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Abstract—Due to the unstructuredness and the lack of schemas
of graphs, such as knowledge graphs, social networks and RDF
graphs, keyword search has been proposed for querying such
graphs/networks. In many applications (e.g., social networks),
users may prefer to hide parts or all of her/his data graphs (e.g.,
private friendships) from the public. This leads to a recent graph
model, namely the public-private network model, in which each
user has his/her own network. While there have been studies
on public-private network analysis, keyword search on public-
private networks has not yet been studied. For example, query
answers on private networks and on a combination of private
and public networks can be different. In this paper, we propose
a new keyword search framework, called public-private keyword
search (PPKWS). PPKWS consists of three major steps: partial
evaluation, answer refinement, and answer completion. Since there
have been plenty of keyword search semantics, we select three
representative ones and show that they can be implemented on
the model with minor modifications. We propose indexes and
optimizations for PPKWS. We have verified through experiments
that, on average, the algorithms implemented on top of PPKWS
run 113 times faster than the original algorithms directly running
on the public network attached to the private network for
retrieving answers that spans through them.

I. INTRODUCTION

Knowledge graphs, social networks and RDF graphs have
a wide variety of emerging applications, including semantic
query processing [24], information summarization [21], com-
munity search [9], collaboration and activities organization
[20] and user-friendly query facilities [22]. Such graphs often
lack useful schema information for users to formulate their
queries. Keyword search is a fundamental query paradigm
that makes querying such data easy. In a nutshell, a user
essentially specifies a set of keywords Q on a data graph
G as his/her query. Depending on the search semantics, the
answer to Q can be subgraphs that either contain the keywords
and/or are top-k subgraphs. For instance, Google’s knowledge
graph search API1 facilitates users in finding answers from
their knowledge database, and returns the query answers in
the form of subtrees. The answers (a) make it easy for users
to explore some additional relevant keywords and (b) indicate
the relationships of the query keywords.

As reported in a recent study [7], users may have private
graphs such as private knowledge bases or social networks.
For instance, 52.6% of 1.4 million New York City Facebook
users hide their friends lists. Such behavior naturally leads

1https://developers.google.com/knowledge-graph/
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Fig. 1: An example of the public-private graph model (G is a
public graph, and G′1, G′2, G′3 and G′4 are private graphs)

to a new graph model, called the public-private graph model
[3], [1], [17]. It consists of a public graph and many private
graphs, where the private ones are only accessible to their
owners. Generally, each user has his/her own combined graph.
This model warrants revisiting the research on keyword search
for two reasons. Firstly, the combined graphs can be large.
For instance, the latest version of one semantic knowledge
base, YAGO, contains 4.5 million entities and 24 million
facts. It is not practical to directly apply the existing indexing
techniques (e.g., [10], [14]) to each combined graph for
each user. Secondly, there are already several semantics for
keyword search. It is desirable to have a unified framework
that optimizes their query performance.

Example I.1. Consider a public collaboration network G in
Fig. 1 (e.g., [11]), where a node is an academic with its labels
representing keywords of his/her research interests and an
edge is a collaboration in research papers. A professor, Bob,
has a private collaboration network G′4 as shown in Fig. 1
(e.g., for grants, conferences and company organizations). G
and G′4 are visible to Bob. G′1, G′2 and G′3 are not, since they
are, respectively, owned by “Alice”, “Dave” and “Carol”. G
and G′4 are combined by some common nodes (a.k.a. portal
nodes, shown as concentric circles in Fig. 1). When Bob
proposes a new interdisciplinary project “DB-AI-CV”, he first
seeks out his close collaborators (say within 2 hops) from
his private network G′4. The query {“DB”,“AI”,“CV”} on
Bob’s network returns “No answer”. The answer from the
public graph G alone is a subtree rooted at “Bob” whose
leaf vertices are {“Dave”,“Carol”}, but they are not close to
each other. From the combined network of G′4 and G, Bob
obtains a subtree rooted at “Bob” whose leaf vertices are
{“Alice”,“Carol”}, which is a close collaboration.



TABLE I: Frequently used notations

Notations Meaning

Qf / Q A query of a particular query semantic, such as r-clique, Blinks
and k-nk. The subscript is omitted when the context is obvious.

G/G′/Gc the public graph / the private graph / the combined graph
P portal nodes : the common nodes of public and private graphs
eval(G,Qf , f) the evaluation to query Q in G with a keyword search semantic f
d(u, v)/d′(u, v)
/dc(u, v)

the shortest distance from u to v in public graph / the private graph
/ the combined graph

P/P′/Pc a path in a public graph / a private graph / a combined graph

The example above reveals three major challenges for key-
word search on the public-private graph model. Firstly, given
a query semantic, the query answer on a private graph can be
different from the one on the combined graph. Secondly, it
is costly to construct and maintain indexes for the combined
graph of each user. Thirdly, the constraints, querying and in-
dexing techniques vary by different keyword search semantics.
As a consequence, the adaptation of different query semantics
for the public-private graph model is different as well. To the
best of our knowledge, keyword search on the public-private
graph has not been studied yet.
Solution overview and contributions. This paper focuses
on the technically interesting case of keyword search on the
public-private graph, where the answers span across the public
and private graphs, a.k.a. public-private answers.2 The paper
makes the followinge contributions:

• We propose a public-private keyword search framework,
called PPKWS. PPKWS consists of three key steps, includ-
ing (i) partial evaluation (PEval), (ii) answer refinement
(ARefine) and (iii) answer completion (AComplete). We
show that some representative keyword search algorithms
(Blinks [10], r-clique [14] and k-nk [13]) can be imple-
mented on top of PPKWS with small modifications.

• ARefine and AComplete of keyword searches require nu-
merous shortest distance computations. We propose an
efficient index on the public graph, namely PageRank-based
all distance sketch (PADS) and PageRank-based keyword
distance sketch (KPADS). In a nutshell, PADS and KPADS
extend All Distance Sketches (ADS) with PageRank in their
index construction. PADS and KPADS are much smaller than
exact indexes. Importantly, PADS and KPADS exhibit the
same theoretical guarantee as ADS in estimating shortest
distance with a much higher accuracy in practice.

• Two optimizations for PPKWS are proposed to speed up
the three steps, where searches for popular keyword search
semantics on PPKWS can be optimized.

• We conduct extensive experiments on PPKWS. The results
show that PPKWS can speed up the query performance of
some keyword searches on public-private answers such as
Blinks on average by 202 times, r-clique on average by 12
times and k-nk on average by 120 times. The accuracy of
PADS is 99.7%.

Organization. The rest of this paper is organized as follows:
Sec. II presents the background and the problem statement.

2For query answers that are generated from either the public or the private
graph, we can directly apply existing work on keyword search.
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Fig. 2: An example of a public graph, three private graphs,
and three popular keyword search semantics

Sec. III introduces the overview of the framework for public-
private keyword search. Sec. IV presents how to implement
keyword search semantics on top of PPKWS. Sec. V and
Sec. VI present the indexes of PPKWS and the optimization,
respectively. Sec. VII reports the experimental evaluation.
Sec. VIII discusses the related work. In Sec. IX, we conclude
the paper and present the future work.

II. BACKGROUND AND PROBLEM STATEMENT

This section presents the background for the technical
discussions and then the problem statement. Some frequently
used notations are summarized in Tab I.
Graphs. We consider a labeled, weighted, undirected graph
G = (V,E,L,Σ), where (a) V is a set of vertices; (b) E
(⊆ V × V ) is a set of edges; (c) Σ is a set of labels; and
(d) L:V → Σ is a mapping s.t. for each vertex v ∈ V , L(v)
maps v to a set of labels in Σ. Each edge e = (u, v) ∈ E
has a positive weight, denoted as w(e). For simplicity, we may
omit L and Σ when they are irrelevant to the discussion. With
slight abuse of definition, the size of the graph is denoted by
|G|= |V |+|E|.
Public graphs and private graphs. The majority of previous
studies assume that the public (e.g., the query processor) has
all the data graphs. As explained in Sec. I, not all of the graphs
are accessible to the public. Hence, we distinguish the public
graph G = (V,E, L, Σ) and a private graph G′ = (V ′, E′,
L, Σ). We define an attach operation for attaching the private
graph to a public graph via some common nodes (i.e., V ∩V ′
6= ∅) to form a combined graph (a.k.a. public-private graph),
denoted as Gc = G⊕G′, where Gc = (Vc, Ec), Vc = V ∪V ′,
and Ec = E∪E′. We call the common nodes the portal nodes.

Definition II.1. (Portal node) Given a private graph G′ =
(V ′, E′) and a public graph G = (V,E), the portal nodes P
are defined as follows: v ∈ P iff v ∈ V and v ∈ V ′.

We remark that G is accessed by all the users. Each G′ is
possibly disconnected and only accessed by a single user. In
addition, |G′| is often relatively smaller than |G|.
Keyword search semantics for graphs. Several keyword
query semantics have been proposed [10], [14], [2], [23]



(see Fig. 2). We review the following three queries as their
semantics and underlying algorithms are diverse and they are
driven by various interesting applications.

Blinks. He et al. [10] propose that a keyword query is a 2-ary
tuple (Q, τ ) which contains a set of keywords Q={q1,. . .,qn}
and a distance bound τ . Given a graph G = (V,E, L,Σ),
an answer to Q in G is a subgraph of G, denoted as T =
{r, v1, . . . vn}, such that (i) T is a tree rooted at r; (ii) vi is
a leaf vertex of T and qi ∈ L(vi); and (iii) d(r, vi) ≤ τ .

r-clique. Kargar et al. [14] propose r-clique, which determines
the subgraph that all pairs of vertices that contain the query
keywords are reachable to each other within r hops. That is,
d(vi, vj) < r, where vi and vj are a pair of vertices that
contain the query keywords in an answer subgraph.

k-nk. Jiang et al. [13] propose k-nk, which determines the top-
k vertices R that contain a query keyword which is the nearest
to a given query vertex q, i.e., there does not exist u 6∈ R, but
u contains the keyword such that d(q, u) < maxv∈R d(q,
v). The semantics have been extended to the conjunction and
disjunction of multiple keywords.

