
VAC: Vertex-Centric Attributed Community Search
Qing Liu†1, Yifan Zhu§2, Minjun Zhao§3, Xin Huang†4, Jianliang Xu†5, Yunjun Gao§♯6

†Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
§College of Computer Science, Zhejiang University, Hangzhou, China

♯AlibabaZhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
{1qingliu, 4xinhuang, 5xujl}@comp.hkbu.edu.hk, {2xtf_z, 3minjunzhao, 6gaoyj}@zju.edu.cn

Abstract—Attributed community search aims to find the com-
munity with strong structure and attribute cohesiveness from
attributed graphs. However, existing works suffer from two major
limitations: (i) it is not easy to set the conditions on query
attributes; (ii) the queries support only a single type of attributes.
To make up for these deficiencies, in this paper, we study a novel
attributed community search called vertex-centric attributed
community (VAC) search. Given an attributed graph and a query
vertex set, the VAC search returns the community which is
densely connected (ensured by the k-truss model) and has the
best attribute score. We show that the problem is NP-hard. To
answer the VAC search, we develop both exact and approximate
algorithms. Specifically, we develop two exact algorithms. One
searches the community in a depth-first manner and the other
is in a best-first manner. We also propose a set of heuristic
strategies to prune the unqualified search space by exploiting
the structure and attribute properties. In addition, to further
improve the search efficiency, we propose a 2-approximation
algorithm. Comprehensive experimental studies on various real-
world attributed graphs demonstrate the effectiveness of the
proposed model and the efficiency of the developed algorithms.

I. INTRODUCTION

Community search aims to find the community containing
the query vertex set, which is widely explored for personalized
community analysis [1]. Community search on both simple
and complex networks have been studied, and numerous
community search models have been developed, such as k-
core [1]–[3], k-truss [4]–[6], and clique [7], [8].

Owing to the rich information present for real-world en-
tities, the vertices of networks are usually associated with
some attributes. For example, in Facebook, users can specify
hobbies, locations, and other information in their profiles.
By combining the graph structure and attribute information,
community search in attributed graphs can discover more
meaningful communities. Consider the social network shown
in Figure 1, where each user is associated with the information
of hobbies and location. Assume that we take Beety as the
query vertex and aim to find a community of 4-truss (i.e.,
every edge in the community should be contained in at least
2 triangles) containing Beety. If we do not consider any other
information, the subgraph H1 indicated by the red circle is
the result. If we consider users’ hobbies, the community H2

shown by the green circle is the answer. Compared with H1,
H2 excludes Kate as she does not share any hobby with others.
Similarly, we can find the community H3 by considering the
user locations.

politics, movie, music, hiking football, politic, travelling

football, tennis, music, hiking

politics, football, movie

travelling, movie, music

Betty
Kate

Mack

Teddy

Cain

Daly

Dana

Mack

Kate reading, painting, cooking

Teddy

Hall

Gerry

Betty

Dana

Cain

Daly music, opera, dance

politics, cooking, music

writing, reading, music

Name Hobbies HobbiesName

Locations

Friendships

Hobbies

Gerry Hall

H2

H1

H3

Fig. 1: Motivating Example

There have been a number of studies on the community
search over attributed graphs [9]–[16]. However, existing
works suffer from the following two limitations.

• First, it is not an easy task for users to specify the
appropriate conditions on query attributes. This is be-
cause, in general, users are not familiar with the attribute
distributions in the whole graph. If the query conditions
are too strict, it may return an empty community. For
example, in Figure 1, if we require that every user in
the community should contain movie and music in their
hobbies, then we cannot find any result. On the other
hand, if the query conditions are loose, the returned
community may not be attribute cohesive.

• Second, existing works are not flexible. In particular,
these works support only a single type of attributes. For
example, [13]–[16] support only geographical attributes
while [9]–[12] consider only textual attributes. If users
have to apply different queries when searching different
attributed graphs, it can be an extra burden. It would be
desirable that a single query can handle different kinds
of attributed graphs.

To make up for these deficiencies, in this paper, we explore
a novel problem, called vertex-centric attributed community
(VAC) search. As mentioned above, the community in at-

tributed graphs should consider both the structure cohesiveness
and attribute cohesiveness. For the structure cohesiveness, we
employ the k-truss model as it can find the community with
strong cohesiveness while achieving good performance [4]–
[6]. Specifically, every edge in a k-truss is involved in at
least k − 2 triangles. With regard to the attribute cohesive-
ness, we propose a new notation of attribute score, which
is defined as the maximum attribute score of all pairs of
vertices in a subgraph. The rationale is that if a subgraph
has strong attribute cohesiveness, every pair of vertices in the
subgraph should also be attribute cohesive. Note that we can
adopt different functions to compute the attribute score, e.g.,
Euclidean distance function for geographical attributes and
Jaccard distance function for textual attributes, so as to meet
different search requirements. Based on the two metrics of
cohesiveness, we formally define the VAC problem as follows.
Given an attributed graph G, a query vertex set Q, and a
parameter k, the VAC problem aims to find the maximal
connected subgraph H ⊆ G such that H is a k-truss containing
Q and has the minimum attribute score (i.e., the smallest
pairwise distance). Compared with existing works, the VAC
problem does not need any input on query attributes and can
deal with different kinds of attributed graphs.

We prove that the VAC problem is NP-hard. To tackle the
VAC problem efficiently, we propose two exact algorithms.
The first algorithm is called DFS-based VAC algorithm, which
searches the solution in a depth-first manner. In the algorithm,
we propose a series of heuristic strategies to improve the
performance. For example, we exploit the property of the k-
truss to prune the vertices that cannot contribute to the final
result, and use the low bounds of subgraphs’ attribute scores
to terminate the search as early as possible. Moreover, we
optimize the search order to achieve better efficiency. The
second algorithm is called BFS-based VAC algorithm. In the
algorithm, it iteratively finds the subgraphs in descending order
of their attribute scores until the subgraph with the minimum
attribute score is identified. We also propose a technique to
avoid redundant operations. In addition, to improve scalability,
we propose an approximate algorithm that iteratively and
greedily removes the vertices having the maximal attribute
score w.r.t. the query vertex set. We prove that the approximate
algorithm can achieve 2-approximation guarantee.

The main contributions of this paper are summarized as
follows:

• We propose a novel community model on attributed
graphs and study the VAC search problem. We prove that
the problem is NP-hard.

• We develop two efficient exact algorithms to solve the
VAC problem by integrating a set of pruning strategies.

• We propose a 2-approximation algorithm to significantly
accelerate the search process with bounded accuracy.

• We conduct extensive experiments on real networks to
demonstrate the performance of the proposed algorithms.

The rest of this paper is organized as follows. Section II
reviews related work. Section III formally defines the problem,

followed by the problem analysis in Section IV. Sections V
and VI present the exact and approximate algorithms, respec-
tively. Section VII reports the extensive experimental results.
Finally, Section VIII concludes the paper.

II. RELATED WORK

A. Community Search over Non-Attributed Graphs

Community search has been extensively studied since it was
first introduced by Sozio and Gionis [1]. There are several
surveys of community search [17]–[19]. In general, existing
works can be classified into two categories based on the type
of graphs, i.e., simple graphs or complex graphs.

The works of community search on simple graphs focus
on devising different community models, such as core-based
model [1]–[3], truss-based model [4]–[6], clique-based model
[7], [8], [20], [21], edge connectivity component (ECC)-based
model [22], [23], and query-biased density model [24].

Community search has also been investigated for complex
networks. Fang et al. [25] and Liu et al. [26] study the com-
munity search over directed graphs. Chen et al. [27] perform
the community search over the profiled graphs in which each
vertex has labels arranged in a hierarchical manner. Ebadian
and Huang [28] address the community search problem over
public-private graphs that consist of one public graph and
multiple private graphs.

B. Community Search over Attributed Graphs

Community search over attributed graphs considers both the
structure cohesiveness and attribute cohesiveness. According
to the query input, existing works of community search over
attributed graphs can be classified into two categories. The first
category takes both vertices and attributes as query input, and
returns the attribute-cohesive community containing the query
vertices [9]–[16]. The second category takes only attributes as
query input, and returns the community related to the query
attributes [29]–[31]. As can be seen, all these existing studies
require users to specify a set of attributes as query input,
which limits their applications. In contrast, in our proposed
community model no attributes need to be specified for a query
and the algorithm can find the community with highly similar
attributes.

