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Abstract—Rewriting is a widely used logic optimization ap-
proach incorporated in most commercial logic synthesis tools. In
this paper, we present a new rewriting method based on And-
Inverted Graph (AIG). Rather than focusing on cut rewriting, it
considers a novel sub-structure called Maximum Fanout-Free
Window (MFFW) and rewrites with a more compact imple-
mentation. Both exact synthesis and heuristic methods can be
adopted to optimize MFFWs. A database dependent framework
is proposed to store the optimal sub-structures to accelerate
the processing. We further propose the semi-canonicalization
to reduce the scale of the database, which could reduce more
than 98% of the 4-input MFFW database. Extensive experiments
on benchmark datasets demonstrate both the effectiveness and
efficiency of our proposed framework.

I. INTRODUCTION

Logic optimization is a process of finding an equivalent but
more compact representation of a multi-level Boolean network.
It plays a key role for the area and delay optimization in
automated design flow. It is usually applied to a technology-
independent representation of the network parsed from high-
level descriptions. And-Inverter Graph (AIG), which is com-
posed of two-input And gates and Inverters, is such a modern
logic representation that has been widely adopted in logic
optimization.

Due to the NP-hardness of logic optimization, different
algorithms based on heuristics or local transformations have
been proposed towards the optimization in different metrics.
Among them, cut rewriting [1], [2], [3], [4], [5] is a powerful
and widely used area-oriented optimization method that iter-
atively selects and greedily replaces small-scale sub-graphs
with more compact structures. A pre-computed or runtime
database is used to store the optimum implementations and
avoid redundant calculations. A common sense under such a
setting is that, larger considered sub-graphs for rewriting has
more potential in creating better optimized networks. However,
a k-cut is a single-output structure with k-inputs and only
small-scale vertices are allowed to optimize. See Fig. 2 as an
example. Fig. 2(a) shows a real sub-structure of the DIV circuit
in the EPFL benchmark. After enumerating all cuts in the
example, cut rewriting can only reduce one vertex 8 as shown
in Fig. 2(b). If we extend the cut into a fully multiple-outputs
structure, we can find a better implementation in Fig. 2(c),
which is equivalent with Fig. 2(a) but can reduce three vertices.
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Fig. 1: Comparison of cut and MFFW. The green vertices are
replaceable and red vertices are irreplaceable. In the cut rooted
by O1, only four vertices are replaceable since other vertices
connect to the outside vertex O2 or O3. In the MFFW, the
internal vertices are all replaceable.

Recently, Riener et al. [6] extended the cut structure to
reconvergence driven windows and proposed a Boolean resyn-
thesis to optimize the windows without database. As a recon-
vergence driven window is a complex multi-output structure,
it is difficult to store its exact synthesis in the database. Riener
et al. only apply a heuristic resynthesis to optimize it. In this
paper, we propose a novel multi-output sub-structure, called
fanout-free window (FFW), and its fully expansion maximum
fanout-free window (MFFW). We also propose a new database
dependent rewriting framework. Our main contributions are
summarized as follows.
• We propose a novel multi-output sub-structure called

fanout-free window. On the basis of FFW, we propose the
fully window MFFW expanded with given inputs.
• We propose a database dependent rewriting framework,

which supports both runtime cache and pre-computed
database modes. Due to the large scale of different windows,
we only consider the equivalent MFFWs from benchmarks.
To avoid redundant calculations of equivalent windows,
we only optimize a class of equivalent windows once
and store the optimal one in the database. Furthermore,
instead of enumerating all k-input windows, the framework
enumerates MFFWs based on the leaves of k-input cuts.
• We propose the semi-canonicalization of windows to im-

prove the efficiency of database. It takes high time complex-
ity to check equivalence and classify windows by enumer-
ation. The proposed semi-canonicalization fix the negation
and permutation by invariant value of inputs and outputs.
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Fig. 2: An example of MFFW rewriting in DIV benchmark.

In doing so, we can calculate the truth value and classify
windows in the database more efficiently.

• We conduct extensive experiments on EPFL benchmarks.
The results show that semi-canonicalization reduces more
than 98% fanout-free windows in the database and the
proposed rewriting method outperforms the state-of-the-art
methods nearly 50% in terms of node reductions.