Example II.1. Consider a public graph G and several private
graphs (G′1, G′3 and G′4) shown in Fig. 2. All the edge weights
are 1. The answer to the query {a, b, c} under the Blinks
semantic on G ⊕ G′4 is shown in Fig. 2(a). Fig. 2(b) and
2(c) respectively show the answers of the queries {a, b, c}
and {v8, a, 3} under the r-clique and k-nk semantics.

We remark that the common factor is that the query
answers are compact, i.e., the relevant pieces of information
are assumed to be located close to each other, either in the
public graphs, private graphs, or a combination of the two. It
can be observed from Fig. 2 that the answers of all the query
semantics involve the shortest distance between the nodes of
the answer. Also, the shortest distance between two vertices
in G and Gc can be different and must be computed. Since
each user can have a different combined graph, it is not space
efficient to build an index for the combined graph for each
user.

The query evaluation of a keyword search algorithm f on
the combined graph is denoted as A = eval(G⊕G′, Q, f). It
should also be remarked that an answer obtained from G⊕G′
(a public-private graph) can be either a public answer, a private
answer or a public-private answer (see Def. II.2). Existing
works can be directly applied on G and G′ to tackle the former
two cases. As public-private answer is the most technically
challenging, this paper focuses on computing them.

Definition II.2. (Public-private answer) Given an answer a =
(Va, Ea) ∈ A, a is a public-private answer iff i)

⋃
L(v′i)∩Q 6=

∅, where v′i ∈ Va and v′i ∈ G′.V , and ii)
⋃
L(vi) ∩ Q 6= ∅,

where vi ∈ Va and vi ∈ G.V .

Problem statement. Given a public graph G, a private graph
G′, a keyword query Q of a keyword search algorithm f , we

Algorithm 1: Framework of PPKWS (Sec. III)
Input: A public graph G, a private graph G′, a keyword search

algorithm f with a query Q
Output: Query answer set A

1 (A′, C) = PEval(G′, Q, f ) //partial eval. on G′

2 A′ = ARefine(A′, C, Q,G⊕G′) //refine A′ with C
3 A = AComplete(A′, Q,G) //answer completion
4 return A

investigate a framework to determine the answer A of Q.

III. FRAMEWORK OF PUBLIC-PRIVATE KEYWORD SEARCH

We start with an overview of the framework for public-
private keyword search (outlined in Algo 1). The details are
presented together with specific query semantics in Sec. IV.
Step 1) Partial Evaluation (PEval). The first step of PPKWS
is partial evaluation, denoted as PEval. PEval is the keyword
search algorithm f with a small modification. Upon receiving
Q = {q1, q2, . . . , qn} and the private graph G′ (Line 1), PEval
computes the partial answers A′ and refinement indicators C.
Each a′ ∈ A′ records the query keywords it contains. C is used
to indicate what to be refined in the partial answers A′. (The
definition of C is discussed with query semantics in Sec. IV.)
For instance, in this section, we denote C ∈ C as {(e1, e2)},
where e1 and e2 could be either a vertex or a keyword. Each
C records a set of (e1, e2) pairs whose distances need to be
further refined in a partial answer a′ ∈ A′.

We remark that existing keyword search algorithms con-
tinue to work to retrieve public or private answers by using
PEval as follows. PEval takes the public graph (resp. the
private graph), the keyword query and algorithm as input. If
PEval returns an answer whose C ∈ C is ∅, it is a public an-
swer (resp. private answer). Such PEval simulates the keyword
algorithms and does not increase the time complexity. They
have the same query performance as the original algorithms.
Step 2) Answers Refinement (ARefine). Instead of rerunning
the keyword search algorithms on the combined graph, PP-
KWS refines and completes the partial answers. The shortest
distance between any pair of vertex/keyword can be different
after attaching the private graph to the public graph. Hence,
ARefine takes the query Q, the partial answers A′ and the
refinement indicators C as an input, and refines the distances
between each pair in C (C ∈ C) for each a′ ∈ A′.

More specifically, consider any pair (e1, e2) ∈ C. Since G′

is a subgraph of Gc, the shortest path between e1 and e2 in
G′ is obviously a path in the combined graph Gc = G⊕G′.
The shortest distance between e1 and e2 in G′ (i.e., d′(e1, e2))
is a trivial upper bound of that in Gc (i.e., dc(e1, e2)). Hence,
we index the portal distances of G′. When G′ is attached to
G, the portal distances are refined and then each dc(e1, e2) is
refined by comparing the lengths of the paths that cross the
portal nodes.
Step 3) Answers Completion (AComplete). For a partial
answer a′ ∈ A′, PPKWS completes it by using the public
graph G. AComplete (a) determines which keywords are



missing from the partial answers and (b) completes A′ with
G to form the final answer set A.

To sum up, a keyword search algorithm f can be imple-
mented on the public-private graph model with the minor mod-
ification of following the above three steps. Firstly, PPKWS
applies f on private graph G′ to compute partial answers A′

and refinement indicators C. Secondly, PPKWS refines each
answer a′ ∈ A′ according to the indicator C ∈ C. Lastly,
PPKWS completes A′ by retrieving the missing keywords on
public graph G to yield A.

IV. QUERY PROCESSING IN PPKWS

In this section, we present how the three representative
query semantics (r-clique, Blinks and k-nk) are implemented
on top of PPKWS. For each semantic, we first summarize its
query evaluation and then present its three steps in PPKWS.

A. Distance-based keyword search (r-clique) on PPKWS

We recall that the r-clique keyword search semantic [14]
determines the subgraph that all pairs of the vertices that
contain the query keywords are reachable to each other
within τ hops, where τ is a user-specified parameter. More
specifically, the r-clique semantic is as follows:

• Input: A graph G, a query Q = {q1, q2, . . . , qn}
• Output: Answer A, where for each a ∈ A, a = {v1, v2, . . . , vn}, s.t.
qi ∈ L(vi) and d(vi, vj) ≤ τ

IV-A.(I) Overview of r-clique
Kargar et al. [14] propose an approximation algorithm to

compute the top-k answers in PTIME. We use our notations
to present the major steps of r-clique, as follows:

Initialization. The keywords qis are matched to a set of
keyword nodes, denoted as Vqis. The search space is denoted
as SP = (Vq1 , . . . , Vqn). r-clique inserts a pair 〈SP, a〉
into a priority queue S, where SP is a search space and
a = {v1, . . . , vn} is an approximate best answer of SP . The
priority queue S is ordered in ascending order according to
the weight of a, which is the total distance between keyword
nodes. Given an SP , to find the best answer a, r-clique
computes the shortest distances between vi ∈ Vqi and Vqj ,
where qi 6= qj and qi, qj ∈ Q. In particular, it computes
avi = {u1, . . . vi, . . . , un} as a candidate best answer, where
uj = arg min

∀vj∈Vqj

d(vi, vj) (Algo 2, Lines 17-21). The best

answer is the best a among all candidate answers obtained
from the above method.

Search space decomposition. r-clique recursively decomposes
the search space. In each iteration, the pair 〈SP, a〉 in the
front of S is removed and a = {v1, . . . , vn} is added into
the answer set. r-clique decomposes the search space SP into
n subspaces such that SPi = (Vq1 , . . . , Vqi \ {vi}, . . . , Vqn),
qi ∈ Q (Algo 2, Line 10). r-clique inserts the search subspaces
SPi into S together with their respective approximate answers.

Termination. The search procedure terminates when S is
empty or the top-k answers are found.
IV-A.(II) r-clique on PPKWS (PP-r-clique)

Algorithm 2: PEval for r-clique
Input: Private graph G′, P, keyword query Q
Output: (A′, C) = eval(G′, Q, r-clique)

1 append portal nodes to possible match V ′qi = Vqi ∪ P
2 construct a search space SP = (V ′q1 , . . . , V

′
qn )

3 initialize two queues A and S and a refinement indicator set C
4 a′ = FindTopAnswer(SP )
5 S.add(〈SP, a′〉)
6 while S is not empty do
7 〈SP, a′〉 = S.removeTop()
8 A.add(a′)
9 C.insert(a′.C)

10 decompose SP and add the subsapces
〈SPi,FindTopAnswer(SPi)〉 into S

11 return (A, C)
12 Function FindTopAnswer(SP )
13 initialize an empty set A′
14 foreach V ′qi ∈ SP do
15 foreach vi ∈ V ′qi do
16 initialize a′ = 〈vi,match = ∅〉, a′.C = ∅
17 foreach V ′qj ∈ SP do
18 if qi 6= qj then
19 dj = d(vi, V

′
qj
)

20 uj = arg min
∀vj∈Vqj

d(vi, vj)

21 a′.match[qj ] = 〈uj , dj〉
22 a′.C.insert((vi, 〈uj , dj〉))
23 A′.add(a′)
24 return the answer a ∈ A′ with the minimum weight

Algorithm 3: ARefine for r-clique
Input: Partial ans A′=eval(G′, Q, r-clique), dc, Q
Output: Refined partial answers A′

1 foreach a′ ∈ A′ do
2 foreach (v, 〈u, d〉) in a′.C do
3 foreach (pi, pj) ∈ P× P do
4 dist = d′(v, pi) + dc(pi, pj) + d′(pj , u)
5 d = min(d, dist)
6 return A′

Prior to the discussion of r-clique on PPKWS, we present
some basic notations.

Partial answer a′ ∈ A′. A partial answer a′ is a tuple
〈v,match〉, where v is an answer root, match is a map.
match[q] takes a query keyword q as input and returns two
attributes 〈u, d〉, where match[q].u is a vertex u such that
q ∈ L(u) or a portal node, and match[q].d is the distance
between u and v.

(1) PEval. PPKWS takes [14] as PEval to compute all the
r-clique on G′ (Algo 2). Since it is possible to complete the
partial answers with the public graph, we append the portal
nodes P to the search space, i.e., V ′qi = Vqi∪P. Partial answers
are stored in A′. For each partial answer a′ ∈ A′, PEval
declares a set of vertex pairs to be refined in C = {(v, 〈u, d〉)},
denoted by a′.C.