Another related line of work is community detection over
attributed graphs (CDA) [32]–[36]. However, they differ from
the problem of community search over attributed graphs (CSA)
studied in this paper in several aspects [9], [10], [19]. First,
the goals are different. CDA usually detects all communities
in a graph, while CSA is query-dependent and aims to find
the communities containing a set of query vertices/attributes.
Second, the criteria of defining communities are different.
In CSA, the criteria of defining communities are based on
query parameters given by the users, e.g., k-truss. In contrast,
CDA often uses the same global criterion (e.g., modularity)
to detect communities. Third, the algorithms are different.
CSA solutions, usually supported by graph indexes, can search
communities very efficiently. In contrast, CSD solutions are
often time consuming and unscalable to big graphs, e.g.,

the clustering-based methods [37] need at least one scan of
the entire graph. It is worth mentioning that the seed-centric
approaches proposed for CDA (e.g., [38]–[40]) also cannot
be employed for our problem due to two main reasons: (1)
The community found by the seed-centric approaches may not
contain the initial seeds (recall our CSA problem requires that
the result community must contain the query vertices). (2) The
community model employed in our problem does not fit for the
seed-centric approaches due to their non-monotonic properties.
In addition, the seed-centric approaches do not provide quality
guarantees for the returned (approximate) solution, while
our proposed algorithm can achieve 2-approximation to the
optimal solution.

III. PROBLEM FORMULATION

We consider an undirected, unweighted, attributed graph
G = (VG, EG, AG), where VG is the set of vertices, EG is
the set of edges, and AG is the set of attributes associated
with vertices in G for describing vertex properties. Each vertex
v ∈ VG is associated with a set of attributes A(v) ⊆ AG.
Let n = |VG| and m = |EG| be the number of vertices and
edges, respectively. We denote the set of neighbors of a vertex
v as NG(v) in G, i.e., NG(v) = {u ∈ VG : (u, v) ∈ EG}.
When the context is obvious, we drop the subscript and denote
NG(v) as N(v). For a subgraph H = (VH , EH , AH) of
G, VH ⊆ VG, EH ⊆ EG, and AH ⊆ AG hold. Before
formally defining our problem, we first introduce the metrics
of structure cohesiveness and attribute cohesiveness employed
in our paper.

A. Structure Cohesiveness

In this paper, we employ k-truss [41] to measure the
structure cohesiveness of communities since it is well recog-
nized that k-truss has strong structural cohesiveness and high
computational efficiency. In particular, k-truss is defined on
triangles in a graph. A triangle, denoted as △uvw, is a cycle
of length 3 comprising three distinct vertices u, v, and w in G.
Based on triangles, we present the definitions of edge support
and k-truss as follows.

Definition 1. (Edge Support). The support of an edge e =
(u, v) ∈ EG, denoted as supG(e), is the number of triangles
containing e, i.e., supG(e) = |{△uvw : w ∈ N(u) ∩N(v)}|.

Definition 2. (Connected K-Truss). Given a graph G and an
integer k ≥ 2, a connected k-truss is a connected subgraph
H ⊆ G such that for every edge e ∈ EH , supH(e) ≥ k − 2.

Every edge in a connected k-truss H is contained in at
least k − 2 triangles in H . In addition, a maximal connected
k-truss H is the largest subgraph of G such that there exists no
connected k-truss H ′ ⊃ H . For example, in Figure 1, H1, H2,
and H3 are all 4-trusses as every edge in these three subgraphs
is contained in 2 triangles. In addition, since H2 ⊂ H1 and
H3 ⊂ H1, H1 is a maximal 4-trusses but H2 and H3 are not.
It is worth mentioning that our community model also can
be extended to other dense subgraph models, such as k-core
[1]–[3], k-clique [20], k-ECC [22], [23], and k-plex [21].

B. Attribute Cohesiveness

We define the attribute cohesiveness as follows. Given
two vertices u, v, we use the attribute score, denoted as
Ascore(u, v), to represent the attribute cohesiveness of u and
v in an attributed graph G. For different types of attributes,
we can employ different methods to compute the attribute
score of two vertices. For the sake of unity, we employ the
distance metric to measure the similarity of two vertices,
which satisfies the triangle inequality, i.e. Ascore(u, v) ≤
Ascore(u,w) + Ascore(w, v). For instance, assume that A(v)
represents the geo-location attribute of v, we use Euclidean
distance to compute the attribute score. Specifically, let A(v)i
be the i-th dimension of v, the attribute score of u and v

is Ascore(u, v) =
√∑d

i=1(A(u)i −A(v)i)2. In contrast, if
A(v) represents the textual information of v, the attribute
score Ascore(u, v) can be measured by Jaccard distance, i.e.,
Ascore(u, v) = 1 − |A(u)∩A(v)|

|A(u)∪A(v)| . Both Euclidean distance and
Jaccard distance satisfy the triangle inequality [42]. When
different types of attributes co-exist, we can employ a uni-
fied function to combine different distance functions, e.g.:
Ascore(u, v) = α · Sdist(u,v)

Sdistmax
+ (1 − α) · Tdist(u,v)

Tdistmax
, where

Sdist(u, v) and Tdist(u, v) compute the spatial distance and
textual distance, respectively; Sdistmax and Tdistmax are
the maximal spatial distance and maximal textual distance,
respectively, used for normalization; the parameter 0 ≤ α ≤ 1
is to balance the spatial proximity and textual relevancy. A
nice property of the unified function is that if both Sdist(u, v)
and Tdist(u, v) satisfy the triangle inequality, the triangle
inequality also holds for Ascore(u, v). Throughout this paper,
we consistently consider that a smaller attribute score is better.
Based on the attribute score of two vertices, we define the
attribute score for a subgraph as follows.

Definition 3. (Attribute Score). Given a subgraph H ⊆ G,
the attribute score of H , denoted as Ascore(H), is the maxi-
mum attribute score of two vertices in H , i.e., Ascore(H) =
maxu,v∈VH

Ascore(u, v).

Take the attributed graph in Figure 1 as an example again,
assume that we consider the user’s hobbies and employ
the Jaccard distance to compute the attribute score. We can
observe that Betty and Gerry share two common hobbies.
Thus Ascore(Betty,Gerry) = 1− 2

6 = 0.667. By calculating
the attribute score between every pair of users, we can get
Ascore(H1) = 1 and Ascore(H2) = 0.833.

C. Problem Formulation

Based on the definitions of structure cohesiveness and
attribute cohesiveness, we formulate the problem of vertex-
centric attributed community (VAC) search as follows.

Problem 1. (VAC-Problem). Given an attributed graph G =
(VG, EG, AG), a query set of vertices Q ⊆ VG, a parameter
k, the problem of vertex-centric attributed community search
returns a subgraph H ⊆ G satisfying the following properties:

• Query Participation. Q ⊆ VH ;

• Structure Cohesiveness. H is a connected k-truss, i.e.,
∀e ∈ EH , supH(e) ≥ k − 2;

• Attribute Cohesiveness. H has the smallest attribute
score;

• Maximality. There does not exist another subgraph H ′ ⊇
H satisfying the above three properties.

Back to Figure 1, and assume that we take Betty as query
vertex and set k = 4. As Ascore(H2) < Ascore(H1) and there
is no 4-truss subgraph whose attribute score is smaller than
H2, H2 is the optimal result for the VAC-problem.

IV. PROBLEM ANALYSIS

In this section, we analyze the VAC-problem from two
aspects, i.e., the hardness and free rider effect.

A. Hardness

We show that the VAC-problem is NP-hard in this section.
To this end, we define the decision version of the VAC-problem
and prove its decision problem is NP-hard.

Problem 2. (δVAC-Problem). Given an attributed graph G,
a set of query vertices Q ⊆ VG, two parameters k and δ,
the δVAC-problem is testing whether there exists a subgraph
H ⊆ G as a maximal connected k-truss containing Q such
that Ascore(H) ≤ δ.

Theorem 1. The δVAC-problem is NP-Hard.

Proof. We reduce a well-known NP-hard problem of Maxi-
mum Clique (decision version) to the δVAC-problem. Given a
simple graph G′ = (VG′ , EG′) and a parameter k′, the decision
version of the Maximum Clique problem is to check whether
G′ contains a clique of size k′.

To prove the hardness, we construct an instance of attributed
graph G = (VG, EG, AG) from G′, using the Jaccard distance
for attribute score. First, we copy G from G′ and then add one
dummy vertex vq into G. Second, we add the edges between
vq and every vertex u ∈ VG′ into G. Thus, VG = VG′ ∪ {vq}
and EG = EG′ ∪ {(vq, u) : u ∈ VG′}. Third, for each vertex
v ∈ VG, we assign the attribute A(v) = {e|e = (v, u) ∈
EG}. For two vertices v, u, the attribute score Ascore(u, v) is
defined as the Jaccard distance between A(v) and A(u), i.e.,
Ascore(u, v) = 1 − |A(u)∩A(v)|

|A(u)∪A(v)| . We set the input parameters
of the δVAC-problem on G as Q = {vq}, k = k′ + 1, and
δ = 1− 1

2|VG| . In the following, we show that the instance of
Maximum Clique decision problem is a Yes-instance iff the
corresponding instance of δVAC-problem is a Yes-instance.