II. BACKGROUND AND RELATED WORKS

A. And-Inverter Graph and Fanout-Free Windows

And-Inverter Graph. An And-Inverter Graph (AIG) is a data
structure to model combinational logic circuits. Let G =
(V,E,PI,PO) be an AIG, where (V,E) is a directed acyclic
graph, PI is the set of primary input vertices, and PO is the
set of primary output vertices. Each vertex v ∈ V represents
an And gate and v ∈ PI represents a primary input. Edges
represent wires and can either be regular or complemented.
For each vertex v ∈ V , FI(v) and FO(v) are the fanin and
fanout vertices of v, i.e., in-neighbors and out-neighbors. For
each vertex v ∈ V , |FI(v)| = 2, and for each primary input
vertex v ∈ PI, |FI(v)| = 0.

K-Input Fanout-Free Windows. Given a set I of k input ver-
tices , a k-input fanout-free window (FFW) G = (V,E, I,O)
is also an AIG, where I are the input vertices and O ⊂ V
are the output vertices. A fanout-free window should satisfy
following fanout-free rules,

1. For each vertex v ∈ V , FI(v) ⊂ V .
2. For each vertex v ∈ V \O, FO(v) ⊂ V .

Specifically, for any vertex v ∈ V \O, its fanins and fanouts
are also in the fanout-free window. We call the vertices set
fanout-free area [7]. Roughly speaking, all vertices in a fanout-
free window must be able to be fully expressed in the form
of Boolean function by vertices of PI. A k-input cut [7] is
also a k-input fanout-free window, which is rooted by a given
output vertex r. Note that the number of outputs in a cut may
be larger than 1. Given k vertices I , the k-input maximum
fanout-free window (MFFW) is fully expanded by inputs I ,
whose fanout-free area is maximum.

Vertex Boolean Function and Truth Table. Given a fanout-
free window G = (V,E, I,O) and a vertex v ∈ V , a vertex

TABLE I: Truth tables of vertices in the example window.

Id Truth table Id Truth table
I0 0101,0101,0101,0101 9 0001,0001,0001,0101
I1 0011,0011,0011,0011 10 0010,0010,0010,1010
I2 0000,1111,0000,1111 11 0100,0100,0100,0000
I3 0000,0000,1111,1111 12 1001,1001,1001,0101
4 0000,0000,1111,0000 13 1111,0000,0000,1111
5 0000,0000,0000,1111 14 1111,0000,0000,0000
6 0000,1111,0000,0000 15 0000,1111,1111,0000
7 1100,1100,1100,0000 16 1000,1000,1000,0000
8 0101,0101,0101,0000 17 0110,0110,0110,1010

Boolean function is fv(x) : Bk → B, where B = {0, 1},
k = |I|, and x = (x1, x2, ..., xk) is a list of Boolean variables
of input vertices. A truth table Truth(v) can be represented
as a 2k-length bit string corresponding to 2k input cases of
fv . Two vertices are complementary if their truth tables are
complementary. The output truth tables of a window G is the
set T (G) = {Truth(o1), ...,Truth(o|O|)}, where oi ∈ O. A 1-
cofactor / 0-cofactor of Truth(v) regarding to input u is that
2k−1 input cases of fv , where the Boolean variable of input
u keeps 1 / 0.

NPNP Equivalent. NPNP transformation of a given fanout-
free window refers to Negation and Permutation of its inputs
and Negation and Permutation of its outputs. Given two
fanout-free windows G1 and G2, if there exists an NPNP
transformation G′

1 of G1, such that truth tables of G′
1 and

G2 are equivalent, i.e., T (G′
1) = T (G2), we call that G1 and

G2 are NPNP equivalent, denoted by G1 ≡ G2.
Example 1: Fig. 2(a) shows an example of a 4-input maxi-

mum fanout-free window, where {I0, I1, I2, I3} are the input
vertices, {12, 9, 13} are the output vertices and other vertices
are the fanout-free area. The area with triangular dashed is
a 4-input cut rooted by vertex 12. It is still a fanout-free
window with inputs {I0, I1, I2, I3} and outputs {12, 7}. While
it is not a maximum fanout-free window because vertices
{4, 6, 9, 13} can also be added into the window. Table I
shows the truth table of the example fanout-free window.
Each bit represents the value of vertex Boolean function
with the given input, e.g. the 6-th bit of vertex 9 equal to
0 represents f9(1, 0, 1, 0) = 0. The fanout-free window in
Fig. 2(a) is NPNP equivalent to the fanout-free window in
Fig. 2(c) because we can flip output vertices 12 and 13 and
reorder outputs, where {Truth(9),Truth(12),Truth(13)} =
{Truth(9),Truth(17),Truth(15)}.
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Algorithm 1 K-Input MFFW Rewriting Framework

Input: An AIG G = (V,E,PI,PO), an integer K, and a k-
input FFW database Dk.