(2) ARefine. ARefine refines a′.C by verifying whether the
distance dc(v, u) is smaller than d′(v, u), after attaching the
private graph to the public graph (Algo 3, Lines 4-5). Given
any a′ = 〈v,match〉, the answer can be refined by tightening
the distance between the pair v and u of (v, 〈u, d〉) ∈ a′.C.

(3) AComplete. Given any refined partial answer a′ =
〈v,match〉. For any 〈u, d〉 = match[q], if u is a portal node
and q 6∈ L(u), the partial answer misses the query keyword q.



Therefore, we complete the answer by computing the distance
between u and q on the public graph. If dc(u, q) + d > τ , the
partial answer is pruned, due to r-clique’s semantic.

Further, given an answer a ∈ A, we say a is qualified to
be a public-private answer iff 1) a.match[q].d ≤ τ ; and 2)
the query keywords in a is located on both public and private
graphs. This can be implemented by maintaining a counter
for each answer that stores the number of keywords that are
matched in the private graph.

Theorem IV.1. Given an answer of PP-r-clique, a =
〈v,match〉, a.match[q].d = (2c− 1)dc(v, a.match[q].u).

Proof: The proof is presented in Appx E of [12].

B. Keyword search with subtree answer (Blinks) on PPKWS

A common method to answer keyword query on a data
graph without any connectivity index is to traverse the graph
starting at the vertices which contain the query keywords. For
example, Bhalotia et al. [2] present the first backward keyword
search algorithm. He et al. [10] propose a search strategy for
the backward expansion, namely Blinks. Subtree answers are
computed. The query semantic can be described as follows:

• Input: A graph G, a query Q = {q1, q2, . . . , qn}
• Output: Answer A and for each a ∈ A, a = 〈r, {v1, v2, . . . , vn}〉 s.t.
L(vi) = qi and d(r, vi) ≤ τ

IV-B.(I) Overview of Blinks
We next summarize the major steps of Blinks [2].

Initialization. Consider a keyword query Q =
{q1, q2, . . . , qn}. We denote the set of vertices that contain
the keyword qi as Vqi (a.k.a. search origin), and the set of
vertices that could reach one of the vertices in Vqi as Vi.

Backward expansion. In each search step, the vertex set Vi
with the smallest size is processed as follows. The vertex v ∈
Vi that has the shortest distance to Vqi is chosen for backward
expansion. In the expansion, u is added to Vi and it is checked
whether u can be an answer root, where (u, v) is an incoming
edge of v. Otherwise, the backward expansion continues.

Answer discovery. It discovers an answer root r such that r
can reach at least one node that contains qi, for each qi ∈ Q.
IV-B.(II) Blinks on PPKWS (PP-Blinks)

We next present how PPKWS can support Blinks. We start
with the some notations.

Partial answer a′ ∈ A′. A partial answer a′ is a tuple
〈r,match〉, where r is a candidate answer root, match is a
map. match[q] takes a query keyword q as input and returns
two attributes 〈v, d〉, where match[q].v is a vertex v such that
q ∈ L(v) or a portal node, and match[q].d is the distance
between r and v. At the end, PEval also produces C = {(r, q)}
for each partial answer a′ associated with the vertex-keyword
pairs to be refined. Since the computation of match[q].v and
that of match[q].d are similar, we only show how to compute
match[q].d below.

(1) PEval. We initialize the search origin with Q in G′. When
each vertex r ∈ V ′ is traversed, r is stored as a candidate

Algorithm 4: ARefine for Blinks
Input: Partial ans A′=eval(G′, Q,Blinks), dc, Q, and bound τ
Output: Refined partial answers A′

1 foreach a′ ∈ A′ do
2 foreach (r, q) in a′.C do
3 foreach (pi, pj) ∈ P× P do
4 dist = d′(r, pi) + dc(pi, pj) + d′(pj , q)
5 if a′.match[q].d ≥ dist then
6 a′.match[q].d = dist
7 return A′

answer a′. We also record the missing keywords in the partial
answer a′, which require completion on the public graph.

(2) ARefine. Algo 4 refines a′.C by verifying whether dc(r, q)
is smaller than d′(r, q) when attaching the private graph to the
public graph, where (r, q) ∈ a′.C.

Algo 4 shows that each partial answer can be refined with
the refined portal distances dc in O(|C||P|2). First, the shortest
paths between answer roots and keywords may contain some
portal nodes. Second, the distances between portal nodes can
be refined in the combined graph. Hence, in Line 5-6, we
check whether the refined portal distance refines the distance
of an answer root and a keyword.

(3) AComplete. AComplete of Blinks contains three steps.

(a) Backward expansion. The first step is to further back-
wardly expand on the public graph since the answer root r′

can be located on the public graph. For each partial answer
whose root r′ ∈ P, AComplete backwardly expands r′ by
Breadth-First Traversals (denoted by Tp) on the public graph
up to x hops from r′, where x = max{τ −match[q].d}. For
the x′-hop vertex u in Tp, if u has been visited by Tp′ , where
p′ 6= p, PPKWS adopts the same strategy of flooding search
(cf. [23]) to update dist of the visited answer (Lines 14-19).
Otherwise, PPKWS generates a partial answer root at u (Line
8). The shortest distance between u and query keyword q is
the sum of x′ and the distance between p and q.

(b) Retrieving missing keywords. The second step is to re-
trieve the missing keywords for each partial answer. For each
answer a ∈ A, we compute the distance between q ∈ Q
and a.r in the public graph (Lines 20-23). If d(a.r, q) ≤
a.match[q].d, we set a.match[q].d to d(a.r, q).

(c) Answer qualification. The answer qualification is same as
that of PP-r-clique.

Lemma IV.2. The following quality guarantees of the dis-
tances hold for a = 〈r,match〉 ∈ eval(G⊕G′, Q,Blinks) and
a′ = 〈r,match′〉 returned by PPKWS:
• if match[q].v ∈ G′.V , then match′[q].v = match[q].v and

match′[q].d = match[q].d; and
• if match[q].v 6∈ G′.V , then match′[q].d ≤ (2c− 1)match[q].d.

Proof: The proof is presented in Appx B of [12].

C. Top-k Nearest Keyword Search (k-nk ) on PPKWS

A query of k-nk [13] is a triple (v, q, k), where v is a query
vertex, q is a query keyword, and it determines the k nearest
vertices to v that contain the keyword q.
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Step (3).(b) Retrieve missing keywords (Line 13, Algo 7)
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(3) AComplete: Answer Completion
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Tp2 : First visit v1 and v13 (Line 8, Algo 7)

v1; fa : (v2; 2); b : (v3; 3); c : (v11; 3)g

v13; fa : (v2; 3); b : (v3; 3); c : (v11; 3)g

Tp1 : Revisit v1 and v13 (Line 6, Algo 7)

Step (3).(a) Backward Expansion (Tp2=Tp1 : from p2=p1)
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Step (3).(c) Answer qualification

6 partial answers rooted at fp1; v2; v3; v10; v11; v12g
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Fig. 3: Example of query execution (PEval, ARefine and AComplete) of PP-Blinks

Algorithm 5: AComplete for Blinks
Input: Public graph G, P, refined answers A′, Q, and bound τ
Output: Completed answers A

1 initialize an empty map A = {}
2 foreach p ∈ P do
3 if A′.containsKey(p) then
4 foreach u in the x′ hops BF’ traversal start from p on G do
5 if A.containsKey(u) then
6 A[u] = UpdateAns(A[u], A′[p], x′, Q)
7 else
8 A[u].match =

{〈A′[p].match[q].v, A′[p].match[q].d + x′〉}
9 foreach a ∈ A do

10 ComplAns(a, Q)
11 if NOT a.isQualified() then
12 A.remove(a)
13 return A
14 Function UpdateAns(a1, a2, x, Q)
15 foreach q ∈ Q do
16 if a2.match[q].d + x < a1.match[q].d then
17 a1.match[q].d = a2.match[q].d + x
18 a1.match[q].v = a2.match[q].v
19 return a1
20 Function CompleteAns(a, Q)
21 foreach q ∈ Q do
22 compute the shortest distance d(a.r, q) on public graph
23 a.match[q].d = min(d(a.r, q), a.match[q].d)

• Input: a query point v, a query keyword q
• Output: top k vertices A = {a = {〈ui, di〉}} ranked by di, where q ∈
L(ui)

IV-C.(I) Overview of k-nk Any k-nk algorithms can be ap-
plied on the PPKWS framework without modifications. Hence,
we omit the overview of k-nk, due to space restrictions.
IV-C.(II) k-nk on PPKWS (PP-knk) PEval of k-nk is the
original algorithm [13]. It computes the answers A′ from
G′. ARefine of k-nk is identical to Sec. IV-A. AComplete
completes A′ by retrieving ui ∈ G.V from the public graph.
The details of k-nk are presented in Appx. A of [12].

Complexities. The time complexities of r-clique, Blinks and
k-nk on top of PPKWS have not increased. The analysis is
presented in Appx. C of the technical report [12].

V. INDEX DEFINITIONS AND THEIR CONSTRUCTION

As presented in Sec. II, the definitions of keyword search
semantics often involve the shortest distances of nodes, e.g.,
[10], [14], [2], [23]. Their query algorithms require numerous
shortest distance computations. For example, when applying
r-clique [14] on the combined graph Gc = G ⊕ G′3 in
Fig. 2, finding an answer of Q = {a, b, c}, as shown in

Fig. 2(c), requires 12 shortest distance computations in PEval
for r-clique on G′ (in Algo 2, Line 10), and 8 shortest distance
computations on G ⊕ G′ (in Algo 3). Hence, we propose
indexes for the public graph G and the private graph G′

respectively, so as to optimize the query processing on the
combined graph G⊕G′.

Firstly, to avoid the exhaustive search for the distances
of shortest paths that cross the public graph and private
graph, we propose PADS and KPADS for estimating the
shortest distances between the vertices in the public graph
and those between the keywords and vertices in the public
graph (Sec. V-A and Sec. V-B). Secondly, we index the
portal nodes by precomputing their all-pair shortest distances
(Sec. V-C). Thirdly, we introduce a portal-keyword distance
map to store the shortest distance between the portal nodes
and the keywords (Sec. V-C).

