (H), we call H a maximal k-truss.

However, a k-truss can be easily disconnected by a possible cut-

vertex, as shown in Example 1. Thus, triangle connectivity is further

exploited to model the real-world communities [13] [1]. A triangle

△uvw is called a k-triangle, if the trussness of each constituent edge

is no less than k . Given two k-triangles △1 and △2, they are adjacent
if they share a common edge, i.e., △1 ∩ △2 , ∅. △s and △t are k-

triangle connected, denoted as △s
k
↔ △t , if there exists a sequence

of k-triangles △1,...,△n (n ≥ 2) such that △s = △1, △t = △n , and for

1 ≤ i < n, △i ∩ △i+1 , ∅. Analogously, two edges e,e ′ ∈ E (G) are

k-triangle connected, denoted as e ′
k
↔ e iff (1) e and e ′ belong to the

same k-triangle, or (2) e ∈ △s , e
′ ∈ △t such that △s

k
↔ △t .

Definition 2. (Triangle Connected k-Truss Community)
A subgraph H ⊆ G is a triangle connected k-truss community if it
satisfies (1) H is a maximal k-truss and (2) ∀e,e ′ ∈ E (H), e ↔ e ′. We
also simplify it as k-truss community if the context is clear.

Example 3. Consider the graph in Fig. 1. The support of edge
(v2,v3) is 3 as it occurs in three triangles △v2v3v1

, △v2v3v4
, and

△v2v3v5
. The subgraph H2 induced by {v2,v3,v4,v5,v10,v11, v12}

is a maximal 4-truss, as the minimum support for edges in H2 is
at least 2, i.e., τ (H4) = 2. Clearly, τ (v2,v3) = 4 as there is no
subgraph with trussness larger than 4 containing (v2,v3). However,
H2 is not a triangle connected 4-truss community, as (v2,v3) and
(v3,v11) are not triangle connected. Clearly, the subgraph H4 induced
by {v1,v2,v3,v4,v5} is a triangle connected 4-truss community.

Lemma 1. There is no cut-edge and cut-vertex in the triangle con-
nected k-truss community.

Proof: Obviously, a triangle connected k-truss community has no

cut-edge as it is at least (k − 1)-edge connected as proved in [7].

Next, we prove that it also has no cut-vertex. Assume that there is

a cut-vertex c . Then there exist two neighboring vertices of c , a and

b, which are disconnected after deleting c . In other words, there is

only one path a → c → b from a and b, and thus (a,c) and (c,b)
are not triangle connected, which contradicts with the definition

of triangle connected k-truss community. □.

Algorithm 1: CAC-Basic (G, vq , S , k)
Input :A graph G , a vertex vq , a keyword set S , and integer k
Output :All attributed truss communities containing vq

1 generate FS = {Ψ1, Ψ2, . . . , Ψh } using S and N (vq);
2 R ← ∅; i ← h;
3 while i ≥ 1 do
4 for each S ′ ∈ Ψi do
5 find the connected subgraph G[S ′] containing vq from G ;

6 R ← findKTrussCom (G[S ′],vq, k);
7 if R , ∅ then R ← R ∪ R;
8 if R = ∅ then i ← i − 1;
9 else break;

10 Output the communities in R;

CohesiveAttributedCommunity (CAC) SearchProblem. Given

an attributed graphG = (V ,E,A), an integer k ≥ 3, a vertexvq ∈ V
and a set of keywords S , cohesive attributed community search is

to return a set R, such that ∀H ∈ R satisfies the following condi-

tions: (1) H is triangle connected k-truss community containingvq ;
(2) The size of shared keywords L(H ,S) is maximal, where L(H ,S)
= ∩v ∈V (H) (A(v) ∩ S) is the set of attributes shared in S by all

vertices in H .

Example 4. Based on the CAC model, subgraph H3 induced by
{v2,v3,v4,v5} is returned with τ (H3) = 4 and L(H3,S) = 2 forv4 and
S = {DM ,CV ,ML} in Fig. 1. Note thatH4 induced by {v1,v2,v3,v4,v5}
with τ (H4) = 4 is not returned as a CAC, because L(H4,S) = 1 < 2.

3 BASIC APPROACHES
For cohesive attributed community search, a straightforwardmethod

is to enumerate all the keyword subsets to check whether a k-truss
community exists and return the communities with the most com-

mon attributes. Specifically, given a query vertexvq and a keyword

set S , we enumerate all non-empty subsets of S , S1,S2, . . . ,S2l−1.

For each subset Si ⊆ S (1 ≤ i ≤ 2
l − 1), we check whether there

exists any k-truss community containing vq in which all the ver-

tices contain Si . If such a community exists, we denote it as H [Si].
The k-truss communities with the most common keywords will be

returned as CAC. However, repeating k-truss communities search

2
l − 1 times is impractical to support the online search over large

attributed graphs. Thus, in this section, we propose a new method

that can reduce the number of keyword subsets to verify. Before

getting into the details of the algorithms, we first discuss the anti-

monotonicity property of our CAC model.

Property 1. (Anti-Monotonicity) Given a graph G, a vertex
vq and a keyword subset S ′, if there exists a triangle connected k-truss
community H [S ′] such that each vertex containS ′, then ∀S ′′ ⊆ S ′

there exists a triangle connected k-truss community H [S ′′] ⊇ H [S ′].

This property can be easily derived from the definition of triangle

connected k-truss community. Based on this property, ifH [S ′] does
not exist, we can stop the examination of all its supersets.

Then we can derive a basic apriori solution from bottom to up

as follows. First, we divide the keyword subsets of S into l groups,
Ψ1,Ψ2, . . . ,Ψl , where each set S ′ ∈ Ψi is a size-i keyword subset

with i keywords. We start examine each S ′ ∈ Ψ1 with only one key-

word to check whether the triangle connected k-truss community

H [S ′] exists. After we examined Ψi , we only examine a size-(i + 1)

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1915

 v3

 v4 v5

 v2

v6

 v7

v8 v9

v10

{b,c,d,e}

{c,d,e}

{b,c,d}

{b,c,d}

{b,d,e}

{a,b,c}
{b,c,d}

{b,c,d}

{a,b,d,e}

Groups Keyword subsets

Ψ1 {b },{c },{d },{e }
Ψ2 {b, c },{b, d },{c, d },{d, e }
Ψ3 {b, c, d }

Figure 2: An example of the frequent keyword subsets

keyword subset if its size-i subsets all have k-truss communities.

