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Tutorial Outline

• Introduction, Motivations, and Challenges
• Networks & Community Detection
• Community Search (4 Parts)

– Densely-connected community search 
– Attributed community search
– Social circle discovery
– Querying geo-social groups

• Future Work & Open Problems
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• Networks are everywhere (e.g. chemistry, biology, 
social networks, the Web, etc.)
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Networks



Communities

• Communities naturally exist in networks.

Blogosphere
4



• Community structure: Nodes with a shared latent 
property, densely inter-connected .

• Many reasons for communities to be formed:

Social Networks Citation Networks World Wide Web Biological Networks
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Community Structure



• The strength of weak ties [Mark Granovetter,1973] and 
the models of small-world [Strogatz and Watts, Nature’98] 
both suggest
– Strong ties are well embedded in the network
– Weak ties span long ranges

• Given a network, how do we find all communities?
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Basis of Community Formation



• Q: Given a network, how do we find all communities?
• A: Find weak ties and identify communities

– Betweenness centrality [Girvan and Newman, PNAS’02],

– Modularity [Newman, PNAS’06]

– Graph partitioning methods [Karypis and Kumar, SISC’08]

SFI collaboration network [Newman] 7

Community Detection



Overlapping Communities

• Communities defined by different nodes in a 
network may be quite different.
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[Palla et al. Nature’05])



Community Search 

• Problem: Given a set of query nodes, find densely 
connected communities containing them.

• State-of-the-art research focus: 
Simple and static graphs
Evolving, attributed, and 
location-based big graphs

query vertex
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Community Detection v.s. Community Search 

• Community detection: identify all communities.
– fundamental & widely studied
– global computation (expensive)
– static graphs (hard to handle evolving graphs)

• Community search: find query-dependent communities
– useful & less studied
– user-centered & personalized search
– dynamic graphs
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Applications

• Social circle discovery

• Planning a cocktail party/conference/workshop

• Infectious disease control

• Tag recommendation

• Protein complex identification
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Community Search

5 communities containing “Jiawei  Han” in DBLP collaboration network
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Protein Complex Identification

• Given: a protein-protein interaction network
• A set of proteins that regulate a gene that a biologist wishes 

to study.
• What other proteins should she study? those contained in a 

compact dense subgraph containing the given proteins.
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Challenges

• Complexity of underlying community models

• Responsiveness requirements of query processing

• Dynamic network structures

• Massive volume of big graphs
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Related Work

• Community Detection (Finding all communities in the entire network)

– non-overlapping community detection [Girvan and Newman, PNAS’02]
– overlapping community detection [Ahn et al, Nature’10]

• Community Search (Finding communities containing  given query nodes)

Different community models are proposed for various types of networks 
and query processing techniques.
– Structural Networks  --->  Densely-connected community search
– Attributed Graphs ---> Attributed community search
– Ego-networks ---> Social circle discovery
– Location-based Social Networks ---> Querying geo-social groups
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Part 1: Densely-connected Community Search

• In the simplest way, a graph represents a structure of 
interactions within a group of vertices.

• Task: finding densely-connected communities 
containing query nodes.
– Quasi-clique model [Cui et al. SIGMOD’13]

– Query-biased densest subgraph model [Wu et al. PVLDB’15]

– K-core model [Sozio & Gionis KDD’10, Cui et al. SIGMOD’14, Li et al. 
PVLDB’15, Narbieri et al. DMKD’15]

– K-truss model [Huang et al. SIGMOD’14, Huang et al. PVLDB’16]
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[Cui et al., SIGMOD’13] 

k-cliques
(k=4)

γ-quasi-k-cliques
(γ=0.8, k=4)

α-adjacency-γ-quasi-k-cliques
(α=2, γ=0.8, k=4)

k-clique: a complete 
graph of k nodes with 
k(k−1)/2  edges. 

20

Quasi-Clique based Model



• Problem: Given a query vertex q in graph, the 
problem is to find all α-adjacency-γ-quasi-k-clique 
containing q.

