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Abstract In recent years, many information networks have become available for
analysis, including social networks, road networks, sensor networks, biological net-
works, etc. Graph clustering has shown its effectiveness in analyzing and visualizing
large networks. The goal of graph clustering is to partition vertices in a large graph into
clusters based on various criteria such as vertex connectivity or neighborhood similar-
ity. Many existing graph clustering methods mainly focus on the topological structures,
but largely ignore the vertex properties which are often heterogeneous. Recently, a new
graph clustering algorithm, SA-Cluster, has been proposed which combines structural
and attribute similarities through a unified distance measure. SA-Cluster performs
matrix multiplication to calculate the random walk distances between graph vertices.
As part of the clustering refinement, the graph edge weights are iteratively adjusted
to balance the relative importance between structural and attribute similarities. As a
consequence, matrix multiplication is repeated in each iteration of the clustering pro-
cess to recalculate the random walk distances which are affected by the edge weight
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update. In order to improve the efficiency and scalability of SA-Cluster, in this paper,
we propose an efficient algorithm Inc-Cluster to incrementally update the random
walk distances given the edge weight increments. Complexity analysis is provided
to estimate how much runtime cost Inc-Cluster can save. We further design paral-
lel matrix computation techniques on a multicore architecture. Experimental results
demonstrate that Inc-Cluster achieves significant speedup over SA-Cluster on large
graphs, while achieving exactly the same clustering quality in terms of intra-cluster
structural cohesiveness and attribute value homogeneity.

Keywords Graph clustering · Incremental computation · Parallel computing

1 Introduction

Graphs are popularly used to model structural relationship between objects in many
application domains such as the Web, social networks, sensor networks, biological net-
works and communication networks, etc. Graph clustering has received a lot of atten-
tion recently with many proposed clustering algorithms (Shi and Malik 2000, Newman
and Girvan 2004, Xu et al. 2007, Satuluri and Parthasarathy 2009, Zhou et al. 2009).
Clustering on a large graph aims to partition the graph into several densely connected
components. Typical applications of graph clustering include community detection
in social networks, identification of functional modules in large protein-protein inter-
action networks, etc. Many existing graph clustering methods mainly focus on the
topological structure of a graph so that each partition achieves a cohesive internal
structure. Such methods include clustering based on normalized cuts (Shi and Malik
2000), modularity (Newman and Girvan 2004), structural density (Xu et al. 2007)
or flows (Satuluri and Parthasarathy 2009). On the other hand, a recent graph sum-
marization method (Tian et al. 2008) aims to partition a graph according to attribute
similarity, so that nodes with the same attribute values are grouped into one partition.

In many real applications, both the graph topological structure and the vertex prop-
erties are important. For example, in a social network, vertex properties describe roles
of a person while the topological structure represents relationships among a group of
people. The graph clustering and summarization approaches mentioned above con-
sider only one aspect of the graph properties but ignore the other. As a result, the
clusters thus generated would either have a rather random distribution of vertex prop-
erties within clusters, or have a rather loose intra-cluster structure. An ideal graph
clustering should generate clusters which have a cohesive intra-cluster structure with
homogeneous vertex properties, by balancing the structural and attribute similarities.

Figure 1 shows an example of a coauthor graph where a vertex represents an author
and an edge represents the coauthor relationship between two authors. In addition, there
are an author ID, research topic and age associated with each author. The research topic
and age are considered as attributes to describe the vertex properties. As we can see,
authors r1–r7 work on XML, authors r9–r11 work on skyline and r8 works on both. In
addition, each author has a range value to describe his/her age. The problem studied in
this paper is to cluster a graph associated with attributes (called an attributed graph),
such as the example in Fig. 1, based on both structural and attribute similarities. The
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Fig. 1 A Coauthor network with two attributes “Topic” and “Age”

goal is to partition the graph into k clusters with cohesive intra-cluster structures and
homogeneous attribute values. The problem is quite challenging because structural
and attribute similarities are two seemingly independent, or even conflicting goals—
in our example, authors who collaborate with each other may have different values
on research topics and age; while authors who work on the same topics or who are
in a similar age may come from different groups with no collaborations. It is not
straightforward to balance these two objectives.

In a recent work, Zhou et al. have proposed SA-Cluster (2009), a graph clustering
algorithm by combining structural and attribute similarities. A set of attribute vertices
and attribute edges are added to the original graph. With such graph augmentation,
the attribute similarity is transformed to vertex proximity in the graph—two vertices
which share an attribute value are connected by a common attribute vertex. A neigh-
borhood random walk model, which measures the vertex closeness on the augmented
graph through both structure edges and attribute edges, unifies the two similarities.
Then SA-Cluster uses the random walk distance as the vertex similarity measure and
performs clustering by following the K-Medoids framework. As different attributes
may have different degrees of importance, a weight ωi , which is initialized to 1.0,
is assigned to the attribute edges corresponding to attribute ai . The attribute edge
weights {ω1, . . . , ωm} are updated in each iteration of the clustering process, to reflect
the importance of different attributes. In the above example, after the first iteration,
the weight of research topic will be increased to a larger value while the weight of age
will be decreased, as research topic has better clustering tendency than age. Accord-
ingly, the transition probabilities on the graph are affected with the attribute weight
adjustments. Thus the random walk distance matrix needs to be recalculated in each
iteration of the clustering process. Since the random walk distance calculation involves
matrix multiplication, which has a time complexity of O(n3), the repeated random
walk distance calculation causes a non-trivial computational cost in SA-Cluster. We
find in the experiments that the random walk distance computation takes 98% of the
total clustering time in SA-Cluster.
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With a careful study of the weight self-adjustment mechanism in Zhou et al. (2009),
we observed that the weight increments only affect the attribute edges in the aug-
mented graph, while the structure edges are not affected. Motivated by this, in this
paper, we aim to improve the efficiency and scalability of SA-Cluster with a proposed
efficient incremental computation algorithm Inc-Cluster to update the random walk
distance matrix. A preliminary study on this problem appeared in Zhou et al. (2010).
The core idea is to compute the full random walk distance matrix only once at the
beginning of the clustering process. Then in each following iteration of clustering,
given the attribute weight increments {Δω1, . . . , Δωm}, we use Inc-Cluster to update
the original random walk distance matrix, instead of re-calculating the matrix from
scratch. This incremental computation problem is quite challenging. Existing incre-
mental approaches to compute PageRank-style scores (Desikan et al. 2005; Wu and
Raschid 2009) cannot be directly applied to solve our problem, as they partition the
graph into a changed part and an unchanged part apriori. But in our problem it is hard
to find such a clear boundary between the changed and the unchanged parts on the
graph, because the effect of edge weight adjustments is propagated widely to the whole
graph in multiple steps. The distance between any pair of vertices may be affected.
In our solution, we examine the structure edges and the attribute edges separately
to see how they would be affected by the attribute weight adjustments. Accordingly,
we partition the random walk matrix into four submatrices and incrementally update
the matrix elements which are affected by the weight adjustments. With the proposed
Inc-Cluster algorithm, we can divide the graph clustering algorithm into two phases:
an offline phase at the beginning of clustering for the full random walk distance matrix
computation which is relatively expensive, and an online phase for the fast iterative
clustering process with the incremental matrix calculation which is much cheaper. The
main contributions of this paper are summarized below.

1. We study the problem of incremental computation of the random walk distance
matrix in the context of graph clustering with structural and attribute similarities.
We propose an efficient algorithm Inc-Cluster to incrementally update the random
walk distance matrix given the attribute weight increments. By analyzing how the
transition probabilities are affected by the weight increments, the random walk
distance matrix is divided into submatrices for incremental update. We also design
parallel matrix computation techniques on a multicore architecture for further
speed improvement. Importantly, the incremental approach is also applicable to
fast random walk computation in continuously evolving graphs with vertex/edge
insertions and deletions.