Output: A new AIG G∗ = (V ∗, E∗,PI,PO), and a new k-
input FFW database D∗

k.
1: for each k-input cut C = (r, L) do
2: if Leaves L have been visited then
3: continue;
4: Construct MFFW G′ = (V ′, E′, L,O);
5: Compress the MFFW by functional reduction;
6: Canonicalize the MFFW by Algorithm 2;
7: if |G∗| < |G′|, where G∗ ∈ Dk and G∗ ≡ G′ then
8: Replace G′ by G∗;
9: else

10: Optimize the MFFW G′;
11: Update G′ into the database Dk.
12: return G,Dk;

B. Related Works

Rewriting is a greedy algorithm for optimizing the AIG
area by transformation of local substructures. Traditional ap-
proaches use a single output structure, cuts, as the basic unit
for replacement, and pre-compute optimal representations for
each NPN class [1], [2]. When extending cut inputs from
4 to up to 12, the number of NPN classes grows exponen-
tially, which prohibits any kind of pre-computation. Therefore,
Yang et al. [3] proposed to build a runtime library to store
enumerated cuts with golden design from the AIG. State-of-
the-art rewriting techniques extend the scope of replacing.
Introduction of exact synthesis enables the substitution of
the whole cut [4], [5], by means of generating the exact
Boolean network with the given specification and a set of
functions [8], [9]. All these methods utilize a simple sub-
structure, single output cut. In our work, we extend the single-
output cut to multiple-output fanout-free window and propose
a novel database dependent rewriting framework, which is
more effective than cut rewriting.

Boolean function classification for AIGs (as well as fanout-
free windows) is a vital problem in our work for matching
and retrieving fanout-free windows in the database. There are
several solutions on the fast computation of NPN classifica-
tion [10], [11], [12], but all of them only can be applied on
single-output Boolean function. Some methods are proposed
for Non-exact NPNP Boolean matching [13], [14]. While these
methods only try to achieve the large number of output equiva-
lences of two fanout-free windows, which is not applicable for
our database. In our work, we propose a semi-canonicalization
that could check equivalence and retrieve fanout-free windows
in the database efficiently.

III. FRAMEWORK

Traditional cut rewriting [2] utilizes the pre-computed
database. Different from cut rewriting, database-dependent
MFFW rewriting meets three major challenges. First, the
number of fanout-free windows in the AIG may be large.

Given any k vertices, it could construct a k-input FFW based
on these inputs. So, it takes O(nk) to enumerate all k-input
MFFWs, where n is the size of AIG. Second, it is difficult to
verify the equivalence of fanout-free windows. For a single-
output k-input cut, it takes at most 2 · 2k · k! to check
whether two cuts are NPN-equivalent. While, for multiple-
output fanout-free windows, it takes at most 2k ·k! ·2|O| · |O|!,
which is impossible to enumerate all cases of equivalence.
Last, it is difficult to construct FFW databases. For k-input
fanout-free windows, there exists 22

k

different vertex truth
tables. So, in theory, there exists 22

2k

different fanout-free
windows, e.g., 2256 for 3-input fanout-free windows. It is
difficult to store all these fanout-free windows and calculate
their exact synthesis.

To tackle these three challenges, we propose a novel MFFW
rewriting framework. First, we only enumerate MFFWs based
on the leaves of k-input cuts instead of all k inputs, since others
are weak connected sub-structures. It could guarantee the num-
ber of k-input MFFWs will not exceed the number of k-input
cuts. Second, we propose a novel method to canonicalize the
fanout-free windows. It can avoid the framework to enumerate
all orders and flips of input and output vertices. Last, only
few different fanout-free windows exist in real datasets. So,
we only construct database based on the MFFWs in the real
datasets. To further reduce the database size, on the basis of
canonicalization, we could merge the equivalent fanout-free
windows and store the optimal one in our database.