A. PageRank-based All Distance Sketches (PADS)

In this subsection, we review ADS and then propose our
index. It is known that ADS is small in size, accurate, and
efficient in answering shortest distance queries. Our main idea
is to use PageRank to determine the chance of a node to be
included in the sketch (i.e., the index).
All-Distances sketches (ADS). Recall that in [4], given a
graph G = (V,E), each vertex v is associated with a sketch,
which is a set of vertices and their corresponding shortest
distances from v. To select the vertices in V and put them as
the centers in the sketch of v, each vertex is initially assigned
a random value in [0, 1]. If a vertex u ∈ V has the k-th largest
value among the vertices which have been traversed from v
in the Dijkstra order, then u is added to the sketch of v. k is a
user-defined parameter set by user. A larger k results in larger
and more accurate sketches. The shortest distance between u
and v can be estimated by the intersection set of ADS(u) and
ADS(v) (a.k.a. the common centers).

A drawback of ADS is that it does not consider the relative
importance of the vertices when generating the sketch. We
observe that vertices with high PageRanks, which roughly
estimates the importance of the vertices in a graph, should
be added to the sketch to cover the shortest paths. On the
contrary, the vertices with low PageRanks are unlikely to be
on many shortest paths and should not be added to the sketch.

PageRank. We employ any efficient algorithms to obtain the



Algorithm 6: PADS construction
Input: Graph G = (V,E)
Output: PADS

1 compute the PageRank pr of the vertices in G
2 initialize PADS(v) = {(v, 0)} for each vertex v ∈ V
3 sorted the vertices V by the descending order of pr(v)
4 for v ∈ V do
5 for u in the Dijkstra’s traversal do
6 if |{(w, d) ∈ PADS(u) | d ≤ d(v, u)}|< k then
7 add (v, d(v, u)) into PADS(u)
8 else
9 continue the traversal on the next vertex

10 return PADS

PageRank of the vertices of a graph G. We use a function pr:
V → [0,1] to denote the PageRank of a vertex v by pr(v).

Dijkstra rank. We recall that we can efficiently obtain the
Dijkstra rank of a vertex v w.r.t a source vertex s as follows.
We run the Dijkstra’s algorithm starting at s and obtain the
order of the visited nodes [v1, v2, . . . , vl]. The Dijkstra rank
of vi w.r.t s is i, denoted as π(s, vi) = i.
PageRank based all-distances sketches (PADS). Given a
Dijkstra rank π, the PageRank, a vertex v, and a threshold
k, the PADS of v is defined as follows:

PADS(v) = {(u, d(v, u)) | pr(u) ≥ k(v, u)}, (1)

where k(v, u) is the k-th largest PageRank among the nodes
from v to u according to π.

Example V.1. (PADS construction) Consider the public graph
G in Fig. 4. Assume k = 1. We compute the PageRank
values for all the vertices in the graph, as shown below the
vertices’ labels. v13 covers 41 out of 156 shortest paths in the
graph G in total, which is the largest among all the vertices.
This shows that the node having a large PageRank value,
pr(v13) = 0.130, can be an effective center. To determine
the PADS of v1, we run the Dijkstra’s algorithm by taking
v1 as the source vertex to obtain the Dijkstra ranked list
[v1, p1, p2, v13, v4, . . . , p7]. Since the PageRank value of v13
is the highest among the first four vertices in the ranked list,
v13 is added to PADS(v1) with its distance to v1. Similarly,
v1 is added to PADS(v1).

Shortest distance estimation. Given a shortest distance query
(u, v) and the PADS, d̂(u, v) is computed by the intersection
of PADS(u) and PADS(v) as follows:

d̂(u, v) = min{(d1 + d2)}, (2)

where (w, d1) ∈ PADS(u), (w, d2) ∈ PADS(v).

Spae complexity. The expected size of PADS(v) is O(k lnn),
where n is the number of nodes reachable from v, which is
bounded by O(k ln|V |). (The analysis of [4] can be applied
to PADS.)

Time complexity. Each iteration of PageRank and Dijkstra
rank are both computed in O(|V |+|E|). In Algo 6, the times
each edge (v, u) has been traversed is bounded by the size
of PADS(v) (Line 6). Since the expected size of PADS(v)
is bounded by k ln|V |, the time complexity of Algo 6 is
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Fig. 4: A public graph (fragment) and the PageRank
TABLE II: An ADS label for the public graph in Fig. 4

Vertex ID ADS
v0 {(v0, 0), (p4, 1), (v1, 3), (p1, 4), (p7, 6)}
p4 {(p4, 0), (v1, 2), (p1, 3), (p7, 5)}
v13 {(v13, 0), (p4, 1), (v1, 1), (p1, 2), (p7, 4)}
v1 {(v1, 0), (p1, 1), (p7, 5)}
p1 {(p1, 0), (p7, 6)}
p2 {(p2, 0), (v1, 1), (p1, 2), (p7, 5)}
v4 {(v4, 0), (v13, 1), (v9, 1), (p4, 2), (v1, 2), (p1, 3), (p7, 3)}
v9 {(v9, 0), (p4, 3), (v1, 3), (p7, 3)}
p6 {(p6, 0), (v4, 1), (v13, 2), (v9, 2), (p7, 2)}
v16 {(v16, 0), (v9, 1), (p7, 2)}
v7 {(v7, 0), (v16, 1), (p7, 1)}
p5 {(p5, 0), (v9, 2), (p7, 3)}
p7 {(p7, 0)}

O(k|E|ln|V |) (cf. [4]).
Consider the graph G in Fig. 4. We set k = 1 and compute

its ADS shown in Tab. II and its PADS shown in Tab. III. We
can see that there are two advantages of PADS. First, the size
of PADS is significantly smaller than that of ADS. Second, the
PADS’s estimation is much more accurate than that of ADS.

Example V.2. (Shortest distance estimation.) Consider the
graph G in Fig. 4 and its PADSs in Tab. III. Given two
vertices v9 and v7, there are two common centers v16 and
v13 in PADS(v9) and PADS(v7). The shortest distance is
estimated by Eq. 2, i.e., d̂(v9, v7) = 2 (i.e., 0% error). By
ADS, d̂(v9, v7) = 4 is returned (i.e., 100% error). More
specifically, we compare the estimation accuracy of ADS and
PADS between all pairs of the vertices in Fig. 4. The average
error of PADS (resp. ADS) is around 3% (resp. 38%).

It is worth noting that PADS exhibits the theoretical guar-
antee of the shortest path estimation stated below.

Lemma V.1. The distance between two vertices u and v is
estimated using Eq. 2 with an approximation factor (2c− 1),
where c = d ln|V |ln k e with a constant probability, i.e., d̂(u, v) ≤
(2c− 1)d(u, v).

Proof: Let d = d(u, v). Let Ni(u) denote the neighbors
of vertices u within id hops. For simple exposition, we denote
the intersection and union of Ni(u) and Ni(v) as Ii = Ni(u)∩
Ni(v) and Ui = Ni(u)∪Ni(v), respectively. It is worth noting
that Ii ⊆ Ui ⊆ Ii+1. Consider the ratio of |Ii||Ui| and a ratio
threshold m

k . Given the vertices with k largest pr values in
Ui, if one of them (say w) hits Ii, w belongs to both PADS(v)
and PADS(u). The real distance d can be estimated within 2id.
The probability of at least one of the vertices, which has the
k largest PageRank values in Ui, hits the Ii is 1− (1− α

k )k ≈
1−e−α. Since there are n vertices in graph G at most, |Ui|≤ n.
Hence, there exists i ≤ logk/α n.

B. PageRank-based Keyword Distance Sketches (KPADS)

We denote the shortest distance between a vertex v and
a keyword t by d(v, t), where d(v, t) = min{d(v, u)|t ∈
L(u), u ∈ V }. To estimate the distance between a given



TABLE III: The PADS label for the public graph in Fig. 4
Vertex ID PADS
v0 {(v0, 0), (p4, 1), (v13, 2)}
p4 {(p4, 0), (v13, 1)}
v13 {(v13, 0)}
v1 {(v1, 0), (v13, 1)}
p1 {(p1, 0), (v1, 1), (v13, 2)}
p2 {(p2, 0), (v1, 1), (v13, 1)}
v4 {(v4, 0), (v13, 1)}
v9 {(v9, 0), (v4, 1), (v16, 1), (v13, 2)}
p6 {(p6, 0), (v4, 1), (v7, 1), (v13, 2)}
v16 {(v16, 0), (v7, 1), (v13, 3)}
v7 {(v7, 0), (v16, 1), (v13, 3)}
p5 {(p5, 0), (v16, 1), (v7, 2), (v13, 4)}
p7 {(p7, 0), (v7, 1), (v16, 2), (v13, 4)}

TABLE IV: The KPADS label for the public graph in Fig. 4
Terms KPADS
a {(v9, 0), (v4, 1), (p4, 1), (v7, 0), (v13, 2), (v16, 1), (v0, 0)}
b {(v0, 0), (v13, 2), (p4, 1)}
c {(v13, 1), (v4, 0)}
d {(v13, 4), (v7, 1), (p7, 0), (v16, 2)}
e {(v13, 1), (v4, 0), (v1, 1), (v7, 0), (p4, 0), (v16, 0), (p1, 0)}
f {(p5, 0), (v1, 0), (v13, 0), (p4, 1), (v7, 1), (v16, 0), (v0, 0), (p7, 0)}
g {(p6, 0), (v1, 0), (v4, 1), (v13, 1), (v7, 1), (p2, 0)}

vertex and keyword, we propose KPADS, which is constructed
by PADS-merging: Given any two vertices u and u′ where
t ∈ L(u) and t ∈ L(u′), there may exist common centers in
PADS(u) and PADS(u′). Hence, we only keep the smallest one
among d̂(v, u′) and d̂(v, u), since both of them are the upper
bound of d(v, t).
Keyword-PADS (KPADS). For each keyword t ∈ Σ, we build
a sketch KPADS(t). KPADS(t) can be built by merging PADS
of those vertices that contain t, i.e., PADS(v) where t ∈ L(v).
More formally, given a center (wi, di) ∈ PADS(v), (wi, di) ∈
KPADS(t) iff ∀(wi, d′i) ∈ PADS(v′) and t ∈ L(v′), d′i ≥ di.
Shortest keyword-vertex distance estimation. Given a vertex v
and a keyword t, the shortest distance d̂(v, t) can be computed
as follows:

d̂(v, t) = min{(d1+d2)|(w, d1) ∈ PADS(v) and (w, d2) ∈ KPADS(t)}
(3)

Example V.3. Consider the graph G in Fig. 4 and its PADS in
Tab. III. The KPADS is shown in Tab. IV. Consider the shortest
distance between a and p4. The distance can be estimated by
the intersection of KPADS(a) and PADS(p4). There are two
common centers, p4 and v13. d̂(a, p4) = 1 is returned by the
common center p4.