[Cui et al., SIGMOD’13] 

A 0.8-quasi-7-clique containing q

?
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Quasi-Clique based Model



K-Core

• K-core: every vertex has degree at least k in this 
subgraph.
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K-Core based Model
• Input:

a graph G & a set of query nodes Q 

• Output: a connected subgraph H containing Q such that
(1) Query distance DQ(H) <= distance constraint.
(2) |V(H)| <= size constraint.
(3) H is a k-core with the largest k  by satisfying (1) and (2). 

• Other k-core based community models:
Local search algorithm [Cui et al. SIGMOD’14]
Minimum-size Community [Narbieri et al. DMKD’15] 
Influential Community [Li et al. PVLDB’15]
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[Sozio and Gionis, KDD’10]



• Triangle: fundamental building blocks of networks 
• k-truss of graph G: every edge in H is contained in at least 

(k-2) triangles within H.
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[Jonathan Cohen, 2008]
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K-Truss



K-Core V.S. K-Truss

• K-core: any pair of vertices within an edge 
may have no common neighbors.

• K-truss: any pair of vertices within an edge 
must have k-2 common neighbors.

a b

c

de

f

b

c

de

f

a
3-truss3-core
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• A k-truss community satisfies:
(1) K-truss: each edge within at least (k-2) triangles
(2) Edge Connectivity: all pairs of edges connected by triangles
(3) Maximal Subgraph
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Two 4-truss communities for q 26

[Huang et al., SIGMOD’14]

K-truss Community Model



• Problem: Given a graph G(V, E) , a query vertex q 
and an integer k ≥ 3, find all k-truss communities 
containing q.
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Problem Formulation



• Several different index structures are designed 
for the efficient search of k-core and k-truss
based communities.

• We take the k-truss community model as an 
example.

28

Index Based Query Processing 
Algorithm Framework



• Index Construction (offline)
– They design a novel and compact tree-shaped 

structure called TCP-index.

• Query Processing (online)
– Based on TCP-index, k-truss community search 

can be done in optimal time complexity. 

29

Index Based Query Processing 
Algorithm Framework



• TCP-Index for vertex x is a tree structure as Tx.
– Tx is a maximum spanning forest.
– Build Tx with weighted edges level by level. 
– O(m) linear disk space, O(|Ans|) optimal query time. 
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TCP-Index Construction



A complete 5-truss Community

Each edge is accessed only 2 times. Constant!!!
(First time in black; Second time in red.)
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Query Processing using TCP-Index



Motivation: Free Rider Effect
• Free Rider Effect: far away and irrelevant nodes are 

included into communities.
• Classic density: f(S) =|E(S)|/|S|, E(S)=E∩S2

• f(A ∪ B) > f(A) .

query vertex

Free Riders: irrelevant to query nodes 32

[Wu et al. VLDB’15].



Free Rider Effect in Real Networks

(a) Co-author network (b) Biological network

One existing method: classic density

[Wu et al. VLDB’15].



Query Biased Node Weighting

Query biased density: 

Subgraph A becomes the 
query biased densest subgraph

[Wu et al. VLDB’15].



Graph Diameter

• Graph Diameter of G: 
• Fig.(a), shaded, has diameter 4, the longest shortest 

path span from q1 to p1

• But, Fig.(b) has diameter 3.

35

[Huang et al. VLDB’16]



• Input:
a graph G & a set of query nodes Q 

• Output: a connected subgraph H containing Q such that
(1) H is a k-truss with the largest k
(2) H has the smallest diameter among subgraphs satisfying (1). 