Rewriting Framework. Algorithm 1 shows the proposed
MFFW rewriting framework. First, it enumerates all k-input
cuts [7] and constructs the MFFWs based on each set of
the leave nodes of these cuts (Lines 1–4). Then, it simulates
the MFFW and compresses the functional equivalent vertices,
i.e., two vertices that are equivalent or complementary (Line
5). The objective is to guarantee all vertices are functionally
different. After compression, it canonicalizes the MFFW and
calculates the key value (Line 6). On the basis of key value,
it could find whether there exists a better equivalent fanout-
free window in the database (Lines 7–11). If a better equiv-
alent window exists, the framework replaces it. Otherwise,
the framework optimizes it and updates the result into the
database. Note that the framework is able to run without
an external database. The input database could be empty and
stored in the cache.

IV. TECHNIQUES

A. Fanout-Free Window Semi-Canonicalization

Given two fanout-free windows with different structures,
it takes at most 2k · k! · 2|O| · |O|! times of enumeration to
check whether they are NPNP-equivalent. Thus, it is time-
consuming to check and retrieve the equivalent fanout-free
windows in the database. To retrieve efficiently, we propose
a semi-canonical form of fanout-free windows. Instead of
enumeration, we could canonicalize the window and retrieve
the equivalent one based on the key set. The general idea is to
fix the negation and permutation of inputs and outputs using
invariant information. A similar method is proposed in [3],
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Algorithm 2 K-Input FFW Semi-Canonicalization

Input: A fanout-free window G = (V,E, I,O).
Output: A fanout-free window G′ = (V ′, E′, I ′, O′), an

NPNP-transformation record R.
1: Let G′ be a copy of G;
2: Simulate fanout-free window G′;
3: for vertex v ∈ O′ do
4: if popcnt(v) > 2k − popcnt(v) then
5: Flip output vertex v;
6: Record the flip of v to R;
7: Sort inputs v ∈ I ′ by

∑
u∈O′ |popcnt1v(u)− popcnt0v(u)|;

8: Record the input vertex order of I ′ relative to I;
9: for vertex v ∈ I ′ do

10: if
∑

u∈O′ popcnt0v(u) >
∑

u∈O′ popcnt1v(u) then
11: Flip input vertex v;
12: Record the flip of v to R;
13: Re-simulate fanout-free window G′;
14: Sort outputs v ∈ O′ by Truth(v);
15: Record the input vertex order of O′ relative to O;
16: return G′, R;

Algorithm 3 Key Calculation

Input: A semi-canonicalized fanout-free window G =
(V,E, I,O).

Output: a sorted truth table list Key.
1: Key ← ∅;
2: for vertex v ∈ O do
3: if Truth(v) > Not(Truth(v)) then
4: Key ← Key ∪ {Not(Truth(v))};
5: else
6: Key ← Key ∪ {Truth(v)};
7: Sort the truth table list Key by the truth value;
8: return Key;

[11], while it is for single-output cut which could only be
applied to the cut database. First, we define the popcount and
get three lemmas as follows,

Definition 1 (popcount): Given an input vertex v ∈ I and an
output vertex u ∈ O, popcount is the number of 1 in the Truth
(u), denoted by popcnt(u). And 1-popcount / 0-popcount is
the number of 1 in the 1-cofactor / 0-cofactor of Truth (u)
regarding to input v, denoted by popcnt1v(u) / popcnt0v(u).

Lemma 1: Given a fanout-free window G and an output
vertex v, popcnt(v) is invariant regardless of the negation and
permutation of inputs and other outputs.

Lemma 2: Given a fanout-free window G and an input
vertex v,

∑
u∈O |popcnt1v(u)− popcnt0v(u)| is invariant re-

gardless of the negation and permutation of inputs and outputs.
Lemma 3: Given a fanout-free window G and an input ver-

tex v,
∑

u∈O popcnt1v(u)− popcnt0v(u) is invariant regardless
of the permutation of outputs and negation of other inputs.

Algorithm 2 shows the semi-canonicalization of a given
k-input fanout-free window. On the basis of Lemma 1 and
Lemma 2, we could first flip outputs v by popcnt(v) (Lines
3-6) and sort inputs v by

∑
u∈O |popcnt1v(u) −popcnt0v(u)|

(Lines 7-8). Because these two values are invariant regardless
of the negation and permutation of inputs and outputs. After
fixing the negation of outputs and permutation of inputs, we
could flip inputs v following Lemma 3 (Lines 9-12). Note that
we could not flip inputs first because flip outputs will influence
the value of

∑
u∈O popcnt1v(u)− popcnt0v(u). Finally, we

could sort the outputs by their truth value and get the semi-
canonicalization of window (Lines 13-15). The key list is the
sorted truth value of all outputs.