(⇒) Assume that H is a k′-clique in G′. The corresponding
subgraph of G induced by vertices VH∪{vq} is denoted as H∗.
H∗ is a (k′+1)-clique and a connected k-truss containing vq .
For every pair of vertices v, u in H∗, A(u)∩A(v) = {(v, u)},
indicating Ascore(u, v) ≤ 1− 1

2|VG| = δ. Thus, there exists an
answer is a Yes-instance of the δVAC-problem.

(⇐) Assume that H is an answer to the δVAC-problem. H∗

is the corresponding subgraph of G′ induced by the vertices
VH−{vq}. For any two vertices u, v ∈ VH∗ , Ascore(u, v) ≤ δ,
meaning that (u, v) ∈ EH∗ . Hence, H∗ is a clique. Moreover,

H is a connected k-truss, indicating |VH | ≥ k and |VH∗ | ≥
k− 1 = k′. Thus, H∗ is a k′-clique and a Yes-instance of the
Maximum Clique decision problem.

In the same way, we can also prove the instance that we
add multiple dummy vertices into G when constructing the
attributed graph. The detailed proof is omitted due to space
limitations.

B. Avoiding Free Rider Effect

The free rider effect is an undesirable phenomenon for com-
munity search [1]. That is, some cohesive structure, irrelevant
to the query vertices, could be included in the community
answer. It has been shown that many models suffer from the
free rider effect such as the core-based model, quasi-clique
based model, and local modularity model [24]. Following [6],
we formally define the free rider effect as follows.

Definition 4. (Free Rider Effect). Given a community good-
ness metric f(·) (the smaller, the better). Let H and H∗ be
solutions of community search based on f(·) for the queries
Q ̸= ∅ and Q = ∅, respectively. If f(H ∪H∗) ≤ f(H), we
say that the community search based on f(·) suffers from free
rider effect.

For Q = ∅, the VAC-problem finds a maximal query-
independent connected k-truss H∗ ⊆ G such that Ascore(H)
is minimized. We have the following theorem.

Theorem 2. Let H and H∗ be the discovered communities
of the VAC-problem with Q ̸= ∅ and Q = ∅, respectively.
If H ̸= H∗ and H ∪ H∗ is connected, Ascore(H ∪ H∗) >
Ascore(H).

Proof. We prove it by contradiction. Assume that Ascore(H∪
H∗) ≤ Ascore(H). As H and H∗ are the discovered com-
munities of the VAC-problem with Q ̸= ∅ and Q = ∅,
both H and H∗ are connected k-trusses. If H ∪ H∗ is
connected, it is obvious that H ∪ H∗ is also a connected k-
truss. Moreover, H ̸= H ∪H∗ due to H ̸= H∗. In addition,
Ascore(H ∪H∗) ≤ Ascore(H), H ∪H∗ could be a subgraph
of the result of the VAC-problem with Q ̸= ∅. This contradicts
the maximality of the VAC-problem, because H is the result of
the VAC-problem with Q ̸= ∅ and H ⊂ H ∪H∗. Therefore,
the assumption Ascore(H ∪H∗) ≤ Ascore(H) does not hold,
but Ascore(H ∪H∗) > Ascore(H) holds.

Note that, if H = H∗ holds, H = H ∪H∗ is still the result
of the VAC-problem; if H∪H∗ is disconnected, H∪H∗ is not
a qualified answer of the VAC-problem. Therefore, according
to Theorem 2, we conclude that the VAC-problem can avoid
the free rider effect.

V. EXACT ALGORITHMS

In this section, we first introduce an overview framework
of exact algorithms. Then, we present two exact approaches
for the VAC-problem. One approach enumerates all candidate
subgraphs in a depth-first-search (DFS) manner; the other
enumerates all candidate subgraphs in a best-first-search (BFS)

Algorithm 1 A Framework of Exact Algorithms
Input: attributed graph G; query vertex set Q; integer k
Output: a VAC H∗ with the smallest attribute score

1: Tk ← compute the maximal k-truss of G [4];
2: H ← compute all the connected k-trusses containing Q based

on Tk;
3: Compute Ascore(H) for each connected k-truss H ∈ H;
4: H∗ ← argminH∈H Ascore(H);
5: return H∗;

manner. Several heuristic strategies are proposed to speed up
the search process of both algorithms.

A. An Overview Framework of Exact Algorithms

Let us firstly consider a naive exact algorithm. One straight-
forward method for the VAC-problem is to enumerate all the k-
trusses containing the query set Q. Then, it returns an answer
of maximal k-truss with the smallest attribute score among
all candidate k-trusses. To find all the k-trusses, we need to
enumerate all the possible subgraphs of G, which has a total
of O(2n) subgraphs in worst. In addition, for each subgraph, it
takes O(m1.5) and O(n2×|AG|) time to compute the k-truss
and attribute score, respectively. As a result, the overall time
complexity of this naive algorithm is O(2n(m1.5+n2×|AG|)).
Obviously, it is extremely time consuming. Recall that, accord-
ing to the connectivity constraint, all the connected k-trusses
are the subgraphs of the maximal k-truss [6]. By exploiting
this property of k-truss, the enumeration of subgraphs only
need to start from the maximal k-truss rather than the entire
graph G. This reduces the search space substantially.

Algorithm 1 describes our framework of exact algorithms.
First, the algorithm computes the maximal k-truss Tk of graph
G, which invokes a simple k-truss index-based method [4].
Then, Algorithm 1 enumerates all connected k-trusses H
containing Q, and computes the attribute score Ascore(H)
(lines 2-3). Finally, a connected k-truss H∗ with the smallest
attribute score is returned as the answer (lines 4-5). Assume
that mk and nk are the number of edges and vertices of
Tk, respectively. The time complexity of Algorithm 1 is
O(2nk(mk

1.5+nk
2×|AG|)), where nk << n and mk << m

for large k.

B. DFS-based VAC Algorithm

In this section, we propose an exact algorithm for the VAC-
problem based on DFS. We develop several pruning strategies
to improve the efficiency of Algorithm 1.

The limitation of Algorithm 1 is that it needs to enumerate
all the subgraphs of the maximal k-truss. The enumeration
process can be represented as a binary search tree. In the
search tree, each non-leaf node has two branches. One branch
considers to add a candidate vertex to the subgraph; the
other deletes the candidate vertex. Each leaf node represents
a subgraph of the maximal connected k-truss containing Q.
For example, Figure 2(b) shows a binary search tree for a
graph G in Figure 2(a). For the non-leaf node N1, its left
branch adds vertex q to the subgraph; its right branch deletes
q. The leaf node N7 denotes the subgraph of G induced

by vertices {q, v1, v2, v3, v4}, i.e., the whole maximal k-truss
G. Actually, the whole tree has many unnecessary subgraphs
as infeasible answers. For instance, our community should
contain the query vertex q. Thus, the left branch of N1 can be
safely pruned.

To address the above limitation, we propose a DFS-based
VAC algorithm for traversing the binary search tree, which
prunes infeasible and unnecessary answers as many as possi-
ble. For efficient search, we maintain additional information in
every search tree node, including C, M , and H . Specifically, C
denotes the set of candidate vertices that may be considered
as answers; M is the set of vertices that are selected from
C, which should be in the result; and H is the maximal
connected k-truss of C ∪ M . In addition, we dynamically
maintain the best answer H∗, which has the smallest attribute
score currently. For simplicity, we define two branches of a
non-leaf node as add branch and delete branch below.

• Add branch: a vertex v ∈ C is deleted from C and
added into M .

• Delete branch: a vertex v ∈ C is deleted from C but not
added into M .

In the following, we present several heuristic strategies
for pruning search space. We develop three kinds of rules
including add branch rules, delete branch rules, and vertex
selection order.

Add Branch Rules. For the add branch, a vertex v is added to
M and deleted from C. Note that H in the add branch does not
change as M +C remains unchanged. For simplicity, we use
Ascore(v+M) to represent the attribute score of the induced
subgraph of the maximal k-truss by vertices {v} ∪ M . We
have the following pruning rules for the add branch.

Rule 1. If Ascore(v+M) > Ascore(H∗), the add branch can
be pruned.

If Ascore(v +M) > Ascore(H∗), the subgraph containing
v+M has larger attribute score than that of the current optimal
k-truss H∗. Thus, v+M cannot become a better answer and
the add branch can be pruned.

