
VizCS: Online Searching and Visualizing
Communities in Dynamic Graphs

Yuli Jiang ∗, Xin Huang #, Hong Cheng ∗, Jeffrey Xu Yu ∗

∗ The Chinese University of Hong Kong, # Hong Kong Baptist University
∗{yljiang, hcheng, yu}@se.cuhk.edu.hk, #xinhuang@comp.hkbu.edu.hk

Abstract—Given a query vertex in a graph, the task of com-
munity search is to find all meaningful communities containing
the query vertex in an online manner. In this demonstration,
we propose a novel query processing system for searching and
visualizing communities in graphs, called VizCS. It exhibits three
key innovative features. First, VizCS adopts several community
models and supports community search on dynamic graphs
where nodes/edges undergo frequently insertions/deletions. Sec-
ond, VizCS offers a user-friendly visual interface to formulate
queries and a real-time response query processing engine. Last
but not least, VizCS generates a community exploration wall by
offering interactive community visualization, which facilitates
users to in-depth understanding of the data. Furthermore, VizCS
becomes a community search platform that can visualize and
compare different community results by various state-of-the-art
algorithms and user-uploaded approaches.

I. INTRODUCTION

Communities naturally exist in many real-world networks

including social, biological, semantic and communication net-

works. The task of community detection is to target all com-

munities in a network, which is a fundamental and well-studied

problem in the literature [1]. In recent years, community search

[2], [3], [4], [5], which aims to find communities containing

the query vertex in graphs, has drawn a great deal of attentions.

Compared with community detection that finds all communi-

ties in the entire network, online community search provides

personalized community discovery for a query vertex. Because

the communities for different vertices in a network may have

very different characteristics, this user-centered personalized

search is more meaningful [4]. However, online community

search faces two key challenges. One challenge is to design

a widely used community model for different query vertices.

The other challenge is to develop efficient query processing

algorithms on large and dynamic graphs.

To model and search the communities of a query vertex, we

introduce a concept of k-truss community model [4]. Given a

query vertex q and parameter k, a k-truss community is defined

as a maximal subgraph H containing q by satisfying two

conditions: (1) every edge is contained in at least k−2 triangles

in H; (2) every pair of edges can be connected by a series of

adjacent triangles in H . Since our truss community model is

based on the concept of k-truss, the communities inherit good

structural properties of k-truss, such as bounded diameter,

k-edge-connected and hierarchical structure [4]. Besides the

cohesive structure of discovered communities, the model also

has nice properties of few input parameters and efficient query

processing. To the best of our knowledge, this is the first

demonstration system applying k-truss community model to

implement the community search algorithms.

In this demonstration, we present a novel query processing

system for searching and visualizing communities in graphs,

called VizCS (Visualization system for Community Search).

VizCS exhibits the following innovative features. First, it offers

a user-friendly visual interface to formulate queries and a

powerful query processing engine to efficiently search k-truss

communities in an online manner. Second, it generates a

community exploration wall where the results of discovered

communities are depicted in graph visualization and able to

interact with users. In addition, community exploration wall
provides various channels to further search and analyze infor-

mative features of community members, which facilitate in-

depth understanding of the data. Third, it supports community

search over dynamic graphs and provides an interface to

upload graph updates with nodes/edges insertions/deletions.

Apart from k-truss community model, VizCS platform also

supports another community search approach [2] of finding

α-adjacency-γ-quasi-k-clique community.

II. SYSTEM OVERVIEW

The system architecture of VizCS is illustrated in Figure 1.

It employs a client-server architecture and mainly comprises

of the following modules. (1) The query editor module inter-

faces various community models, network data sources and

user-raised input queries. (2) The index maintenance module
consists of two submodules: Index construction and Index

update.These two components maintain the index to ensure

that VizCS can efficiently work for community search in

dynamic graphs. (3) The query processing module implements

one efficient algorithm that leverages index to find community.

(4) The community exploration wall uses graph visualization

techniques to depict the community results and also presents

informative features to users through various exploration chan-

nels, such as the profile search of community members by

Google, structural statistic report, collaborator recommenda-

tion, and tag cloud. In the following, we respectively introduce

these modules in detail. To illustrate VizCS more clearly and

concretely, following we mainly introduce each modules based

on k-truss community model.