However, there exist some cases that NPNP-equivalent
windows have different semi-canonical forms. For example,
in Fig. 2, fanout-free window (a) and (c) are both semi-
canonicalized. They are NPNP equivalent but they have dif-
ferent semi-canonical forms. Table I displays the truth tables
of the vertices in Fig. 2 with a given input order I0, I1, I2, I3.
Window (a) and (c) have complementary output vertices pairs
(v12, v17) and (v13, v15). All of the above vertices happen to
have popcnt(v) = 8, so none of the output vertices will be
flipped by the semi-canonicalization process. So even with the
same permutation and negation of the inputs, windows (a) and
(c) are divided into different classes due to the unequal key
list. In fact, for 4-input fanout-free windows, there exist

(
16
8

)
=

12, 870 of 216 = 65, 536 vertices with popcnt(v) = 8. For
these cases, our semi-canonicalization is difficult to break them
into equivalence classes exactly. So, we propose a new key list
in Algorithm 3. For the outputs whose truth value larger than
its complement, we store the complement instead of the truth
value. It could identify the equivalence class for vertices with
popcnt(v) = 8 easily. In the example, the new key list of
window (a) is {Truth(13),Truth(9),Truth(12)} and the new
key list of window (c) is {Truth(15),Truth(9),Truth(17)},
which are equivalent. Note that the new key list is only used
to verify and classify FFW in the database, and it would not
change the semi-canonicalization.

B. Implementation Details in Framework

In this section, we introduce several implementation details
in our rewriting framework (Algorithm 1).

MFFW Construction (Line 4). We construct the k-input
MFFW based on the leaves of cut. Given a set of k input
vertices I , we first add them to the window. After that, for
each vertex v ∈ V , we traverse all its fanouts u ∈ FO(v) and
check fanins of u. If both of its fanins are in the window, we
add u to the window. After traversing fanouts of all vertices
in the window iteratively, we connect the edges and construct
the MFFW of the given input vertices I .

Fanout-Free Window Compression (Line 5). In our semi-
canonicalization, all output vertices should be functionally dif-
ferent, in which, for any two vertices u and v, fu(x) ̸= fv(x)
and fu(x) ̸= fv(x). So, in our framework, we compress
the fanout-free window by functional reduction before semi-
canonicalization. Similar to FRAIG [15], we simulate the
fanout-free windows and merge the functionally equivalent
vertices following the topological order. After the compres-
sion, all vertices in the fanout-free window are functionally
different.
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TABLE II: Number of windows in benchmarks and database.

# Windows Benchmark After Semi-canon. Compression
3-input 397,722 817 99.79%
4-input 931,072 7,948 99.15%
5-input 2,286,595 43,327 98.11%

Fanout-Free Window Replacement (Line 8). Similar to the
cut replacement, our replacing algorithm adds the best window
to circuit and removes useless vertices. First, it matches the
negation and permutation of their inputs and outputs by the
NPNP transformation. The transformation is recorded during
semi-canonicalization. Then, it adds the replacement window
to the network and connects its inputs and outputs. Finally,
the dangling vertices in the replaced window are removed.

Fanout-Free Window Optimization (Line 10). In our rewrit-
ing framework, a fanout-free window is still an AIG, so logic
synthesis and resynthesis methods are applicable to optimize
our FFW database. Exact synthesis [8], [9] could find the
optimal multi-outputs window by SAT-solver, while it takes
exponential time complexity and low-efficient in lots of cases.
So, similar to [5], we could limit the time of SAT-solver in
our framework. Heuristic resubstitution [6] re-expresses vertex
function using other existed vertices with cost-free inver-
sions. Multi-outputs resubstitution is more efficient than exact
synthesis. The traditional AIG resynthesis methods rewrite
and refactor are also applicable to optimize our database.
In the experiments, we use resyn2 [16] to optimize fanout-
free windows, which is a combinational synthesis of rewrite,
refactor, and balance.

V. EXPERIMENTS

We implement our method in C++ using ABC library [16]
and EPFL logic synthesis benchmark [17]. The correctness of
all results has been verified using combinational equivalence
checking (CEC) implemented in ABC [16].