Lemma V.2. The distance between a vertex v and a keyword
t derived from Eq. 3 has an approximation factor (2c − 1)

where c = d ln|V |ln k e with a constant probability, i.e., d̂(v, t) ≤
(2c− 1)d(v, t).

Proof: Due to space limitations, the analysis is presented
in Appx. B of [12].

Time complexity. The time complexity of the shortest distance
estimation between a vertex and a keyword (or another vertex)
is O(k ln|V |). The derivation is presented in Appx. C of [12].

Index size. The size of KPADS(t) is bounded by
∑
|PADS(vi)|.

Therefore, the total size of KPADS for all the terms is bounded
by

∑
vi∈V |L(vi)|PADS(vi). In practice, |L(vi)| is often small.

Query processing with the indexes. We take Blinks as an ex-
ample. It takes O(|E|+|V |ln|V |) to complete an answer of
Blinks on the public graph G by Dijkstra’s algorithm with
Fibonacci heap (Algo 5, Line 22). With KPADS, this procedure

Algorithm 7: Portal distance map construction
Input: All pair portal distance on private graph d′(pi, pj), All pair

portal distance on public graph d(pi, pj)
Output: All-Pairs portal distance on the combined graph

1 initialize a priority queue Queue
2 for pi, pj ∈ P do
3 if d(pi, pj) ≥ d′(pi, pj) then
4 d(pi, pj) = d′(pi, pj)
5 Queue.insert(〈pi, pj , d(pi, pj)〉)
6 while Queue is not empty do
7 〈p1, p2, dist〉 = Queue.removeTop();
8 for pi ∈ P do
9 if d(pi, p2) ≥ d(pi, p1) + dist then

10 d(pi, p2) = d(pi, p1) + dist
11 Queue.insert(〈pi, p2, d(pi, p2)〉)
12 if d(pi, p1) ≥ d(pi, p2) + dist then
13 d(pi, p1) = d(pi, p2) + dist
14 Queue.insert(〈pi, p1, d(pi, p1)〉)
15 return d

can be done in O(|Q|k ln|V |).

C. Indexes of portal distances

The shortest distance computation on the combined graphs
can be time-consuming. In this subsection, we index the
shortest distances of the portal nodes since the number of
portal nodes |P| is often relatively small when compared to
|V |. We then extend the idea to index the distances of portal
and keyword nodes.
Portal distance maps. We call the shortest distance between
two portal nodes the portal distance. We precompute all the
portal distances of P on the public graph G (denoted as d) and
the private graph G′ (denoted as d′), respectively. We index
the distances in distance maps of d and d′, respectively. We
can then efficiently index the portal distances of the combined
graph Gc as follows.

Step 1. Portal distance refinement. We first refine the portal
distance in the private graph in the presence of those in the
public graph (shown in Lines 3-5, Algo 7). We use a priority
queue Queue to maintain the refined portal distances. Initially,
if d(pi, pj) ≤ d′(pi, pj), where pi, pj ∈ P, we refine d′(pi, pj)
to d(pi, pj) (Line 3) and insert the pair with the distance into
Queue (Line 5). Next, we pop 〈p1, p2, dist〉 from the head of
Queue, when Queue is not empty. For each pi ∈ P, if the sum
of d(pi, p1) and the refined portal distance d(p1, p2) is smaller
than the current portal distance d(pi, p2), there is a shorter path
between pi and p2 via p1. Then, the portal distance between
pi and p2 can be refined. Similarly, the distance between pi
and p1 can be refined by p2.

Step 2. Shortest distance refinement using portal distance.
We next reduce the refinement of shortest distance via the
portal distance maps described above. To index the shortest
distances of the combined graph, we compare the shortest
distance in the private graph and the length of the paths
crossing the portal nodes as follows:

dc(v1, v2) = min

{
d′(v1, v2);

d′(v1, pi) + d′(pj , v2) + dc(pi, pj),
(4)

where pi, pj ∈ P.



Portal-keyword distance map. We extend the idea to the
distances between the portal nodes and the keywords, and
index them in a portal-keyword distance map, denoted as PKD.
More formally, given a portal node p ∈ P and t ∈ G′.Σ,
PKD(p, t) is a tuple 〈v, d〉, where 1) PKD(p, t).v ∈ G′.V
is the nearest vertex of p such that 1) t ∈ L(v) and 2)
PKD(p, t).d = d′(p, v).
Vertex-portal distance map. We also index the distances
between the vertex of the private graph and each portal,
denoted by d′(v, p), where v ∈ G′.V and p ∈ P. Hence, the
refinement between v ∈ G′.V and t ∈ G′.Σ can be computed
by Formula (5).

dc(v, t) = min

{
d′(v, t);

d′(v, pi) + dc(pi, pj) + PKD(pj , v2).d,
(5)

where pi, pj ∈ P.

Query processing with the indexes. The indexes proposed in
this section significantly improve the performance of answer
refinement. For example, the refinement time of each r-clique
answer reduces to O(|Q||P|2), since the distances (in Algo 3,
Line 4) have been precomputed. Without the indexes, it
takes O(|Q||P|2(|E|+|V |ln|V |)) by running the Dijkstra’s
algorithm on G⊕G′.

VI. OPTIMIZATION FOR PPKWS

In this section, we present two optimizations that are appli-
cable to answer refinement and answer completion, regardless
of the query semantic implemented on the top of them.

A. Reduced answer refinement

The distance of a vertex pair (v1, v2), as presented in
Formula (4), is refined only when their portal pairs have been
refined. More formally, we state this in the following lemma.
It is established by a simple proof by contradiction.

Lemma VI.1. If dc(v1, v2) ≤ d′(v1, v2), there exists pi ∈ P
and pj ∈ P such that (a) dc(pi, pj) ≤ d′(pi, pj); and (b)
pi, pj ∈ Pc(v1, v2).

For each private graph, we use a table to record the portal
pairs that have been refined during the answer refinement.
We maintain it in the main memory during query processing.
Before (v1, v2) is refined, we check the table and Lemma VI.1
to see if refinement is necessary.

B. Dynamic programming for answer completion

As introduced in Sec. IV, given a query Q, PPKWS
first evaluates it on the private graph G′ and generates the
partial answer set A′. In the worst case, answer completion
retrieves missing keywords |A′||Q| times. Combined with the
estimation time (elaborated in Sec. V-B), the time complexity
of answer completion is then O(|A′||Q||P|k ln|V |).

For different partial answers, some missing keywords com-
pletion can be shared. Therefore, we estimate the shortest dis-
tance between a portal node pi ∈ P and a query keyword qj ∈
Q in the public graph and store them in a 2-D array denoted

TABLE V: Statistics of real-world datasets

Datasets |V | |E| avg. # of keywords |V ′| |E′|
YAGO3 2,635,317 5,260,573 3.79 482 501
DBpedia 5,795,123 15,752,299 3.72 538 873
PP-DBLP 2,221,139 5,432,667 10 9.2 27.6

TABLE VI: Characteristics of PADS and ADS

Datasets Construction time Size (# of centers) Approx. ratio
ADS PADS ADS PADS ADS PADS

YAGO3 5096s 5066s 28.79M 20.57M 1.08452 1.00001
DBpedia 39237.3s 38757s 103.65M 74.21M 1.13194 1.0059
PP-DBLP 3761s 2770s 20.49M 15.15M 1.06178 1.00284

by PKA online such that PKA[i][j] = d̂(pi, qj). Then, the
complexity can be reduced to O(|A′||Q||P|+|P||Q|k ln|V |).

Next, we present how dynamic programming is used to
cache some intermediate answers, which further reduces the
number of retrievals (i.e., |A′||Q||P|) on the public graph.

We use a keyword-portal pair m = (t, p) in a partial answer
a ∈ A′ to denote that a expects to retrieve missing keyword
t through a portal p. For each a, we denote all such pairs as
M = {m = (tj , pi)}, where tj ∈ Q, pi ∈ P. The current state
is S(M). S(M) can be computed by S(M−{m})∪S({m}).
S({m}) can be retrieved by looking up PKD[i][j].

The complexity of incorporating dynamic programming is
O(|A′|+2|Q||P|+|P||Q|k ln|V |).

VII. EXPERIMENTAL STUDY

We used real-life datasets to conduct three sets of experi-
ments to evaluate PPKWS for their (1) index characteristics,
(2) query performance and (3) optimization performance.

A. Experimental Setup

1) Software and hardware: Our experiments were run on
a machine with a 2.93GHz CPU and 64GB memory running
CentOS 7.4. The implementation was made memory-resident.

2) Algorithms: We implemented Blinks and r-clique in C++
and used the same settings as presented in the original works.
For Blinks, we adopted METIS for partitioning. For r-clique,
we built the neighbor index with R = 3, as in [14]. We
obtained the code of k-nk from [13] and used the same setting.
We designed the baseline algorithms (Baseline-PPKWS) as
follows. 1) For Baseline-Blinks and Baseline-r-clique, we ex-
tended Blinks and r-clique with a simple qualification function
to verify if an answer is a valid public-private answer and
applied them on the combined graph Gc. For Baseline-knk,
we directly applied k-nk on the combined graph Gc.

3) Datasets and default indexes: Tab. V summarizes some
characteristics of the real-life datasets used.