However, in such a process, we still need to check many keyword

subsets that do not have a k-truss community. Then, a question

naturally arises: can we filter out unpromising keyword subsets be-

fore we do the k-truss community search? We answer this question

by exploiting the neighborhood constraint property of the k-truss
community as follows.

Property 2. (Neighborhood Constraint) For a query nodevq ,
if a k-truss community H [S ′] exists for S ′ ⊆ A(vq), then vq has at
least k − 1 neighbors containing S ′.

This property can be derived from the fact that a k-truss com-

munity H [S ′] is also a (k − 1)-core. Thus, each vertex in H [S ′]
must have degree at least k − 1. Based on this property, we can

generate the candidate keyword subsets from vq and its neighbors

by applying the well studied frequent pattern mining algorithms,

e.g., FP-Growth [11], to find the frequent keyword subsets with

support at least k − 1 instead of examining all the keyword subsets.

Example 5. Consider a query with vertex v3, keyword set S =
{b,c,d ,e}, and trussness k = 4. v3 has 8 neighbors as shown in Fig. 2.
We can generate 9 candidate keyword sets by FP-Growth as shown
in the table on the right of Fig. 2, which is less than the number of
enumerated keyword subsets 24 − 1 = 15.

Even with the neighborhood constraint, we still need to check

many keyword subsets in the bottom-up method until we find a

k-truss community with the most common attributes. Another pos-

sible way is to examine the keyword subsets from top to down, i.e.,

start from the keyword subsets with the largest number of key-

words, which is usually much faster since the candidate subgraph

to verify is much smaller under a larger keyword subset constraint.

The basic top-down method is shown in Algorithm 1. First, we

generate the candidate keyword subsets by FP-Growth [11] with

support k − 1 and group them into h ≤ l groups, denoted as FS =

{Ψ1,Ψ2, . . . ,Ψh } (line 1). Then we initialize the set of cohesive at-

tributed communities as R = ∅ and the size of keyword subset

as i = h. For each keyword subset S ′ ∈ Ψi , we first find the sub-

graph G[S ′] containing S ′, and then find the triangle connected

k-truss communities R containingvq fromG[S ′] by calling function
findKTrussCom (lines 5-6). If the R , ∅, we add it to the result set

R (line 7). If R is empty after we check all the keyword sets in Ψi ,
we decrease i by 1 and move on to Ψi−1 ; otherwise we terminate

the algorithm (lines 8-9). The details of function findKTrussCom
can be found in [13] with complexity O (|E (G[S ′]) |1.5). Thus the
overall time complexity of CAC-Basic isO (ns |E (G

′
max) |

1.5) where
ns is the number of candidate keyword subsets, and G ′max is the

maximum candidate subgraph.

 v1
 v3

 v4 v5

 v8

 v6

 v7

{a,b,c,d}

{c,d,e} {b,c,d}
{a,b,c}

{b,c,d}

{a,c,d,e}

{b,d,e}

{b,d,e}

 v2

v9
{b,c,d}

{b,c,d,e}

v10

v11
v12

{b,c,d}

{a,b,d,e}

 v13 v14
{a,c,e}

{b,d,e}

ν1 ν4

ν5ν3
ν2

Summary graph

Super-vertex Included edges Attributes

ν1 (k = 3) (2, 8) b, d
ν2 (k = 3) (3, 6),(3, 7),(6, 7) b, c, d

ν3 (k = 4)
(1, 2),(1, 4),(1, 5),(2, 3),(2, 4),

(2, 5),(3, 4),(3, 5),(4, 5) b, c, d, e

ν4 (k = 4)
(3, 8),(3, 9),(3, 10),(8, 9),(8, 10),

(9, 10),(9, 11),(9, 12) b, c, d, e

ν5 (k = 5)
(10, 11),(10, 12),(10, 13),(10, 14),(11, 12),
(11, 13),(11, 14),(12, 13),(12, 14),(13, 14) a, b, c, d, e

Figure 3: An example of TIndex

4 ADVANCED APPROACHES
In the CAC-Basic algorithm, for each keyword subset S ′, we need
to find k-truss community from the candidate subgraphG[S ′] with
O (|E (G[S ′]) |1.5) time, which is very time-consuming. In fact, many

vertices in the candidate subgraph are not qualified for a k-truss
community. Thus, we propose a new TIndex to reduce the size of
the candidate subgraphs. By exploiting the property of such index,

we can also further reduce the number of frequent keyword subsets.

4.1 A New Index TIndex
Our index is inspired by the extreme case of the anti-monotonicity

property, where S ′′ ⊆ S ′ is ∅. If we denote a k-truss community

without keyword constraint as H◦, then for any triangle connected

k-truss community containing H [S ′], we have H [S ′] ⊆ H◦. Thus,
we can actually verify the k-truss community on a smaller candi-

date subgraph H◦ ∩G[S ′] instead of G[S ′], i.e., finding the k-truss
communities H◦ first and then finding the keyword induced sub-

graph G◦[S ′] in H◦. Thus, we need to compute H◦ before we do
any verification for the keyword subsets.

Directly searching H◦ from G will need O (|E (G) |1.5) time. For-

tunately, it can be reduced to the output size with the assistance of

EquiTruss [1]. EquiTruss ultlizes k-truss equivalence to characterize
the strong connection between edges within a k-truss community.

Two k-triangle connected edges e,e ′ ∈ E (G) are k-truss equivalent

if τ (e) = τ (e ′) = k , denoted as e ′
k
= e . The equivalence class of an

edge e ∈ E (G) is denoted Ce = {e
′ |e ′

k
= e,e ′ ∈ E (G)}. The set of

all equivalence classes forms a mutually exclusive and collectively

exhaustive partition of E (G) with k ≥ 3, and it can be considered

as the set of super-vertices in a summary graph G (V ,E). A super-

edge (ν ,µ) ∈ E indicates that ν ,µ ∈ V are k-triangle connected

(k = min{τ (ν),τ (µ)}), i.e., for any e ∈ ν , ∃e ′ ∈ µ such that e
k
↔ e ′.