1585

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00182

��
���

��	

�

��
��

	�
�	

�

��
	���

��
	��� ��
	�����
	���

�����
�	��
��
��������

��	�������	���
 �
!����	

�����
�	��
�����	

����"��
���
�	�
!����	

����#
�	�

Fig. 1. System Architecture of VizCS

A. Query editor module.

Figure 1 depicts the screenshot of query editor interface

of VizCS. It consists of four panels. Panel 1 enables users

to select or upload a graph dataset to query. Panel 2 enables

users to formulate an input query consisting of a query vertex

q and a parameter k. We can execute the query to search

all k-truss communities containing q by clicking the “Run”

icon. Panel 3 displays the results of communities by graph

visualization, and provides various exploration channels. Panel

4 displays the function of community search over dynamic

graphs. It enables a user to upload one file of graph updates

and compare different results of community search in the

original and updated graphs.

B. Index maintenance module.

To offer an efficient search of k-truss communities, this

module maintains a compact and elegant index structure called

Triangle Connectivity Preserved index (TCP-Index), which

supports the search with a linear cost with respect to the

community size [4]. Specifically, to support community search

over dynamic graphs, this module consists of two components

of index construction and index update.

Index construction. Upon selecting a specific community

model and graph dataset (e.g., k-truss community and the

DBLP network), index construction works to build TCP-Index
offline in the server side. The process of index construction

is as follows. First, it computes the trussness of each edge of

the graph by truss decomposition algorithm [4]. The trussness

of an edge is defined as the largest value of k such that there

exists k-truss communities containing this edge. Thus, if the

trussness of an edge is less than k, the edge will not exist in

any k-truss community. Then, to fulfill another constraint of

k-truss community model—triangle connectivity, we build the

TCP-Index that preserves the trussness value and the triangle

adjacency relationship in a tree-shape index. The size of TCP-

Index takes the same complexity of graph size, which indicates

that it is a very compact index. The time complexity of TCP-

Index construction algorithm takes O(ρm) where ρ is the

arboricity of a graph and m is the number of graph edges

[4].

Index update. This component performs the update of index

in dynamic graphs where nodes and edges can be frequently

inserted or deleted. We mainly focus on edge insertion and

deletion, because vertex insertion/deletion can be regarded as

a sequence of edge insertions/deletions preceded/followed by

the insertion/deletion of an isolated vertex. To handle TCP-

Index update efficiently for k-truss community, the key is

to identify the affected region in the graph precisely. Based

on the theoretical analysis shown in [4], this component

develops efficient local search algorithms for updating the edge

trussness and the TCP-Index respectively.

C. Query processing module.

Based on index maintenance module, this module imple-

ments a highly efficient algorithm to process community

queries. For k-truss community model [4], given a query vertex

q and parameter k, the goal is to find all k-truss communities

containing the vertex q in a graph. The algorithm checks every

incident edge on vertex q to search k-truss communities. It

starts from one incident edge of vertex q with the trussness

no less than k, and expands it to search k-truss community

in the BFS manner on TCP-Index. This query processing

approach returns all k-truss communities in the optimal time

complexity, w.r.t. the number of edges in communities. The

output of community results is forwarded to the following

analysis module.

D. Community exploration wall.

The module generates a community exploration wall to

view and analyze the community results in a user-friendly

manner. It consists of four following components. We use a

collaboration network from the DBLP data set1 to illustrate.

A vertex represents an author and an edge is added between

two authors if they have co-authored 3 times or more. The

network contains 234,879 vertices and 541,814 edges.

Community visualization. To offer direct, simplified, intu-

itive and human-friendly images to help users understand the

overview of query results, VizCS applies graph visualization

tool to depict communities in Figure 2. The visualization tool

used in VizCS is the force directed graph2 , from version 4 of

Data-Driven Document(d3)—a JavaScript library.