Closest Truss Community Search

36

[Huang et al. VLDB’16]



Case Study: DBLP network

Michael J. Carey

Michael Stonebraker

Philip A. Bernstein

H. Garcia-Molina

Michael J. Franklin

Joseph M. Hellerstein

Gerhard Weikum

David Maier

Alon Y. Halevy

David J. DeWittLaura M. Haas

Rakesh Agrawal

Jeffrey D. Ullman

Jennifer Widom

Michael J. Franklin

Jeffrey D. Ullman

Alon Y. Halevy

Jennifer Widom

Community search on DBLP network using query Q={ “Alon Y. Halevy”, 
“Michael J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom” }

(a) 9-truss (b) Closest Truss community
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[Huang et al. VLDB’16]



Desiderata of Good Query Communities

• Query nodes: single or multiple.

• Cohesive structure: quasi-clique, densest subgraph, 
k-core, or k-truss.

• Quality of approximation: guaranteed or 
non-guaranteed. 

• Input queries: parameter-free or user-unfriendly.
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Part 2: Attributed Community Search
• Motivation: many real social networks contain attributes or 

predicates on the vertices.
– Vertices: Person (in social networks), Attributes: name, interests, and skills.

• Facebook: link relationship, user background
• Twitter: following/follower-ship, tweets

– Vertices: Protein (in PPI networks), Attributes: GO (Gene-Ontology) terms 
representing molecular functions, biological processes, and cellular 
components.

39



Community Search in Attributed Graph

• Structure + Semantics: In addition to the network structure, users 
may aim to search for attribute-related communities, or 
attributed communities.

• Input: a graph G where nodes are associated with attributes
an input query Q consisting of nodes Vq and attributes Wq

• Output: a connected community H containing Q such that most community 
members are densely inter-connected and have similar attributes

An example of
collaboration
attributed network

40



Community Search in Attributed Graph

An example attributed graph G

41

[Huang and Lakshmanan, PVLDB’17].



Keyword Search

• Input: given a query consisting of nodes and attributes 
(keywords), e.g., W={q1, DB}

• Output: finds the substructure (trees or subgraphs) with 
minimum communication cost that connect the input 
keywords/nodes, where the communication cost is based on 
diameter, weight of spanning tree or steiner tree. 

42

Keyword Search with query W={q1, DB}
An example attributed graph G



A Comparison of Representative Works

• Keyword Search (KS), Team Formation (TF),  Densely-connected 
Community Search (DCS) and Attributed Community Search (ACS)

43



Graph type Community Detection Community Search

Non-attributed [1000+ papers] [10+ papers]

Attributed [100+ papers] K-core-based: ACQ 
K-truss-based: ATC

The Number of Related Works



Attributed Community Query (ACQ)

• Given a graph G, a vertex q, a set S of keywords and 
an integer k, find the sub-graphs s.t. each Gq satisfies: 

• Connectivity: Gq is connected and it contains q ;
• Structure cohesiveness: minimum degree ≥ k ;
• Keyword cohesiveness: the number of keywords in S shared by 

other vertices in Gq is maximized 

Research & Sports

q=Jack, k=2, S={research, sports, tour}

[Fang et al. PVLDB’16].



Densely-connected Community Search [1,2]

• Who is in Jim Gray’s community?
– “k-core” (with Local algo. [2]); nodes connected by k=4 

or more edges

[1] Sozio, Mauro, and Aristides Gionis. "The community-search problem and how to plan a successful cocktail party." Proceedings of the 16th 
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010.
[2] Cui, Wanyun, et al. "Local search of communities in large graphs." Proceedings of the 2014 ACM SIGMOD international conference on 
Management of data. ACM, 2014.

• Why are these people considered as Jim’s community?
• What is the theme of this community?

A community can have 105 

nodes! 



Attributed Community (AC)
• Previous CS solutions overlook keywords

– e.g., a researcher’s interest 

{transaction,…}

{SDSS,…}

{transaction, 
SDSS,…}



Attributed Community (AC)
• In fact, Jim has 2 distinct attributed communities 

(AC).

{transaction...}

{SDSS,…}

Common keyword set (AC label)



Part 3: Social Circle Discovery

• Social circles: communities formed by only friends

49Social Circle in Facebook



An Ego-network

• Ego-network: an induced subgraph of a network only 
by her friends.