Such summary graph is indexed as EquiTruss. Based on EquiTruss,

for a query vertex vq and trussness k , we can search H◦ directly on
G. Specifically, we first find the set of super-vertices which contain

vq with trussness at least k , denoted asV ′. Then for each super-

vertex ν ∈ V ′, we start the bread-first search by only including

super-vertices µ with trussness at least k .
However, in the above process, there may exist super-vertices in

which each vertex does not contain any attributes in S and thus will

not be included in the final triangle connected k-truss communities

for any keyword subset. Thus, we build a new index TIndex to

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1916

 v2
{b,c,d}

{b,c,d}

 v3

 v4 v5

{b,c,d,e}

{c,d,e}

 v3

v8 v9

v10{b,c,d,e}

{b,d,e} {b,c,d}

{a,b,d,e}

Group Keyword sets

Ψ1

1
{c },{d }

Ψ1

2
{c, d }

Group Keyword sets

Ψ2

1
{b },{d }

Ψ2

2
{b, d }

Figure 4: An example of disjoint frequent keyword subsets

further reduce the size of H◦. The main idea is that besides the

summary graph, we also keep a set of keyword for each super-

vertex to support the early stop. For each edge (u,v) ∈ E (G), we
useA(u,v) = A(u)∩A(v) to denote the edge attribute which shared
by verticesu andv . Then attributes for super-vertex ν are defined as
the union of all the edge attributes in ν , i.e.,A(ν) = ∪(u,v)∈νA(u,v).
Thus we have an attributed summary graph that can keep the truss

equivalence information and attribute information. Besides, we

also keep two auxiliary structures. One is the vertex inverted list to

keep the super-vertex IDs that contain this vertex. The other is the

keyword inverted list to keep the set of vertex IDs Vi containing
keywordwi . These structures constitute our new index TIndex.

Example 6. Consider an example graph G and its summary G in
Fig. 3. The details of the super-vertices are shown in the table at the bot-
tom. Despite sharing the same trussness 3, (2,8) and {(3,6), (3,7) (6,7)}
belong to two different super-vertices ν1 and ν2 as they are not trian-
gle connected. Super-vertex ν3 represents a triangle connected 4-truss
with 9 edges, and its union set of the shared attributes is {b,c,d ,e}.

Based on TIndex, we can find all thek-truss communities contain-

ingvq in linear time [1]. First of all, we find the set of super-vertices

which containsvq with trussness at least k , denoted asV ′k . Then for

each super-vertex ν ∈ V ′k , we start the bread-first search by only

including super-vertices µ with trussness at least k andA(µ)∩S , ∅
to find k-truss communities.

Example 7. Consider the graph in Fig. 3. For a query with vq =
v3 and S = {b,c,d ,e}, based on the summary graph, we can find
communities H◦

1
(super-vertices ν3) and H◦

2
(super-vertices ν4 and ν5).

4.2 TIndex Based Search Algorithms
Based on TIndex, we not only can reduce the size of the candidate

subgraph but also can further reduce the number of candidate

keyword sets. From the property of k-truss community, we can see

that an edge with trussness less than k will never be included in

a k-truss community. Thus, we can further derive the following

property of k-truss communities.

Property 3. (Neighborhood-TrussnessConstraint) For a query
node vq , if a k-truss community H [S ′] exists for S ′ ⊆ A(vq), then
vq has at least k − 1 neighbors containing S ′ and any adjacent edge
between such neighbor and vq has trussness at least k .

Example 8. Now we reexamine the example in Fig. 2. If k = 4, the
keywords in v6 will never contribute to the final CAC result as the
trussness of (v3,v6) is smaller than 4. Thus, before we generate the
candidate keyword subsets by FP-Growth, we can filter out v6 first.

As analyzed before, a query vertex vq might be included in

multiple super-vertices with trussness at least k . Based on these

super-vertices, we may find multiple k-truss communities as illus-

trated in Example 7. For two super-vertices with the same trussness

k , we have the following lemma.

Lemma 2. Given a query vertex vq and an integer k , any two
super-vertices ν1, ν2 containing vq with the same trussness k ′ ≥ k
will belong to two different k-truss communities.

Proof: We prove this by concluding a contradiction based on the

definition of the k-truss equivalence. Obviously, there is no super-

edge connecting ν1 and ν2. Otherwise, all the edges in these two

super-vertices arek ′-triangle connected, and these two super-vertices
will be combined to one super-vertex according to the definition

of the summary graph. Similarly, assume that ν1 and ν2 belong

to the same k-truss communities. Then all the edges in these two

super-vertices are also k-triangle connected, andν1 and ν2 will be
combined to one super-vertex according to the definition of the

summary graph, which leads to a contradiction. □
Based on the above lemma, we can derive the following property

for k-truss communities.

Property 4. (Neighborhood-Disjoint Constraint) Given a
vertexvq and keyword set S , if there arek-truss communitiesH◦

1
,H◦

2
, . . . ,

H◦m containing vq , then a k-truss community H [S ′] containing vq
for S ′ ⊆ S must be entirely included a community H◦i (1 ≤ i ≤ m),
and vq has at least k − 1 neighbors containing S ′ in H◦i .

This property can also be derived by concluding a contradiction

as follows. Assume that a k-truss community H [S ′] containing vq
occurs across two communities H◦i and H◦j . Obviously, the two

parts contained in H◦i and H◦j must be at least k-triangle connected.

Thus, H◦i and H◦j will be triangle connected, and they will belong

to the same k-truss community, which contradicts the fact that H◦i
and H◦j are two separate triangle connected k-truss communities.

Example 9. Consider the query vertex v3 and S = {b,c,d ,e} in
Fig. 3. The 4-truss communities withmost keywords will occur either in
H◦
1
(super-vertices ν3) or H◦

2
(super-vertices ν4 and ν5) but not across

them. Thus the two communities with most keywords, H1 induced by
{v1,v2,v3,v4,v5} with keywords {c,d } andH2 induced by {v3,v8,v9,v10}
with keywords {b,d }, are contained in H◦

1
and H◦

2
, respectively.

Based on above properties, we can disjointly generate the fre-

quent keyword subsets for a query vq by dividing its neighbor set

NG (vq) into m parts if there are m k-truss communities H◦
1
,H◦

2
,

. . . ,H◦m containing vq , and generate the frequent keyword subsets

for each part. We illustrate such a process by the following example.

Example 10. Considethe query vertex v3 and S = {b,c,d ,e} in
Fig. 3. We can find 4-truss communities H◦

1
(super-vertices ν3) and

H◦
2
(super-vertices ν4 and ν5). The neighbors of v3 are only v2,v4,v5

in H◦
1
and onlyv8,v9,v10 in H◦

2
as shown in Fig. 4. Both of them only

have 3 frequent keyword subsets as shown in the two tables on the
right. Thus the total number of candidate keyword subsets is largely
reduced compared with the number of 9 in Example 5.