2. Complexity analysis is provided to quantitatively estimate the upper bound and
the lower bound of the number of elements in the random walk distance matrix
that remain unchanged. The upper bound and lower bound correspond to the best
case and the worst case of the incremental approach respectively. An analysis on
the storage cost of the incremental algorithm is also provided, which shows that
Inc-Cluster requires a small amount of extra space compared with SA-Cluster.

3. We perform extensive evaluation of the incremental approach on real large graphs,
demonstrating that our method Inc-Cluster is able to achieve significant speedup
over SA-Cluster, and the parallel version of Inc-Cluster can further reduce the
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runtime by 52–62% over the non-parallel version. At the same time, Inc-Cluster
achieves exactly the same clustering quality in terms of intra-cluster structural
cohesiveness and attribute value homogeneity.

The rest of the paper is organized as follows. We review related work on graph
clustering and graph mining in Sect. 2. Section 3 introduces preliminary concepts and
analyzes the runtime cost of SA-Cluster. Section 4 presents our proposed incremental
algorithm Inc-Cluster. Time complexity analysis is provided in Sect. 5, followed by a
discussion on the storage cost of Inc-Cluster in Sect. 6. Section 7 presents extensive
experimental results. Finally, Sect. 8 concludes the paper.

2 Related work

Many graph clustering techniques have been proposed which mainly focused on the
topological structures based on various criteria including normalized cuts (Shi and
Malik 2000), modularity (Newman and Girvan 2004), structural density (Xu et al.
2007) or stochastic flows (Satuluri and Parthasarathy 2009). The clustering results
contain densely connected components within clusters. However, such methods usu-
ally ignore vertex attributes in the clustering process. On the other hand, Tian et al.
(2008) proposed OLAP-style aggregation approaches to summarize large graphs by
grouping nodes based on user-selected attributes. This method achieves homogeneous
attribute values within clusters, but ignores the intra-cluster topological structures.
Recently, Zhou et al. have proposed a graph clustering algorithm, SA-Cluster (2009),
based on both structural and attribute similarities. Experimental results have shown
that SA-Cluster achieves a good balance between structural cohesiveness and attri-
bute homogeneity. Long et al. (2006) proposed a collective factorization model for
multi-type relational data clustering. In their model, multiple types of objects and their
interrelations are considered, in addition to the object features. A spectral relational
clustering is proposed to cluster multi-type interrelated data objects simultaneously.
The main differences between Inc-Cluster (and SA-Cluster) and the spectral clustering
algorithm (Long et al. 2006) include: (1) Inc-Cluster (and SA-Cluster) considers one
type of objects and their connections, while (Long et al. 2006) considers the interrela-
tions between different types of objects; and (2) when combining the connections and
feature similarities, Long et al. (2006) has to provide a set of weights ω

(i j)
a and ω

(i)
b

for different types of objects, while Inc-Cluster (and SA-Cluster) designs a weight
self-adjusting mechanism to automatically adjust the attribute weights.

Other recent studies on graph clustering include the following. Sun et al. (2007)
proposed GraphScope which is able to discover communities in large and dynamic
graphs, as well as to detect the changing time of communities. Wang et al. (2011)
used nonnegative matrix factorization to find the communities in networks because
of its powerful interpretability and close relationship between clustering methods.
Sun et al. (2009) proposed an algorithm, RankClus, which integrates clustering with
ranking in large-scale information network analysis. The final results contain a set of
clusters with a ranking of objects within each cluster. Navlakha et al. (2008) proposed
a graph summarization method using the MDL principle. Cai et al. (2005) proposed
an algorithm for mining communities on heterogeneous social networks. Tsai and
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Chiu (2008) developed a feature weight self-adjustment mechanism for K-Means
clustering on relational datasets. In that study, finding feature weights is modeled as
an optimization problem to minimize the separations within clusters and maximize the
separations between clusters. The adjustment margin of a feature weight is estimated
by the importance of the feature in clustering.

The concept of random walk has been widely used to measure vertex distances.
Jeh and Widom (2002) designed a measure called SimRank, which defines the sim-
ilarity between two vertices in a graph by their neighborhood similarity. Pons and
Latapy (2006) proposed to use short random walks of length l to measure the similar-
ity between two vertices in a graph for community detection. Tong et al. (2006; 2008)
proposed an algorithm for fast random walk computation, by partitioning a graph into
k clusters apriori and then decomposing the transition probability matrix into a within-
partition one and a cross-partition one. There are also some studies for incremental
computation of PageRank scores. Desikan et al. (2005) proposed an incremental algo-
rithm to compute PageRank for the evolving Web graph by partitioning the graph into
a changed part and an unchanged part. Wu and Raschid (2009) computes the local
PageRank scores on a subgraph by assuming that the scores of external pages are
known.

3 Preliminary concepts

In this section, we first introduce the problem formulation of graph clustering consid-
ering both structural and attribute similarities. We then give a brief review of an earlier
algorithm SA-Cluster by Zhou et al. (2009) and analyze the computational cost. Our
proposed approach to handle the computational bottleneck is outlined.

3.1 Attribute augmented graph

Definition 1 (Attributed graph) An attributed graph is denoted as G = (V, E,Λ),
where V is the set of vertices, E is the set of edges, and Λ = {a1, . . . , am} is the set
of attributes associated with vertices in V for describing vertex properties. A vertex
v ∈ V is associated with an attribute vector [a1(v), . . . , am(v)] where a j (v) is the
attribute value of vertex v on attribute a j .

Attributed graph clustering is to partition an attributed graph G into k disjoint sub-
graphs {Gi = (Vi , Ei ,Λ)}k

i=1, where V = ⋃k
i=1 Vi and Vi

⋂
Vj = ∅ for any i �= j .

A desired clustering of an attributed graph should achieve a good balance between
the following two objectives: (1) vertices within one cluster are close to each other
in terms of structure, while vertices between clusters are distant from each other; and
(2) vertices within one cluster have similar attribute values, while vertices between
clusters could have quite different attribute values.

Zhou et al. (2009) proposed an attribute augmented graph to represent attributes
explicitly as attribute vertices and edges. In this paper we follow the same represen-
tation.
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Fig. 2 Attribute augmented graph

Definition 2 (Attribute augmented graph) Given an attributed graph G = (V, E,Λ)

with a set of attributes Λ = {a1, . . . , am}. The domain of attribute ai is Dom(ai ) =
{ai1, . . . , aini } with a size of |Dom(ai )| = ni . An attribute augmented graph is denoted
as Ga = (V ∪ Va, E ∪ Ea) where Va = {vi j }m, ni

i=1, j=1 is the set of attribute vertices and
Ea ⊆ V × Va is the set of attribute edges. An attribute vertex vi j ∈ Va represents that
attribute ai takes the j th value. An attribute edge (vi , v jk) ∈ Ea iff a j (vi ) = a jk , i.e.,
vertex vi takes the value of a jk on attribute a j . Accordingly, a vertex v ∈ V is called
a structure vertex and an edge (vi , v j ) ∈ E is called a structure edge.

Figure 2 is an attribute augmented graph on the coauthor network example. Two
attribute vertices v11 and v12 representing the topics “XML” and “Skyline” are added.
Authors with corresponding topics are connected to the two vertices respectively in
dashed lines. We omit the attribute vertices and edges corresponding to the age attri-
bute, for the sake of clear presentation.

3.2 A unified random walk distance

In this paper we use the neighborhood random walk model on the attribute augmented
graph Ga to compute a unified distance between vertices in V . The random walk dis-
tance between two vertices vi , v j ∈ V is based on the paths consisting of both structure
and attribute edges. Thus it effectively combines the structural proximity and attribute
similarity of two vertices into one unified measure. The transition probability matrix
PA on Ga is defined as follows.