1http://dblp.uni-trier.de/xml/
2http://www.puzzlr.org/force-graphs-with-d3/

1586

Fig. 2. Community Visualization in Community Exploration Wall

VizCS provides several interesting interactive features. First,

the nodes from different communities are filled in different

colors and user can distinguish them straightforward. Second,

the community label (e.g.“C1”) in the top middle of Figure 2,

stores the information of nodes and edges in this community. If

users click the community label, it will trigger the visualization

that all nodes in this community will be significantly colored in

red. Third, force directed graph provides an interactive layout

function that users can click and drag a vertex to adjust the

layout of communities. In addition, VizCS embeds the profile

information into nodes and edges. Users can click a vertex

to see its basic information (e.g. author name and vertex ID)

and double click it, which triggers the Google API to search

the author’s profile further in Figure 2. Also, users can click

an edge between two authors to look up their co-authored

publications using our embedded API of the DBLP website in

Figure 2.

Structural statistic report. This component analyzes the

structural statistics of nodes in query communities. Figure 3(a)

shows an information table of all authors including the vertex

ID, author name, the distance to the query vertex, and the

number of common neighbors shared with the query vertex.

Users can click one table header to sort all authors in different

order. Figure 3(a) presents the authors in the ascending order

of vertex ID. Users can also click one table row to view

the author in the visualized communities in Figure 2, and

double click the row to google search the author for details.

In addition, for each community, the distribution statistics of

structural information are plotted into bar charts in the top of

Figure 3(a). It presents three bar charts of the node degree,

the number of common neighbors, and the distance to query

node. Each bar chart shows the distribution statistics in terms

of its minimum, average, and maximum values. When clicking

one community (e.g.“C1”) in the top middle of Figure 2, the

information of structural statistics will update accordingly for

this community.

Collaborator recommendation. This component shows one

application of collaborator recommendation, which leverages

the results of k-truss community search. Figure 3(b) recom-

mends seven potential collaborators for the query author. The

ranking function of recommendation considers three features

of the vertex trussness, the distance to query vertex and the

number of common neighbors with query vertex. It is an inter-

esting exploration of VizCS, and provides the recommendation

results for the manual evaluation by users.

Tag cloud. The component of tag cloud displays authors of

query communities using different sized fonts in Figure 3(c).

The larger font of one author name is, the closer distance

between this author and query author is. In addition, the

authors in one community are marked in one color, which

is same as the color in Figure 2. Different communities use

different colors, which offers direct views. Users can double

click the name to search more information about the author in

Google.

In summary, the community exploration wall facilitates

users to explore results toward their search goals, by various

channels of community visualization, structural statistic report,

collaborator recommendation, and tag cloud.

III. RELATED SYSTEMS AND NOVELTY

Our work is related with community discovery and graph

query processing.

Community discovery. Generally, community discovery

can be categorized into community detection and community

search. The problem of community detection is to find all com-

munities in the entire network [1]. On the other hand, given a

set of query nodes, community search is to find only query-

related communities [5]. Several community search models

are proposed on various kinds of dense subgraphs such as

quasi-clique [2], k-core [5], k-truss [4], and densest subgraph

[3]. A brief survey of community search can be found in [7].

Most recently, Fang et al. [8] proposed C-Explorer system to

assist user in extracting and analyzing communities equipped

with k-core based community search algorithms. In contrast,

our system offers k-truss and more community search models

and supports online query for dynamic graphs. In addition,

SocialLens [9] builds upon community profiling and enables

browsing communities by content and interaction. However,

this work detects communities offline, which is different from

our goal of searching community in an online manner.

Graph query processing. In the literature, there exist

several graph systems for handling various kinds of queries.

ExpFinder [10] is a graph system for finding experts in

social networks based on graph pattern matching. AutoG [11]

presents a novel interactive system to alleviate the potentially

painstaking task of graph query formulation. GRAPE [12] is a

parallel GRAPh query Engine based on a simultaneous fixed

point computation in terms of partial and incremental eval-

uation. All above systems proposed for processing different

graph queries on a wide of applications are significantly differ-

ent from our work on searching and visualizing communities.

IV. DEMONSTRATION OVERVIEW

We implement the community search algorithms of VizCS
in C++, and develop webpages to access server. The key

objectives of the demonstration are to enable the audience to

interactively experience the following.