CAC-TIndexAlgorithm. Based on the above disjoint frequent key-

word subset mining strategy, we can derive an improved algorithm

CAC-TIndex, as shown in Algorithm 2. First of all, we find all the k-
truss communities H◦

1
,H◦

2
, . . . ,H◦m containing vq based on TIndex

(line 1). Then we generate the candidate keyword subsets based on

S and its neighbors in each community H◦j , denoted as NH ◦j (vq)

(lines 2-3). Then we start searching the keyword subsets with the

largest number of keywords (line 5), and within each k-truss com-

munitiesH◦i , we verify the existence of k-truss communitiesG◦j [S
′
]

containing S ′ (lines 7-12).

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1917

Algorithm 2: CAC-TIndex (G, vq , S , k)
Input :A graph G , a vertex q, a keyword set S and integer k
Output :All the attributed truss communities containing vq ;

1 find H ◦
1
, H ◦

2
, . . . , H ◦m containing vq from TIndex;

2 for j = 1 tom do
3 generate Ψ

j
1
, Ψ

j
2
, . . . , Ψ

j
hj

using S and NH ◦j
(vq);

4 R ← ∅; i ← hj ;
5 while i ≥ 1 do
6 for j = 1 tom do
7 for each S ′ ∈ Ψhi do
8 find subgraph G◦j [S

′
] containing vq from H ◦j ;

9 R ← findKTrussCom(G◦j [S
′
],vq, k);

10 if R , ∅ then R ← R ∪ R;

11 if R = ∅ then i ← i − 1;
12 else break;
13 output the communities in R;

5 IMPROVED APPROACHES
In the aboveCAC-TIndex algorithm, we filter out the vertices/edges

first by the truss information and then by the attribute information,

before we do the k-truss verification for a keyword subset S ′ on
the filtered graph. However, such a filtered graph may still contain

vertices/edges that are not included in the k-truss communityH [S ′].
Consider a specific case of the anti-monotonicity property where

S ′′ only contains a keyword wi . A vertex u will never occur in a

k-truss community H [S ′] if it is not included in the k-truss commu-

nity H [wi] (wi ∈ S
′
). Thus, before finding H [S ′], we can exclude

the vertices that are not in H [wi] for each wi ∈ S
′
. Therefore, in

this section, we propose an improved index MTIndex that keeps
multiple summary graphs for efficient truss and keyword filtering.

5.1 An Improved Index MTIndex
We buildMTIndex to index the attribute and trussness information

as follows. For each keyword wi , we extract all the vertices con-

taining wi , Vi , based on which the induced subgraph is denoted

as G[wi]. Then we build a summary graph Gi = (Vi ,Ei) for each
G[wi] with k ≥ 3. Note that, in this index, we only need to store

Gi rather than G[wi], which is usually much smaller and more

space-efficient thanG[wi] for real-world networks. Such index is

usually much smaller than TIndex and the original graph on most

of the real-world datasets (see details in Section 7).

Filtered and ordered frequent keyword subsets. Suppose that
we havemined the frequent keyword subsets FS = {Ψ1,Ψ2, . . . ,Ψh }.
We can do this either by mining the frequent patterns directly from

the neighborhood of vq or by first mining the frequent patterns

from the partial neighborhood in each k-truss community based on

TIndex disjointly and then union them together. Clearly, the latter

generates fewer keyword subsets than the former, but it needs the

assistance of index TIndex. Here, we use the result generated by the
former to save the index space. After generating FS , we can obtain

the filtered and ordered frequent keyword subsets as follows. First, for
eachwi ∈ Ψ1, we check the existence of k-truss community H [wi]

containing vq based on the summary graph Gi . If H [wi] does not

exist, we filter outwi in Ψ1 and all the keyword subsets containing

wi in Ψj for j > 1. Thus, we can obtain a new Ψ′j for each j ≥ 1. For

each keyword subset containing only one keyword in Ψ′
1
, we sort

Algorithm 3: CAC-MTIndexI (G, vq , S , k)

Input :A graph G , a vertex q, and an integer k
Output :All the attributed truss communities containing vq ;

1 generate F ′S = {Ψ
′
1
, Ψ′

2
, . . . , Ψ′h′ } and T ;

2 R1 ← ∪wi ∈Ψ
′
1

H [wi]; Ri ← ∅ for 1 < i ≤ h; Lmax ← 1;

3 f laд[wi] = true, ∀wi ∈ Ψ
′
1
; f laд[S ′] = f alse, ∀S ′ ∈ Ψ′j (j > 1);

4 push the root and its children from right to left into stack S;

5 while S , ∅ do
6 node ← S .pop (); S ′ ← node .S ′;
7 if |S ′ | ≥ Lmax and f laд[S ′] , true then
8 S ′′ ← S ′ \ S ′[|S ′ | − 1];
9 while f laд[S ′′] , true do

10 S ′′ ← S ′′ \ S ′′[|S ′′ | − 1] ;

11 G′[S ′]← H [S ′′] ∩ (∩|S
′ |

i=|S ′′ |+1H [S ′[i]]);
12 R ← findKTrussCom(G′[S ′],vq, k);
13 if R , ∅ then
14 R |S ′ | ← R |S ′ | ∪ R; f laд[S ′]← true ;
15 Lmax ← max{Lmax , |S ′ | };
16 for cnode ∈ node .children from right to left do
17 S .push (cnode);

18 Output the communities in RLmax ;

them based the size of their k-truss communities, i.e., wi ≺ w j if

|E (H [wi]) | < |E (H [w j]) |. Then for each Ψ′j (j > 1), the keywords in

S ′ ∈ Ψ′j are also sorted based on this order, i.e., S ′[i] ≺ S ′[i + 1] for

1 ≤ i < |S ′ | where S ′[i] be the i-th element in S ′. For two subsets

S ′,S ′′ ∈ Ψ′j , we say S
′ ≺ S ′′ if S ′[k] = S ′′[k] for 1 ≤ k < i < j , and

S ′[i] ≺ S ′′[i]. Thus, we can obtain the filtered and ordered frequent
keyword subsets F ′S = {Ψ

′
1
,Ψ′

2
, . . . ,Ψ′h′ }.