A structure edge (vi , v j ) ∈ E is of a different type from an attribute edge (vi , v jk) ∈
Ea . The m attributes in Λ may also have different importance. Therefore, they may
have different degree of contributions in random walk distance. Without loss of gener-
ality, we assume that a structure edge has a weight of ω0, attribute edges corresponding
to a1, a2, . . . , am have an edge weight of ω1, ω2, . . . , ωm , respectively. In the follow-
ing, we will define the transition probabilities between two structure vertices, between
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a structure vertex and an attribute vertex, and between two attribute vertices. First, the
transition probability from a structure vertex vi to another structure vertex v j through
a structure edge is

pvi ,v j =
{ ω0|N (vi )|∗ω0+ω1+···+ωm

, i f (vi , v j ) ∈ E
0, otherwise

(1)

where N (vi ) represents the set of structure vertices connected to vi .
The transition probability from a structure vertexvi to an attribute vertexv jk through

an attribute edge is

pvi ,v jk =
{ ω j

|N (vi )|∗ω0+ω1+···+ωm
, i f (vi , v jk) ∈ Ea

0, otherwise
(2)

The transition probability from an attribute vertex vik to a structure vertex v j through
an attribute edge is

pvik ,v j =
{ 1

|N (vik)| , i f (vik, v j ) ∈ Ea

0, otherwise
(3)

The transition probability between two attribute vertices vi p and v jq is 0 as there is
no edge between attribute vertices.

pvi p,v jq = 0,∀vi p, v jq ∈ Va (4)

The transition probability matrix PA is a |V ∪ Va | × |V ∪ Va | matrix, where the
first |V | rows and columns correspond to the structure vertices and the rest |Va | rows
and columns correspond to the attribute vertices. For the ease of presentation, PA is
represented as

PA =
[

PV1 A1
B1 O

]

(5)

where PV1 is a |V |×|V | matrix representing the transition probabilities defined by Eq.
1; A1 is a |V | × |Va | matrix representing the transition probabilities defined by Eq. 2;
B1 is a |Va | × |V | matrix representing the transition probabilities defined by Eq. 3;
and O is a |Va | × |Va | zero matrix.

Definition 3 (Random walk distance matrix) Let PA be the transition probability
matrix of an attribute augmented graph Ga . Given L as the length that a random walk
can go, c ∈ (0, 1) as the random walk restart probability, the unified neighborhood
random walk distance matrix RA is
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RA =
L∑

l=1

c(1 − c)l Pl
A (6)

3.3 A review of SA-Cluster

SA-Cluster adopts the K-Medoids clustering framework. After initializing the cluster
centroids and calculating the random walk distance at the beginning of the clustering
process, it repeats the following four steps until convergence.

1. Assign vertices to their closest centroids;
2. Update cluster centroids;
3. Adjust attribute edge weights {ω1, . . . , ωm};
4. Re-calculate the random walk distance matrix RA.

Different from traditional K-Medoids, SA-Cluster has two additional steps (i.e.,
steps 3-4): in each iteration, the attribute edge weights {ω1, . . . , ωm} are automatically
adjusted to reflect the clustering tendencies of different attributes. Interested readers
can refer to Zhou et al. (2009) for the proposed mechanism for weight adjustment.
According to Eq. 2, when the edge weights {ω1, . . . , ωm} change, the transition proba-
bility matrix PA changes, so does the neighborhood random walk distance matrix RA.
As a result, the random walk distance matrix has to be re-calculated in each iteration
due to the edge weight changes.

Example 1 In Fig. 2, we use ω1, ω2 to represent the attribute edge weights of research
topic and age, which are initialized to 1.0 at the beginning of clustering. Then we can
calculate the transition probability matrix PA and the random walk distance matrix
RA. Based on RA, we partition the graph vertices into two clusters where r1–r8 belong
to one cluster and r9–r11 to the other cluster. We find that in each cluster the attribute
values of research topic are much less random than those of age. Many vertices share
the same value on research topic in each cluster, which shows that research topic has
good clustering tendency. Thus, the weight of research topic ω1 is increased from 1.0
to 9/7. On the other hand, the vertices within each cluster have different values on age,
which shows a quite random distribution. Therefore, the weight of age ω2 is reduced
from 1.0 to 5/7. With the updated weights, the transition probability matrix PA and the
random walk distance matrix RA are recalculated and the clustering process repeats
until convergence.

The cost analysis of SA-Cluster can be expressed as

t · (Trandom_walk + Tcentroid_update + Tassign)

where t is the number of iterations in the clustering process, Trandom_walk is the cost of
computing the random walk distance matrix RA, Tcentroid_update is the cost of updating
cluster centroids, and Tassign is the cost of assigning all points to cluster centroids.

For Tcentroid_update and Tassign the time complexity is O(n) where n = |V |, since
each of these two operations performs a linear scan of the graph vertices. On the other

123



Clustering large attributed information networks 459

hand, the random walk distance calculation consists of matrix multiplications and
additions, according to Eq. 6. Thus the time complexity of Trandom_walk is O(L · n3

a)

where na = |V ∪ Va | is the row or column number of the transition probability matrix
PA. It is clear that Trandom_walk is the dominant factor in the clustering process. The
repeated calculation of random walk distance in each iteration can incur a non-trivial
efficiency problem for SA-Cluster. We have observed that computing the random walk
distance takes 98% of the total clustering time in SA-Cluster.

3.4 Our solution: an incremental approach

The computational bottleneck in the random walk distance computation motivates us
to seek alternative solutions with a lower cost. A natural direction to explore is “can
we avoid repeated calculation of random walk distance in the clustering process?”
The goal is to reduce the time of random walk distance calculation. We have observed
that the attribute weight adjustments only change the transition probabilities of the
attribute edges, but not those of the structure edges. This implies that many elements
in the random walk distance matrix may remain unchanged. This property sheds light
on the problem: we can design an incremental calculation approach to update the
random walk distance matrix RA iteratively. That is, given the original random walk
distance matrix RA and the weight increments {Δω1, . . . , Δωm}, efficiently calculate
the increment matrix ΔRA, and then get the updated random walk distance matrix
RN ,A = RA +ΔRA. In this process, we only calculate the non-zero elements in ΔRA,
i.e., those elements which are affected by the edge weight changes, but can ignore the
unaffected parts of the original matrix. If the number of affected matrix elements is
small, this incremental approach will be much more efficient than calculating the full
matrix RA from scratch in each iteration.

However, this incremental approach could be quite challenging, because the bound-
ary between the changed part and the unchanged part of the graph is not clear. The
attribute weight adjustments will be propagated to the whole graph in L steps. Let us
look at an example first.

Example 2 We select 1,000 authors from database, data mining, artificial intelligence
and information retrieval with 3,782 edges for their collaborations. Each author has
two attributes: “prolific” and “research topic”. The first attribute “prolific” contains
two values of “highly prolific” and “low prolific”, and the second one “research topic”
has 100 different values. Thus the augmented graph contains 1,000 structure verti-
ces and 102 attribute vertices. The attribute edge weights for “prolific” and “research
topic” are ω1, ω2 respectively. Figure 3 shows three matrices ΔP1

A,ΔP2
A and ΔP20

A
corresponding to the increments of the 1st, 2nd, and 20th power of the transition
probability matrix, due to the attribute weight increments {Δω1,Δω2}. The blue dots
represent non-zero elements and the red dashed lines divide each matrix into subma-
trices according to the block matrix representation in Eq. 5. As shown in Fig. 3, ΔPl

A
becomes denser when l increases.