YAGO3.3 YAGO3 [16] is a large knowledge base, derived from
Wikipedia, WordNet and GeoNames. In the experiment, we
extracted the entities (vertices) and the corresponding facts
(edges) in specific domains (e.g., chemistry, or movies) to
form the private graphs. The rest of the entities and facts
formed the public graphs.

DBpedia.4 DBpedia (v3.9) is a knowledge graph with 5.8M
vertices and 15.8M edges. It extracts structured content from

3http://www.mpi-inf.mpg.de/yago
4http://dbpedia.org
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Fig. 5: Comparison between PADS and ADS

the information created in various Wikimedia projects. Similar
to YAGO3, we derived private graphs of DBpedia from
specific domains. The rest of the entities and facts form the
public graph.

Intuitively, the information from a specific domain can be
kept privately by their owners (e.g., private laboratories, or
movie investors). Hence, we extracted the entities in a specific
domain by retrieving a YAGO3’s ontology graph, i.e., all the
descendant entities of the domain term (e.g., chemicals and
moive information etc) will be returned. All these entities
consist of V ′ and the corresponding induced subgraph of the
ontology graph form E′. The portal node set P = {v|v ∈ V ′
and v ∈ V }. In this section, we only present the performance
results of the experiments that used the entities in chemistry
and movie domains as private graphs.

PP-DBLP.5 We used public-private graphs from real-world
DBLP records, called PP-DBLP [11]. We set the “current”
time as 2013. Existing collaborations made the public graph,
while ongoing collaborations formed the private graphs, as
they were only known by some authors.

4) Queries: We generated 50 random synthetic keyword
queries for the experiments. Some details are given below. For
each algorithm, we report the results of 10 queries, including
three good, three bad, and four medium cases.

Blinks and r-clique. The query keyword q ∈ Q was randomly
picked from the label set G.Σ and G′.Σ. For Blinks, we set the
pruning threshold dmax (a.k.a. τprune in [10]) to 5 to ensure
keyword nodes were reachable from the root vertex within 5
hops. We remark that if Q ∩ G′.Σ = ∅ or Q ∩ G.Σ = ∅, Q
has no public-private answer. Users obtain the public answers
(resp. private answers) by passing the public graph G (resp.
private graph G′) to PEval as input. But PPKWS does not offer
the performance improvement. As a consequence, Q cannot
show the performance of AComplete. To make sure the public-
private answers exist and investigate the runtimes of the three
key steps, we generate Q s.t. Q∩G′.Σ 6= ∅ and Q∩G.Σ 6= ∅.

k-nk. We note that the frequency of a keyword in the private
graph is smaller than 64. Again, to study public-private
answers, we generated the query (v, q, k), where k was set
to 64, v was randomly picked from G′.V , and q was selected
following the keyword distribution of the combined graph.

B. Experimental Results

Exp-1: Characteristics of PPKWS. We next report the size
of the PADS and the time of constructing KPADS. We also
present the efficiency and effectiveness of PPKWS in Tab. VI
and Fig. 5.

Index sizes. For comparison, we implemented [5] for the
shortest distance estimation. For real-life graphs, PADS is
28.6% (resp. 28.5% and 26.1%) smaller than ADS on YAGO3
(resp. DBpedia and PP-DBLP).

Construction time. We report the construction times in
Tab. VI. PPKWS takes 1.41 hours (resp. 10.8 hours and
46 minutes) to construct PADS for YAGO3 (resp. DBpedia
and PP-DBLP). The construction time on PADS and ADS is
slightly different except PP-DBLP. The construction time of
PADS is 26.4% smaller than that of ADS.

Accuracy. We randomly selected a vertex pair (s, t) from |V |.
We compared the accuracy of PADS with ADS by computing
the shortest distances between each vertices pair, denoted as
d̂(s, t). The exact distance between s and t was computed
using Dijkstra’s algorithm [6], denoted as d(s, t). We denoted
the error as ε = d̂(s,t)−d(s,t)

d(s,t) . We repeated the above procedure
1 million times and got the average error ε̄. As we presented
in Fig. 5a, we varied the parameter k from 1 to 3. On YAGO3,
ε̄ of PADS reduces from 4.2×10−3 to 1×10−5. Similarly, ε̄ of
PADS also decreases significantly on DBpedia and PP-DBLP
when k increases. We set k = 3 for the comparison between
PADS and ADS. ε̄ of PADS is 99.99% (resp. 96.53% and
95.40%) smaller than that of ADS on YAGO3 (resp. DBpedia
and PP-DBLP).
Exp-2: Query performance. To evaluate the efficiency of
PPKWS, we have tested the performance of Blinks, r-clique
and k-nk with and without PPKWS.

r-clique. The comparison between PP-r-clique and
Baseline-r-clique is shown in Fig. 6d to Fig. 6f. In a
nutshell, PPKWS is 12.11 times faster on average. (1) On
PP-DBLP, the query is at most 24.75 times and at least 4.5
times faster than the baseline algorithm. For all the queries,
it is 14.30 times faster on average. (2) On DBpedia, the
query is at most 13.79 times faster and at least 2.3 times than
the baseline algorithm. For all the queries, it is 6.69 times
faster on average. (3) On YAGO3, the query is at most 44.09
times, at least 6.31 times and on average 15.4 times faster
than the baseline algorithm. This is because Baseline-r-clique
requires exploration of the whole search space derived from
the combined graph, even the queries have public-private
answers.

We next report the query performance breakdown. Fig. 6d-
Fig. 6f show the three major steps of query processing. On
PP-DBLP, (a) PPKWS spends a large fraction of the time to
completing the partial answers; except for Q6, AComplete of
the queries takes more than 90% of the whole query time,
(b) the runtime of PEval is negligible, and (c) the runtime for

5https://github.com/samjjx/pp-data
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Fig. 6: Performance of three keyword search semantics on three datasets

ARefine is only a small part of the query time. On YAGO3
and DBpedia, the experiment results are similar. On DBpedia,
PPKWS spends 5.02% (resp. 62.51% and 32.24%) on PEval
(resp. ARefine and AComplete). On YAGO3, PPKWS spends
7.54% (resp. 85.50% and 6.96%) on PEval (resp. ARefine
and AComplete). The differences in the percentages of the
datasets are due to portal distance refinement. The more portal
distances are refined, the more time ARefine takes.

Blinks. PPKWS runs in 202 times faster on average. The
results on YAGO3, DBpedia and PP-DBLP are reported in
Fig. 6g-Fig. 6i. (1) On PP-DBLP, the query is at most 33.97
times and at least 6.84 times faster than the baseline algorithm.
For all the queries, it is 22 times faster on average. (2) On
DBpedia, the query is at most 554 times and at least 60 times
faster than the baseline algorithm. For all the queries, it is 268
times faster on average. (3) On YAGO3, the query is at most
890 times, at least 77 times and on average 315 times faster
than the baseline algorithm. The reason is that PP-Blinks does
not traverse the vertices that are far from the private graph.

We next report the query performance breakdown. Fig. 6j
to Fig. 6l show the three major steps of query processing. On

PP-DBLP, 99.9% of the query time is spent on AComplete.
The time of PEval and ARefine is negligible. On YAGO3
and DBpedia, the experiment results are similar. On DBpe-
dia, PPKWS spends 5% (resp. 59.1% and 35.9%) on PEval
(resp. ARefine and AComplete). On YAGO3, PPKWS spends
1.7% (resp. 47.1% and 51.2%) on PEval (resp. ARefine and
AComplete). We note that the average number of the nodes
within x hops of the portal nodes in PP-DBLP is much larger
than those of YAGO3 and DBpedia. The more vertices in the
public graph are traversed, the more time AComplete takes.

k-nk. PPKWS runs 120 times faster (on average) than the
baseline algorithms. The results on YAGO3, DBpedia and
PP-DBLP are reported in Fig. 6m to Fig. 6o. On average,
PP-knk is 128 times (resp. 110 times and 120 times) faster
than Baseline-knk on PP-DBLP (resp. DBpedia and YAGO3).

We next report the query performance breakdown. Fig. 6p
to Fig. 6r show the three major steps of query processing. On
PP-DBLP, PPKWS spends 92.2% (resp. 0.2% and 7.6%) of
the time on PEval (resp. ARefine and AComplete). On YAGO3
and DBpedia, the experiments results are similar. On DBpedia,
PPKWS spends 87.5% (resp. 5.5% and 7%) of the time on



PEval (resp. ARefine and AComplete). On YAGO3, PPKWS
spends 86.6% (resp. 8.0% and 5.4%) on PEval (resp. ARefine
and AComplete).
Exp-4: Improvement of the optimization. We performed
an experiment to investigate the effectiveness of the proposed
optimization in Sec. VI. We turned the optimization on and off
and ran the query sets on YAGO3 and PP-DBLP. The results
are reported in Fig. 6s and Fig. 6t. All the optimizations offer
55.8% (resp. 28.8%) performance improvement on YAGO3
(resp. PP-DBLP) on average. This is because 1) ARefine only
needs to refine the answer by the portal distances which have
been refined rather than by that of all the portal pairs, and
2) the cost of completing a partial answer on public graph
reduces from |Q||P|k ln|V | to |Q||P|.

VIII. RELATED WORK

Keyword search semantics. Recently, keyword search has
attracted a lot of interest from both industry and research
communities (e.g., [10], [14], [2]). He et al. [10] propose
an index and search strategies for reducing keyword search
time. Kargar et al. [14] propose distance restrictions on
keyword nodes, (i.e., the shortest distance between each pair
of keywords nodes is smaller than r). Ye et al. [23] propose a
search strategy based on a compressed signature to avoid the
flooding search strategy. These studies optimize a specific key-
word search semantic. This work improves the performance
of different existing keyword search semantics in a generic
manner. We propose a PPKWS framework for public-private
keyword search. Their indexes and search strategies could be
adopted in our framework with slight modification.
Public-Private graph model. Some studies on public-private
graph analysis have been conducted previously. Chierichetti
[3] et al. propose two computational paradigms, sketching
and sampling, for some key problems on massive public-
private graphs. The sketching and sampling are precomputed
offline and the online update algorithms are run on the private
graphs. Ebadian [8] et al. propose a classification-based hybrid
strategy to compute k-truss on public-private graphs, incre-
mentally. Archer [1] et al. propose an approximation algorithm
by seeking a set of seeding nodes to solve the reachability
query on the public-private graph model. Huang [11] et al.
develop a new model of attributed public-private networks by
considering the information of vertices. Our work is different
from these previous works as PPKWS is the first work that
studies different keyword search semantics on the public-
private graph model.

