
Continuous Geo-Social Group Monitoring over

Moving Users

Huaijie Zhu, Wei Liu*, Jian Yin

Sun Yat-sen University, China

Laboratory of Big Data Analysis and Processing, Guangzhou

zhuhuaijie, liuw259, issjyin@mail.sysu.edu.cn

Mengxiang Wang

Northeastern University, China

wmx0425@gmail.com

Jianliang Xu

Hong Kong Baptist University

xujl@comp.hkbu.edu.hk

Xin Huang

Hong Kong Baptist University

xinhuang@comp.hkbu.edu.hk

Wang-Chien Lee

The Pennsylvania State University, USA

wlee@cse.psu.edu

Abstract—Recently a lot of research works have focused on
geo-social group queries for group-based activity planning and
scheduling in location-based social networks (LBSNs), which
return a social cohesive user group with a spatial constraint.
However, existing studies on geo-social group queries assume the
users are stationary whereas in real LBSN applications all users
may continuously move over time. Thus, in this paper we in-
vestigate the problem of continuous geo-social groups monitoring
(CGSGM) over moving users. A challenge in answering CGSGM
queries over moving users is how to efficiently update geo-social
groups when users are continuously moving. To address the
CGSGM problem, we first propose a baseline algorithm, namely
Baseline-BB, which recomputes the new geo-social groups from
scratch at each time instance by utilizing a branch and bound
(BB) strategy. To improve the inefficiency of BB, we propose a
new strategy, called common neighbor or neighbor expanding
(CNNE), which expands the common neighbors of edges or the
neighbors of users in intermediate groups to quickly produce the
valid group combinations. Based on CNNE, we propose another
baseline algorithm, namely Baseline-CNNE. As these baseline
algorithms do not maintain any intermediate results to facilitate
further query processing, we develop an incremental algorithm,
called incremental monitoring algorithm (IMA), which maintains
the support, common neighbors and the neighbors of current
users when exploring possible user groups for further updates
and query processing. Finally, we conduct extensive experiments
using three real datasets to validate our ideas and evaluate the
proposed algorithms.

Index Terms—geo-social group queries, continuous queries,
moving users

I. INTRODUCTION

With the ever-growing popularity of GPS-enabled devices

and online social networks, location-based social networks

(LBSNs), e.g., Foursquare, Yelp, Wechat, and Weibo, have

emerged in our social life. In all these LBSNs, mobile users

are allowed to share their check-in locations (e.g., homes,

supermarkets, offices, restaurants, and shopping malls) with

friends or social users. LBSNs have bridged the gap between

the physical world and the virtual world of social networks,

providing social users new applications, such as group-based

activity planning and target marketing [1]–[5]. For example, a

hotpot restaurant would like to push group coupons for nearby

users, who are socially connected with each other, so as to

attract the users to dine at the restaurant. Accordingly, a geo-

social group query may be issued to find a socially cohesive

group of users with a spatial constraint for the application [1].

While much research attention has recently been drawn to

geo-social group queries (e.g., [1], [2], [4]–[6]), existing works

assume that users’ locations are fixed. Nevertheless, we argue

that users could be moving in real-life scenarios. In other

words, the user groups satisfying the query conditions may

constantly change over time. In the above restaurant example,

group coupons should be advertised to periodically detected

user groups near the restaurant.

Figure 1. An example of CGSGM query

To make geo-social queries more realistic and useful for

location-based applications, in this paper, we introduce a new

geo-social group query, namely, continuous geo-social groups

monitoring query over moving users (CGSGM).1 Consider an

LBSN represented by a graph G. Given a CGSGM query, spec-

ified in the form 〈d, ql, k, p, [t1, t2]〉, the system continuously

monitors all user groups of size p such that the distance of any

result user to the query location ql is not greater than d and

that the users within a group form a k-truss (i.e., a subgraph in

which each edge e(u, v) has at least k-2 common neighbors).

An example of a CGSGM query is illustrated in Figure 1,

1We assume that the social network does not change during the query
period, which may last for a few hours.

312

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00028

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

28

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

where the social network and user locations are respectively

presented in a social layer and a spatial layer. The top part is

the social graph where two users are connected if two users are

acquainted with each other, while the bottom part shows users’

locations at time instances t1 and t2, respectively, where each

user ui is associated with its location pi. Suppose there is a

restaurant located at q, which aims to continuously identifying

all social cohesive groups of size 5 whose distance to the

restaurant is not greater than 2km, during the opening hours

[t1 = 5pm, t2 = 9pm]. This task can be carried out by issuing

a CGSGM query 〈d = 2km, q, k =3, p=5, [t1, t2]〉. The results

of this CGSGM query are the groups {u0, u2, u3, u4, u9},

{u0, u2, u3, u6, u7}, {u0, u2, u6, u7, u9}, {u0, u3, u4, u6, u7},

and {u0, u3, u9, u6, u7} for time instance t1, while the group

results for time instance t2 are {u0, u3, u4, u7, u5}, {u0,

u3, u4, u9, u5}, {u0, u3, u9, u7, u5}, {u0, u3, u4, u5, u8}, {u0,

u3, u4, u7, u8}, {u0, u3, u9, u5, u8}, {u0, u3, u9, u7, u8}, and

{u0, u5, u7, u9, u8}.

To support CGSGM, we propose a query processing frame-

work (as shown in Figure 2). We assume that there is a central

server that receives the positions of mobile users from the

position monitoring subsystem. The CGSGM queries issued

by query clients (e.g., various restaurants) are registered at

this central server, where query processor continuously returns

query results to the query clients, upon reception of user

position updates. We propose efficient algorithms to process

CGSGM queries in real time. The server does not assume any

knowledge about the users’ moving velocities, directions, or

trajectories.

Figure 2. The CGSGM framework

A major challenge faced in processing CGSGM queries is

the need to enumerate every possible group combination to

generate the result groups at each time instance. It is easy to

prove that the CGSGM query problem is NP-hard.

To tackle the CGSGM problem, we first propose a baseline,

which recomputes new geo-social groups from scratch at each

time instance. To find all k-truss groups of size p, a basic idea

is to utilize the branch and bound (BB) method to numerate

all the possible k-truss groups of size p with trussness filtering

and k-truss decomposition. As the BB method fetches users

one by one without exploiting some specific orders and

social constraints to form the groups, it is hard to produce

a feasible solution. Thus, we propose a common neighbor

or neighbor expanding (CNNE) strategy, by expanding the

common neighbors of edges or the neighbors of users in an

intermediate group at each time, to quickly produce valid

group combinations. In addition, we develop an edge support

based deciding (ESD) scheme to decide which neighbor or

common neighbor to choose first in the CNNE strategy in

order to expand the current branch. Accordingly, based on the

two expanding strategies (i.e., BB and CNNE), we develop

two baseline algorithms, namely Baseline-BB and Baseline-

CNNE, which recompute new geo-social groups from scratch

at each time instance.

Through preliminary testing of those baseline algorithms,

we find the support, the common neighbors, and the neighbors

of the candidate users need to be calculated over and over

when new updates occur. Therefore, we further propose an

efficient incremental monitoring algorithm (IMA), by main-

taining these useful information and intermediate results for

further query processing. IMA includes two parts: initial result

computation and multiple-users update. When exploring pos-

sible k-truss groups at each time instance of query processing,

we maintain the support, the common neighbors, and the

neighbors of current users for future user updates and query

processing. Finally, we conduct a comprehensive performance

evaluation using three real datasets to validate our ideas and

compare the proposed algorithms.

The contributions made in this paper are four-fold:

1. We formalize a new and realistic variant of geo-social

query, continuous geo-social groups monitoring (CGSGM)

query, over moving users. To the best of our knowledge, this

is the first attempt to tackle the CGSGM problem.

2. We propose two baseline algorithms, namely Baseline-BB

and Baseline-CNNE, which recompute new geo-social groups

from scratch at each time instance.

3. We further develop an efficient incremental algorithm,

which maintains useful intermediate results for further user

updates and query processing.

4. We conduct extensive experiments to evaluate the pro-

posed algorithms. The experimental results show that IMA

significantly outperforms the two baseline algorithms.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III gives some basic defini-

tions and formulates the CGSGM problem. Section IV presents

our two baseline algorithms in detail. Section V introduces

the incremental monitoring algorithm. Section VI reports the

experimental results and our findings. Finally, Section VII

concludes the paper with a discussion of future work.

II. RELATED WORK

A lot of research efforts related to our work, including

Continuous Spatial Queries, and Geo-Social Group Queries,

have been made in the field of location based social network.