Rule 2. If Ascore(v + M) = Ascore(H∗) and |C + M | <
|VH∗ |, the add branch can be pruned.

If Ascore(v + M) = Ascore(H∗), the subgraph composed
by |v+M | has the attribute score no smaller than that of the
current optimal k-truss H∗. If |C+M | < |VH∗ |, the cardinality
of the subgraph composed by |v +M | is smaller than that of
H∗. Recall that the optimal solution of the VAC-problem is
with the minimum attribute score and the maximal structure.
Thus, the add branch can be pruned.

Rule 3. If Ascore(v +M) = Ascore(H), the add branch can
be pruned.

If Ascore(v+M) = Ascore(H), the attribute score and the
maximum size of the subgraph composed by v+M are equal
to Ascore(H) and |VH |, respectively, meaning that we can
directly identify the k-truss with the minimal attribute score

v1(b, c, d) v2(a, b, d)

v3(a, b)v4(c, d, e)

q(a, b, c)

(a) Toy Graph

(a, b, d)

+v1 -v1

+v2 -v2

+v3 -v3

-v4-v4 +v4

N2

N3

N4

N5 N6

N8 N9

+q -q
N1

N10N7

+v4

(b) Binary Search Tree

+v1 -v1

+v2 -v2

+v3 -v3

-v4-v4 +v4

N2 N11

N3

N4

N5 N6 N8

N1

+v4

N10

N9

N7

(c) DFS-based Search Tree

+v4 -v4

-v1-v3 +v1

N1

N2

N3 N4 N6 N7

N5

+v3

(d) DFS-based Search Tree

-v3 -v4

-v4

N1

N2

N4

N3

N5

-v1

(e) BFS-based Search Tree
Fig. 2: Illustrations for Exact Algorithms

and the maximal size in this branch and need not traverse to
the leaf nodes. Therefore, the add branch can be pruned.

Delete Branch Rules. For the delete branch, a vertex v is
deleted from C but it is not added to M . Correspondingly, as
M + C changes, we need to maintain the induced subgraph
formed by M + V − v as k-truss. Assume that H and H ′ are
the k-trusses of M + C and M + C − v, respectively. Next,
we present several pruning rules based on H ′.

Rule 4. If VH −VH′ ̸= ∅, VH −VH′ can be deleted from C.

The vertex set VH−VH′ denotes the vertices that need to be
deleted to maintain M+C−v as k-truss. After deleting v, any
vertex that violates the k-truss constraint cannot contribute to
the final result. Hence, such vertices can be deleted from C.

Rule 5. If (VH − VH′) ∩ M ̸= ∅, the delete branch can be
pruned.

Recall that M is the vertex set that should be in the subgraph
in this branch and (VH −VH′) is the vertex set that should be
deleted. If (VH − VH′)∩M ̸= ∅, it contradicts to each other.
Thus, the vertex v cannot be deleted and the delete branch can
be pruned.

Rule 6. If Ascore(M) = Ascore(H ′), the delete branch can
be pruned.

The rationale of this rule is the same as that of Rule 3. The
only difference is that Rule 6 is invoked when Ascore(H ′)
varies while for Rule 3 the left part is the trigger.

Vertex Selection Order. We make an observation. At each
node in the binary search tree, a vertex is selected from C
to expand candidate subgraphs. A straightforward method is
to select the vertex randomly. However, we find that different
orders of vertex selection yield binary search trees with differ-
ent cardinalities (i.e., the number of tree nodes), which finally
influences the performance of the algorithm. For example,
Figures 2(c) and 2(d) shows two search trees with different
vertex selection orders. The search tree in Figure 2(c) is larger
than the tree in Figure 2(d). Intuitively, the smaller size of
binary search, the better performance of the algorithm. Thus,
we would like to find a vertex selection order to make the
binary search tree as small as possible.

To generate a small binary search tree, disqualified nodes
should be deleted as early as possible. According to our
pruning rules, if we want to prune the add branch as soon as
possible, we should select a vertex to maximize Ascore(v +

M). If we want to prune the delete branch as soon as
possible, we should select a vertex to maximize |VH − VH′ |.
However, to compute |VH − VH′ | for every vertex in C is
time consuming. Instead, we select a vertex with the largest
degree. The rationale behind it is that the larger degree of a
vertex, the higher probability that it may be involved in more
triangles. Hence, it will have a higher probability to maximize
the |VH − VH′ |. Based on the above analysis, we present the
vertex selection rule.

Rule 7. When selecting a vertex from C for subgraph ex-
pansion, we (i) first select the vertex having the maximum
Ascore(v+M); and (ii) if there are multiple vertices satisfying
(i), we select the vertex with the maximum degree among them.

Algorithm. The DFS-based VAC algorithm is outlined in
Algorithm 2. This algorithm integrates all the pruning strate-
gies in Rules 1-7. Algorithm 2 first computes the maximal
connected k-truss containing the query vertex set, calculates
its attribute score, initializes H∗, C, and M (lines 1-4). Then,
the algorithm invokes the procedure BST to find the optimal
solution by traversing the binary search tree. In procedure of
BST, if C = ∅, it means that we arrive at a leaf node. Thus,
the procedure updates the optimal solution and stops (lines 6-
7). Otherwise, the procedure BST selects a vertex to expand
according to Rule 7. First, it adds the selected vertex to M and
checks the add branch using Rules 1-3 (lines 10-16). Then, it
deletes the selected vertex from C and examines the delete
branch using Rules 4-6 (lines 17-23).

Complexity Analysis. Let |TDFS | be the cardinality of the
binary search tree of the DFS-based VAC algorithm, hTDFS

be the height of binary search tree. The space complexity of
the DFS-based VAC algorithm is O(hTDFS

×mk). It is because
the algorithm traverses the tree in a depth first manner. Thus,
its space complexity is the height of the search tree times
the node capacity, which equals O(hTDFS

× mk). The time
complexity of the DFS-based VAC algorithm is O(|TDFS | ×
m1.5

k + n2
k × |AG|). It first computes the maximal k-truss and

its corresponding attribute score, whose time complexity is
O(mk+n2

k×|AG|). Then, the algorithm invokes the procedure
BST to find the k-truss with the minimum attribute score,
whose performance is determined by the cardinality of the
search tree. For tree nodes in the delete branch, the algorithm
needs to maintain the k-truss, whose time is O(m1.5

k). For
tree nodes in the add branch, the algorithm just checks the
rules, whose time is O(1). Thus, the time complexity of the

Algorithm 2 DFS-based VAC Algorithm
Input: attributed graph G; query vertex set Q; integer k
Output: the k-truss H∗ with smallest attribute score

1: H ← compute the maximal k-truss of G [4];
2: Compute the attribute score Ascore(H);
3: H∗ ← H; C ← VH −Q; M ← Q;
4: BST(C, M , H , H∗);
5: return H∗

Procedure BST(C, M , H , H∗)
6: if C = ∅ then
7: Update H∗;
8: else
9: Select a vertex v ∈ C according to selection strategy;

//processing add branch
10: if Ascore(M + v) = Ascore(H) then
11: Update H∗;
12: else
13: if Ascore(M + v) = Ascore(H) =

Ascore(H∗) then
14: Update H∗;
15: else if Ascore(M + v) < Ascore(H) then
16: BST(C − v, M + v, H , H∗);

//processing delete branch
17: H ′ ← H − {v};
18: Maintain H ′ as k-truss containing Q;
19: if H ′ ̸= ∅ and ({VH − VH′ − v} ∩M ̸= ∅) then
20: if Ascore(H ′) = Ascore(M) then
21: Update H∗;
22: else
23: BST(C − VH + VH′ , M , H ′, H∗);

TABLE I: Illustration of Algorithm 2 on Graph in Figure 2(a).
Node M C H H∗

N1 q v1, v2, v3, v4 q, v1, v2, v3, v4 q, v1, v2, v3, v4
N2 q, v4 v1, v2, v3 q, v1, v2, v3, v4 q, v1, v2, v3, v4
N3 q, v4, v3 v1, v2 q, v1, v2, v3, v4 q, v1, v2, v3, v4
N4 q, v4 v1, v2 q, v1, v2, v4 q, v1, v2, v4
N5 q v1, v2 q, v1, v2 q, v1, v2
N6 q, v1 v2 q, v1, v2 q, v1, v2
N7 q v2 ∅ q, v1, v2

procedure BST is O(|TDFS | ×m1.5
k). In total, the DFS-based

VAC algorithm takes O(|TDFS | ×m1.5
k + n2

k × |AG|) time.