50An Ego-network



Social Circle Discovery

• Examples: online social networks allow users to manually 
categorize their friends into social circles within their ego 
network (e.g., circles on Google+)

• Social circle discovery: the task is to automatically identify 
all social circles for a given user.

• Applications: 
– content filtering 
– privacy protection
– sharing groups of users that others may wish to follow

51



Learning to discover social circles

• An unsupervised community model predicts 
hard memberships to multiple, overlapping 
circles, using both user profile and network 
structure.

52

[Leskovec and Mcauley, NIPS’12]



Datasets: Ground-truth Social Circles

• Datasets are collected from real-world networks 
Facebook, Google+, and Twitter

53



Detected Circles

54



Social Contagion

• Case Study (Facebook) 
[Ugander et al, PNAS’12]

•

55

Existing Facebook user

Non-Existing Facebook 
user

Social circles can affect the process of 
information diffusion on social contagion

Consider an existing Facebook user invites 
the non-existing Facebook user to join
Facebook.

We want to study the success rate that this 
non-existing user will join Facebook

[Ugander et al. PNAS’12].



Social circles can affect the process of 
information diffusion on social contagion

Consider an existing Facebook user invites 
the non-existing Facebook user to join
Facebook.

We want to study the success rate that this 
non-existing user will join Facebook

Social Contagion

• Case Study (Facebook) 
[Ugander et al, PNAS’12]

•

56

1 2 3 4

Success rate

The no. of connected components is related to 
the success rate

[Ugander et al. PNAS’12].



Top-K Structural Diversity Search

• The structural diversity of a node is defined to be the number 
of connected components in its ego-network.

• Problem
– Find k nodes with the greatest structural diversity in a social network 

(Node Ranking).

• Application
– Political campaign, promotion of health practices, marketing

57Viral MarketingOpinions Diffusion
Connected Components 
in the Neighborhood

[Huang et al. VLDBJ’15].



Part 4: Querying Geo-Social Groups

• Boom in geo-social networks
– Foursquare, Facebook, Weibo, DaZhongDianPing, Yelp, Flickr
– Social networks coupled with user locations

• Group-based activity planning and business
– Find a group of friends at the conference for gathering
– Find a group of nearby friends for sports, ridesharing, groupon…

[Zhu et al. ArXiv’14]
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Geo-Social Group Queries (GSGQ)
• Given an LBSN G=(V, E), a query user vq ∈ V and an integer c

≥ 1, find a group of users V’ ⊆ V containing vq and satisfying:
– Social constraint: G[V’] ∈ G is a c-core
– Spatial constraint: 

• Range: all users of the group are in a given spatial range 
• kNN: the closest group with k other users (NP-hard!)

• Range: c = 2, 
V’={v1,v2,v5,v6}

• kNN: c = 2, k = 2
V’={v1,v2,v6}

59

[Zhu et al. ArXiv’14]



Key Concept
• Core Bounding Rectangle (CBR): Given G=(V, E), a node v, 

an integer c ≥ 1, CBRv,c is a rectangle that covers v and in 
which any user group containing v cannot form a c-core. 
– CBRv,c1 ⊆ CBRv,c2, if c1 < c2
– Construction cost: O(|E| log |V|)

CBRv,2

v

Pruning: exclude v from result 
group if query range ⊂ CBR

60



Geo-Social K-Cover Group Queries
• Problem: Given an LBSN G(V, E), a set of query points 

P={p1, p2, ..., pm}, and an integer k ≥ 1, find a group of 
users V’ ⊆ V satisfying: 
1) Spatial constraint: P ⊂ ∪ u∈V’ u.R
2) Social constraint: G[V’] ∈ G is a c-core 
3) Size requirement: |V’| is minimum 

• c = 2, 
P={p1,p2,p3,p4}
V’={u1,u3,u4}

62

[Li et al. ICDE 2016]