A. Continuous spatial queries (CSQs)

Many continuous spatial queries over spatial databases have

been studied over the years.

Since 1990s, researchers have been studying the problem

of querying moving objects [7]. Queries such as “find Alices

nearest petrol stations while she is driving” or “find all the

taxi cabs within 1 km from Alice” [8] are proposed for

research. As technology advances, mobile devices emerge

in our daily life, reserach attention on continuous spatial

queries (CSQs) also grows significantly in the spatial database

313

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

community. A large number of studies are investigated from

various aspects of CSQs, including access methods [9]–[11],

query algorithms [12]–[14] and new query types [15]–[17],

just to name a few. Over the years, a CSQ has also been

called as a moving query [17]–[19], an active query [20],

a (continuous) spatio-temporal query [9], [21], [22], and a

continuous location-based (or location-dependent) query [23]–

[26], with some minor differences in the targeted settings. The

terms moving query, spatio-temporal query, and active query

are introduced in part to distinguish the new functionality

from that of traditional spatial queries where the objects are

static and time-independent. The terms continuous location-

based or location-dependent query are introduced in part to

emphasize the application context of location-based service

(LBS). Xiong et al. [27] study the processing of continuous k

nearest neighbor queries in spatio-temporal databases. In their

setting, both the objects and continuous queries may change

their locations over time. The answer region of a query point

q is defined as the circle centered at q wtih radius best dist,

which is the distance of the kth NN to q. Mouratidis et al. [28]

propose the conceptual partitioning monitoring (CPM) method

for continuous nearest neighbor monitoring. They define the

influence region of q as the set of cells that intersect the circle

centered at q with radius best dist. Only the updates affecting

the influence region of a query are used to invalidate its current

result. However, like many other existing works, the two works

mentioned above do not consider the social constraint in query

processing.

B. Geo-social group queries

Various location-based social network sites allow users

to share their locations through check-ins or mentions in

posts. Over the years, the prosperity of location-based social

networking paves the way for new applications of group-based

activity planning and marketing. As a result, a growing number

of researches on geo-social (socio-spatial) group queries, have

been explored.

For a given geo-social graph, Yang et al. [1] first propose

a geo-social group query (SSGQ) that finds a set of members

based on a fixed rally point where the aggregated spatial

distance between members and the rally point is minimized

while each member is allowed to be unfamiliar with at most

a given number of members in that group. However, such a

social constraint may lead to a group that have very distant

or diverse social relations. Thus, Zhu et al. [2] propose a new

class of geo-social group queries with minimum acquaintance

constraint (GSGQ), which ensures all users in the result group

to have at least a certain number of acquaintances. GSGQ

takes three parameters: query issuer, spatial constraint, and

social constraint, where the query issuer is a member in the

given graph. Although SSGQ and GSGQ impose a constraint

on group size, they do not consider user movements. Thus, the

query results are static. Recently, the geo-social k-cover group

query for collaborative spatial computing is proposed [5]. In

this query, given a set of query points and a social network, it

retrieves a minimum user group in which each user is socially

related to at least k other users such that the user-associated

regions (e.g., familiar regions or service regions) can jointly

cover all the query points. In addition, Armenatzoglou et

al. [29] propose a general framework for geo-social query

processing, which separates the social, geographical, and query

processing modules to facilitate flexible data management.

Then, Shen et al. [4] propose the multiple rally-point social

spatial group query (MRGQ) that chooses a suitable rally point

from the multiple points and the corresponding best group,

by minimizing spatial distance between group members to

the best rally point. Fang et al. [30] propose a spatial-aware

community (SAC), which is a connected c-core where the

members in the resulting group are located within a spatial cir-

cle of minimum radius. SAC also maintains the minimum ac-

quaintance constraint. Furthermore, Shen et al. [31] investigate

the problem of computing the radius-bounded k-cores (RB-

k-cores) that aims to find cohesive subgraphs satisfying both

social and spatial constraints on large geo-social networks. By

considering the constraint of users’ spatial information in k-

truss search, Chen et al. [32] study the co-located community

search to find the maximum co-located communities. Although

this work also uses k-truss to measure the community, its goal

is to find the maximum community. The flexible socio-spatial

group queries [33] are proposed to find the top k groups w.r.t.

multiple POIs where each group follows the minimum social

connectivity constraint. In addition, Li et al. [34] propose to

find a set of skyline cohesive groups, in which each group

cannot be dominated by any other group in terms of social

cohesiveness and spatial cohesiveness. Finally, Chen et al. [35]

propose a novel geo-social group model, equipped with elegant

keyword constraints.

In summary, the problem settings of the aforementioned

existing works are different from CGSGM. In particular, they

do not study the dynamic change of the query results caused by

the movements of users, which is the main focus of this work.

Moreover, the size of geo-social groups returned by CGSGM

is fixed, which introduces significant challenges to our work.

III. PRELIMINARIES

Given a location-based social network (LBSN), we focus

on continuously finding geo-social groups of moving users

located in monitored spatial regions, where each user may be

continuously moving. In this paper, we assume an environment

where each of the moving objects is equipped with a location

detection device, e.g., a smart phone with GPS. The moving

users report their locations periodically. With respect to the

spatial constraint, we denote the Euclidean distance between

a user u and a query location ql by dis(u, ql). For continuous

evaluation of spatio-temporal queries on moving users, where

user locations may change constantly, two models may be

considered: (1) updates are pushed into the query processor

as soon as they are available (e.g., as in [14]); (2) the query

processor periodically pulls the current locations of the objects

for query processing in order to update the query answer [36].

In this paper, we adopt the second model and assume that the

query processor pulls the current locations of the objects at a

314

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

scheduled time instance to generate/update the query answer

for the query issuer2.

In order to find a social cohesive group of users in a social

network, similar to other related works on geo-social network,

CGSGM uses k-truss [37] as the basis of social constraint to

restrict the result group. In this section, we first introduce the

related definitions and properties of k-truss, based on which

the CGSGM problem is formulated.

Consider an undirected graph G = (V,E), where V is the

set of vertices and E is the set of edges. A triangle in G is

a cycle of length 3. Let u, v, w ∈ V be the three vertices on

the triangle, denoted by △uvw. We first define the notion of

common neighbor and support of an edge, respectively.

Definition 1: (COMMON NEIGHBOR). Given an edge

e(x, y), we say z is the common neighbor to e(x, y) iff e(x, z)
and e(y, z) ∈ E. In other words, x, y, z form a triangle.

Definition 2: (SUPPORT). The support of an edge e(u, v)
∈ E in G, denoted by sup(e,G), is defined as |{△uvw : w ∈
V }|. When the context is obvious, we replace sup(e,G) by

sup(e). Since w is a common neighbor of (u, v), the support

of e(u, v) is the total number of common neighbors to e(u, v).

With the definition of support, k-truss [38] is defined as

follows. Intuitively, a k-truss is subgraph in which each edge

e(u, v) has at least k-2 common neighbors. Let G[W] denote

a subgraph induced by a group set W ⊆ V .

Definition 3: (k-TRUSS GROUP.) Given a group set W

and an integer k ≥ 2, W is a k-truss group, if there exist at

least one induced subgraph G[W] satisfying the following two

conditions:

(1) k-truss. G[W] is a subgraph of G, denoted as G[W] ⊆
G, such that ∀e ∈ E(G[W]), sup(e,G[W]) ≥ (k − 2);

(2) Connected. G[W] is connected.

For example, as shown in Figure 1, group

{u0, u1, u2, u9, u7, u8, u5} is 4-truss group. Notice that

the support of edges in its induced graph are not less than 2

except the edge e(u5, u9) whose support is 1. By removing

edge e(u5, u9), the subgraph is still is connected and satisfied

as a 4-truss. Based on the observation, we devise an algorithm

to check whether a group is k-truss. The main idea is to

remove an edge whose support is less than k-2 iteratively

until we find the induced subgraph is a k-truss or at least one

node is disconnected from other nodes. That is, if there exists

one node disconnected from other nodes, such a group is not

a k-truss group.

To facilitate our discussion, we define the trussness of a

subgraph, an edge, and a vertex as follows.

Definition 4: (SUBGRAPH TRUSSNESS). The trussness of

a subgraph H ⊆ G is the minimum support of edges in H ,

denoted by τ(H) = min{sup(e,H) : e ∈ E(H)}.

Definition 5: (EDGE TRUSSNESS). The trussness of an

edge e ∈ E(G) is the maximum trussness of e in all the

subgraphs, i.e., τ(e) = maxH⊆G{{τ(H) : e ∈ E(H)}.