Example 1. We use the graph in Figure 2(a) to illustrate the
DFS-based VAC algorithm. Assume that q is the query vertex
and k = 3. Figure 2(d) depicts the search tree of the DFS-
based VAC algorithm and Table I shows the corresponding
node contents. First, the root node N1 is initialized using the
maximal 3-truss, i.e., the whole graph. Then, the vertex v4 is
selected from the candidate set for processing as it has the
maximum Ascore(v +M). When adding v4 to M , we arrive
the node N2. Then, we select the vertex v3 for processing and
get nodes N3 and N4, which are all pruned according to Rule
3. Next, the algorithm returns to process the delete branch of
node N1 and gets the node N5, during which we get the 3-
truss composed by q, v1, v2. The algorithm continues until all
nodes are visited. Finally, the 3-truss composed by q, v1, v2 is
returned as the final result.

C. BFS-based VAC Algorithm

This section proposes a BFS-based algorithm for the VAC-
problem.

Observation. We begin with an important observation. Re-
call that the VAC-problem is to find the k-truss with the

minimum attribute score. Given two k-trusses T1 and T2

satisfying T2 ⊆ T1 and Ascore(T1) > Ascore(T2), to find
T2 from T1, from the attribute score’s perspective, we must
break the relationship of vertices in T1 having the maximum
attribute score. In other words, let vertices u, v ∈ T1 satisfy
Ascore(u, v) = Ascore(T1), to get the k-truss T2, we must
delete at least one of u and v from T1. Otherwise, we cannot
get a k-truss with an attribute score smaller than T1.

Based on the above observation, we propose the BFS-based
VAC algorithm, which searches the answer in a best first man-
ner. The basic idea is that for each candidate k-truss containing
Q, we first find the vertex pair (u, v) having the maximal
attribute score. Then, we split it into two smaller k-trusses
containing Q by deleting the vertices u and v, respectively.
The process continues until there is no k-truss containing
Q. For the BFS-based VAC algorithm, we want to highlight
two points. First, when deleting the vertex contributing to the
maximal attribute score, we only delete the vertex which does
not belong to the query vertex set. This is obvious as the query
vertex set must be contained in the k-truss according to the
definition. Second, when we delete the vertex and generate
the new smaller k-truss, we will get at most 2 new k-trusses
for each original k-truss. As the deletion goes on, there will
be numerous k-trusses, which is inefficient. To this end, we
employ the following lemma to keep the number of k-trusses
as small as possible.

Lemma 1. Let H = {H1,H2,} be the set of k-trusses
generated by iteratively deleting the vertices having the max-
imum attribute score. For Hi, Hj ∈ H, if Hi ⊆ Hj , Hi can
be safely pruned.

Proof. We prove the correctness from two following instances:
(i) Hi does not contain k-truss with a smaller attribute score.

If Ascore(Hi) = Ascore(Hj), Hi can be pruned as |Hi| <
|Hj |. If Ascore(Hi) < Ascore(Hj), we can find another H ′

j by
iteratively deleting the vertex with the maximal attribute score
from Hj such that Ascore(Hi) = Ascore(H ′

j) and Hi ⊆ H ′
j .

Thus, Hi can also be pruned as |Hi| ≤ |H ′
j |.

(ii) Hi contains k-truss H ′
i with Ascore(H ′

i) < Ascore(Hi).
We can also find a k-truss H ′

j by iteratively deleting the
vertex with the maximal attribute score from Hj such that
Ascore(H ′

j) = Ascore(H ′
i) and H ′

i ⊆ H ′
j . Obviously, H ′

j is a
better answer than H ′

i .

Algorithm. Algorithm 3 describes the details of the BFS-based
VAC algorithm using Lemma 1 for pruning. The algorithm first
computes the maximal k-truss containing the query vertex set
and uses it for initialization (lines 1-4). Here, H is used to
store the k-trusses generated by iteratively deleting the pair of
vertices having the maximum attribute score. In each iteration,
the algorithm invokes the procedure Delete on every k-truss in
H to find the k-truss with a smaller attribute score by deleting
the vertices having the maximum attribute score respectively
(lines 6-10). After all k-trusses are processed, the algorithm
applies Lemma 1 to prune the k-truss (lines 11-13). The
procedure Delete deletes the vertex and maintains the k-truss

Algorithm 3 BFS-based VAC Algorithm
Input: attributed graph G; query vertex set Q; integer k
Output: the k-truss H∗ with smallest attribute score

1: H ← compute the maximal k-truss of G [4];
2: Compute the attribute score of H;
3: Push H into H;
4: H∗ ← H;
5: while H ̸= ∅ do
6: for each k-truss H ∈ H do
7: Let u, v ∈ VH be the vertex satisfying

Ascore(u, v) = Ascore(H);
8: Delete(u, H , H∗, H, Q);
9: Delete(v, H , H∗, H, Q);

10: H ← H−H;
11: for ∀ H ′, H ∈ H do
12: if H ′ ⊆ H then
13: H ← H−H ′ ;
14: return H∗

Procedure Delete(v, H , H∗, H, Q)
15: if v /∈ Q then
16: H ← H − v;
17: Maintain H as k-truss;
18: if H ̸= ∅ and Q ⊆ H then
19: if (Ascore(H) = Ascore(H∗) and |VH∗ | < |VH |)

or (Ascore(H) < Ascore(H∗)) then
20: H∗ ← H;
21: if Ascore(Q) ̸= Ascore(H) then
22: Push H into H;

after deletion (lines 16-17). Then, the procedure uses the new
k-truss to update H∗(lines 19-20). If Ascore(Q) = Ascore(H),
the new k-truss cannot contain any k-truss with a smaller
attribute score, so it is pruned. Otherwise, the new k-truss
is inserted into H for further examination (lines 21-22).

Complexity Analysis. Let |H|max be the maximum size of
H, |TBFS | be the cardinality of the search tree of the BFS-
based VAC algorithm. The space and time complexities of
the BFS-based VAC algorithm are O(|H|max × mk) and
O(|TBFS | ×m1.5

k + n2
k × |AG|), respectively. The BFS-based

VAC algorithm first computes the maximal k-truss and its
attribute score, whose time complexity is the same as that of
the DFS-based VAC algorithm. Then, for each candidate k-
truss in H, the BFS-based VAC algorithm deletes the pair of
vertices having the maximum attribute score respectively and
generates two new k-trusses. Thus, the space complexity of the
BFS-based VAC algorithm is determined by the maximum size
of H and the space complexity is O(|H|max ×mk). As each
deletion needs to maintain the k-truss, whose time is O(m1.5

k).
Thus, the time complexity of the BFS-based VAC algorithm
is determined by the number of k-trusses enumerated, which
is equal to the cardinality of the search tree of the BFS-based
VAC algorithm. Hence, it is O(|TBFS | ×m1.5

k + n2
k × |AG|).

Example 2. We also illustrate the BFS-based VAC algorithm
using the graph in Figure 2(a). Figure 2(e) shows its search
tree. N1 is initialized with the maximal 3-truss. Then, we select
the vertex pair with the maximum attribute score, i.e., (v3, v4).
After deleting v3 and v4 respectively, we get two 3-trusses
N2 = {q, v1, v2, v4} and N3 = {q, v1, v2}. Then, the two 3-
trusses are used to update H∗, i.e., H∗ = {q, v1, v2}. As N3 ⊂
N2, the node N3 is pruned. Next, the node N2 is processed.
The algorithm continues until no 3-truss exists. Finally, the

3-truss composed by {q, v1, v2} is returned as the optimal
solution, which is consistent with the result of the DFS-based
VAC algorithm.

D. Extension to Other Community Models
In this section, we discuss how to extend the two exact

algorithms to other dense subgraph-based community models,
e.g., k-core, k-edge-connected component, and k-clique. Take
k-core as an example. Recall that both the exact and approx-
imate algorithms proposed in our work follow a filter-and-
refinement framework, i.e., they first find an upper bound (i.e.,
maximal k-truss) of the result and then refine it to obtain the
final result. We can slightly modify these two phases to make
our algorithms work for the k-core model. More specifically,
for the filter phase, we should compute the maximal connected
k-core containing the query vertices; for the refinement phase,
the updating algorithm should maintain the remaining graph
as a connected k-core after removal of vertices and edges.

VI. APPROXIMATE ALGORITHM

In this section, we first analyze the non-approximability of
the VAC-problem. Then, we introduce an approximate algo-
rithm for the VAC-problem. We also give a detailed analysis
of approximation and complexity for the proposed algorithm.

A. Non-Approximability
We start with a definition of approximation ratio. Assume

that H∗ and H are the results of exact and approximate
algorithms for the VAC-problem, respectively. For α ≥ 1, we
say that an approximate algorithm achieves α-approximation
to the optimal answer H∗ or within an approximate factor of
α, if and only if, (1) H contains Q; (2) H is a connected
k-truss; and (3) Ascore(H) ≤ α ·Ascore(H∗). In other words,
the approximation ratio α is defined on the attribute score of
communities.