Ordered tree. Based on F ′S , we can build an ordered tree T as

follows. The root of this tree in the zero layer is a null node, and

we store each keyword subset in Ψ′
1
in each of its child node in

the first layer. Similarly, we store each keyword subset in Ψ′
2
in the

each node in the second layer. Suppose the keyword set stored in

node u in the j-th layer is S ′ ∈ Ψ′j . Any keyword set S ′′ ∈ Ψ′j+1
with S ′[i] = S ′′[i] for 1 ≤ i ≤ j will be stored in the child node of

node u. The order of these child nodes is also determined by the

order of keyword subsets in Ψ′j+1.

Example 11. For the example graph G in Fig. 3, the induced sub-
graph for each keyword and their summary graph is shown in Fig.
5. In G[b], edges in light lines are 3-triangle connected with truss-
ness 3, and thus are contained in super-vertex ν1. Despite having the
same trussness, (v3,v6), (v3,v7), and (v6,v7) in medium lines are
contained by another super-vertex ν2 as they are not 3-triangle con-
nected with edges in ν1. The remaining edges in bold lines are grouped
as super-vertex ν3 with trussness 4. ν1 and ν3 are connected as they are
3-triangle connected. Given a query withv3, S = {b,c,d ,e} and k = 4,
F ′S is shown in the table on the right. All the frequent keyword subsets
containing e have been deleted, since there is no 4-truss community
containing v3 in the summary ofG[e]. The keyword subsets in Ψ′

1
are

sorted as c,b,d as |E (H [c]) | = 12, |E (H [b]) | = 20, |E (H [d]) | = 24.
The subsets Ψ′

2
and the keywords in each subset are also sorted based

on this order. For example, {c,b} ≺ {c,d } because b ≺ d . Based on F ′S ,
we build the ordered tree in the bottom right of Fig. 5.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1918

 v1
 v3

v5

 v8

 v6

 v7

{b}

{b}
{b}

{b} {b}

{b}

 v2

v9
{b}

{b}

v10

v11
v12

{b}

{b}

{b}

ν3(k=4)

ν2(k=3)
ν1(k=3)

G[b]

ν1
ν2
ν3

 v1
 v3

 v4 v5 v6

 v7

{c}

{c} {c}
{c}

{c}

 v2 {c}

{c}

ν1(k=3)

ν2(k=4)

G[c]

ν1

ν2

 v1
 v3

 v4 v5

 v8

{d}

{d} {d}

{d}

{d}

{d}

{d}

 v2

v9
{d}

{d}

v10

v11
v12

{d}

 v13

{d}

ν3(k=4)

ν1(k=3)

G[d]

ν2(k=4)

ν1
ν2
ν3

 v3

 v8

{e}

{e}

{e}

{e}

v10

v11
v12

{e}

 v13 v14
{e}

{e}

ν2(k=5)

ν1(k=3)

G[e]

ν1

ν2

F ′S Keyword subsets

Ψ′
1

{c },{b },{d }
Ψ′
2

{c, b },{c, d },{b, d }
Ψ′
3

{c, b, d }

{c} {b} {d}

{c,b} {c,d} {b,d}

{c,b,d}

Figure 5: An example of MTIndex

Algorithm 4: CAC-MTIndexD (G, vq , S , k)

Input :A graph G , a vertex vq , a keyword set S , and integer k
Output :All the attributed truss communities containing vq

1 generate F ′S = {Ψ
′
1
, Ψ′

2
, . . . , Ψ′h′ };

2 R ← ∅; i ← h′;
3 while i ≥ 1 do
4 for each S ′ ∈ Ψ′i do
5 G′[S ′]← ∩ij=1H [S ′[j]];
6 R ← findKTrussCom(G′[S ′],vq, k);
7 if R , ∅ then R ← R ∪ R;
8 if R = ∅ then i ← i − 1;
9 else break;

10 Output the communities in R;

5.2 MTIndex Based Search Algorithms
Then we discuss how to search the filtered and ordered frequent

keyword set F ′S and the ordered tree T to find the triangle con-

nected k-truss communities with the most common keywords as

early as possible. In fact, it depends on the keyword distribution

of the graph. If the vertices share very few keywords, we can start

from the size-1 keyword subsets; otherwise, we start from the key-

word subsets with the largest number of keywords. For a new query,

we can simply evaluate the keyword distribution by checking the

existence of triangle connected k-truss communities for Ψ′
⌊h′/2⌋ .

If such communities exists, we start from Ψ′
1
; otherwise, we start

from Ψ′h′ . Based on this intuition, we give the incremental and

decremental search algorithms as follows.

CAC-MTIndexI Algorithm. The incremental cohesive attributed

community search is shown in Algorithm 3. First, we obtain F ′S =

{Ψ′
1
, . . . ,Ψ′h′ } and T (line 1). Then, we initialize Ri to store the

k-truss communities with i shared keywords, Lmax to store the

largest number of shared keyword found currently, f laд[S ′] to
indicate whether H [S ′] has been obtained, and stack S to store

the nodes that have been visited. Next, we start the depth first

search on T . At each step, we pop out the node in the stack S

and get the keyword subset S ′ stored in this node (line 6). Here we

consider to examine the existence of the k-truss community only

if |S ′ | ≥ Lmax . Let G
′
[S ′] denote the candidate subgraph before

the k-truss verification. To compute G ′[S ′], one straight forward
method is to compute the intersection of all the H [w ′] forw ′ ∈ S ′.
Here, we give anmore efficient method to obtain a smallerG ′[S ′] by
utilizing the maximum subset S ′′ ⊆ S ′ where H [S ′′] exists. We can

obtain the subset S ′′ ⊆ S ′ by gradually deleting the last keyword

in S ′ (lines 9-10) until f laд[S ′′] = true . Then we can obtainG ′[S ′]

Table 1: Datasets used in our experiments

Dataset Vertices Edges kmax d̂ l̂ Size

DBLP 2,000,979 9,925,613 287 9.92 14.02 283.40MB

YAGO 2,637,144 5,226,311 680.4 3.96 9.58 199.64MB

DBpedia 5,897,742 17,642,447 403.2 5.98 4.26 401.41MB

Tencent 2,320,895 50,133,369 405 43.2 6.96 866.91MB

by H [S ′′] ∩ (∩ |S
′ |

i= |S ′′ |+1H [S ′[i]]) in line 11, and extract the k-truss

community from G ′[S ′] in line 12. If R is not empty, we add it to

R ′ |S ′ | and update f laд[S ′] (line 14). Moreover, we update Lmax
if needed, and push the children of this node into stack S (lines

15-17). Such process repeats until the stack is empty.