User-friendly input interfaces. With the query editor module

and query processing module, audiences can search commu-

nities in the light of their inputs. Since the query communities

may consist of a large number of nodes and edges, it is hard

1587

(a) Structural Statistic Report

1

2

3

4

5

6

7

(b) Collaborator Recommendation (c) Tag Cloud

Fig. 3. Community Exploration Wall

to overview the results if we directly visualize all nodes and

edges in the query communities. To make the complexity of

displayed results within human cognitive capacity, we depict

a limited number of community members in a near-vicinity

of the query vertex. In addition, If audiences raise a query

only containing one query vertex without the input of value

k, VizCS can automatically construct one complete query that

sets the value of k as the largest k-truss containing the query

vertex.

Interactive community exploration wall. Audiences can

view and interact with results in the community exploration

wall. Specifically, it displays 4 userful visualization panels.

First, all communities are depicted in graph visualization in

Figure 2. Different communities are marked with different

colors. Audiences can click nodes and edges to gain more

information and drag nodes to better undertand communities

structure. Second, the statistics of various structural informa-

tion in communities are listed in tables and plotted in bar

charts in Figure 3(a). Users can click the grid headers to sort

the list of authors in different order, e.g., in the ascending

order of vertex ID. Third, VizCS recommends a list of potential

collaborators for the query author in Figure 3(b). Last but not

least, VizCS further visualizes the community members using

one tag cloud in Figure 3(c). The larger font of one author

name is, the closer distance between this author and query

author has, which offers a straightfoward view.

Community search over dynamic graphs. Upon uploading

one file of graph updates, audiences can explore the feature of

community search over dynamic graphs. For k-truss commu-

nity model, TCP-Index can be incrementally updated by the

index maintenance module of VizCS. Audiences can compare

different results for one query in envolving graphs in Figure

4.

Comparison of state-of-the-art methods. VizCS can

load other state-of-the-art community search approaches into

VizCS, and compare the difference of community results by

various methods. There are several different dense subgraph

based community models including quasi-clique [2], the denset

subgraph [3], and k-core [5]. Our demonstration framework

can equip with the implementations of other community search

engines and visualize community results for audiences to

understand the difference models vividly and directly. In addi-

tion, VizCS can serve as a platform that provides an interface

Fig. 4. Community search over dynamic graphs

for uploading user-customized community search result and

viewing its visualization.

ACKNOWLEDGMENT

This work was supported by grants from the Research

Grants Council of the Hong Kong Special Administrative

Region, China [Project No.: CUHK 14205617], [Project No.:

CUHK 14221716], and [Project No.: HKBU 12200917].

REFERENCES

[1] M. E. Newman, “Fast algorithm for detecting community structure in
networks,” Physical review E, vol. 69, no. 6, p. 066133, 2004.

[2] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in SIGMOD, 2013, pp. 277–288.

[3] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detection:
on free rider effect and its elimination,” PVLDB, vol. 8, no. 7, pp. 798–
809, 2015.

[4] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in SIGMOD, 2014, pp. 1311–
1322.

[5] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in KDD, 2010, pp. 939–948.

[6] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate
closest community search in networks,” Proceedings of the VLDB
Endowment, vol. 9, no. 4, pp. 276–287, 2015.

[7] X. Huang, L. V. Lakshmanan, and J. Xu, “Community search over
big graphs: Models, algorithms, and opportunities,” in ICDE, 2017, pp.
1451–1454.

[8] Y. Fang, R. Cheng, S. Luo, J. Hu, and K. Huang, “C-explorer: browsing
communities in large graphs,” PVLDB, vol. 10, no. 12, 2017.

[9] H. Cai, V. W. Zheng, P. Chen, F. Zhu, K. C.-C. Chang, and Z. Huang,
“Sociallens: Searching and browsing communities by content and inter-
action,” in ICDE, 2017, pp. 1397–1398.

[10] W. fei Fan, X. Wang, and Y. Wu, “Expfinder: Finding experts by graph
pattern matching,” in ICDE, 2013, pp. 1316–1319.

[11] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu, “Autog: A visual query
autocompletion framework for graph databases,” PVLDB, vol. 9, no. 13,
pp. 1505–1508, 2016.

[12] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang, “Grape: parallelizing
sequential graph computations,” PVLDB, vol. 10, no. 12, pp. 1889–1892,
2017.

1588