For ΔP1
A, the attribute weight increments only affect the transition probabilities

in the submatrix A1, but cause no changes in the other three submatrices. Therefore,
most elements in ΔP1

A are zero. ΔP2
A becomes denser with more non-zero elements.

123



460 H. Cheng et al.

(a) (b) (c)

Fig. 3 Matrix increment series. a ΔP1
A , b ΔP2

A , c ΔP20
A

ΔP20
A becomes even denser, which demonstrates that the effect of attribute weight

increments is propagated to the whole graph through matrix multiplication.

Existing fast random walk (Tong et al. 2006, 2008) or incremental PageRank com-
putation approaches (Desikan 2005; Wu and Raschid 2009) can not be directly applied
to our problem. Tong et al. (2006; 2008) proposed an algorithm for fast random
walk computation, which relies on partitioning the graph into k clusters apriori, to
decompose the transition probability matrix into a within-partition one and a cross-
partition one for a lower complexity. However, our graph clustering problem is much
more difficult due to the augmented attribute edges and the iterative weight adjust-
ments. The Incremental PageRank Algorithm (IPR) (Desikan et al. 2005) computes
PageRank for the evolving Web graph by partitioning the graph into a changed part
and an unchanged part. The distribution of PageRank values in the unchanged part
will not be affected. Two recent algorithms IdealRank and ApproxRank in Wu and
Raschid (2009) compute the PageRank scores in a subgraph, which is a small part of
a global graph, by assuming that the scores of external pages, i.e., unchanged pages,
are known. Our incremental computation problem is much more challenging than the
above problems. As we can see from Fig. 3, although the edge weight increments
{Δω1, . . . , Δωm} affect a very small portion of the transition probability matrix PA,
(i.e., see ΔP1

A), the changes are propagated widely to the whole graph through matrix
multiplication (i.e., see ΔP2

A and ΔP20
A ). It is difficult to partition the graph into a

changed part and an unchanged part and focus the computation on the changed part
only.

4 The incremental algorithm

In this section, we will describe the incremental algorithm. According to Eq. 6, RA is
the weighted sum of a series of matrices Pl

A, where Pl
A is the l-th power of the tran-

sition probability matrix PA, l = 1, . . . , L . Hence the problem of computing ΔRA

can be decomposed into the subproblems of computing ΔPl
A for different l values.

Therefore, our target is, given the original matrix Pl
A and the edge weight increments

{Δω1, . . . , Δωm}, compute the increment ΔPl
A.
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4.1 Calculate 1st power matrix increment ΔP1
A

According to Eq. 5, the transition probability matrix PA can be expressed as four
submatrices PV1 , A1, B1 and O . Based on the transition probabilities defined in Eqs.
1–4 and the properties

∑m
i=1 ωi = m and ω0 is fixed, it is not hard to verify that the

attribute weight increments only affect the transition probabilities in the submatrix
A1, but cause no changes in the other three submatrices. Therefore, the increment of
the transition probability matrix ΔP1

A is denoted as

ΔP1
A =

[
O ΔA1
O O

]

Consider a probability p(vi , v jk) = ω j
|N (vi )|∗ω0+ω1+···+ωm

as defined in Eq. 2. Given a
new weight ω′

j = ω j + Δω j , the probability increment is

Δp(vi , v jk) = ω′
j

|N (vi )| ∗ ω0 + ω′
1 + · · · + ω′

m
− ω j

|N (vi )| ∗ ω0 + ω1 + · · · + ωm

= Δω j

|N (vi )| ∗ ω0 + ω1 + · · · + ωm

= Δω j · p(vi , v jk) (7)

Equation 7 holds because ω j = 1.0 and
∑m

i=1 ωi = ∑m
i=1 ω′

i = m. Thus we denote
A1 = [Aa1, Aa2 , . . . , Aam ] where Aai is a |V | × ni matrix representing the transition
probabilities from structure vertices in V to attribute vertices corresponding to attri-
bute ai . The column number ni corresponds to the ni possible values in Dom(ai ). An
element Aai (p, q) represents the transition probability from the p-th vertex vp ∈ V
to the q-th value aiq of ai . Then according to Eq. 7 ΔA1 is equal to

ΔA1 = [Δω1 · Aa1 ,Δω2 · Aa2 , . . . , Δωm · Aam ] (8)

where Δωi · Aai is scalar multiplication, i.e., multiplying every element in Aai with
Δωi according to Eq. 7. Then the new transition probability matrix PN ,A after the
edge weights change is represented as

PN ,A =
[

PV1 A1 + ΔA1
B1 O

]

=
[

PV1 AN ,1
B1 O

]

4.2 Calculate l-th power matrix increment ΔPl
A

Similar to the computation of ΔP1
A, we can calculate ΔPl

A (l ≥ 2), with a more com-
plicated computation. The original l-th power matrix Pl

A = Pl−1
A × PA is represented

as
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Pl
A =

[
PVl−1 Al−1
Bl−1 Cl−1

]

×
[

PV1 A1
B1 O

]

=
[

PVl−1 PV1 + Al−1 B1 PVl−1 A1
Bl−1 PV1 + Cl−1 B1 Bl−1 A1

]

Similarly, the new matrix Pl
N ,A = Pl−1

N ,A × PN ,A given the weight increments
{Δω1, . . . , Δωm} is

Pl
N ,A =

[
PN ,Vl−1 AN ,l−1
BN ,l−1 CN ,l−1

]

×
[

PV1 AN ,1
B1 O

]

=
[

PN ,Vl−1 PV1 + AN ,l−1 B1 PN ,Vl−1 AN ,1
BN ,l−1 PV1 + CN ,l−1 B1 BN ,l−1 AN ,1

]

Then the l-th power transition probability matrix increment ΔPl
A is denoted as

ΔPl
A =

[
ΔPVl ΔAl

ΔBl ΔCl

]

Based on the original matrix Pl
A and the new matrix Pl

N ,A, the increment ΔPVl is

ΔPVl = (PN ,Vl−1 PV1 + AN ,l−1 B1) − (PVl−1 PV1 + Al−1 B1)

= (PVl−1 + ΔPVl−1)PV1 + (Al−1 + ΔAl−1)B1 − (PVl−1 PV1 + Al−1 B1)

= ΔPVl−1 PV1 + ΔAl−1 B1

The increment ΔBl is

ΔBl = (BN ,l−1 PV1 + CN ,l−1 B1) − (Bl−1 PV1 + Cl−1 B1)

= (Bl−1 + ΔBl−1)PV1 + (Cl−1 + ΔCl−1)B1 − (Bl−1 PV1 + Cl−1 B1)

= ΔBl−1 PV1 + ΔCl−1 B1

The increment ΔAl is

ΔAl = PN ,Vl−1 AN ,1 − PVl−1 A1

= (PVl−1 + ΔPVl−1)(A1 + ΔA1) − PVl−1 A1

= PVl−1ΔA1 + ΔPVl−1 AN ,1 (9)

In Eq. 9, there is one component PVl−1ΔA1. As shown in Eq. 8, ΔA1 = [Δω1 ·
Aa1, . . . , Δωm · Aam ], we then have

PVl−1ΔA1 = PVl−1 [Δω1 · Aa1 , . . . , Δωm · Aam ]
= [Δω1 · PVl−1 Aa1 , . . . , Δωm · PVl−1 Aam ]
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Note that the submatrix Al in Pl
A is computed by the following submatrix

multiplication:

Al = PVl−1 A1 + Al−1 O = PVl−1 A1

If we rewrite Al as a series of |V | × ni submatrices as Al = [Al,a1 , Al,a2 , . . . , Al,am ],
then Al,ai = PVl−1 Aai . As a result, PVl−1ΔA1 can be expressed as

PVl−1ΔA1 = [Δω1 · PVl−1 Aa1 , . . . , Δωm · PVl−1 Aam ]
= [Δω1 · Al,a1 , . . . , Δωm · Al,am ]

Therefore, to compute PVl−1ΔA1 in Eq. 9, we only need to compute [Δω1 ·
Al,a1 , . . . , Δωm · Al,am ]. The advantage is that Δωi · Al,ai is scalar multiplication,
which is much cheaper than the matrix multiplication on PVl−1ΔA1. Combining the
above equations, we have

ΔAl = [Δω1 · Al,a1 , . . . , Δωm · Al,am ] + ΔPVl−1 AN ,1 (10)

where the first part represents the attribute increment (i.e., the weight increments Δωi ’s
on Al ), while the second part represents the accumulative increment from ΔPVl−1 .