IX. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose PPKWS for supporting efficient
keyword searches on the public-private graph model. We
show that three popular keyword search algorithms can be
implemented on PPKWS with minor changes. We verify that
PPKWS significantly reduces the runtimes of the keyword
searches. The proposed indexes PADS and KPADS offer not
only a theoretical guarantee in shortest distance estimation but
also high accuracy in practice.

In future work, we plan to investigate PPKWS for other
query semantics which are relevant to the shortest distance
computation, (e.g., community search). We will extend the
PPKWS to support keyword search on dynamic graphs.
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APPENDIX

A. Top-k Nearest Keyword Search (k-nk) on PPKWS

Due to space limitations, we present the k-nk semantic
in this appendix, which is consistent with other previous
works [15], [18], [13], [19]. A query of k-nk is a triple
(v, q, k), where v is a query vertex and q is a query keyword.
k-nk aims to find the k nearest vertices from v which contain
the keyword q. More specifically, the k-nk semantic can be
described as follows:
• Input: a query point v, a query keyword q
• Output: top k vertices A = {a = {〈ui, di〉}} ranked by di, where q ∈
L(ui)

IV-C.(I) Overview of k-nk Any k-nk algorithms can be ap-
plied on the PPKWS framework without modification. Hence,
we omit the overview of k-nk for simplicity.
IV-C.(II) k-nk on PPKWS (PP-knk)
(1) PEval. PPKWS takes [13] as PEval to compute the k-nk
answers on the private graph G′.
Partial answer a′ ∈ A′. The partial answer a′ is a list match
where the i-th element has two attributes 〈u, d〉. a′.match[i].u
is a vertex u, such that u ∈ V ′ and q ∈ L(u) or a′.u ∈ P and
a′.match[i].d = d′(v, u). We use a boolean variable to record
whether u is a portal. For the partial answer a′, PEval declares
C = {(v, u)} to indicate what to be refined, where v and u
are two vertices on the private graph. More specifically, v is
the query point of k-nk and u is a candidate matched vertex
in the private graph.

(2) ARefine. The refinement of the vertex pair (v, u) ∈ C is
identical to that discussed in Sec. IV-A.

(3) AComplete. Given the refined answer a′, PPKWS com-
pletes a′ in the public graph. For the i-th element of a′.match,
i.e., 〈u, d〉, if q ∈ L(u), u is a candidate match vertex.
Moreover, if u is a portal node, PPKWS estimates the shortest
distance between u and the keyword q in the public graph
with the intersection of PADS(u) and KPADS(q). d̂(u, q) + d
is appended with the keyword vertex u′ at the end of a′.match,
where u′ can be obtained by the inverted index of KPADS(q)
(For simplicity, we omit the details of this data structure in
this paper). It is worth noting that, we maintain a priority
queue with a fixed size k for a′.match rather than a list in
AComplete.

Lemma A.1. If u ∈ V ′ belongs to the answer of a k-nk query
(v, q, k) on Gc, where v ∈ V ′, then u is returned by PP-knk.

Proof: The detailed proof is presented in [12]-
Appendix B.

B. Proofs of lemmas

Lemma A.2. The distance between a vertex v and a keyword
t derived from Eq. 3 has an approximation factor (2c − 1),
where c = d ln|V |ln k e with a constant probability, and k is a
parameter set by user as we introduced in Sec V-A.

Proof: Given a vertex v and a keyword t, we denote the
vertex which is the closest to v and contains t as u, i.e. for any

vertex u′ where t ∈ L(u′), d(v, u′) ≥ d(v, u). And d̂(v, u)
can be estimated with the same approximation factor, (2c−1),
by PADS(v) and PADS(u) with the same probability, 1−e−α,
of Lemma V.1. We denote the common center by wi.

d(v, wi) + d(wi, u) ≤ (2c− 1)d(v, u) (6)

By the definition of PADS-merging (we compress the common
centers while keep smallest distance), we have (wi, di) ∈
KPADS, and di ≤ d(wi, u).

d(v, wi) + di ≤ d(v, wi) + d(wi, u) ≤ (2c− 1)d(v, u) (7)

We denote the answer of Blinks by a = 〈r,match〉, where r
is a candidate answer root, match is a map match[q] = 〈v, d〉
such that q ∈ G.L(v), and d is the shortest distance between
r and v where q ∈ Q. We have the following conclusion.

Lemma A.3. The following quality guarantees of the dis-
tances hold for a = 〈r,match〉 ∈ eval(G⊕G′, Q,Blinks) and
a′ = 〈r,match′〉 returned by PPKWS:

• if match[q].v ∈ G′.V , then match′[q].v = match[q].v and
match′[q].d = match[q].d; and

• if match[q].v 6∈ G′.V , then match′[q].d ≤ (2c− 1)match[q].d.

Proof: For simplicity, match[q].v (resp. match′[q].v) is
denoted by v (resp. v′).

Case 1: Suppose r ∈ G′.V .

• Case 1.1: If v ∈ G′.V , due to the definition of Blinks,
match[q].d = dc(r, q). Moreover, ARefine refines the dis-
tance between of r and q. Hence, match′[q].d = dc(r, q).
Hence, match′[q].d = match[q].d. Similarly, we have
v = v′.

• Case 1.2: If v ∈ G.V , the shortest path between r and
v is denoted by Pc(r, . . . , v). Since v ∈ G.V and r ∈
G′.V , Pc(r, . . . , v) contains at least one portal node. We
denote them by Pc = {pc1, . . . , pcn}. We denote the last
portal node in Pc(r, . . . , v) by pclast. It is worth noting
that the shortest path between plast and v is located on
the public graph. Otherwise, there is at least portal node
in Pc(plast, . . . , v), denoted by pi.

1) If pi 6∈ Pc, we have
Pc(r, . . . , v) = Pc(r, . . . , p1, . . . , plast, . . . , pi, . . . , r),
then pi is the last portal node rather than plast.

2) If pi ∈ Pc, we have
Pc(r, . . . , v) = Pc(r, . . . , p1, . . . , pi, . . . , plast, . . . , pi, . . . , r),
then there is a cycle Pc(pi, . . . , plast, . . . , pi)
on Pc(r, . . . , v) which is contradicted with that
Pc(r, . . . , v) is the shortest path between r and v.

Hence, dc(plast, v) = d(plast, v). Then dc(r, v) =
dc(r, plast) + dc(plast, v). Since r, plast ∈ G′.V ,
dc(r, plast) is returned by ARefine. Obviously, since the
shortest path of plast and v are all in the public graph,
d̂(plast, v) ≤ (2c− 1)d(plast, v) because of Lemma V.1.



As a consequence,

match′[q].d = dc(r, plast) + d̂(plast, v)

≤ (2c− 1)dc(r, plast) + (2c− 1)d(plast, v)

= (2c− 1)dc(r, v)

= (2c− 1)match[q].d.

Case 2: Suppose r ∈ G.V .
• Case 2.1: If v ∈ G′.V , the shortest path between r

and v is denoted by Pc(r, . . . , v). We denote the first
portal node in Pc(r, . . . , v) as pfirst. Then dc(r, v) =
dc(r, pfirst) + dc(pfirst, v). Since pfirst, v ∈ G′.V ,
dc(pfirst, v) is returned by ARefine. dc(r, pfirst) =
d(r, pfirst) since the nodes on the shortest path of plast
and v are all in the public graph (otherwise, pfirst is
not the first portal node in Pc(r, . . . , v)). d(r, pfirst) can
be computed by a breadth-first traversal that starts from
pfirst (denoted by T ). Consider the breadth-first traversal
(denoted by Ti) that starts from the portal node pi, where,
pi 6= pfirst, which visits r.
– If pi ∈ Pc(r, . . . , v), d(r, pi) ≥ dc(r, pi). Since
pfirst, pi ∈ Pc(r, . . . , v), we have dc(r, pi) =
dc(r, pfirst) + dc(pfirst, pi). Hence, returned by Ti,
dc(r, v) = d(r, pi) + dc(pi, v), which is larger than
that returned by T , since d(r, pi) + dc(pi, v) ≥
d(r, pfirst) + dc(pfirst, pi) + dc(pi, v).

– If pi 6∈ Pc(r, . . . , v), the subpath between r an pi
returned by Ti, Pc(r, . . . , pi), is not a shorter path
between r and v. Otherwise, it is contradicted with
that Pc(r, . . . , v) is the shortest path between r and v.

Similarly, we have v = v′.
• Case 2.2: If v ∈ G.V , the proof is similar to Case 1.2.

Lemma A.4. If u ∈ V ′ belongs to the answer of a k-nk query
(v, q, k) on Gc, where v ∈ V ′, then u is returned by PP-knk.

Proof: We denote the set of vertices containing q as Vq .
Given two vertex u1, u2 ∈ Vq . Without loss of generality,
we assume that u1 ∈ V ′ and dc(v, u1) ≤ dc(v, u2). Then
the ranking of u1 is higher than u2. It is worth noting that
the exact value of dc(v, u1) is returned by PPKWS. Next, we
prove that the ranking is hold in PPKWS.
• If u2 ∈ V , then dc(v, u2) ≤ d̂(v, u2) since d̂(v, u2)

is always larger than dc(v, u2), returned by PPKWS.
Naturally, the ranking of u1 is still higher than that of u2
since dc(v, u1) ≤ dc(v, u2) ≤ d̂(v, u2).

• If u2 ∈ V ′, since the exact value of dc(v, u2) is also
returned in the context of PPKWS, dc(v, u1) ≤ dc(v, u2)
is still hold. The ranking of u1 is still higher than that of
u2.

Hence, ∀u ∈ V ′ is an answer in Gc, u is returned by PPKWS
since its ranking is hold in the context of PPKWS.