We next prove the non-approximability. We establish this
result of non-approximability through a reduction from NP-
hard problems. Again, we reduce the Maximum Clique deci-
sion problem to the approximation of the VAC-problem. Recall
that, to prove the hardness of the VAC-problem, we construct
an attributed graph G from a simple graph G′ in Theorem 1.
Without loss of generality, assume that |VG| = n and n ≥ 3.

Theorem 3. Given an attributed graph G in Theorem 1 and
a number k ≥ 2, the k-clique H ⊆ G, Ascore(H) ≤ 2n−4

2n−3 .

Proof. For v, u ∈ VH , if there is an edge between u
and v, then Ascore(u, v) = 1 − A(u)∩A(v)

A(u)∪A(v) = 1 −
1

degG(u)+degG(v)−1 ≤ 1 − 1
2n−3 = 2n−4

2n−3 . Therefore,
Ascore(H) = maxu,v∈VH

Ascore(u, v) ≤ 2n−4
2n−3 .

Theorem 4. Unless P = NP , for any ε > 0, the VAC-
problem cannot be approximated in polynomial time within a
factor (2n−3

2n−4 − ε).

Proof. Assume that there exists an approximate algorithm A
which returns a polynomial-time solution H with an approxi-
mation factor (2n−3

2n−4 − ε) with respect to the optimal solution
H∗. Then, we have Ascore(H) ≤ (2n−3

2n−4 − ε) · Ascore(H∗).

Next, we employ this approximate solution to exactly
solve the Maximum Clique decision problem as follows. If
Ascore(H) < 1, the optimal solution H∗ has Ascore(H∗) <
Ascore(H) < 1, meaning that every pair of vertices in the sim-
ple graph G′ has an edge. Thus, G′ has a clique of size k−|Q|.
If Ascore(H) = 1, we have (2n−3

2n−4)·Ascore(H
∗) > (2n−3

2n−4−ε)·
Ascore(H∗) ≥ Ascore(H) = 1. Thus, Ascore(H∗) > 2n−4

2n−3 ,
which is in contradiction to Theorem 3. Hence, G cannot
contain a k-truss. Combining the above two instances, we
can claim that G contains a clique of size k if and only if
the approximate algorithm A can return a solution H with
Ascore(H) < 1. However, the Maximum Clique decision
problem cannot be solved in polynomial time unless P = NP .
Therefore, the theorem is proved.

Therefore, we prove that the VAC-problem cannot be ap-
proximated within a factor better than 2n−3

2n−4 . The prospects
for an effective α-approximate algorithm is very challenging,
especially for a small value of α. In view of this result, we
propose a 2-approximation algorithm in the next section.

B. 2-Approximation Algorithm

Due to the non-approximability within a factor of 2n−3
2n−4

where 1 < 2n−3
2n−4 < 2, we present an approximate algorithm

that computes the solution in a greedy manner. We start by
computing the query attribute scores. For a vertex v ∈ VG,
the query attribute score of v, denoted as Ascore(v,Q), is the
maximum attribute score of v and q ∈ Q, i.e., Ascore(v,Q) =
maxq∈Q Ascore(v, q).

The basic idea of the approximate algorithm is as follows.
It first computes the maximal k-truss containing the query
vertex set. Then, it iteratively deletes the vertices with the
largest query attribute score. Meanwhile, it maintains the
remaining graph as a connected k-truss containing Q. Algo-
rithm 4 outlines the details of the 2-approximation algorithm.
Specifically, it first computes the maximal connected k-truss
H containing Q for a given parameter k from G (line 1).
For each vertex v in H , Algorithm 4 computes the query
attribute score Ascore(v,Q) (line 2). It then selects one vertex
v with the maximum query attribute score (line 5). Next,
the algorithm deletes v and its incident edges (line 6) and
maintains a connected k-truss, by iteratively removing the
disconnected nodes and edges whose support is less than k
(line 7). The algorithm repeats the above step until there exists
no connected k-truss containing Q. Finally, the last feasible
connected k-truss H∗ is returned as the answer (line 8). In
addition, the approximate algorithm can be easily extended to
other community models with only two modifications, just like
the exact algorithms discussed in Section V-D.

Example 3. We again use the graph in Figure 2(a) to illustrate
the approximate VAC algorithm. First, H∗ is initialized by the
whole graph. Then, v4 is selected for deleting as Ascore(v4, q)
is maximum. After deleting v4, we get a new k-truss composed
by {q, v1, v2}, which is used to update H∗. Next, v1 is
selected for deletion. After deleting v1, there does not exist
k-truss. Thus, the algorithm stops and the k-truss composed

Algorithm 4 Approximate VAC Algorithm
Input: attributed graph G; query vertex set Q; integer k
Output: vertex-centric attributed community H∗

1: H ← compute the maximal k-truss of G [4];
2: Computing Ascore(v,Q) for every vertex v ∈ VH ;
3: while Q ⊆ VH do
4: H∗ ← H;
5: Let v be a vertex with the maximum Ascore(v,Q);
6: Delete vertex v and its incident edges from H;
7: Maintain H as a connected k-truss containing Q by

removing the disqualified vertices/edges from H;
8: return H∗

by {q, v1, v2} is returned, which is the same as the results of
exact algorithms.

C. Approximation and Complexity Analysis

We show that Algorithm 4 can achieve 2-approximation to
the optimal solution. Let H and H∗ be the solutions returned
by Algorithm 4 and exact algorithms, respectively.

Lemma 2. Ascore(H,Q) ≤ Ascore(H∗, Q), where
Ascore(H,Q) = maxv∈VH

Ascore(v,Q).

Proof. As shown in Algorithm 4, both H and H∗ are the
subgraphs of the maximal connected k-truss. In the following,
we prove the lemma by considering two possible relationships
between H and H∗.

(1) H∗ ⊆ H . We can find a vertex v ∈ VH , which has the
maximum query attribute score in both H and H∗. This is
because if v ∈ H but v /∈ H∗, we can get a new k-truss after
deleting v from H , which is in contradiction to the approxi-
mate algorithm. As H∗ ⊆ H , Ascore(v,Q) = Ascore(H∗, Q).
Thus, Ascore(H,Q) = Ascore(H∗, Q).

(2) H * H∗. Let HM be the maximal k-truss. Then,
we have the following two relationships: (i) H ⊆ ... ⊆
Hi+1 ⊆ Hi ⊆ ... ⊆ HM , where Hi is the intermediate k-truss
generated by the approximate algorithm; (ii) H∗ ⊆ HM . We
can find a Hi such that H∗ ⊆ Hi and H∗ * Hi+1. Also, let
the vertex v ∈ VHi satisfying that v has the maximum query
attribute score. We can get that v also belongs to H∗. This is
because if v is not contained in HE , H∗ ⊆ Hi+1. It contradicts
our assumption. Hence, Ascore(H∗, Q) = Ascore(Hi, Q) ≥
Ascore(Hi+1, Q) ≥ Ascore(H,Q).

Combining above two instances, we prove Lemma 2.

Theorem 5. Algorithm 4 returns a 2-approximation solution
for the VAC-problem.

Proof. Assume that Ascore(H∗) = Ascore(v1, v2) and
Ascore(H∗, Q) = Ascore(v3, Q), where v1, v2, v3 ∈ VH∗ .
Since we employ the distance metric to compute the at-
tribute score, it satisfies the triangle inequality. In other
words, Ascore(H∗) = Ascore(v1, v2) ≤ Ascore(v1, Q) +
Ascore(v2, Q) ≤ 2Ascore(v3, Q) = 2Ascore(H∗, Q), which
also holds for H . Combining with Lemma 2, we can infer that
Ascore(H)

2 ≤ Ascore(H,Q) ≤ Ascore(H∗, Q) ≤ Ascore(H∗).
As a result, Ascore(H) ≤ 2Ascore(H∗).

TABLE II: Network statistics (K = 103 and M = 106)
Dataset |V | |E| dmax kmax |A| |A(v)|
Facebook 1.9K 8.9K 416 96 576 12
DBLP 41.3K 210.3K 152 35 29 2
Brightkite 58.2K 214.1K 567 43 116K 2
Gowalla 196.6K 950.3K 7365 29 393K 2
Tencent 1.3M 9.6M 126870 39 255K 7
Poket 1.6M 22.3M 7427 29 232K 4

Complexity Analysis. Let l be the number of iterations in
Algorithm 4. The space and time complexities of Algorithm 4
are O(mk) and O(l×m1.5

k), respectively. As Algorithm 4 only
keeps a single k-truss of G, the space complexity is O(mk).
For each iteration, Algorithm 4 needs to maintain a connected
k-truss. The overall time complexity of is O(l ×m1.5

k).