Similarly, the increment ΔCl is

ΔCl = BN ,l−1 AN ,1 − Bl−1 A1

= (Bl−1 + ΔBl−1)(A1 + ΔA1) − Bl−1 A1

= Bl−1ΔA1 + ΔBl−1 AN ,1

= [Δω1 · Cl,a1, . . . , Δωm · Cl,am ] + ΔBl−1 AN ,1

where we represent Cl = [Cl,a1, Cl,a2 , . . . , Cl,am ].
In summary, the l-th power matrix increment ΔPl

A can be calculated based on:
(1) the original transition probability matrix PA and increment matrix ΔA1, (2) the
(l-1)-th power matrix increment ΔPl−1

A , and (3) the original l-th power submatrices
Al and Cl . The key is that, if ΔA1 and ΔPl−1

A contain many zero elements, we can
apply sparse matrix representation to speed up the matrix multiplication.

4.3 The incremental algorithm

Algorithm 1 presents the incremental algorithm for calculating the new random
walk distance matrix RN ,A given the original RA and the weight increments
{Δω1, . . . , Δωm}. The algorithm iteratively computes the increments ΔPl

A for l =
1, . . . , L , and accumulates them into the increment matrix ΔRA according to Eq. 6.
Finally the new random walk distance matrix RN ,A = RA + ΔRA is returned.

The total runtime cost of the clustering process with Inc-Cluster can be expressed
as

Trandom_walk + (t − 1) · Tinc + t · (Tcentroid_update + Tassign) (11)
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Algorithm 1 The Incremental Algorithm Inc-Cluster
Input: The original matrices RA, PA, Al , Cl , l = 2, . . . , L

the attribute edge weight increments {Δω1, . . . , Δωm }
Output: The new random walk distance matrix RN ,A

1: Calculate ΔP1
A according to Eq. 8;

2: ΔRA = c(1 − c)ΔP1
A;

3: for l = 2, . . . , L
4: ΔPVl = ΔPVl−1 PV1 + ΔAl−1 B1;
5: ΔBl = ΔBl−1 PV1 + ΔCl−1 B1;
6: ΔAl = [Δω1 · Al,a1 , . . . , Δωm · Al,am ] + ΔPVl−1 AN ,1;
7: ΔCl = [Δω1 · Cl,a1 , . . . , Δωm · Cl,am ] + ΔBl−1 AN ,1;
8: ΔRA+ = c(1 − c)lΔPl

A;
9: end for
10: return RN ,A = RA + ΔRA;

where Tinc is the time for incremental computation and Trandom_walk is the time for
computing the random walk distance matrix at the beginning of clustering. The speedup
ratio r between SA-Cluster and Inc-Cluster is

r = t (Trandom_walk + Tcentroid_update + Tassign)

Trandom_walk + (t − 1)Tinc + t (Tcentroid_update + Tassign)

Since Tinc, Tcentroid_update, Tassign � Trandom_walk , the speedup ratio is approxi-
mately

r ≈ t · Trandom_walk

Trandom_walk
= t

Therefore, Inc-Cluster can improve the runtime cost of SA-Cluster by approximately
t times, where t is the number of iterations in clustering.

In the following, we further analyze the overall time complexity of Inc-Cluster.
According to Algorithm 1, the dominant factor in the incremental computation is
ΔPVl−1 PV1 , the multiplication of two n × n matrices, where n = |V |. The other
matrix multiplications are much cheaper, when we assume |Va | � |V |. As ΔPVl−1

is a sparse matrix, the matrix multiplication ΔPVl−1 PV1 takes O(mn) time where m
is the number of nonzero elements in ΔPVl−1 . Therefore, the time complexity of Tinc

is O(Lmn). In contrast, according to Sect. 3, the time complexity of Trandom_walk

is O(L · n3
a) where na = |V ∪ Va | is the row or column number of PA. There-

fore, according to Eq. 11, the overall time complexity of Inc-Cluster is O(Ln3
a +

(t − 1)Lmn), which is much more efficient than the complexity of SA-Cluster as
O(t Ln3

a).
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4.4 Parallel matrix computation

The Inc-Cluster algorithm can achieve further speedup with the parallel matrix compu-
tation techniques on a multicore architecture. In Algorithm 1, we divide the increment
matrix ΔPl

A into four submatrices ΔPVl ,ΔAl ,ΔBl and ΔCl . The computation of the
four submatrices can be assigned to different cores in parallel. Among the four subma-
trices, we observed that the major cost is from the computation of ΔPVl , as its size is
|V |×|V |, which is much larger than the sizes of the other three. Therefore, we want to
recursively partition this matrix for parallel multiplication. In the literature, there are
mainly two proposed fast matrix block multiplication algorithms: a group-theoretic
based approach by Cohn et al. (2005) and the Strassen algorithm by Strassen (1969).
In particular, the Strassen algorithm partitions matrices into equal-sized four block
matrices and performs block multiplications by reducing the number of multiplica-
tions to 7. In our current implementation, we follow the Strassen idea and recursively
partition the matrix into blocks for parallel computation.

5 Complexity analysis

In this section, we will perform some complexity analysis to estimate the number of
zero elements in ΔPl

A, as an indication to show how much cost Inc-Cluster can save.
Intuitively, the more zero elements in the matrix increment ΔPl

A, the less cost the
incremental algorithm has. It is hard to give a closed form analytical result for a gen-
eral l ∈ {1, . . . , L}, because we need to consider all possible length-l paths between
any two vertices. So we focus on the analysis on ΔP2

A. Given a general attributed
graph, we will provide an upper bound and a lower bound of the number of zero
elements in ΔP2

A. This quantity directly affects the computational complexity of the
incremental calculation.

Although we cannot provide the theoretical bounds for ΔPl
A (l > 2), we observe

in Fig. 3 that the number of non-zero elements increases as l increases. However, we
also observe from experiments, a large number of entries in ΔPl

A approach to zero
quickly when l increases, due to the multiplication of probabilities on the sequence
of edges. Confirmed by our testing, over 75% entries in ΔPl

A become smaller than a
very small threshold and can be treated as zero. Therefore, practically the number of
non-zero elements in ΔPl

A is very small even for large l values.
In our analysis, we use the following notations: the m attributes a1, . . . , am contain

n1, . . . , nm values respectively. The number of structure vertices is |V | = n. Note that
the following derived bounds do not make any assumption about the type of data or
the value of m.

5.1 Upper bound of the number of zero elements in ΔP2
A

Lemma 1 There are totally
∏m

i=1 ni combinations of attribute values among the m
attributes, since an attribute ai takes ni values. Assume each combination has at least
one vertex (without this assumption, we can find a special case with a trivial upper
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bound). When all vertices are evenly distributed in the
∏m

i=1 ni combinations of attri-
bute values, i.e., each combination has n∏m

i=1 ni
vertices, it gives the upper bound of

the number of zero elements in ΔP2
A.