2Note that the updates could be very frequent (i.e., near real time) to meet
the needs of the clients.

Definition 6: (VERTEX TRUSSNESS). The trussness of a

vertex v ∈ V (G) is the maximum trussness of v in all the

subgraphs, i.e., τ(v) = maxH⊆G{{τ(H) : v ∈ V (H)}.

The social cohesiveness group defined by k-truss can be

generalized using other dense subgraph definitions, such as

the k-core group, clique [39] and k-edge-connected component

community.

A. Problem formulation

In this section, we formally define the CGSGM query.

Problem Statement. Given a social graph G = (V,E), where

each vertex v ∈ V is a candidate attendee whose location at

time instance ti (where ti ∈ [t1, t2]) and any two mutually

acquainted vertices u and v are connected by an edge eu,v . A

continuous geo-social group monitoring query CGSGM over

moving users 〈d, p, ql, k〉 continuously monitors all the k-truss

groups of size p from G between time instance t1 and time

instance t2 where the distance of every result user to the query

location ql is less than d, i.e., ∀v, dis(v, ql) ≤ d.

Theorem 1: The CGSGM query is NP-hard.

Proof : For each time instance, we return all the k-truss

groups with a fixed size p. We prove the NP-hardness of

our CGSGM problem by reducing from a decision version

of the well-known NP-hard Maximum Clique problem, that

is, checking whether there exists a non-empty k-clique in

graph G(V,E). We construct an instance of CGSGM for

graph G(V,E) with moving users 〈d, p, ql, k〉, by setting the

parameters k = p and d = +∞ such that every user v ∈ V

satisfies dis(v, ql) ≤ d. A k-truss of size p = k is a k-clique,

because every edge (v, u) ∈ E has exactly k−2 triangles and

thus each vertex v has k − 1 neighbors. Thus, the decision

problem of Maximum Clique is a Yes-instance if and only if

the corresponding of our CGSGM is also a Yes-instance. This

completes the proof.

B. K-truss index

In this section, we first introduce a k-truss index from [40]

by maintaining the truss information to check whether a user

is qualified to be a result user by its corresponding edge’s

trussness.

We first apply a truss decomposition algorithm [41] on the

graph G, which computes the trussness of each edge, denoted

as τ(e(u, v)). For each vertex v ∈ V , we sort its neighbors

N(v) in descending order of the edge trussness τ(e(u, v)) for

u ∈ N(v) and set the maximum edge trussness as the v’s

trussness. For each distinct trussness value k ≥ 2, we mark

the position of the first vertex u in the sorted adjacency list

where τ(e(u, v)) = k. This supports efficient retrieval of v’s

incident edges with a certain trussness value. We also use a

hash table to keep all the edges and their trussness values.

This is the k-truss index.

IV. BASELINE

To address the CGSGM problem, which is to find all the

k-truss groups of size p corresponding to the query position

ql and query distance threshold d, an idea is to first obtain

315

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

the users inside the circle with the radius d centered at ql,

called monitoring circle (denoted as Cm), and then perform

k-truss decomposition (called KTD) [41] to obtain the qualified

users at a scheduled time instance, and finally eumerate all the

possible groups of size p from these qualified users to return

all the k-truss result groups.

Before proposing the baseline, we first discuss how to

compute the initial results efficiently.

A. The initial results computation

Given a CGSGM 〈d, ql, k, p〉 query at the initial time

instance, a natural idea is to first scan all the users to obtain

a set of candidate users Scan. A candidate’s distance to query

location ql should be no greater than d, while her trussness is

also not less than k. The trussness of users may be exploited

to filter unqualified users, termed as vertex trussness filtering,

is presented in Lemma 1. To efficiently utilize this vertex

trussness filtering, we should precompute the trussness for

each user before the query is processed, as stored in our k-

truss index. After that, we invoke the k-truss decomposition

function to remove the users who can not be a member of k-

truss. This is called k-truss decomposition filtering, as depicted

in Lemma 2. Notice that KTD is implemented by revising

the truss decomposition algorithm when setting the initial

truss value as k. After obtaining the qualified users (i.e., the

maximal k-truss), we enumerate candidate groups of size p

by invoking a branch and bound (BB) algorithm. The BB

algorithm is to enumerate the possible groups for finding all

the connected k-truss groups. The pseudo-code of the initial

result computation algorithm is shown in Algorithm 1.

Lemma 1: Vertex trussness filtering. Given a CGSGM

query 〈d, p, ql, k〉, the current feasible solution UI , a new user

u can be safely filtered iff its trussness is less than k.

Proof : The lemma holds since the vertices with truness <

k do not meet the requirement of k-truss in Definition 3.

Lemma 2: Maximal k-truss filtering. Given a user u and

the maximal k-truss MT , u is qualified as a member of k-

truss of size p (≤ |MT |) iff u ∈ MT . That is, if u is not in

MT , it can be safely filtered from the group combination for

forming the k-truss.

Proof : The lemma holds since the vertices that are not a

part of the maximal k-truss clearly cannot meet the structural

cohesiveness requirement in Definition 3.

The main idea of the Branch and Bound (BB) algorithm

is to apply a branch and bound strategy to enumerate the

candidate groups with the qualified users set MT . Let UI

denote the intermediate solution set of candidate attendees,

which is initialized with MT and used for the further query

processing. In addition, we use UR to denote the remaining

set of candidate attendees. At each iteration afterward in BB

algorithm, we select a vertex from UR to UI randomly. If

the size of intermediate group UI is p, we check whether it

is a connected k-truss. If it is, we push it into the results

Skt. Otherwise (the size is smaller than p), we continuously

select a vertex UR to UI . When UR becomes empty, the query

processing terminates.

Algorithm 1: Initial result computation (IRC)

Input: A social graph G = (V,E), a query CGSGM

〈d, ql, k, p〉, users’ location array Aloc at the

current time instance

Output: All the connected k-truss groups Skt

1 for each user u ∈ Aloc do

2 if τ(u) ≥ k and dis(u, ql) ≤ d then

3 updateNeighborandCommonNeigbor(u, Scan);

4 Insert u into candidate set Scan;

5 MT ← KTD(Scan, k);

6 Skt ← BB(MT , k);

7 return Skt;

Figure 3. An example of branch and bound

Example 1: Recall the example in Figure 1 for illustration

of the initial result computation algorithm. Given a CGSGM

〈d, ql, 3, 5〉 query, at the initial time instance, the candidate

users set Scan is {u0, u2, u3, u4, u6, u7, u9, u11}. Then

we invoke the KTD funtion to get the qualified users set

as {u0, u2, u3, u4, u6, u7, u9}. After that, the Branch and

Bound algorithm is invoked to explore the candidate groups

as shown in Figure 3. Firstly, UI is initialized with {u0}.

Then u2 is selected to form a new branch and UR ={u3,

u4, u6, u7, u9}. By selecting a vertex from UR to UI itera-

tively, we first check {u0, u2, u3, u4, u6}, {u0, u2, u3, u4, u7}
and {u0, u2, u3, u4, u9} of size 5, sequentially. Now we find

one connected 3-truss group {u0, u2, u3, u4, u9}. Next, we

continue to explore the branch {u0, u2, u3, u6}. Similarly,

{u0, u2, u3, u6, u7} is checked as a 3-truss group. Then

{u0, u2, u9, u6, u7} is also returned as a 3-truss group

when exploring branch {u0, u2, u9}. After that, the branches

{u0, u3}, {u2} and {u3} are explored and the correspond-

ing 3-trusses {u0, u3, u4, u6, u7} and {u0, u3, u9, u6, u7} are

returned. At this stage, the query processing ends and

the size of remain users is smaller than 5. All the con-

nected 3-truss groups of size 5 are {u0, u2, u3, u4, u9},

{u0, u2, u3, u6, u7}, {u0, u2, u6, u7, u9}, {u0, u3, u4, u6, u7},

and {u0, u3, u9, u6, u7}.

As shown, the branch and bound idea explores many invalid

combinations, e.g., the branches {u2}, {u3} and {u0, u2, u4},

thus it is inefficient to answer the CGSGM query.

316

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

Improvement by the CNNE strategy. We argue that BB

is not efficient to form a valid combination by fetching a

user randomly. Thus, we propose a new expanding strategy,

common neighbor or neighbor expanding (CNNE), to quickly

produce the feasible solutions, which also explores some

effective pruning and filtering techniques.

For the sake of expanding a valid common neighbor, we

introduce the edge trussness filtering as follows.