CAC-MTIndexD Algorithm. The decremental search is shown in

Algorithm 4, which starts from the frequent keyword subset S ′

in Ψ′h′ with the largest number of keywords. First, we obtain the

filtered and ordered frequent keyword set F ′S = {Ψ
′
1
, . . . ,Ψ′h′ } (line

1). Then, we check the frequent keyword subsets from Ψ′h′ to Ψ′
1

until we find the k-truss communities. Note that for each Ψ′i , we
check the keyword subsets based on their orders, and we will stop

the whole process if we find the k-truss communities.

6 EXPERIMENTS
To our best knowledge, there is no existing work on cohesive at-

tributed community search based on the triangle connected k-truss
with the maximization of the shared attributes defined in this paper.

We compare our methods with two closely related works [9] [14]

to asses the effectiveness and efficiency of our algorithms. Here, we

choose the most efficient algorithm kCore-Dec in [9] and locATC
in [14] as baselines, and implemented our algorithms CAC-Basic,
CAC-TIndex, CAC-MTIndexI, and CAC-MTIndexD. We conducted

the experiments on four real-world datasets widely used in previous

works [9] [14]: DBLP
1
with 2 million vertices and 9.9 million edges,

YAGO
2
with 2.64 million and 5.23 million edges, DBpedia

3
with

5.90 million vertices and 17.6 million edges, and Tencent
4
with 2.3

million vertices and 50.1 million edges. Details of these datasets are

shown in Table 1 where d̂ and l̂ are the average degree and keyword
number. For each dataset, we randomly select 300 query vertices

with trussness at least 6, which ensures that each query is included

a k-truss community. The input keyword set S is set to the set of

attributes contained by the query vertex. All the algorithms are

implemented in C++, and all the experiments were conducted on a

Linux server with Intel Xeon CPU 2.60GHz and 128GB memory.

1
http://dblp.uni-trier.de/xml/

2
https://www.mpi-inf.mpg.de/yago

3
http://dbpedia.com/

4
http://www.kddcup2012.org/c/kddcup2012-track1

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1919

http://dblp.uni-trier.de/xml/
https://www.mpi-inf.mpg.de/yago
http://dbpedia.com/
http://www.kddcup2012.org/c/ kddcup2012- track1

10-1

1

101

102

103

 4 5 6 7 8

tim
e (

s)

k

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec

(a) DBLP (varying k)

10-2

10-1

1

101

 4 5 6 7 8

tim
e (

s)

k

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec

(b) YAGO (varying k)

10-3

10-2

10-1

1

101

102

103

 4 5 6 7 8

tim
e (

s)

k

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec

(c) DBpedia (varying k)

10-1

1

101

102

103

 4 5 6 7 8

tim
e (

s)

k

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec

(d) Tencent (varying k)

10-1

1

101

102

103

 1 3 5 7 9

tim
e (

s)

the number of keywords in S

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(e) DBLP (varying |S |)

10-2

10-1

1

101

102

 1 3 5 7 9

tim
e (

s)

the number of keywords in S

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(f) YAGO (varying |S |)

10-3

10-2

10-1

1

101

102

103

 1 3 5 7 9

tim
e (

s)

the number of keywords in S

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(g) DBpedia (varying |S |)

10-1

1

101

102

 1 3 5 7 9

tim
e (

s)

the number of keywords in S

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(h) Tencent (varying |S |)

10-1

1

101

102

103

20% 40% 60% 80% 100%

tim
e (

s)

percentage of keywords

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(i) DBLP (keyword scalability)
10-3

10-2

10-1

1

101

102

103

20% 40% 60% 80% 100%

tim
e (

s)

percentage of keywords

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(j) YAGO (keyword scalability)

10-3

10-2

10-1

1

101

102

103

20% 40% 60% 80% 100%

tim
e (

s)

percentage of keywords

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(k) DBpedia (keyword scalability)

10-2

10-1

1

101

102

103

104

20% 40% 60% 80% 100%

tim
e (

s)

percentage of keywords

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(l) Tencent (keyword scalability)

10-3

10-2

10-1

1

101

102

103

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(m) DBLP (vertex scalability)

10-3

10-2

10-1

1

101

102

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(n) YAGO (vertex scalability)

10-3

10-2

10-1

1

101

102

103

104

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(o) DBpedia (vertex scalability)

10-3

10-2

10-1

1

101

102

103

20% 40% 60% 80% 100%
tim

e (
s)

percentage of vertices

CAC-Basic
CAC-Index+
CAC-MTIndexD

CAC-MTIndexI
kCore-Dec
LocATC

(p) Tencent (vertex scalability)

Figure 8: Efficiency comparison

 0

 500

 1000

 1500

 2000

 2500

 3000

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

TIndex MTIndex

(a) DBLP (index time)

 0

 100
 200

 300
 400

 500
 600

 700
 800

 900
 1000

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

TIndex MTIndex

(b) YAGO (index time)

 0

 200

 400

 600

 800

 1000

 1200

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

TIndex MTIndex

(c) DBpedia (index time)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

20% 40% 60% 80% 100%

tim
e (

s)

percentage of vertices

TIndex MTIndex

(d) Tecent (index time)

 0

 200

 400

 600

 800

 1000

 1200

20% 40% 60% 80% 100%

siz
e (

M
B)

percentage of vertices

TIndex MTIndex

(e) DBLP (index size)

 0

 50

 100

 150

 200

20% 40% 60% 80% 100%

siz
e (

M
B)

percentage of vertices

TIndex MTIndex

(f) YAGO (index size)

 0

 200

 400

 600

 800

 1000

20% 40% 60% 80% 100%

siz
e (

M
B)

percentage of vertices

TIndex MTIndex

(g) DBpedia (index size)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

20% 40% 60% 80% 100%

siz
e (

M
B)

percentage of vertices

TIndex MTIndex

(h) Tencent (index size)

Figure 9: Time and size of index construction

6.1 Effectiveness Evaluation
We evaluate the effectiveness of our CAC model by comparing it

with the core-based attributed community search kCore-Dec [9]
and the truss-based community search without the consideration of

attributes (denoted as NCTruss) since the locATC [14] only return

the community with the largest k . Here, we only show the result of

CAC-Basic as our algorithms all generate the same optimal result.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1920

(a) 6-truss community with L(H , S) = 3

(b) 5-core community with L(H , S) = 3

Figure 6: A case study on DBLP (vq= 4141451, S =

{application, architecture, base, bring, center})

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

DBLP YAGO DBpedia Tencent

CM
F

kCore-Dec
NCTruss

CAC-Basic

(a) CMF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

DBLP YAGO DBpedia Tencent

CP
J

kCore-Dec
NCTruss

CAC-Basic

(b) CPJ

Figure 7: Attribute cohesiveness
Structure cohesiveness. Obviously, our CAC model has the most

strong constraint on structure as it is also ak-truss and a (k−1)-core.
Since NCTruss is also based on triangle connected k-truss commu-

nity, we only compare our algorithm and kCore-Dec by a case study
example in Fig. 6, where vq = 414519 is randomly selected from

the DBLP dataset with S = {application, architecture, base, bring,
center}. Fig. 6(a) shows the 6-truss communities found with three

shared keywords. Fig. 6(b) shows the 5-core communities found by

kCore-Dec, which has the same number of shared keywords but a

smaller trussness 2.