Proof See Appendix 9.1. �
Theorem 1 The upper bound of the number of zero elements in ΔP2

A is

n2 × ∏m
i=1(ni − 1)

∏m
i=1 ni

(12)

Proof If two vertices vi , v j ∈ V have no common values on any attributes, then they
are not connected to any common attribute vertices, thus ΔP2

A(i, j) = ΔP2
A( j, i) = 0.

For one combination of the attribute values, there are
∏m

i=1(ni − 1) combina-
tions which do not share any attribute values with this combination. Since all ver-
tices are evenly distributed in the

∏m
i=1 ni combinations of attribute values, there

are n∏m
i=1 ni

vertices belonging to each combination. Therefore, for any vertex vi ,

the total number of vertices which do not share any attribute values with vi is
n×∏m

i=1(ni −1)
∏m

i=1 ni
. Accordingly, there are n×∏m

i=1(ni −1)
∏m

i=1 ni
zero elements in ΔP2

A(i, :). Since

there are totally n vertices in the graph, the total number of zero elements in
ΔP2

A is

n2 × ∏m
i=1(ni − 1)

∏m
i=1 ni

�
n2×∏m

i=1(ni −1)
∏m

i=1 ni
is in the scale of O(n2), which implies that most elements in ΔP2

A do

not change. This corresponds to the best case of the incremental computation, since
only a small number of elements in ΔP2

A need to be updated.

5.2 Lower bound of the number of zero elements in ΔP2
A

Lemma 2 Assume each attribute value combination has at least one vertex. Among
the

∏m
i=1 ni combinations of attribute values, assume for each of the first

∏m
i=1 ni − 1

combinations, there exists exactly one vertex with the attribute values corresponding
to that combination. The remaining n −(

∏m
i=1 ni −1) vertices have the same attribute

values corresponding to the last combination. This case gives the lower bound of the
number of zero elements in ΔP2

A.

Proof See Appendix 9.2. �
Theorem 2 The lower bound of the number of zero elements in ΔP2

A is

(

2n −
m∏

i=1

ni

)

×
m∏

i=1

(ni − 1) (13)
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Proof Without loss of generality, we assume that exactly one vertex belongs to each
of the first

∏m
i=1 ni − 1 combinations of the attribute values. The set of such vertices

is denoted as S. The set of the remaining vertices belonging to the last combination of
attribute values is denoted as T . Let S = S1 ∪ S2 where S1 is the set of vertices which
do not share any attribute values with vertices in T ; S2 is the set of vertices which
share one or more attribute values with vertices in T .

There are three cases to be discussed in the following to count the number of zero
elements in ΔP2

A.
Case 1 Consider two vertices u and v. If u, v do not share the value on an attribute ai ,
then v can take any of the other ni − 1 values except the value taken by u. Since verti-
ces in T and S1 do not share any attribute values on the m attributes, there are totally∏m

i=1(ni −1) combinations of attribute values that do not share with vertices in T . As
we have assumed that there is exactly one vertex for each of such combinations, the size
of S1 is |S1| = ∏m

i=1(ni −1) and the size of T is |T | = n −(
∏m

i=1 ni −1). If two verti-
ces vi , v j have no common values on any attributes, then ΔP2

A(i, j) = ΔP2
A( j, i) = 0.

Therefore, ∀vi ∈ T,∀v j ∈ S1,ΔP2
A(i, j) = 0 and ΔP2

A( j, i) = 0. The number of
such elements between T and S1 is

L B1 = 2|T | × |S1| = 2

(

n −
(

m∏

i=1

ni − 1

))

×
m∏

i=1

(ni − 1) (14)

Case 2 There exist some vertices in S which do not share any attribute values with any
vertex in S1. We denote this set as S0, S0 ⊂ S. The size of S0 is |S0| = ∏m

i=1(ni −1)−1.
So the total number of zero elements in ΔP2

A is

2|S1| × |S0| = 2
m∏

i=1

(ni − 1) ×
(

m∏

i=1

(ni − 1) − 1

)

Since S0 ∩ S1 �= ∅, the above number double counts the following case: vi , v j ∈ S1
and vi , v j do not share any attribute values. As a result, we have to deduct from the
above

∏m
i=1(ni − 1) × ∏m

i=1(ni − 2) elements. Finally the number of zero elements
in ΔP2

A in case 2 is

L B2 = 2
m∏

i=1

(ni − 1) ×
(

m∏

i=1

(ni − 1) − 1

)

−
m∏

i=1

(ni − 1) ×
m∏

i=1

(ni − 2) (15)

Case 3 There exist some vertices in S which do not share any attribute values with
those in S2. The size of S2 is |S2| = ∏m

i=1 ni − 1 −∏m
i=1(ni − 1). So the total number

of zero elements in ΔP2
A in case 3 is

(
m∏

i=1

ni − 1 −
m∏

i=1

(ni − 1)

)

×
m∏

i=1

(ni − 1)
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However, the elements between any vi ∈ S1, v j ∈ S2 have been counted in case 2. So
we should deduct the repeated counts. For a vertex vi ∈ S1, there are

∏m
i=1(ni − 1) −∏m

i=1(ni − 2) − 1 vertices in S2 which do not share any attribute values with it. Thus
the number of repeated counts is (

∏m
i=1(ni −1)−∏m

i=1(ni −2)−1)×∏m
i=1(ni −1).

Finally the number of zero elements for case 3 is

L B3 =
(

m∏

i=1

ni +
m∏

i=1

(ni − 2) − 2
m∏

i=1

(ni − 1)

)

×
m∏

i=1

(ni − 1) (16)

By adding up L B1, L B2 and L B3, we can generate the lower bound of the number of
zero elements in ΔP2

A.

L B = L B1 + L B2 + L B3 =
(

2n −
m∏

i=1

ni

)

×
m∏

i=1

(ni − 1)

�
As m and ni , i = 1, . . . , m, are usually much smaller than n, L B is in the scale of

O(n), which is �n2, the number of elements in ΔP2
A. Thus the lower bound corre-

sponds to the worst case of the incremental computation, since most elements in ΔP2
A

need to be updated.

6 Storage cost analysis

In this section, we will analyze the storage cost of the incremental algorithm
Inc-Cluster. Then we will discuss some techniques to further save space.

6.1 The storage cost

According to Algorithm 1, we need to store a series of submatrices, as listed in the
following.

– The original transition probability matrix PA. We need to use PV1 , B1,ΔA1
and AN ,1 for incremental computation. According to Eq. 8, ΔA1 = [Δω1 ·
Aa1 , . . . , Δωm · Aam ] where A1 = [Aa1, Aa2 , . . . , Aam ]. In addition AN ,1 =
A1 + ΔA1. Therefore, ΔA1 and AN ,1 can be derived from A1 with some simple
computation. In summary, it is enough to store the transition probability matrix
PA.

– The (l − 1)-th power matrix increment ΔPl−1
A . To calculate the l-th power matrix

increment ΔPl
A, we need to use ΔPVl−1 ,ΔAl−1,ΔBl−1 and ΔCl−1. Therefore,

we need to store the (l − 1)-th power matrix increment ΔPl−1
A . After ΔPl

A is
computed, we can discard ΔPl−1

A and save ΔPl
A in turn for the computation of

ΔPl+1
A in the next iteration.
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– A series of Al and Cl for l = 2, . . . , L . In Eq. 10, we have derived PVl−1ΔA1 =
[Δω1 · Al,a1 , . . . , Δωm · Al,am ]. The scalar multiplication Δωi · Al,ai is cheaper
than the matrix multiplication PVl−1ΔA1. In addition, this is more space efficient
because we only need to store Al , but not PVl−1 . The size of Al is |V | × |Va | =
n × ∑m

i=1 ni , which is much smaller than the size of PVl−1 as |V | × |V | = n2,
because usually

∑m
i=1 ni � n. For example, in our experiments, we test a DBLP

network with n = 84, 170 and
∑m

i=1 ni = 103. Similarly, to compute Bl−1ΔA1 =
[Δω1 · Cl,a1 , . . . , Δωm · Cl,am ], we only need to store Cl , but not Bl−1. The size
of Cl is |Va | × |Va | = (

∑m
i=1 ni )

2, which is much smaller than the size of Bl−1
as |Va | × |V | = ∑m

i=1 ni × n.