Applications
• Spatial task outsourcing: identify a group of 

workers whose service regions collectively 
cover the locations of spatial tasks

• Travel Recommendation: find a minimum 
group of tourists for a self-drive tour of a set 
of POIs

• Collaborative team organization: find a 
collaborative team to promote products in 
several market areas

63

[Li et al. ICDE 2016]



Other Geo-Social Group Queries
• Spatial-Aware Community (SAC) Search

– Y. Fang, et al., “Effective Community Search over Large 
Spatial Graphs” [PVLDB’17]

– Problem: Given a graph G(V, E), an integer c, and a 
query vertex q ∈ V, find a subgraph Gq ⊆ G:  
1. Connectivity: q ∈ Gq is connected
2. Structure cohesiveness: ∀v ∈ Gq, degGq(v) ≥ c
3. Spatial cohesiveness: smallest minimum covering circle

64

• q=Q and c=2,
Gq = {Q, C, D}



Open Problems & Future Directions

• Heterogeneous Information Networks

• Scalability
– I/O-efficient algorithms & distributed computing
– Stream graphs

• Public-Private Social Networks

• Community Search on Uncertain Graphs
– Probabilistic k-core & Probabilistic k-truss

65



Heterogeneous Information Networks

• Information network: A network where each node represents an 
entity (e.g., actor in a social network) and each link (e.g., tie) a 
relationship between entities.

• Homogeneous vs. heterogeneous networks
– Homogeneous networks

• Single object type and single link type
• Single model social networks (e.g., friends)

– Heterogeneous, multi-typed networks
• Multiple object and link types
• Healthcare network: patients, doctors, disease, hospitals, treatments

66



Heterogeneous Information Networks

67



Open Problems & Future Directions

• Heterogeneous Information Networks

• Scalability
– I/O-efficient algorithms & distributed computing
– Stream graphs

• Public-Private Social Networks

• Community Search on Uncertain Graphs
– Probabilistic k-core & Probabilistic k-truss

68



Scalability

• Scaling community search techniques to the massive and 
rapidly growing network datasets of the Big Data era.

• I/O efficient algorithms: k-core decomposition and k-truss 
decomposition.

• Distributed graph computing: Pregel and Blogel. 

• Streaming graphs: handling community indexes in highly 
evolving graphs.

69



Scalability
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Open Problems & Future Directions

• Heterogeneous Information Networks

• Scalability
– I/O-efficient algorithms & distributed computing
– Stream graphs

• Public-Private Social Networks

• Community Search on Uncertain Graphs
– Probabilistic k-core & Probabilistic k-truss

71



Public-Private Social Networks
• Background: In Facebook social network, 52.6% of 1.4 million 

New York City Facebook users hid their friends list.
微博悄悄关注(Secretly follow in Weibo networks)

• Public-Private graph model contains a public graph, in which 
each node is also associated with a private graph. 
–The public graph is visible to everyone, but each private graph is visible 
only to the corresponding user.

A Public-private Graph Public Graph



Open Problems & Future Directions

• Heterogeneous Information Networks

• Scalability
– I/O-efficient algorithms & distributed computing
– Stream graphs

• Public-Private Social Networks

• Community Search on Uncertain Graphs
– Probabilistic k-core & Probabilistic k-truss

73



Not all real-world networks 
are

deterministic graphs.

Probabilistic/Uncertain Graphs: each edge has 
an existence probability.

74



Probabilistic Graphs: Examples

• Topologies of wireless sensor networks (WSNs)
– Vertices: sensor nodes
– Edges: wireless links between sensor nodes
– Uncertainties: probabilities of wireless links functioning

0.75

0.92

0.88

0.95

0.69
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Discovery of communities 
in uncertain graphs

• Benefits:
– Find most influential communities in social networks.
– Functional module identification for helping critical clinical 

diagnosis of diseases such as cancer in biology.

• K-core and k-truss have been studied in probabilistic graphs.

• An exciting question is how to generalize various community 
models and search techniques to probabilistic graphs.
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