VII. EXPERIMENTS

In this section, we experimentally evaluate our proposed
algorithms. All experiments are conducted on a Linux Server
with 2.10 GHz six-core CPU and 188 GB memory running
Ubuntu 16.04.6. The algorithms are implemented in C++.

A. Experimental Settings

Datasets. We use six real-world attributed graphs, which are
often applied to evaluate the methods of attributed community
analysis [10], [11], [33], in the experiments. Table II sum-
marizes the statistics of the six attributed graphs. Facebook,
DBLP, Pokec, and Tencent1 are textual attributed graphs,
in which we adopt Jaccard distance to calculate attribute
scores. Specifically, Facebook, Pokec, and Tencent are social
networks. The attributes of a vertex are the user’s features
extracted from the profiles. Note that Facebook contains the
ground-truth communities. DBLP is a co-authorship graph
built from the DBLP digital library.2 The vertex attributes are
the conferences or journals, such as VLDB, SIGMOD, ICDE,
where the author has published at least one paper. Brightkite
and Gowalla are two location attributed graphs. For these
two networks, we employ Euclidean distance to compute the
attribute score. Note that Facebook, Brightkite, Gowalla, and
Pokec are all downloaded from SNAP.3 For the sake of space
limit, we only report our results on Facebook and Gowalla.
Similar results can be found on other datasets.

Queries and Parameters. We evaluate our model and algo-
rithms by varying various parameter settings, including the
query size |Q|, the parameter k, and the graph cardinality
|VG|. In each experiment, we run 200 queries for attributed
community search on all datasets and report the average
results. For each query, we randomly select a set of query
vertices Q from a graph.

B. Model Evaluation on Ground-truth Communities

Algorithms and Metrics. To evaluate the effectiveness of
the vertex-centric community search on attributed graphs, we
compare our exact algorithm in Algorithm 3 (ETruss) and

1http://www.kddcup2012.org/c/kddcup2012-track1
2https://dblp.uni-trier.de/xml/
3http://snap.stanford.edu/

approximate algorithm in Algorithm 4 (ATruss) with existing
truss-based community search methods, i.e., attribute-driven
community search (ATC) [11] and k-truss community search
(KCS) [4]. Moreover, we extend our exact and approximate
algorithms to the k-core-based community model, denoted
by ECore and ACore, respectively. To measure the quality
of communities, we use the quality metrics of precision,
community structure similarity (CSS), and community at-
tribute similarity (CAS). In particular, assume that H is the
community discovered by algorithms and Ĥ is the ground-
truth community, then

precision(H) =
|VH ∩ VĤ |

|VH |

CSS(H) =
1

|VH |2
∑
u∈VH

∑
v∈VH

N(u) ∩N(v)

N(u) ∪N(v)

CAS(H) =
1

|VH |2
∑
u∈VH

∑
v∈VH

A(u) ∩A(v)

A(u) ∪A(v)

In addition, we report the running time for all algorithms.

Exp-1: The effect of |Q| on the effectiveness and efficiency.
We vary the number of query vertices |Q| from 1 to 8
to evaluate the effectiveness and efficiency of all methods.
Figures 3(a)-(d) show the results of all methods on the
Facebook dataset. Figures 3(a)-(b) show the results of CSS
and CAS. As expected, ETruss outperforms ATruss. Both of
them perform better than both ACT and KCS in all cases
tested, meaning that the communities returned by our model
are more cohesive than those of ACT and KCS in terms
of both topology structure and community attributes. Note
that ECore and ACore achieve the worst CSS performance
among all methods. Figure 3(c) shows the precision results.
The ETruss and ATruss methods again perform better than
the others, indicating that the communities returned by our
model are more similar to the ground-truth. Figure 3(d) shows
the runtime results. The two exact algorithms ETruss and
ECore take the longest time. This is because they need to
explore the whole search space of k-truss/k-core enumerations.
Among all methods, ACore takes the least time due to the easy
computation of k-core.

Exp-2: The effect of k on the effectiveness and efficiency.
Next, we evaluate the effectiveness and efficiency of all
methods by varying parameter k from 8 to 20. Figures 4(a)-(d)
report the results on the Facebook dataset. Again, our methods
ETruss and ATruss have the best performance among all in
terms of CSS, CAS, and precision. When k increases, we find
that both CSS and CAS decrease for the methods ETruss,
ATruss, ECore, and ACore. This is because the maximal k-
truss/k-core found in the first step of the algorithms becomes
smaller with the increased k. As a result, those vertices that
contribute to high cohesiveness are missing from the answers.
Thus, CSS and CAS decrease. It is interesting to note that the
trends of precision are not stable in both Figures 3(c) and 4(c).
This is because k takes different optimal values for different
query vertices.

ATC KCSETruss ATrussECore ACore

2 4 6 8

|Q|
1

0.6

0.5

0.4

0.3

0.2

C
S
S

(a) CSS

2 4 6 8

|Q|
1

0.31

0.28

0.25

0.22

C
A
S

(b) CAS
0.8

0.4

0.2

0.6

P
re
c
is
io
n

2 4 6 8

|Q|
1

(c) Precision

2 4 6 8
|Q|

1

101

10-1

10-3T
o

ta
l

ru
n

n
in

g
 t

im
e

(s
ec

) 103

(d) Runtime
Fig. 3: Model Evaluation on Facebook for |Q|

ATC KCSETruss ATrussECore ACore

0.6

0.4

0.2

0

C
S
S

8 12 16 20
k

(a) CSS

0.5

0.4

0.3

0.2

0.1

C
A
S

8 12 16 20
k

(b) CAS
0.8

0.6

0.4

0.2

0
8 12 16 20

k

P
re
c
is
io
n

(c) Precision

103

101

10-1

10-3T
o
ta

l
ru

n
n
in

g
 t

im
e

(s
ec

)

8 12 16 20
k

(d) Time
Fig. 4: Model Evaluation on Facebook for k

C. Efficiency Evaluation

Algorithms and Metrics. In this section, we evaluate the
efficiency of our proposed algorithms, i.e., DFS-based VAC
algorithm in Algorithm 2 (denoted by DVAC), BFS-based VAC
algorithm in Algorithm 3 (denoted by BVAC), and approx-
imate VAC algorithm in Algorithm 4 (denoted by AVAC).
Note that the method in Algorithm 1 cannot complete the
community search task within a week, which is not reported
here. We report three metrics for each algorithm, i.e., the
running time, the size of search space, and the space cost.
For the size of search space, we calculate (i) the cardinality
of the search tree for DVAC and BVAC and (ii) the number
of while iterations for AVAC. For the space cost, we report
(i) the height of search tree for DVAC, (ii) the maximum size
of heap H for BVAC, and (iii) the number of stored k-trusses
for AVAC.

Exp-3: The effect of |Q| on efficiency. We first evaluate the
efficiency by varying the number of query vertices |Q| from
1 to 8. Figures 5(a) and 5(b) show the results. As expected,
the performance of AVAC is better than that of DVAC and
BVAC. Although DVAC has larger search space than BVAC,
DVAC and BVAC almost have the same running time. This
is because in the search tree, BVAC needs to invoke the k-

DVACBVACAVACRunning time

BVAC DVACAVACSpace cost
Search space

100

10
1

102

100

10
1

102

1 2 4 6 8
|Q|

T
o

ta
l

ru
n

n
in

g
 t

im
e

(s
ec

)

S
earch

 sp
ace

(a) |Q| VS. Time & Search Space

35

28

21

14

7

0

S
p

ac
e

co
st

1 2 4 6 8
|Q|

(b) |Q| VS. Space Cost

100

10
1

102

10
3

10
4

105

10-2

10-1

100

101

102

8 12 16 20

T
o

ta
l

ru
n

n
in

g
 t

im
e

(s
ec

)

S
earch

 sp
ace

k

(c) k VS. Time & Search Space

40

32

24

16

8

0
8 12 16 20

k

S
p

ac
e

co
st

(d) k VS. Space Cost

100

101

102

10
3

104

10-2

10-1

100

10
1

102

60% 70% 80% 90% 100%

T
o

ta
l

ru
n

n
in

g
 t

im
e

(s
ec

)

S
earch

 sp
ace

|VG|

(e) |VG| VS. Time & Search Space

25

20

15

10

5

0

S
p

ac
e

co
st

60% 70% 80% 90% 100%
|VG|

(f) |VG| VS. Space Cost
Fig. 5: Efficiency Evaluation of VAC Algorithms on Gowalla

truss maintenance operation for every node while DVAC only
needs to apply the k-truss maintenance operation for the delete
branch. Although DVAC has larger search space than BVAC,
BVAC invokes less k-truss maintenance operations, leading
to less running time. When the number of query vertices |Q|
grows, the performance of DVAC and BVAC degrades while
the performance of AVAC becomes a little bit better. The
reason behind is that with the increased |Q|, the maximal
k-truss returned in the first step becomes smaller and the
returned community has larger attribute score. If the maximal
k-truss becomes small, the iterations for AVAC also decrease.
If the returned community has a larger attribute score, the
pruning ability of DVAC and BVAC becomes weaker, leading
to degradation of DVAC and BVAC and more space cost.