Total storage cost. Considering the above factors, the total space cost of Inc-Cluster
is

Ttotal = si ze(RA) + si ze(PA) + si ze(ΔPl−1
A ) + si ze(ΔPl

A)

+
L∑

l=2

si ze(Al) +
L∑

l=2

si ze(Cl)

= |V |2 + 3(|V | + |Va |)2 + (L − 1)(|V | × |Va | + |Va |2)

= n2 + 3

(

n +
m∑

i=1

ni

)2

+ (L − 1)

⎛

⎝n ·
m∑

i=1

ni +
(

m∑

i=1

ni

)2
⎞

⎠

On the other hand, the non-incremental clustering algorithm SA-Cluster has to store
four matrices in memory including PA, Pl−1

A , Pl
A and RA. So the extra space used by

Inc-Cluster compared with SA-Cluster is

Textra = (L − 1)

⎛

⎝n ·
m∑

i=1

ni +
(

m∑

i=1

ni

)2
⎞

⎠ (17)

which is linear of n. Therefore, Inc-Cluster uses a small amount of extra space com-
pared with SA-Cluster.

6.2 Sparse matrix and matrix pruning

We further use sparse matrix representation and matrix pruning to reduce the storage
cost.

We have observed that many graphs, for example, coauthor networks, are usually
very sparse. The number of edges is much smaller than the possible number of edges
in a complete graph. As a result, there are many zeros in the original transition proba-
bility matrix. Similarly, the increment matrices ΔPl

A, l = 1, . . . , L , may also contain
many zero elements. In this case, we can use the sparse matrix representation, i.e., we
store the indices and values of the non-zero elements. The computational complexity
of sparse matrix operation is proportional to the number of nonzero elements in the
matrix.
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Although the initial transition probability matrix PA and the lower order increment
matrices could be quite sparse, the higher order increment matrices ΔPl

A may not be
sparse, as shown in Fig. 3c. This is due to the propagated changes when the random
walk takes more steps. In this case, the sparse matrix representation is less useful.
However we have observed that among the non-zero elements, many have very small
values close to 0. Therefore, for the increment matrices ΔPl

A, we perform matrix prun-
ing to remove those elements whose values are no greater than a threshold δ. After the
pruning, we could use the sparse matrix representation to store the non-zero elements.

7 Experimental study

In this section, we performed extensive experiments to evaluate the performance
of Inc-Cluster on real graph data. All experiments were done in Matlab on a Dell
PowerEdge R900 server with four 2.67GHz CPUs and 128GB main memory running
Windows Server 2008.

7.1 Experimental datasets

We use the DBLP Bibliography data with 10,000 authors from four research areas
of database, data mining, information retrieval and artificial intelligence. We build a
coauthor graph where nodes represent authors and edges represent their coauthor rela-
tionships. In addition, we use two attributes: prolific and primary topic. For “prolific”,
authors with ≥20 papers are labeled as highly prolific; authors with ≥10 and <20
papers are labeled as prolific and authors with <10 papers are labeled as low prolific.
For “primary topic”, we use a topic modeling approach by Hofmann (1999) to extract
100 topics from a document collection composed of paper titles from the selected
authors. Each extracted topic consists of a probability distribution of keywords which
are most representative of the topic. Then each author will have one out of 100 topics
as his/her primary topic.

We also use a larger DBLP dataset with 84,170 authors, selected from the
following areas: database, data mining, information retrieval, machine learning, arti-
ficial intelligence, computer systems, theory, computer vision, architecture, program-
ming language, networking, simulation, natural language processing, multimedia, and
human-computer interaction. The coauthor graph and the vertex attributes are defined
similarly as in the 10,000 coauthor network.

7.2 Comparison methods and evaluation

We tested the following algorithms for the clustering quality and efficiency compari-
son.

– Inc-Cluster Our proposed algorithm which incrementally updates the random
walk distance matrix.

– SA-Cluster The non-incremental graph clustering algorithm (Zhou et al. 2009)
which considers both structural and attribute similarities.
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– S-Cluster The graph clustering algorithm which only considers topological
structure. Random walk distance is used to measure vertex closeness while attri-
bute similarity is ignored.

– W-Cluster A fictitious clustering algorithm which combines structural and attri-
bute similarities through a weighted function as α · dS(vi , v j ) + β · dA(vi , v j ),
where dS(vi , v j ) is the random walk distance, and dA(vi , v j ) is their attribute
similarity, and the weighting factors are α = β = 0.5.

– K-SNAP The K-SNAP algorithm (Tian et al. 2008) that groups vertices with the
same attribute values into one cluster.

Evaluation measures We use the measures of density and entropy to evaluate the
quality of clusters {Vi }k

i=1 generated by different methods. The definitions are as
follows.

densi ty
(
{Vi }k

i=1

)
=

k∑

i=1

|{(vp, vq)|vp, vq ∈ Vi , (vp, vq) ∈ E}|
|E |

entropy
(
{Vi }k

i=1

)
=

m∑

i=1

ωi
∑m

p=1 ωp

k∑

j=1

|Vj |
|V | entropy(ai , Vj )

where entropy(ai , Vj ) = −∑ni
n=1 pi jn log2 pi jn and pi jn is the percentage of verti-

ces in cluster j which have value ain on attribute ai . entropy({Vi }k
i=1) measures the

weighted entropy from all attributes over k clusters.
Besides the clustering quality comparison, we also compare the efficiency of these

methods.

7.3 Clustering quality comparison

Since SA-Cluster and Inc-Cluster generate the same clustering results, their quality
results are shown in the same column in Figs. 4 and 5.

(a) (b)

Fig. 4 Cluster quality on DBLP 10,000 authors. a density, b entropy
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(a) (b)

Fig. 5 Cluster quality on DBLP 84,170 authors. a density, b entropy

Figure 4a shows the density on the DBLP graph with 10,000 authors by different
methods. The density values by SA-Cluster and Inc-Cluster are around 0.51–0.60,
which are slightly lower than those of S-Cluster. The density values by W-Cluster and
K-SNAP are much lower, in the range of 0.15–0.18. This shows the clusters generated
by W-Cluster and K-SNAP have a very loose intra-cluster structure.

Figure 4b shows the entropy comparison on DBLP with 10,000 authors. S-Cluster
has the highest entropy around 2.7–3.0, because it partitions a graph without consider-
ing vertex attributes. SA-Cluster and Inc-Cluster have a low entropy around 1.1–1.2.
W-Cluster has an even lower entropy but also a very low density. This is because its
distance function combines structural and attribute similarities through a weighted
function. However, as it is not clear how to set or tune the weighting factors α and β,
it is hard to achieve an optimal result on W-Cluster. Since K-SNAP strictly enforces
the attribute homogeneity in each cluster, K-SNAP achieves an entropy of 0.

Figure 5a, b show the density and entropy on DBLP with 84,170 authors. These
two figures have a similar trend with Fig. 4a, b. SA-Cluster and Inc-Cluster achieve
similar high density values (above 0.90) with S-Cluster, but with much lower entropy.
W-Cluster and K-SNAP achieve very low entropy (the entropy by K-SNAP is 0),
but with very low density values at 0.2–0.3. The comparison on both density and
entropy demonstrates that both SA-Cluster and Inc-Cluster achieve a very good bal-
ance between the structural cohesiveness and attribute homogeneity.