Lemma 3: Edge Trussness filtering. Given a CGSGM

query 〈d, p, ql, k〉, a new edge can be safely filtered iff its

trussness is less than k.

Proof : The lemma holds according to the requirement of

k-truss in Definition 3.

Assume that one common neighbor v for edge e(x,y) is

considered for expansion. According to the edge trussness

filtering, if the truss of one edge e(v,x) (or e(v, y)) is less

than k, such a common neighbor v is not valid for expansion.

The CNNE strategy. To quickly form a feasible truss group,

it is a natural idea to use one edge’s common neighbor to

expand the current group so that this can increase this edge’s

support. For introducing this idea in detail, let’s reconsider

Example 1. Similarly, we first compute the maximum 3-

truss set Scan = {u0, u2, u3, u4, u6, u7 u9} for the initial

time instance. After that, group combination exploration is

performed. We also choose the user u0 in the running example.

Then one u0’s neighbor u2 whose edge trussness is greater

than k is selected according to the property of a connected

k-truss. After that, we may select the common neighbor of

edge e(u0, u2) in the intermediate set UI to expand UI .

Continue with these steps until all the possible combinations

are enumerated. However, two key questions may arise during

expanding UI :

• Which edge should be first selected to expand its common

neighbors when there are many edges in UI?

• Is it correct to always select a common neighbor to

expand UI?

To answer these two questions, let’s show an example in

Figure 1. Give a CGSGM query 〈d, ql, 3, 5〉 at time instance t1.

For this query, we first select u0 and its neighbor, e.g., u2. At

this time, for branch (u0, u3) to become a 3-truss, the support

of edge e(u0, u3) should be at least 1. Thus, at least one

common neighbor of e(u0, u3) should be added to the group

to support this edge. Since the common neighbors of edge

e(u0,u2) are u3 and u9. At this moment, we have two choices

to expand UI={u0, u3}. If we select u3, then UI becomes

{u0, u2, u3}, which has three edges. Notice that the support

of all these three edges is not less than 1. Now, we should

decide how to expand UI to be a 3-truss of size 5. If we always

continue to expand one edge’s common neighbor, e.g., u9, u4,

we can find only one feasible group {u0, u2, u3, u4, u9}.

However, group {u0, u2, u3, u7, u6} is missing in the final

results since both u7 and u6 are not the common neighbor

of any edge in {u0, u2, u3}.

From the above example, we can see that it is not a good

idea to always select a common neighbor to expand the

intermediate group. Thus, we develop Lemma 4, for one edge’s

support w.r.t the current UI .

Lemma 4: Given an intermediate set UI , if the support of

an edge e, denoted as sup(e), is less than k-2, UI may be

expanded as a feasible solution only if there are at least k-2-

sup(e) common neighbors to be added to UI ; Otherwise, this

branch can be safely pruned.

Proof : It is easy to be proved according to the support

condition of k-truss in Definition 3.

To answer these two questions, we observe that there exist

two cases with respect to edges’ support for an intermediate

solution set UI where |UI | is smaller than p.

• Case 1. All edge’s support is not less than k − 2.

• Case 2. There exist at least one edge with support less

than k − 2.

Accordingly, in order to efficiently expand one branch, we

propose a new expanding scheme, called edge support based

decision (ESD) scheme, which mainly chooses the common

neighbors of the edge whose support is less than k-2 or the

neighbors of users when all the edge’s support is equal or

larger than k-2 w.r.t |UI |, to expand the intermediate solution

set UI iteratively. Thus, the above two cases are addressed as

follows.

(i) For the first case, we have two situations: (1) if the size

of UI is p-1, we follow Lemma 5 below; (2) otherwise, we

should fetch the neighbors of users instead of the common

neighbors to expand current UI .

Lemma 5: Given an intermediate set UI of size p-1, the

support of all the edges is not less than k-2. The seed UI

can expand as a feasible solution only if there must be one

common neighbor of one edge for adding to UI .

Proof : The lemma holds according to the support condition

of k-truss in Definition 3.

However, for the second situation, many neighbors of UI

should be explored to expand the current group and a lot of

branches are produced. However, some branches are invalid.

To reduce these invalid branches, we propose Lemma 6 to

check whether a given neighbor is valid to form a feasible

branch.

Lemma 6: Consider an intermediate set UI where the

support of all the edges is not less than k-2 and one new user

v is one neighbor of UI . UI ∪ {v} is qualified as a feasible

solution only if there exists one edge e(v, x) (x ∈ UI) whose

trussness is not less than k.

In Figure 1, give a CGSGM query 〈d, ql, 3, 4〉 and current

UI= {u0, u3, u4}. Since the size of UI is 3, if we expect

{u0, u3, u4} to become a 3-truss of size 4, we can’t add one

neighbor of nodes, e.g., u7, u8, according to Lemma 3. We

should add one common neighbor of edge e(u0,u3), e.g., u2,

u9 and u1, to be a 3-truss of size 4, while there is no commnon

neighbor for edges e(u0,u4) and e(u3,u4).

(ii) With regard to the second case, since there may exist

several edges whose support is smaller than k-2, it is necessary

to design a scheme to decide an appropriate edge e for

expanding its common neighbors.

317

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

Deciding an appropriate edge. For efficient expanding

one branch, it is involved in two aspects: (1) if one branch

can not produce a good feasible solution, it is necessary to

terminate this branch quickly; and (2) otherwise, it is important

to produce the good feasible solution earlier.

With regard to the first aspect (i.e., terminate this branch

quickly), the size of the valid common neighbors of the edge

e, denoted as |CN(e)|, is essential for expanding one branch.

That is, if that size is smaller, the number of combinations

to be examined is less. Thus if we select the edge whose

common neighbor size is small to expand current branch,

we can reduce the number of combinations exploration. For

example, given the current UI= {u0, u8, u9}, the common

neighbors of e(u0, u9) are {u5, u1, u2, u3}, while the common

neighbors of e(u8, u9) only contains u5. Thus for this, we

choose to use u5 for edge e(u8, u9) as the expanding user and

quickly determine {q, u8, u9, u5} as a feasible group by only

checking one combination. In contrast, if we decide e(u0, u9)
as the expanding edge, the number of combinations checking

is 4, that requires to check more combinations than using edge

e(u8, u9).

Moreover, it is vital for considering the remaining support

of one edge as defined in Definition 7 for the first aspect.

Definition 7: (REMAINING SUPPORT.) Given a sub-graph

G′ and social constraint c, we say the remaining support of

edge e, denoted as ŝup(e), is k−2−sup′G(e), where sup′G(e)
is the support of e with respect to G′ and is smaller than k-2.

Notice that if the support of e with respect to G′ is not less

than k-2, then ŝup(e)=0.

The idea behind remaining support is that we need to add

ŝup(e) commnon neighbors to support this edge to be a k-

truss. Thus, we have a lemma, denoted as support pruning.

Lemma 7: Given an intermediate set UI , if the size of one

edge’s common neighbors is smaller than ŝup(e), UI can be

safely pruned.

Proof : The proof is trivial according to the support condition

of k-truss in Definition 3.

If the remaining support of one edge in UI is smaller, we

require to expand less users for supporting such an edge. Thus,

this can reduce the number of combinations examination.

Therefore, according to the size of valid common neighbors

(|CN(e)|) and remaining support (ŝup(e)), we give priority to

selecting the edge whose ŝup(e) is smaller than |CN(e)| for

expansion. This is because k in a query is always very small,

while the size of common neighbors may be very large.

From the above CNNE strategy, however, there is one case

that current branch combining the common neighbor may

not produce one feasible solution. For example, consider a

CGSGM query 〈d, ql, 4, 4〉 and the current intermediate result

UI = {u0, u2, u3} generated by the CNNE strategy. If we

choose to use the common neighbor u4 to expand, we can not

produce a feasible solution finally. The main reason is that

the diameter of {u0, u2, u3, u4} is 2, which can not satisfy

the diameter property of a connected k-truss below. Thus, we

also propose a more effective pruning strategy, as shown in

Lemma 8, by exploiting this diameter property.

Property 1: The structural diameter of a connected k-truss

with n vertices is no more than ⌊
2 ∗ n− 2

k
⌋ [32].

Lemma 8: Given a social graph G, and an intermediate set

UI ⊆ G of size n, for vertex v, u ∈ UI , UI becomes a

connected k-truss only if gd(v, u,G) ≤ ⌊
2 ∗ n− 2

k
⌋, where

gd(v, u,G) denotes the graph distance between u and v in G.