Exp-4: The effect of k on efficiency. Figures 5(c) and 5(d)
report the results when the parameter k is varied from 8 to 20.
With the increasing of k, all three algorithms achieve better
performance. This is because when k grows, we will find a
smaller maximal k-truss in the first step, resulting in smaller
search space. Thus, all algorithms require less time to find
the optimal results. Correspondingly, the space cost of DVAC
and BVAC also becomes less. As AVAC only needs to keep
one k-truss, its space cost remains unchanged. In addition,
there are some exceptions, e.g., the search space of DAVA is
very large under k = 12. This is due to some outliers in the
corresponding results.

Exp-5: The effect of graph cardinality |VG| on efficiency.
Finally, we evaluate the scalability of our algorithms with
different fractions of vertices extracted from the original
dataset. The results are plotted in Figures 5(e) and 5(f). There

are some fluctuations for DVAC and BVAC while AVAC has
an upward trend. This is because if the cardinality grows, the
maximal k-truss becomes larger. Thus, AVAC requires more
time. For DVAC and BVAC, the attribute score of optimal
community influences the pruning ability of algorithms a lot.
When the cardinality changes, the attribute score of the optimal
community can becomes larger or smaller, which is uncertain.
Thus, both DVAC and BVAC fluctuate.

VIII. CONCLUSIONS

In this paper, we study a new attributed community search
problem called vertex-centric community search, which can
handle different types of attributes. To answer the VAC
problem, we propose two exact algorithms with depth first
search and best first search, respectively. Due to the hardness
of the problem, we also develop an approximate algorithm,
which can achieve 2-approximation to the optimal solution.
Extensive experimental evaluation validates the effectiveness
and efficiency of the proposed model and algorithms.

Acknowledgments. This work is supported by Research Grants
Council of Hong Kong under GRF Projects 12201018, 12200917,
CRF Project C6030-18GF, the NSFC under Grant No. 61702435 &
61972338, the National Key R&D Program of China under Grant
No. 2018YFB1004003, the NSFC-Zhejiang Joint Fund under Grant
No. U1609217, and the ZJU-Hikvision Joint Project. Qing Liu and
Yifan Zhu have contributed equally to this work. Yunjun Gao is the
corresponding author.

REFERENCES

[1] M. Sozio and A. Gionis, “The community-search problem and how to
plan a successful cocktail party,” in SIGKDD, 2010, pp. 939–948.

[2] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in SIGMOD, 2014, pp. 991–1002.

[3] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and
effective community search,” Data Min. Knowl. Discov., vol. 29, no. 5,
pp. 1406–1433, 2015.

[4] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in SIGMOD, 2014, pp. 1311–
1322.

[5] E. Akbas and P. Zhao, “Truss-based community search: a truss-
equivalence based indexing approach,” PVLDB, vol. 10, no. 11, pp.
1298–1309, 2017.

[6] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate
closest community search in networks,” PVLDB, vol. 9, no. 4, pp. 276–
287, 2015.

[7] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli,
“Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees,” in SIGKDD, 2013, pp. 104–112.

[8] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in SIGMOD, 2013, pp. 277–288.

[9] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[10] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu, “Effective and efficient
attributed community search,” VLDB J., vol. 26, no. 6, pp. 803–828,
2017.

[11] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” PVLDB, vol. 10, no. 9, pp. 949–960, 2017.

[12] Z. Wang, Y. Yuan, G. Wang, H. Qin, and Y. Ma, “An effective method
for community search in large directed attributed graphs,” in MSN, 2017,
pp. 237–251.

[13] Q. Zhu, H. Hu, C. Xu, J. Xu, and W. Lee, “Geo-social group queries
with minimum acquaintance constraints,” VLDB J., vol. 26, no. 5, pp.
709–727, 2017.

[14] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” PVLDB, vol. 10, no. 6, pp. 709–720,
2017.

[15] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum
co-located community search in large scale social networks,” PVLDB,
vol. 11, no. 10, pp. 1233–1246, 2018.

[16] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and X. Chen,
“On spatial-aware community search,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 4, pp. 783–798, 2019.

[17] X. Huang, L. V. S. Lakshmanan, and J. Xu, “Community search over
big graphs: Models, algorithms, and opportunities,” in ICDE, 2017, pp.
1451–1454.

[18] X. Huang, L. V. Lakshmanan, and J. Xu, Community Search over Big
Graphs. Morgan & Claypool Publishers, 2019.

[19] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” VLDB J., vol. 29,
no. 1, pp. 353–392, 2020.

[20] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang, “Index-based densest
clique percolation community search in networks,” IEEE Trans. Knowl.
Data Eng., vol. 30, no. 5, pp. 922–935, 2018.

[21] Y. Wang, X. Jian, Z. Yang, and J. Li, “Query optimal k-plex based
community in graphs,” Data Science and Engineering, vol. 2, no. 4, pp.
257–273, 2017.

[22] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang, “Index-based
optimal algorithms for computing steiner components with maximum
connectivity,” in SIGMOD, 2015, pp. 459–474.

[23] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang, “On minimal steiner
maximum-connected subgraph queries,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 11, pp. 2455–2469, 2017.

[24] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detection:
On free rider effect and its elimination,” PVLDB, vol. 8, no. 7, pp.
798–809, 2015.

[25] Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu, “Effective and efficient
community search over large directed graphs,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 11, pp. 2093–2107, 2019.

[26] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Truss-based community
search over large directed graphs,” To appear in SIGMOD 2020.

[27] Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and J. Zhang, “Exploring
communities in large profiled graphs,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 8, pp. 1624–1629, 2019.

[28] S. Ebadian and X. Huang, “Fast algorithm for k-truss discovery on
public-private graphs,” in IJCAI, 2019, pp. 2258–2264.

[29] Y. Zhu, Q. Zhang, L. Qin, L. Chang, and J. X. Yu, “Querying cohesive
subgraphs by keywords,” in ICDE, 2018, pp. 1324–1327.

[30] L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou, “Contextual community
search over large social networks,” in ICDE, 2019, pp. 88–99.

[31] Z. Zhang, X. Huang, J. Xu, B. Choi, and Z. Shang, “Keyword-centric
community search,” in ICDE, 2019, pp. 422–433.

[32] J. Yang, J. J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” in ICDM, 2013, pp. 1151–1156.

[33] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement
meets similarity: Efficient (k, r)-core computation on social networks,”
PVLDB, vol. 10, no. 10, pp. 998–1009, 2017.

[34] Y. Li, C. Sha, X. Huang, and Y. Zhang, “Community detection in
attributed graphs: An embedding approach,” in AAAI, 2018, pp. 338–
345.

[35] C. Zhe, A. Sun, and X. Xiao, “Community detection on large complex
attribute network,” in SIGKDD, 2019, pp. 2041–2049.

[36] D. Jin, Z. Liu, W. Li, D. He, and W. Zhang, “Graph convolutional
networks meet markov random fields: Semi-supervised community de-
tection in attribute networks,” in AAAI, 2019, pp. 152–159.

[37] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenková, “Clustering
attributed graphs: Models, measures and methods,” Network Science,
vol. 3, no. 3, pp. 408–444, 2015.

[38] S. Pool, F. Bonchi, and M. van Leeuwen, “Description-driven commu-
nity detection,” ACM TIST, vol. 5, no. 2, pp. 28:1–28:28, 2014.

[39] R. Kanawati, “Seed-centric approaches for community detection in
complex networks,” in International Conference on Social Computing
and Social Media, 2014, pp. 197–208.

[40] H. Sun, H. Du, J. Huang, Z. Sun, L. He, X. Jia, and Z. Zhao, “Detecting
semantic-based communities in node-attributed graphs,” Computational
Intelligence, vol. 34, no. 4, pp. 1199–1222, 2018.

[41] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National security agency technical report, vol. 16, pp. 3–1, 2008.

[42] S. Kosub, “A note on the triangle inequality for the jaccard distance,”
Pattern Recognition Letters, vol. 120, pp. 36–38, 2019.