Attribute cohesiveness. We evaluate the attribute cohesiveness

of the returned communities by two measures, community member

frequency (CMF) and community pairwise Jaccard (CPJ) [9] [14].

CMF evaluates the keyword occurrence frequencies in the commu-

nities, and CPJ evaluates the average Jaccard similarity between

the keyword sets of all the vertex pairs in the communities. Fig. 7

(a) and 7 (b) show the CMF and CPJ for the evaluated algorithms,

respectively. CAC-Basic achieves better CMF and CPJ values than

kCore-Dec and NCTruss. NCTruss performs the worst as expected

because it mainly focuses on the structure cohesiveness but not the

attribute information.

6.2 Efficiency Evaluation

Varying k . We evaluate the algorithms by varying k from 4 to 8. Fig.

8(a)-(d) shows that CAC-MTIndexI and CAC-MTIndexD perform

the best on all the datasets. The running time decreases when k
increases except YAGO, because the trussness of YAGO is much

higher compared with other datasets. Thus, the increase of k will

not drastically reduce the size of the community, and verify a com-

munity with higher trussness will cost more time. Generally, CAC-
MTIndexI and CAC-MTIndexD are faster than CAC-Basic by 1-3

orders of magnitude, and also generally faster than kCore-Dec ex-
cept on YAGO and Tencent. It is because the vertices in DBLP and

DBPedia are more homogenous in terms of attributes, and large

cores are involved kCore-Dec. locATC is not reported because it

returns the communities with the largest k instead of the fixed k .

Varying |S |. We randomly select 1, 3, 5, 7, and 9 keywords for

the query node to evaluate the scalability of the algorithms on |S |,
Fig. 8(e)-(h) shows that CAC-MTIndexI and CAC-MTIndexD per-

form the best on all the datasets. CAC-MTIndexD is much faster

than CAC-MTIndexI on YAGO, because the vertices in YAGO usu-

ally share many common keywords. Generally, CAC-MTIndexI and
CAC-MTIndexD are faster than CAC-Basic by 1-3 orders of mag-

nitude, and faster than locATC by 1-2 orders of magnitude. They

also outperform kCore-Dec on most of the datasets except YAGO

and Tencent as analyzed before. The improvement becomes more

significant when the number of keywords increases in most cases.

Keyword scalability. We evaluate the scalability of the algorithms

by varying the number of keywords. Specifically, we randomly se-

lect 20%, 40%, 60%, 80%, and 100% keywords of each vertex. Fig.

8(i)-(l) shows thatCAC-Basic needs more time as the keyword num-

ber increases, because more frequent keyword subsets are checked.

Such increase is not significant for MTIndex, CAC-TIndex, CAC-
MTIndexI, andCAC-MTIndexD as they filtered outmany unpromis-

ing frequent keyword subsets. Generally, CAC-MTIndexI and CAC-
MTIndexD are faster than CAC-Basic by 1-3 orders of magnitude,

and outperform locATC and kCore-Dec on most datasets.

Vertex scalability. We also evaluate the scalability of the algo-

rithms by randomly selecting 20%, 40%, 60%, 80% and 100% vertices

in each dataset. Fig. 8(m)-(p) shows that the running time increases

as the vertex number increases. Generally, CAC-MTIndexI and
CAC-MTIndexD are faster than CAC-Basic by 1-3 orders of mag-

nitude, and outperform locATC and kCore-Dec on most datasets.

Index construction. To evaluate the scalability of the index, we

randomly select 20%, 40%, 60%, 80%, and 100% vertices for each

data set and show the construction time and size of TIndex and

MTIndex in Fig. 9. For DBLP, YAGO, and DBpedia, TIndex can be

built efficiently while MTIndex cost more time, as TIndex needs

only one truss decomposition while MTIndex needs multiple truss

decompositions. However, for Tencent,MTIndex cost less time than

TIndex. The underlying reason is thatMTIndex is constructed on

a much smaller G[wi] due to the high diversity of the keywords.

The index space of MTIndex is smaller than that of TIndex, and
is even much smaller than the original graph size for YAGO, and

DBpedia, and Tecnent due to the high diversity of the keywords. The

improvement on DBLP is less significant because each attributes in

DBLP are usually contained in a large number of vertices.

7 RELATEDWORK
Our work is related to community detection (CD) with/without

attributes and community search (CS) with/without attributes.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1921

Community Detection. (a) Non-attributed CD. Community de-

tection aims to identify all the communities in the entire network,

which has been extensively studied in the literature. Most of the

earlier studies can be found in surveys [10] and [28]. In recent years,

various models on dense subgraphs were also studied for commu-

nity detection in the decomposition manner, such as core decompo-

sition [6] [16], truss decomposition [7] [25] [21], and k-edge/vertex
connectivity component decomposition [4] [26]. Besides, some algo-

rithms have been proposed for core/truss maintenance in dynamic

graphs [30]. (b) Attributed CD. Attributed community detection

is to find all densely connected communities with homogeneous

attributes [32] [20]. [32] considers both links and keywords of ver-

tices to compute the pairwise similarities between vertices, and

then clusters the vertices to obtain the communities. [20] proposed

CODICIL, which creates new edges based on content similarity, and

then uses graph sampling to boost the efficiency of clustering. [29]

defines a newmodel based onmeta-paths to deal with heterogenous

information networks. A survey of clustering attributed graphs can

be found in [2]. The CD algorithms discussed above are generally

inefficient for the online community search problem.

Community Search. (a) Non-attributed CS. Community search

aims to find communities containing a given set of query vertices.