Proof : According to Property 1, it is easy to deduce that

Lemma 8 is correct.

For obtaining the common neighbors for one edge e(x, y),

we have two ways: (1) online computing the common neigh-

bors, which checks the neighbors of one vertex x whose

trussness is larger than k and also check the neighbor with y

is also edge connected and the corresponding trussness is also

larger than k; (2) offline precomputing the common neighbors

with the minimal truss since we do not know the k value before

the query comes. Moreover, during the query processing, we

just choose the common neighbors whose trussness is larger

than k online.

This common neighbor expanding is mainly dependent on

the support of the edge. If the support does not satisfy, we

continue to add the nodes to satisfy the support of this edge.

Different from the branch and bound by randomly fetching

users to form the combinations, the common neighbor or

neighbor expanding (CNNE) strategy mainly explores the

group combinations by expanding the common neighbors of

edges or neighbors of users in UI in each iteration with the

help of ESD scheme and utilizing effective filtering strategies

(i.e., Lemma 4, 5 and 6). The pseudo-code is shown in Algo-

rithm 5. Similar to the BB strategy, our CNNE mainly expands

the branch by fetching the neighbors or the common neighbors

from the remaining users set UR to form the intermediate

solution set UI . UR is initialized with the maximal k-truss

MT . For the expanding process, we first use the ESD scheme

to just check whether all the edges’ support in UI is not

less than k-2 (Line 5). In the sequel, CNNE expands the

current UI by selecting one user from remaining users UR

according to the e status (Lines 9-15). For each user in UR, we

check whether it is common neighbor or neighbor according

to whether e exists and continue to expand the branch. If

for current |UI |, there is no valid user for expanding, i.e.,

isExpanding = false, we just terminate this branch.

Figure 4 shows an example for illustrating the CNNE

strategy. Give a CGSGM query〈d, ql, 3, 5〉 for time instance

t1. According to the order in UR ={u0, u2, u3, u4, u6, u7,

u9} initialized with the maximal 3-truss set, u0 and u2 are

first fetched to form current UI . By selecting a vertex from

UR to combine {u2, u0} according to the CNNE strategy,

we first consider the common neighbor u3 of e(u0,u2) and

the intermediate solution UI becomes {u2, u0, u3}. At this

time, the support of all the edges (i.e., e(u0, u2), e(u0, u3)

and e(u3, u2)) is 1 and satisfy the truss condition. Thus, we

need to get one neighbor of UI to expand and u4 is selected to

form UI ={u0, u2, u3, u4}. Also for current UI , the support

of all edges is 1. According to Lemma 5, since the size of

318

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: The CNNE Function

Input: Intermediate solution set UI , remaining users set

UR, group size p and k

Output: CGSGM result groups RG

1 if |UI | = p then

2 if UI is a k-truss then

3 return RG;

4 else

5 e ← ESD(UI);/*Find the appropriate edge; */

6 while UR is not empty do

7 for each user ui ∈ UR do

8 if (e = ∅ and ui is one neighbor of users in

UI) or (e �= ∅ and ui is one common

neighbor of e) then

9 isExpanding ←true;

10 tempUI ← UI ;

11 tempUI .push back(ui);

12 delete ui from UR;

13 CNNE(newUI , UR);

14 if isExpanding = false then

15 return ∅;

Figure 4. An example of CNNE

UI is 4 (i.e., p-1), we should combine a common neighbor of

one edge and only u9 is the common neighbor of the edges.

Thus u9 is examined to combine UI which becomes {u0, u2,

u3, u4 u9}. Now, the size of UI is 5, so we check whether

UI is a connected 3-truss and find {u0, u2, u3, u4 u9} as a

result group. After that, we go back to branch {u0, u2, u3}
and consider another neighbor u6 and UI becomes {u0, u2,

u3, u6 }. Now, only the support of edge e(u0, u6) is 0, so

we add the commnon neighbor of this edge to support this

edge. Accordingly, u7 is inserted into UI . Similarly, another

result group {u0, u2, u3, u6, u7} is found. In the sequel, we

continue to combine neighbor u7 and u9 for current UI= {u0,

u2, u3}, but we find that these two neighbors can not produce

a valid branch. Continue with the above steps using CNNE

until UR becomes empty and the algorithm safely terminates.

B. The baseline algortihm

For each time instance, we compute the CGSGM query

from stratch using the initial result computation algorithms.

Based on the above two initial result computation algorithms,

our baseline has two algorithms, namely Baseline-BB and

Baseline-CNNE.

In fact, during the query processing, the baseline recomputes

the support of all users from scratch when users are moving

into or move out of the monitor circle, i.e., the circle centered

at ql of radius d, which do not exploit the intermediate results

to help further query processing. Thus, a natural idea is to

strike for an efficient way to maintain some intermediate

results to accelerate the following query processing for the

new time instance. Motivated by this, our idea is to design an

incremental algorithm by maintaining the neighbors of users

and edge’s common neighbors inside the monitor circle in each

time instance.

V. INCREMENTAL MONITORING ALGORITHM

In this section, we propose an incremental monitoring al-

gorithm, namely IMA, consisting of initial result computation

and multiple users update. For the initial result computation,

we employ the baseline with CNNE to compute the initial

result with the candidate users Scan, at the same time we

maintain the support, common neighbors and neighbors under

the current users inside the monitoring circle Cm. Thus, our

main task is to efficiently process the users updates.

In the monitor framework, only the users are moving. We

assume that the query position is static. For simplicity, we first

analyze the case where only one user moves/updates. Next, we

discuss the general cases where multiple users update/move

simultaneously.

A. Processing of one user update

For one user update, there are two scenarios with respect

to the monitor circle Cm, i.e., the user is outside of the circle

and inside the circle. For a user, the user is already a result

user or an non-result user. A user update contains the user id

u.id, and its old and new coordinates. Thus, there are four

cases.

(1) An inside user moves out of (leave) the circle Cm. For

this case, it invalidates some result groups and thus does not

produce any new connected k-truss. If the trussness of this

user is smaller than k, we need do nothing. Otherwise, we

need to remove this user from Scan and update the support,

the common neighbors to the edges whose trussness under G

is not less than k, neighbors of the users in Scan.

(2) An outside user still moves outside the monitoring circle.

This case does not alter any result.

(3) An inside user is still moving into the circle Cm. For

this case, the query result does not change and we need not

do anything.

(4) An outside user moves into the circle Cm. For this

case, new k-truss groups may be generated due to the new

users adding if the trussness of this user is not less than k.

To efficiently decide whether the new user can produce a new

319

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Delete one user (DU)

Input: The previous users set Scan, a query CGSGM

〈d, ql, k, p〉, and one leaving user u

1 if τ(u) < k then

2 return;//This user never changes the results;

3 US(sup, u);

4 Update the neighbors of w and common neighbors for

each w ∈ (NG(u) ∩ Scan) with u;

k-truss group with the original users, we propose an algorithm

for adding one new user. When a new user u is moving into

the circle, first we need to check its truss value is no less than

k. If it is not, this user can not produce a connected k-truss

and we terminate the query processing. Otherwise, we need

to update the support, common neighbors and neighbors of u.

If the maximal support among these egdes involved in u is

less than k-2, adding this user also does not produce a new k-

truss. After that, we invoke the k-truss decomposition function

to get the maximum k-truss and check whether the maximum

k-truss contains u. If it does not, adding u does not produce a

new connnected k-truss and we terminate the query process.

Otherwise, we invoke CNNE by initiating UI with u to get all

the k-truss groups including u of size p from the maximum

k-truss. Finally, we return all the result groups in Skt.

Algorithm 4: Add new user (AU)

Input: The current users set Scan, a query CGSGM

〈d, ql, k, p〉, and one adding user u

Output: The new connnected k-truss groups

1 if τ(u) < k then

2 return;//This user never changes the results;

3 UpdateSupport(sup, u);

4 Update the neighbors of w and corresponding common

neighbors for each w ∈ NG(u) ∩ Scan with u;

5 if max{sup(v, u)}|v ∈ V) < k − 2 then

6 return ∅;

7 MK ← KTD(u, Scan);

8 if MK does not contain u then

9 return ∅;

10 Skt ← CNNE(u, MK, k);

11 return Skt

The basic idea of update support (US) function is to first

check whether this new user is deleted from or added to the

monitoring circle. If this user is deleted from Scan, we check

each edge e(x, y) to see whether it may form a triangle with u.