EXP1: Quality Evaluation of Semi-Canonicalization. Ta-
ble II shows the number of fanout-free windows in benchmark
and our database. Benchmark column counts the number of
windows iterated through in all EPFL benchmarks, and the
second column counts the number of unique semi-canonical
windows in our database. Compression is the reduction rate
of original windows after semi-canonicalization. With the
compression rate of total windows to be 99.79% / 99.15%
/ 98.11% for 3 / 4 / 5-input, the results indicate lots of
windows are NPNP-equivalent in real-world datasets. It proves
our semi-canonicalization algorithm is effective to compress
the database. Even for 5-input windows, less than 50 thousands
windows are contained in the database, which takes only 20
MB of memory.

EXP2: Quality Evaluation of FFW Database. In this exper-
iment, we analyze the performance of MFFW rewriting with
different caching strategies and demonstrate the importance of
the FFW database. In our implementation of all methods, we
only use resyn2 [16] to optimize the fanout-free windows in
database. We compare three different implementations of our

TABLE III: Comparison of combinational logic synthesis.

Methods Average Improv. Total Time
resyn2; 13.15% 59.00

resyn2; MFFW -4; 16.01% 68.08
MFFW -4; resyn2; 16.69% 64.17

resyn2*; 17.41% 95.72
resyn2+; 18.09% 107.91

framework, the first method (MFFW without DB) only opti-
mizes each window by resyn2 without database. The second
implementation (MFFW with cache) uses an empty database
and builds it runtime. The last method (MFFW with DB) uses
a pre-computed database constructed from the benchmarks.
The last three columns of Table IV show the performance of
three implementations. For effectiveness, all methods have the
similar performance because we use the same framework and
fanout-free window optimization. The pre-computed database
performs best in efficiency and both cached and pre-computed
database could reduce the running time greatly up to 100X. It
shows the efficiency of our database.

EXP3: Comparison with the state-of-the-art Rewriting. In
this section, we compare our approach with state-of-the-art
methods respectively for AIG rewriting. Cut rewriting [2] is a
traditional AIG rewriting method. It enumerates all cuts and
selects the best replacement in the pre-computed database.
Drw rewriting is the latest and best version of cut rewriting
in ABC. So, we only report Drw in our experiments. Window
rewriting [6] is a heuristic windows method without database.
It extends cut into multiple-output windows and only replace
the reconvergence driven windows. For fairness, we set the
input size k = 4 of all cuts, and windows.

Table IV shows the efficiency and effectiveness of all
methods. Size is the number of nodes in the AIG and time
is measured in seconds. The average size improvement of
Drw and Window are 8.83% and 9.13% while our method
can reach 13.50% with pre-computed database. Our MFFW
rewriting framework improves nearly 50% of reduction size on
average. On the circuit Priority, our MFFW rewriting performs
especially well with the optimization rate up to 48.98%, much
better than 12.88% of Drw rewriting and 19.43% of Window
rewriting. The cache based method also has a competitive
performance. It can be applied in applications where a pre-
computed database is not allowed.

For efficiency evaluation, our MFFW rewriting performs
the worst, while the time still remains on the same order of
magnitude as state-of-the-art approaches. Window rewriting
performs best because it only enumerates the reconvergence
driven windows instead of all windows. This technique could
also be applied in our framework to improve the efficiency.

EXP4: Comparison of Combinational Logic Synthesis.
In this experiment, we evaluate the quality of our MFFW
rewriting in combinational logic synthesis. Resyn2 is a com-
binational logic synthesis in ABC. Resyn2∗ method inserts
three MFFW in the resyn2 sequence and resyn2+ inserts four
MFFW. Table III shows the result. After inserting one and
four MFFW, it increases 3% and 5% improvement, which
indicates that our proposed method is also effective in the
sequence optimization.
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TABLE IV: Comparison of different 4-input rewriting methods.