C. Complexity analysis
In this section, we analyse the time complexity of esti-

mating the shortest distance in public graph. Moreover, we

TABLE VII: Complexity of PPKWS

Algorithms PEval ARefine AComplete
PP-r-clique Same as [14] O(|A′||Q||P|2) O(|A||Q|k ln|V |)
PP-Blinks Same as [10] O(|A′||Q||P|2) O(m1|P||Q|+|A||Q|k ln|V |)

PP-knk Same as [13] O(m2|P|2) O(|P|k ln|V |)
TABLE VIII: Query models with their descriptions

Query models Description
M1 Users issue queries on the public graph and private

graph individually.
M2 Users issue queries on the combined graph directly.
M3 Users issue queries by PPKWS.

also present the complexity of each key step of PP-knk,
PP-r-clique and PP-knk as shown in Tab. VII.

1) Complexity of the shortest distance estimation.:
Given two vertices v1 and v2 and they correspond-
ing PADS, the time of shortest distance estimation is
min{|PADS(v1)|, |PADS(v2)|} on average. Since finding a
element in a hashset can be finished in a constant time on
average, the estimation cost is O(k ln|V |), where k is a
parameter set by user. A larger k will bring larger sketches
as well as more accuracy. Similarly, the time of estimating
the shortest distance between a keyword t and a vertex v
is O(min{|KPADS(t)|, |PADS(v)|}). In general, the size of
|KPADS(t)| is much larger than |PADS(v)|. Hence, the cost
is O(k ln|V |), too.

2) Complexity of the PP-r-clique.: PEval applies the key-
word search algorithm of [14] with an answer qualification
function which can be finished by a linear scanning, bounded
by O(V ′). Hence, PEval inherits the complexity of r-clique
(cf. [14]). ARefine is in O(|A′||C||P2|) since refining each par-
tial answer takes O(|C||P|2). It is bounded by O(|A′||Q||P|2).
AComplete is in O(|A||Q|k ln|V |).

3) Complexity of the PP-Blinks.: PEval applies the key-
word search algorithm of [10] with an answer qualification
function which can be finished by a linear scanning, bounded
by O(V ′). Hence, PEval inherits the complexity of Blinks
(cf. [10]). ARefine is in O(|A′||C||P2|) since refining each par-
tial answer takes O(|C||P|2). It is bounded by O(|A′||Q||P|2).
AComplete is in O(m1|P||Q|+|A||Q|k ln|V |). The backward
expansion on the public graph takes O(m1|P||Q|) where
m1 is the average number of the nodes within the x-hop
of the portals. For each visited node, it takes O(|Q|) to
update the distance information (Lines 15-17). AComplete
takes O(|A||Q|k ln|V |) to retrieve the missing keywords of
each answer (Lines 20-22).

4) Complexity of the PP-knk.: PEval applies the keyword
search algorithm of [14] without any changes. Hence, PEval
inherits the complexity of k-nk (cf. [13]). ARefine is in
O(m2|P2|) where m2 = |a′.match| since refining each partial
answer takes O(|P|2). AComplete is in O(|P|k ln|V |).

D. Other query models
In some applications, users might have some other query

requirements or be interested not only in the answers spanning
both on the public graph and the private graphs. For complete-
ness, we also list some other query models as follows. The
summary is presented in the Tab. VIII.
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Fig. 7: Performance under different query models

M1 : eval(G,Q, f)⊕ eval(G′, Q, f). In this scenario, users
issues queries on the public and private graphs individually.
The public answers and private answers are obtained. As we
mentioned in Sec. III, M1 query model can be simulated on
PPKWS as follows. PEval takes the public graph (resp. the
private graph), the keyword query and algorithm as input. For
the answers spanning both the public graph and private graphs,
the users can simply adopt the M3 model (below).

M2 : eval(Gc, Q, f). In this scenario, queries are directly
issued on the combined graph. For example, business analysts
may focus on the collaborations from a social graph. They may
search on both the public collaboration graph and their private
collaboration graphs. Baseline-Blinks, Baseline-r-clique and
Baseline-knk, all belong to this query model.

M3 is the PPKWS framework. PP-Blinks, PP-r-clique and
PP-knk, presented in this paper, all belong to this query
model.

Performance analysis. M1 and M2 inhert the complexity of
the original keyword search algorithms. We report the query
performance under different query models in Fig. 7. The
query performances of M1 and M2 are slightly different. M3

improves the query time by around 110 times on average.
Since the query points of k-nk under M2 and M3 are in
the private graph, the queries are different with those of
k-nk under M1. Hence, we omit the comparison experiments
between M1 and M2 or M3 of k-nk. The average query time
of M1 is closed to that of M2.

E. The qualities of the query answers of PPKWS

In this section, we show the quality guarantees of the query
answers of various query semantics on PPKWS. We show
the theoretical bounds of PP-r-clique, PP-Blinks and PP-knk,
respectively.

Theorem A.5. PP-r-clique finds an r-clique with (l − 1)-
approximation, where l is the number of the query keywords,
i.e., l = |Q|.

Proof: We prove PPKWS can return the (l − 1)-
approximate answer of r-clique, 〈v,match〉. We denote the
optimal r-clique as aopt, and the greedy r-clique as agrdy. And
we use ui = aopt.match[qi].u (resp. vi = agrdy.match[qi].u)
to dentoe the keyword nodes in aopt (resp. agrdy). Moreover,
we use the symbols dopti,j = dc(ui, uj) (resp. di,j = dc(vi, vj))
to denote the shortest distance between keyword nodes ui
and uj (resp. vi and vj). We denote the weight of optimal

(resp. greedy) r-clique as W (aopt) =
l∑
i=1

l∑
j=1

dopti,j (resp.

W (agrdy) =
l∑
i=1

l∑
j=1

di,j).

Based on the Definition II.2 of the public-private answers,
∃vi such that vi ∈ G′.V and ∃uj such that uj ∈ G′.V . We
denote them as vr and ur, respectively.

Given any two keyword nodes vi and vj , the triangle
inequality is kept. More specifically, we have the following
formula:

di,j ≤ dr,i + dr,j (8)



Moreover, we have the weight of agrdy as follows:

2×W (agrdy) =

l∑
i=1

l∑
j=1

di,j = 2×
∑
i 6=r

dr,i +
∑
i 6=r

∑
j 6=r,j 6=i

di,j ,

(9)
where i, j ∈ (1, l).

Consider the worst case, we have:

∑
i6=r

∑
j 6=r,j 6=i

di,j ≤
∑
i 6=r

∑
j 6=r,j 6=i

(dr,i+dr,j) = 2×(l−2)
∑
i 6=r

dr,i

(10)
Consider the equations 9 and equation 10, we have:

2×W (agrdy) ≤ 2×
∑
i 6=r

dr,i +2× (l− 2)
∑
i 6=r

dr,i = 2× (l− 1)
∑
i6=r

dr,i

(11)

Next, we consider the weight of the optimal r-clique ansopt:

2×W (aopt) =

l∑
i=1

l∑
j=1

dopti,j ≥ 2×
∑
i 6=r

doptr,i ≥ 2×
∑
i 6=r

dr,i

(12)
Therefore, we have:

W (aopt) ≥
∑
i 6=r

dr,i (13)

In this case, aopt and agrdy are considered equal. Hence,
Formula 13 is established.

Consider the euqation 11 and equation 13, we have:

W (agrdy) ≤ (l − 1)
∑
i6=r

dr,i ≤ (l − 1)×W (aopt) (14)

Consequently, the (l − 1) approximation ratio is satisfied.

Theorem A.6. Given an answer of PP-r-clique, a =
〈v,match〉, a.match[q].d = (2c− 1)dc(v, a.match[q].u).

Proof: The proof is the same with Lemma A.3, Case 1.2.

Theorem A.7. PP-Blinks finds Blinks answers with (2c−1)-
approximation.

Proof: The weight of a Blinks answer a = 〈r,match〉
is denoted by W (a) =

∑
match[q].d. We denote the answer

returned by PP-Blinks as a′ which is rooted at r. We denote
the answer rooted at r and returned by applying Blinks on the
combined graph as a ∈ eval(G⊕G′, Q,Blinks).

Next, we show that W (a′) ≤ (2c − 1)W (a). As we have
proved in Lemma A.3, match′[q].d ≤ (2c − 1)match[q].d.
Hence W (a′) =

∑
match′[q].d ≤ (2c − 1)

∑
match[q].d =

(2c− 1)W (a).

Given a k-nk query (v, q, k), we denote the top k answers
returned by PP-knk as A′ = {a′}. And a′.match is sorted

by the ascending order of a′.match[i].d. And we denote the
answers returned by applying k-nk on the combined graph as
A = {a} = eval(G⊕G′, Q, k-nk). And a.match is sorted by
the ascending order of a.match[i].d.

Theorem A.8. The distance of k-th element of the answer
a.match returned by PP-knk is bounded with (2c − 1)-
approximation, i.e., a′.match[k].d ≤ (2c− 1)a.match[k].d.

Proof: We consider the following two cases.
Case 1: Suppose ∀i, a.match[i].u ∈ G′.V , a.match[i].u will

be returned by PP-knk, i.e., a.match[i] ∈ a′.match, as we
have proved in Lemma A.4. Hence, a.match ⊆ a′.match.
Since |a′.match|= |a.match|= k, a′.match = a.match.
Hence a′.match[k] = a.match[k]. a′.match[k].d ≤ (2c −
1)a.match[k].d is satisfied.

Case 2: Suppose ∃i, a.match[i].u 6∈ G′.V . It is worthing
noting that a.match[i].d ≤ (2c − 1)dc(v, a.match[i].u) by
PP-knk (the proof is the same with Lemma A.3, Case 1.2).

Since a.match[i].d ≤ a.match[k].d, we have

(2c− 1)a.match[i].d ≤ (2c− 1)a.match[k].d (15)

We prove this theorem by contradiction. If a′.match[k].d >
(2c− 1)a.match[k].d, then

a′.match[k].u′.d > (2c− 1)a.match[i].d (16)

where i ∈ (1, k).
Hence a′.match[k] is not among the top-k nearest ver-

tices returned by PP-knk. Therefore a′.match[k].d ≤ (2c −
1)a.match[k].d is established.