If it is, the support of e(x, y) minus one and other two edges

are deleted. While for adding user u, we also check each edge

e(x, y) to see whether it may form a triangle with u. If it is,

each support of three edges is added by one.

B. Processing of multiple-users update

So far we have considered each type of updates individually.

In this section we deal with concurrency issues that may arise

in the general case, where updates of all four types arrive

simultaneously at the system for multiple users. Our aim is to

process the updates in a batch to save as much computation

as possible.

Figure 5. An example of multiple-users update

A direct idea is processing the updates one by one in

certain order. Consider the example in Figure 5 to show

multiple users’ updates for query 〈d, ql, 3, 5〉. The previous

candidate users set Scan is {u0, u2, u3, u4, u6, u7, u9, u11}.

For those updates with red arrows shown in the figure, e.g.,

u8 moves into the circle and u2 moves out of (leave) the

circle, if we process the update of u8 first (case 4), a new

user u8 is added and the AU algorithm is invoked to check

whether there is a new connected 3-truss to be generated.

Accordingly, we find a new connected 3-truss group including

u2. However, this new group is not a valid 3-truss, since u2

moves outside the circle at the same time. On the other hand,

if we process the updates of u2 and u6 first by deleting these

two users, then process the update of u8. This processing order

produces two new connected 3-trusses {u0, u3, u7, u8, u9, }
and {u0, u3, u4, u8, u9}, which are valid. Although a new user

u5 is also moving into the circle, we can find the new 3-

truss group by including u8 and u5 after processing u8. Thus,

selecting a good order to process the updates is very essential

for the query processing.

Motivated by the above example, we decide the order to

process location updates based on whether the user updates

affect the group generation. One feasible idea is processing

the leaving users first and then processing the adding users.

Based on this, we propose a multiple user update algorithm.

Our idea is processing the updates simultaneously. We first

check which case each moving user belongs to. According

to the four cases, to delete a user who is in Scan, we remove

this user from Scan and update the supports of involved edges,

corresponding degrees and neighbors. With regard to adding

user whose truss value is greater than k and who is also not

in Scan, we insert it into adding user set Sa. After simply

processing each leaving user, we invoke the AU function to

process the users one by one in Sa.

An example of processing the multiple user updates for

query 〈d, ql, 3, 5〉 is shown in Figure 5. The previous candidate

users set Scan is {u0, u2, u3, u4, u6 u7, u9, u11}. Then we

process each moving user one by one. As the updates of u0

and u3 do not alter anything, we skip those updates. For the

updates of u2 and u6, since they move out of monitoring

320

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: The multiple users update algorithm

Input: A social graph G = (V,E), a query CGSGM

〈d, ql, k, p〉, and previous candidate users set Scan

Output: The new k-truss groups

1 for each moving user u do

2 if u ∈ Scan then

3 if dis(u, ql) > d then

4 DU(Scan,u);

5 else

6 if dis(u, ql) ≤ d and τ(u) >= k then

7 insert u into Sa;

8 for each user u ∈ Sa do

9 Skt ← AU(u, Scan);

10 insert u into Scan;

11 return Skt;

circle, we need to delete them and update the corresponding

support, neighbors and the common neighbors. While for u5

and u8, they are added to Scan. Thus, we need to combine

these two users with the users in Scan. We first combine u5

with Scan by invoking the AU function. For this, we get

three result groups {u0, u3, u4, u7, u5}, {u0, u3, u4, u9, u5}
and {u0, u3, u9, u7, u5} of size 5. After that, u8 is explored,

we also obtain five 3-truss groups {u0, u3, u4, u5, u8}, {u0,

u3, u4, u7, u8}, {u0, u3, u9, u5, u8}, {u0, u3, u9, u7, u8} and

{u0, u5, u7, u9, u8} and the query processing terminates.

Complexity Analysis. We analyze the time complexity of

the two algorithms proposed for a CGSGM query 〈d, ql, k, p〉
in this paper. Let |V | be the number of users, i.e., the size

of vertices. The time complexity of these algorithms can be

derived as follows. We first analyze the time complexity of

initial result computation. For Baseline-BB, it first scan all

the users and obtain the candidate users Scan, which it takes

O(|V |) time. After that, the KTD function with Scan is invoked

to find the maximal k-truss, which takes O(nc×logme), where

nc is the number of users in Scan and me is the size of corre-

sponding edges. Then for the remaining users in the maximal

k-truss, it takes O(n
p
mt) to enumerate the group combinations

by invoking the BB function to find all the k-truss groups,

where nmt is the number of the users in the maximal k-truss.

In total, the time complexity of the Baseline-BB algorithm

at each time instance is O(|V |+ nc × logme +n
p
mt). While

for the Baseline-CNNE, the difference is to enumerate the

group combinations by invoking the CNNE function after

obtaining the maximal k-truss. For invoking CNNE function

with the maximal k-truss, it takes O(nmt × n1p−1

max) where

n1max is the maximal number of the common neighbors

of one edge whose trussness is not less than k. Thus, the

time complexity of the Baseline-CNNE algorithm is O(|V |+
nc × logme +nmt × n1p−1

max).

For IMA, the initial result computation is the same as

the baseline. At each new time instance, we assume that

there are nd users to be deleted from the previous candidate

users set Scan. For each leaving user u, it takes O(ne) to

update the support and common neighbors for ne edges which

involved with u. Thus, it takes O(nd × ne) to process those

deleting users. In addition, we assume that there are na users

to be added into Scan. For each adding user v, it takes

O(nc1 × logme1) to do the truss decomposition, where nc1

is the number of the users that have deleted those valid users

and added v, and me1 is the size of corresponding edges. Thus,

nc1 is smaller than nc in baseline. Then it takes O(n2p−1

max) to

invoke CNNE to explore the possible combinations with v,

where n2max is the size of users after truss decomposition.

Thus, the time complexity of the IMA algorithm is O(nd×ne

+ na× (nc1 × logme1+ n2p−1

max)).

Extension to handle multiple queries. In addition, we

extend IMA to handle multiple queries simultaneously, aiming

to achieve high throughput. To do so, we build a grid index to

index the registered queries, where each grid cell is associated

with all the queries whose monitoring circles intersect with

the cell. Upon a user location update, the affected queries can

be quickly identified through the grid index and re-evaluated

using the incremental update algorithm. Note that the re-

evaluations of different queries can be performed in parallel

since their results are independent with each other.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed

algorithms for the CGSGM query. All the algorithms are

implemented in C++, while the experiments are conducted on

an Intel Core i5 2.3 GHz PC with 16GB RAM.

We conduct experiments on three real datasets. We simulate

the user movements based on the following datasets.

• Gowalla. It consists of 196585 nodes and 138337 edges

for the social network. The percentage of moving users

is 4.89% per minute.3

• Brightkite. It contains 58228 users and 214078 edges.

The percentage of moving users is 6.86% per minute.3

• Foursquare. It consists of 2146576 nodes and 8919127

edges for the social network. The percentage of moving

users is 5.46% per minute.3

Table I
PARAMETER RANGES AND DEFAULTS VALUES

Parameters Range

� of selected users (p) 3, 4, 5, 6, 7, 8

� of social constraint (k) 3, 4, 5, 6, 7

distance constraint (d) 0.0125, 0.025, 0.05, 0.1, 0.2

interval of time instances 4 (minutes) 0.5, 1, 2, 4, 8

We conduct a performance evaluation on the efficiency

of the CGSGM algorithms – we compare the latency of

the proposed CGSGM algorithms under various parameters

(summarized in Table I, numbers in bold are the default

settings). We measure the average latency at the time of

user updates (i.e., total time/number of time-points) as the

performance metric corresponding to five different parameters:

(a) query distance d; (b) group size p; (c) social constraint k;

(d) interval of time instances and (e) number of time instances.

3https://snap.stanford.edu/data/index.html.

321

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

We randomly generate three groups of CGSGM queries cor-

responding to each dataset where each group consists of 100

CGSGM queries. In each experiment, we test one parameter

at a time (by fixing other parameters at their default values).

The location update is reported to the server once per time

instance. The average moving speed is about 42km per hour.

The distance of each location update varies from 0 to 1.29km.

The reported experimental results are obtained by averaging

the processing time of queries.