Various models have been proposed to measure the cohesiveness

of the community, based on notations such as random-walk [23],

query biased edge density [27], clique and quasi-clique [17], k-core
[8] [22], k-truss [13] [15] [1], and k-edge connected component

[12], to name a few major examples. Here, we elaborate on truss

based community search related to this paper, which aims to find

truss communities containing a given set of query vertices. [13]

constructs TCP-Index to support the efficient search of all the k-
truss communities containing a given query vertex. [1] builds a

more compact index EquiTruss to accelerate the computation of k-
truss communities. To avoid the free-rider effect, [15] proposed an

approximate method to find truss with the maximum trussness and

minimum diameter. (b) Attributed CS. Attributed community search

began to attract increasing attention from researchers recently. [9]

aims to obtain k-core communities in which vertices share the

most attributes. [14] finds k-truss community with the maximum

attribute score, and provides heuristic algorithms to solve this NP-

hard problem approximately. Recently, a variant has been proposed

to deal with multiple types of attributes [19]. As stated before,

these methods are inherently different from the model studied

in this paper. Besides, [33] [5] [31] studied the keyword-centric

community search problem where no query vertices are specified,

which is orthogonal to the problem studied in this paper.

8 CONCLUSIONS
In this paper, we studied the cohesive attributed communities search

problem based on a newly proposed cut-edge/vertex free cohesive at-
tributed community (CAC) model to find both structure cohesive and
attribute cohesive community. We explored the anti-monotonicity

property and neighborhood constraint of our CAC model to reduce

the number of keyword subsets, and also developed two indexes

TIndex and MTIndex to filter out more keyword subsets and re-

duce the size of the candidate subgraph. Extensive experimental

studies on four real-world datasets validated the effectiveness and

efficiency of our approaches.

Acknowledgments. The work was supported in part by grants of Natural

Science Foundation 61972291 and 61702435, Natural Science Foundation of

Hubei Province 2018CFB519, Fundamental Research Funds for the Central

Universities 2042019kf0224, ARC FT200100787, the Research Grant Council

of the Hong Kong, China No. 14203618 and No. 1420291. Yuanyuan Zhu is

the corresponding author.

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a Truss-

equivalence Based Indexing Approach. PVLDB 10, 11 (2017), 1298–1309.

[2] Cécile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Micenková. 2015.

Clustering attributed graphs: models, measures and methods. Network Science 3,
3 (2015), 408–444.

[3] Ulrik Brandes and Thomas Erlebach (Eds.). 2005. Network Analysis: Methodological
Foundations. LNCS, Vol. 3418. Springer.

[4] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decomposi-

tion. In SIGMOD. 205–216.
[5] Lu Chen, Chengfei Liu, Kewen Liao, Jianxin Li, and Rui Zhou. 2019. Contextual

Community Search Over Large Social Networks. In ICDE. 88–99.
[6] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE. 51–62.
[7] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National Security Agency Technical Report 16 (2008).
[8] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of

communities in large graphs. In SIGMOD. 991–1002.
[9] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. PVLDB 9, 12 (2016), 1233–1244.

[10] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3
(2010), 75–174.

[11] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without

Candidate Generation. In SIGMOD. 1–12.
[12] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.

Querying Minimal Steiner Maximum-Connected Subgraphs in Large Graphs. In

CIKM. 1241–1250.

[13] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[14] Xin Huang and Laks V. S. Lakshmanan. 2017. Attribute-Driven Community

Search. PVLDB 10, 9 (2017), 949–960.

[15] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate Closest Community Search in Networks. PVLDB 9, 4 (2015), 276–287.

[16] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. PVLDB 9, 1 (2015), 13–23.

[17] Pei Lee and Laks V. S. Lakshmanan. 2016. Query-Driven Maximum Quasi-Clique

Search. In ICDM. 522–530.

[18] Zhenjun Li, Yunting Lu, WeiPeng Zhang, RongHua Li, Jun Guo, Xin Huang,

and Rui Mao. 2018. Discovering Hierarchical Subgraphs of K-Core-Truss. Data
Science and Engineering 3, 2 (2018), 136–149.

[19] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao.

2020. VAC: Vertex-Centric Attributed Community Search. In ICDE. 937âĂŞ948.
[20] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. 2013. Efficient community

detection in large networks using content and links. InWWW. 1089–1098.

[21] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for

Dense Subgraphs. PVLDB 10, 3 (2016), 97–108.

[22] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In SIGKDD. 939–948.
[23] Hanghang Tong and Christos Faloutsos. 2006. Center-piece subgraphs: problem

definition and fast solutions. In SIGKDD. 404–413.
[24] Chaokun Wang and Junchao Zhu. 2019. Forbidden Nodes Aware Community

Search. In AAAI. AAAI Press, 758–765.
[25] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

PVLDB 5, 9 (2012), 812–823.

[26] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. 2019. Enumerating

k-Vertex Connected Components in Large Graphs. In ICDE. 52–63.
[27] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Community

Detection: On Free Rider Effect and Its Elimination. PVLDB 8, 7 (2015), 798–809.

[28] Jierui Xie, Stephen Kelley, and Boleslaw K. Szymanski. 2013. Overlapping com-

munity detection in networks: The state-of-the-art and comparative study. ACM
Comput. Surv. 45, 4 (2013), 43:1–43:35.

[29] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and

efficient truss computation over large heterogeneous information networks. In

ICDE. 901âĂŞ912.
[30] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss

Maintenance in Evolving Graphs. In SIGMOD. 1024–1041.
[31] Zhiwei Zhang, Xin Huang, Jianliang Xu, Byron Choi, and Zechao Shang. 2019.

Keyword-Centric Community Search. In ICDE. 422–433.
[32] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph Clustering Based on

Structural/Attribute Similarities. PVLDB 2, 1 (2009), 718–729.

[33] Yuanyuan Zhu, Qian Zhang, Lu Qin, Lijun Chang, and Jeffrey Xu Yu. 2018.

Querying Cohesive Subgraphs by Keywords. In ICDE. IEEE Computer Society,

1324–1327.

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1922

	Abstract
	1 Introduction
	2 Problem Statement
	3 Basic Approaches
	4 Advanced Approaches
	4.1 A New Index TIndex
	4.2 TIndex Based Search Algorithms

	5 Improved Approaches
	5.1 An Improved Index MTIndex
	5.2 MTIndex Based Search Algorithms

	6 Experiments
	6.1 Effectiveness Evaluation
	6.2 Efficiency Evaluation

	7 Related Work
	8 Conclusions
	References