7.4 Clustering efficiency comparison

In this experiment, we compare the efficiency of different clustering algorithms. Figure
6a, b show the clustering time on DBLP with 10,000 and 84,170 authors respectively.
We make the following observations on the runtime costs of different methods. First,
SA-Cluster is about 2–4.3 times slower than Inc-Cluster, as it iteratively computes the
random walk distance matrix from scratch. It takes 24 s for the random walk computa-
tion but only 4.6 s for the incremental update on the DBLP 10,000 author dataset; and
it takes 122 s for the random walk but only 18.4 seconds for the incremental update
on the DBLP 84,170 author dataset. Thus, Trandom_walk is about 5.2–6.6 times slower
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(a) (b)

Fig. 6 Clustering efficiency. a 10,000 authors, b 84,170 authors

Fig. 7 Parallel Inc-Cluster
runtime versus core number

than Tinc. Second, parallel Inc-Cluster (denoted as Par Inc-Cluster) with 8 cores can
reduce the time of Inc-Cluster by 52–62%, which demonstrates the effectiveness of
the parallel matrix multiplication. Third, the runtime of S-Cluster and W-Cluster is in
the same scale with Inc-Cluster, but the runtime of K-SNAP increases dramatically
with the cluster number k.

Figure 7 shows the effectiveness of parallel matrix computation in Inc-Cluster with
different number of cores. On both the DBLP datasets with 10,000 and 84,170 authors,
we can see that using more cores gradually decreases the runtime of Inc-Cluster. When
8 cores are used for parallel matrix multiplication, the total runtime is reduced by
52–62%, compared with the single core case.

The statistics on the number of zero elements in ΔP2
A also verify our previously

proved bounds. On DBLP 10, 000 author dataset, there are 24M zero entries in ΔP2
A,

while the theoretical upper and lower bounds are 66M and 4M, respectively. On DBLP
84, 170 author dataset, there are 4.4B zero entries, while the upper and lower bounds
are 4.7B and 33M, respectively. Note here the upper bound and lower bound refer to
the number of zero entries in the best case and the worst case. The actual number of
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zero entries depends on the attribute value distribution on the vertices and should be
within the lower and upper bounds.

8 Conclusion

In this paper, we propose an incremental algorithm Inc-Cluster to quickly compute
a random walk distance matrix, in the context of graph clustering considering both
structural and attribute similarities. To avoid recalculating the random walk distances
from scratch in each iteration due to the attribute weight changes, we divide the tran-
sition probability matrix into submatrices and incrementally update each one. Time
complexity analysis is provided to show the properties of Inc-Cluster. Experimen-
tal results show that Inc-Cluster achieves significant speedup over SA-Cluster, while
achieving the same clustering quality.

Acknowledgments The work described in this paper was supported by grants from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project no.: CUHK 419008, 411310 and
411211).

9 Appendix

9.1 Proof of Lemma 1

We will prove Lemma 1, which says when all vertices are evenly distributed in the∏m
i=1 ni combinations of attribute values, it gives an upper bound of the number of

zero elements in ΔP2
A.

Proof We denote as Φ the even distribution of graph vertices to the
∏m

i=1 ni combi-
nations of attribute values. We can generate a new vertex distribution, Γ , by moving
an arbitrary vertex v ∈ V from one arbitrary attribute value combination (denoted as
η) in Φ to another (denoted as ξ ).

If η and ξ contain the same values in some or all attributes, the combinations of
attribute values which do not share any attribute values with η will not include ξ , and
vice versa. Then the set of graph vertices which have no common attribute values with
v remains the same. Hence the number of zero elements in ΔP2

A is the same as that of
Φ. Therefore, in this situation, Γ is equivalent to Φ, i.e., both give the upper bound

of the number of zero elements in ΔP2
A as n2×∏m

i=1(ni −1)
∏m

i=1 ni
.

If η and ξ do not share any attribute values, the combinations of attribute val-
ues which do not share any attribute values with η will include ξ , and vice versa.
Then, the number of combinations of attribute values which do not share any attribute
values with v is

∏m
i=1(ni − 1), which include ξ plus the other

∏m
i=1(ni − 1) − 1

combinations before the movement, or η plus the other
∏m

i=1(ni − 1) − 1 combina-
tions after the movement. The vertices corresponding to the other

∏m
i=1(ni − 1) − 1

combinations remain unchanged. However, except v itself, the number of vertices
which do not share any attribute values with v in ξ or η is reduced from n∏m

i=1 ni

to n∏m
i=1 ni

− 1 due to the movement of v from η to ξ . Hence, the number of zero
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elements in ΔP2
A is reduced to n2×∏m

i=1(ni −1)
∏m

i=1 ni
− 2, which is less than the upper bound

n2×∏m
i=1(ni −1)

∏m
i=1 ni

.

Based on the above analysis, we demonstrate that Φ is the vertex distribution that
gives the upper bound of the number of zero elements in ΔP2

A. �

9.2 Proof of Lemma 2

We will prove Lemma 2, which says for each of the first
∏m

i=1 ni − 1 combinations,
there exists exactly one vertex with the attribute vector corresponding to that com-
bination. The remaining n − (

∏m
i=1 ni − 1) vertices have the same attribute vector

corresponding to the last combination. Then this case gives a lower bound of the
number of zero elements in ΔP2

A.

Proof We denote as Ψ the graph vertex distribution described in Lemma 2. Recall S
denotes the set of vertices from the

∏m
i=1 ni − 1 combinations, and T denotes the set

of vertices in the last combination. We can generate a new vertex distribution, Θ , by
moving an arbitrary vertex v from T to an arbitrary subset of S in Ψ . Then the attribute
values of v are changed due to the movement. We denote these two combinations of
attribute values of v before and after movement as η and ξ respectively.

If η and ξ contain the same values in some or all attributes, the situation is similar to
that in Appendix 9.1. The set of graph vertices which have no common attribute values
with v remains the same. Hence the number of zero elements in ΔP2

A is the same as
that of Ψ . Therefore, in this situation, Θ is equivalent to Ψ , i.e., both give the lower
bound of the number of zero elements in ΔP2

A as (2n − ∏m
i=1 ni ) × ∏m

i=1(ni − 1).
If η and ξ do not share any attribute values, we need to examine the three separate

cases in the proof of Theorem 2.
Case 1 Due to the movement of v, the size of T is decreased by 1 and the size of S is
increased by 1. The number of L B1 in Eq. 14 is changed to

L B ′
1 = 2 ×

(

n −
m∏

i=1

ni

)

×
(

m∏

i=1

(ni − 1) + 1

)

(18)

Case 2 Due to the movement of v, the size of T is decreased by 1 and the size of S1
is increased by 1. The number of L B2 in Eq. 15 is changed to

L B ′
2 = 2

(
m∏

i=1

(ni − 1) + 1

)

×
(

m∏

i=1

(ni − 1) − 1

)

−
m∏

i=1

(ni − 1) ×
m∏

i=1

(ni − 2)

(19)

Case 3 Due to the movement of v, the size of S2 remains unchanged. As a result, the
number of L B3 in Eq. 16 remains the same.
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To sum up, the total number of zero elements in ΔP2
A after the weight adjustment

is increased by

ΔL B = 2 ×
(

n − 1 −
m∏

i=1

ni

)

(20)

Because n � ni ,ΔL B > 0 when the vertex distribution changes from Ψ to Θ

with v’s movement. Therefore, we demonstrate that Ψ is the vertex distribution that
gives the lower bound of the number of zero elements in ΔP2

A. �
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