Benchmark
State-of-the-art Methods Our MFFW Rewriting Methods

Drw Rewriting [2] Window Rewriting [6] MFFW without DB MFFW with Cache MFFW with DB
Name Size Time Size Improv. Time Size Improv. Time Size Improv. Time Size Improv. Time Size Improv.
Adder 1,020 0.01 1,020 0.00% 0.00 892 12.55% 1.03 893 12.45% 0.02 892 12.55% 0.03 892 12.55%

Bar 3,336 0.02 3,141 5.85% 0.01 3,141 5.85% 6.21 3,141 5.85% 0.11 3,141 5.85% 0.07 3,141 5.85%
Div 57,247 0.69 41,197 28.04% 0.14 41,267 27.91% 155.24 40,860 28.63% 1.66 40,793 28.74% 1.15 40,432 29.37%
Hyp 214,335 2.29 213,149 0.55% 0.61 210,402 1.83% 536.77 206,846 3.49% 4.9 206,801 3.52% 4.13 206,794 3.52%
Log2 32,060 0.33 29,761 7.17% 0.12 30,294 5.51% 86.59 29,520 7.92% 1.15 29,518 7.93% 0.78 29,494 8.00%
Max 2,865 0.02 2,862 0.10% 0.00 2,862 0.10% 5.00 2,862 0.10% 0.09 2,862 0.10% 0.06 2,862 0.10%

Multiplier 27,062 0.25 24,754 8.53% 0.09 25,706 5.01% 59.86 24,325 10.11% 0.67 24,323 10.12% 0.66 24,279 10.28%
Sin 5,416 0.06 5,191 4.15% 0.02 5,158 4.76% 14.00 5,094 5.95% 0.92 5,094 5.95% 0.15 5,092 5.98%
Sqrt 24,618 0.79 18,481 24.93% 0.10 18,719 23.96% 51.63 18,369 25.38% 0.76 18,369 25.38% 0.51 18,369 25.38%

Square 18,484 0.16 17,758 3.93% 0.06 17,502 5.31% 39.59 17,082 7.58% 0.68 17,081 7.59% 0.38 17,081 7.59%
Arbiter 11,839 0.09 11,839 0.00% 0.01 11,839 0.00% 36.53 11,839 0.00% 0.21 11,839 0.00% 0.21 11,839 0.00%
Cavlc 693 0.00 684 1.30% 0.00 693 0.00% 1.20 672 3.03% 0.49 672 3.03% 0.04 672 3.03%
Ctrl 174 0.00 122 29.89% 0.00 116 33.33% 0.15 97 44.25% 0.10 97 44.25% 0.03 97 44.25%
Dec 304 0.00 304 0.00% 0.00 304 0.00% 0.00 304 0.00% 0.03 304 0.00% 0.03 304 0.00%
I2c 1,342 0.01 1,280 4.62% 0.00 1,340 0.15% 1.94 1,281 4.55% 0.32 1,280 4.62% 0.04 1,280 4.62%

Int2float 260 0.00 222 14.62% 0.00 258 0.77% 0.43 217 16.54% 0.15 217 16.54% 0.03 217 16.54%
Mem ctrl 46,836 0.34 46,291 1.16% 0.10 46,417 0.89% 76.37 46,156 1.45% 5.71 46,138 1.49% 0.58 46,137 1.49%
Priority 978 0.01 852 12.88% 0.00 788 19.43% 2.14 499 48.98% 0.06 499 48.98% 0.05 499 48.98%
Router 257 0.00 246 4.28% 0.00 244 5.06% 0.67 244 5.06% 0.07 244 5.06% 0.03 244 5.06%
Voter 13,758 0.14 10,384 24.52% 0.05 9,593 30.27% 25.25 8,749 36.41% 0.94 8,611 37.41% 0.27 8,611 37.41%

Average Improv. 8.83% 9.13% 13.38% 13.45% 13.50%

VI. CONCLUSION AND FUTURE WORK

In this work, we study the area-oriented logic optimiza-
tion of And-Inverter Graphs. To improve the traditional cut
rewriting, we propose a new multi-output structure MFFW.
The general idea is to traverse MFFW and optimize them by
exact synthesis or heuristic methods. To improve the efficiency
and effectiveness, we propose a database dependent framework
that stores the optimal sub-structures. We also propose the
semi-canonicalization to reduce the size of database. Extensive
experiments validate the quality of our proposed methods.

This paper also opens up some interesting questions. One
challenging direction is how to trade-off the level and area
optimization. In our framework, we only store the optimal win-
dows with minimal size, while the replacement may increase
circuit level. Combinational strategy of optimizing windows is
another direction. Exact synthesis is more effective while less
efficient, so it is worth developing a combinational strategy of
exact synthesis and heuristic methods.
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