A. Efficiency of CGSGM Algorithms

1

10

10
2

10
3

10
4

10
5

10
6

0.0125 0.025 0.05 0.1 0.2

R
u

n
n

in
g

 t
im

e
 (

m
s
)

d (p=4, k=4)

Baseline-BB
Baseline-CNNE
IMA

(a) Gowalla dataset

1

10

10
2

10
3

10
4

10
5

10
6

0.0125 0.025 0.05 0.1 0.2

R
u

n
n

in
g

 t
im

e
 (

m
s
)

d (p=4, k=4)

Baseline-BB
Baseline-CNNE
IMA

(b) Brightkite dataset

Figure 6. Performance vs. query distance d

In this section, we compare the efficiency of the proposed

IMA algorithm with two baseline algorithms, Baseline-BB

and Baseline-CNNE. Accordingly, we test the three CGSGM

algorithms using different datasets as described above. We take

an offline approach to obtain the common neighbors for each

edge in our implementation. The offline computation is not

long. For example, it takes about 12.7 sec for the Gowalla

dataset.

Effect of distance threshold. We first test the performance

of the three algorithms by varying query distance d. Figure 6

shows the results of the three algorithms on Gowalla and

Brightkite dataset. As expected, when increasing the query

distance on Gowalla dataset, the query time becomes longer.

This is because there will be more users to be examined as

the truss result when increasing the query range distance. In

addition, our IMA outperforms the two baseline algorithms a

lot because our IMA incrementally maintains some intermedi-

ate results, e.g., trussness and common neighbors, which can

save some query process cost. The similar results are displayed

on Brightkite dataset. Since the query time of Baseline-BB is

very long, we will not show the time of Baseline-BB in the

remaining query results.

Effect of p value. We then compare the average running

time of IMA and Baseline-CNNE for processing CGSGM

queries by increasing the group size p. Figure 7(a) shows

the result on the Gowlla dataset. As shown, IMA performs

much better than Baseline-CNNE because IMA maintains

the intermediate results, e.g., the support and the common

neighbor at each time instance to accelerate the further query

processing, which reduces the time of k-truss decomposition

and the number of combinations examination. When the p

value increases, the query time becomes longer, as more users

need to be examined and the number of combinations becomes

larger. Note that IMA scales better than Baseline-CNNE by

increasing the group size. The results on other two datasets

are similar to that on the Gowalla dataset.

Effect of social constraint k. Figure 8 compares the

performance of two CGSGM algorithms by varying k. For

the Gowalla dataset, IMA outperforms Baseline-CNNE signif-

icantly under various k values because IMA incrementally ex-

amines the group combinations which avoids some redundant

group combinations compared to Baseline-CNN. Moreover,

the processing time of both two algorithms decreases as the

k value increases. This is because there are less valid users

with trussness ≥ k when k becomes larger. The results on

the Brightkite dataset in Figure 8(b) and Foursquare dataset

in Figure 8(c) show the similar trend with the result on the

Gowalla dataset.

Effect of the interval of time instances. In addition, we

compare the two CGSGM algorithms by varying the interval

of time instances and show the results in Figure 9. The number

of user updates in different duration is different. If the interval

is longer, it is involved in more user updates. For the Gowalla

dataset, the results in Figure 9(a) shows the superiority of

IMA over the Baseline-CNN algorithm. The search time of

IMA only takes less than 1000 ms, but the Baseline-CNN

algorithm takes more than 3000 ms, because IMA maintains

the support, common neighbors effectively to help accelerate

the query processing. Moreover, when the query duration of

each time instance becomes longer, which means more user

updates, the query time of IMA and Baseline-CNN becomes

longer. Similar results on Brightkite and Foursquare dataset

are observed in Figures 9(b) and 9(c).

Effect of number of time instances. Finally, we test

the two CGSGM algorithms by varying the number of time

instances. As shown in Figure 10(a) on Gowalla dataset, the

time of both two algorithms grows linearly when increasing

the number of time instances. Also, the results show that IMA

is faster than Baseline-CNNE. The results of Brightkite data

are similar to that on Gowalla dataset.

10

10
2

10
3

10
4

3 4 5 6 7

R
u

n
n

in
g

 t
im

e
 (

m
s
)

 nbr of time instances (p=5,k=4)

Baseline-CNNE
IMA

(a) Gowalla dataset

1

10

10
2

10
3

3 4 5 6 7

R
u

n
n

in
g

 t
im

e
 (

m
s
)

 nbr of time instances (p=5, k=4)

Baseline-CNNE
IMA

(b) Brightkite dataset

Figure 10. Performance vs. number of time instances

Efficiency of IMA for handling multiple queries. We test

the throughput for handing multiple queries simultaneously. In

the experiments, we set the maximum thread number to 16 for

the multi-thread processing. We perform a stress testing that

continuously increases the number of queries for execution

until the total execution time spent over all the queries exceeds

one minute. We report the throughput of IMA by varying p

from 4 to 8. Figure 11(a) shows that IMA processes more than

322

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

1

10

10
2

10
3

10
4

4 5 6 7 8
R

u
n

n
in

g
 t

im
e

 (
m

s
)

 p (k=4)

Baseline-CNNE
IMA

(a) Gowalla dataset

1

10

10
2

10
3

4 5 6 7 8

R
u

n
n

in
g

 t
im

e
 (

m
s
)

 p (k=4)

Baseline-CNNE
IMA

(b) Brightkite dataset

1

10

10
2

10
3

10
4

10
5

4 5 6 7 8

R
u

n
n

in
g

 t
im

e
 (

m
s
)

 p (k=4)

Baseline-CNNE
IMA

(c) Foursquare dataset

Figure 7. Performance vs. query group size p

 0

 2

 4

 6

 8

 10

3 4 5 6 7

R
u

n
n

in
g

 t
im

e
 (

m
s
,

x
1

0
4
)

 k (p=7, d=0.05)

Baseline-CNNE
IMA

(a) Gowalla dataset

 0

 2

 4

 6

 8

 10

3 4 5 6 7

R
u

n
n

in
g

 t
im

e
 (

m
s
,

x
1

0
3
)

 k (p=7, d=0.05)

Baseline-CNNE
IMA

(b) Brightkite dataset

 0

 2

 4

 6

 8

 10

3 4 5 6 7

R
u

n
n

in
g

 t
im

e
 (

m
s
,

x
1

0
4
)

 k (p=7, d=0.05)

Baseline-CNNE
IMA

(c) Foursquare dataset

Figure 8. Performance vs. social constraint k

 0

 1000

 2000

 3000

 4000

 5000

0.5 1 2 4 8

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Time instance duration (p=7, k=4)

Baseline-CNNE
IMA

(a) Gowalla dataset

 0

 50

 100

 150

 200

 250

 300

0.5 1 2 4 8

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Time instance duration (p=7, k=4)

Baseline-CNNE
IMA

(b) Brightkite dataset

 0

 2000

 4000

 6000

 8000

 10000

0.5 1 2 4 8
R

u
n

n
in

g
 t

im
e

 (
m

s
)

Time instance duration (p=7, k=4)

Baseline-CNNE
IMA

(c) Foursquare dataset

Figure 9. Performance vs. interval of time instances

10,000 queries per minute on the Brightkite dataset for all

the p values. In contrast, Baseline-CNNE processes more than

3,000 queries only. When p becomes larger, the throughput

becomes lower as expected. On the Foursquare dataset (see

Figure 11(b)), IMA processes at least 1,000 queries per minute

for all the p values, while Baseline-CNNE processes less than

100 queries. This is because Baseline-CNNE requires recom-

puting all the information from the scratch when processing

the user updates in a new time instance.

10
3

10
4

10
5

5*10
5

4 5 6 7 8

T
h

ro
u

g
h

p
u

t
 (

q
u

e
ri
e

s
/m

in
u

te
)

 p (k=4)

Baseline-CNNE
IMA

(a) Brightkite dataset

10

10
2

10
3

10
4

5*10
4

4 5 6 7 8

T
h

ro
u

g
h

p
u

t
 (

q
u

e
ri
e

s
/m

in
u

te
)

 p (k=4)

Baseline-CNNE
IMA

(b) Foursquare dataset

Figure 11. Performance of handling multiple queries vs. p

VII. CONCLUSION

In this paper, we formulate a new query, namely, continuous

geo-social groups monitoring (CGSGM) over moving users,

aiming to identifying continuously all the social groups ap-

pearing within a monitored geographical area. Based on dif-

ferent expanding strategies, i.e., BB and CNNE, we first pro-

pose two baseline algorithms to tackle the CGSGM problem.

To address the shortcomings of the baseline algorithms, we

then propose an incremental algrithm, namely IMA, which

maintains the support, common neighbors and neighbors of

the current users when exploring possible k-truss groups at the

time of query processing for future query processing upon new

user position updates. At last, we conduct a comprehensive

performance evaluation using three real datasets to validate

our ideas. The results show that IMA outperforms the two

baseline algorithms significantly.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (U1911203, 61902438, 61902439),Key-

Area Research and Development Program of Guangdong

Province (2020B0101100001), Guangdong Basic and Ap-

plied Basic Research Foundation (2019B1515130001), Natural

Science Foundation (2019A1515011704,2019A1515011159),

National Science Foundation of USA under Grant No. IIS-

1717084, and Hong Kong RGC Grant 12202221, 12200021,

and 12201018. Wei Liu is the corresponding author.

323

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Yang, C. Shen, W. Lee, and M. Chen, “On socio-spatial group query
for location-based social networks,” KDD, pp. 949–957, 2012.

[2] Q. Zhu, H. Hu, C. Xu, J. Xu, and W. Lee, “Geo-social group queries
with minimum acquaintance constraint,” VLDBJ, 2014.

[3] Y. Li, R. Chen, L. Chen, and J. Xu, “Towards social-aware ridesharing
group query services,” IEEE Transactions on Services Computing,
vol. 10, no. 4, pp. 646–659, 2015.

[4] C. Shen, D. Yang, L. Huang, W. Lee, and M. Chen, “Socio-spatial
group queries for impromptu activity planning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 1, pp. 196–210, 2016.

[5] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, “Geo-social
k-cover group queries for collaborative spatial computing,” IEEE Trans-

actions on Knowledge and Data Engineering, vol. 27, no. 10, pp. 2729–
2742, 2015.

[6] B. Ghosh, M. E. Ali, F. M. Choudhury, S. H. Apon, T. Sellis, and J. Li,
“The flexible socio spatial group queries,” vol. 12, no. 2, pp. 99–111,
2018.

[7] T. Imielinski and B. R. Badrinath, “Querying in highly mobile distributed
environments,” in 18th International Conference on Very Large Data

Bases, August 23-27, 1992, Vancouver, Canada, Proceedings, 1992, pp.
41–52.

[8] J. Qi, R. Zhang, C. S. Jensen, K. Ramamohanarao, and J. He, “Continu-
ous spatial query processing: A survey of safe region based techniques,”
ACM Comput. Surv., vol. 51, no. 3, pp. 64:1–64:39, 2018.

[9] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to the
indexing of moving object trajectories,” in VLDB 2000, 2000, pp. 395–
406.

[10] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. López, “Indexing
the positions of continuously moving objects,” in Proceedings of the

2000 ACM SIGMOD International Conference on Management of Data,

May 16-18, 2000, Dallas, Texas, USA, 2000, pp. 331–342.

[11] B. Gedik and L. Liu, “Mobieyes: Distributed processing of continuously
moving queries on moving objects in a mobile system,” in EDBT 2004,
2004, pp. 67–87.

[12] D. V. Kalashnikov, S. Prabhakar, S. E. Hambrusch, and W. G. Aref,
“Efficient evaluation of continuous range queries on moving objects,” in
DEXA 2002, 2002, pp. 731–740.

[13] G. S. Iwerks, H. Samet, and K. P. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in VLDB 2003,
2003, pp. 512–523.

[14] M. F. Mokbel and W. G. Aref, “SOLE: scalable on-line execution of
continuous queries on spatio-temporal data streams,” VLDB J., vol. 17,
no. 5, pp. 971–995, 2008.

[15] J. Lee, S. Kang, Y. Lee, S. J. Lee, and J. Song, “Bmq-processor: A
high-performance border-crossing event detection framework for large-
scale monitoring applications,” IEEE Trans. Knowl. Data Eng., vol. 21,
no. 2, pp. 234–252, 2009.

[16] M. E. Ali, E. Tanin, R. Zhang, and L. Kulik, “A motion-aware approach
for efficient evaluation of continuous queries on 3d object databases,”
VLDB J., vol. 19, no. 5, pp. 603–632, 2010.

[17] W. Huang, G. Li, K. Tan, and J. Feng, “Efficient safe-region construction
for moving top-k spatial keyword queries,” in CIKM 12, 2012, pp. 932–
941.

[18] B. Gedik and L. Liu, “Mobieyes: A distributed location monitoring
service using moving location queries,” IEEE Trans. Mob. Comput.,
vol. 5, no. 10, pp. 1384–1402, 2006.

[19] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continuously
moving top-k spatial keyword query processing,” in ICDE 2011, 2011,
pp. 541–552.

[20] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko, “Nearest neighbor
queries in road networks,” in ACM-GIS 2003. ACM, 2003, pp. 1–8.

[21] Y. Tao and D. Papadias, “Time-parameterized queries in spatio-temporal
databases,” in ACM SIGMOD 2002, 2002, pp. 334–345.

[22] P. K. Agarwal, L. Arge, and J. Erickson, “Indexing moving points,” J.

Comput. Syst. Sci., vol. 66, no. 1, pp. 207–243, 2003.

[23] S. Ilarri, E. Mena, and A. Illarramendi, “Location-dependent queries
in mobile contexts: Distributed processing using mobile agents,” IEEE

Trans. Mob. Comput., vol. 5, no. 8, pp. 1029–1043, 2006.

[24] H. Wang and R. Zimmermann, “Processing of continuous location-based
range queries on moving objects in road networks,” IEEE Trans. Knowl.

Data Eng., vol. 23, no. 7, pp. 1065–1078, 2011.

[25] I. Afyouni, C. Ray, S. Ilarri, and C. Claramunt, “Algorithms for
continuous location-dependent and context-aware queries in indoor
environments,” in SIGSPATIAL 2012, 2012, pp. 329–338.

[26] I. Afyouni and C. Ray, “A postgresql extension for continuous path and
range queries in indoor mobile environments,” Pervasive Mob. Comput.,
vol. 15, pp. 128–150, 2014.

[27] X. Xiong, M. F. Mokbel, and W. G. Aref, “SEA-CNN: scalable
processing of continuous k-nearest neighbor queries in spatio-temporal
databases,” in Proceedings of the 21st International Conference on

Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan. IEEE
Computer Society, 2005, pp. 643–654.

[28] K. Mouratidis, M. Hadjieleftheriou, and D. Papadias, “Conceptual
partitioning: An efficient method for continuous nearest neighbor moni-
toring,” in Proceedings of the ACM SIGMOD International Conference

on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,
2005, pp. 634–645.

[29] N. Armenatzoglou, S. Papadopoulos, and D. Papadias, “A general
framework for geo-social query processing,” Proceedings of the VLDB

Endowment, vol. 6, no. 10, pp. 913–924, 2013.
[30] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community

search over large spatial graphs,” PVLDB, vol. 10, no. 6, pp. 709–720,
2017.

[31] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin, “Efficient computing
of radius-bounded k-cores,” ICDE, pp. 233–244, 2018.

[32] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum
co-located community search in large scale social networks,” PVLDB,
vol. 11, no. 10, pp. 1233–1246, 2018.

[33] B. Ghosh, M. E. Ali, F. M. Choudhury, S. H. Apon, T. Sellis, and J. Li,
“The flexible socio spatial group queries,” Proceedings of the VLDB

Endowment, vol. 12, no. 2, pp. 99–111, 2018.
[34] Q. Li, Y. Zhu, and J. X. Yu, “Skyline cohesive group queries in large

road-social networks,” in 2020 IEEE 36th International Conference on

Data Engineering (ICDE). IEEE, 2020, pp. 397–408.
[35] L. Chen, C. Liu, R. Zhou, J. Xu, J. X. Yu, and J. Li, “Finding effective

geo-social group for impromptu activities with diverse demands,” in
Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2020, pp. 698–708.
[36] M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremen-

tal processing of continuous queries in spatio-temporal databases,” in
Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, 2004, pp. 623–634.
[37] S. B. Seidman, “Network structure and minimum degree,” Social net-

works, vol. 5, no. 3, pp. 269–287, 1983.
[38] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique relaxations in

social network analysis: The maximum k-plex problem,” Operations

Research, vol. 59, no. 1, pp. 133–142, 2011.
[39] B. Hou, Z. Wang, Q. Chen, B. Suo, C. Fang, Z. Li, and Z. G. Ives,

“Efficient maximal clique enumeration over graph data,” Data Sci. Eng.,
vol. 1, no. 4, pp. 219–230, 2016.

[40] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in International Conference

on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-

27, 2014, 2014, pp. 1311–1322.
[41] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proc.

VLDB Endow., vol. 5, no. 9, pp. 812–823, 2012.

324

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:01:32 UTC from IEEE Xplore. Restrictions apply.

