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Abstract—(α, β)-core is an important cohesive subgraph model
for bipartite graphs. Given a bipartite graph G, the problem of
(α, β)-core decomposition is to compute non-empty (α, β)-cores
for all possible values of α and β. The state-of-the-art (α, β)-
core decomposition algorithm is a peeling-based algorithm, which
iteratively deletes the vertex from high degree to low degree. How-
ever, as the peeling-based algorithm is designed for centralized
environments, it cannot be applied to distributed environments,
where graphs are partitioned and stored in different machines.
Motivated by this, in this paper, we study the distributed (α, β)-
core decomposition problem, aiming to develop new algorithms to
support (α, β)-core decomposition in distributed environments.
To this end, first, we analyze the local properties of (α, β)-core,
and devise n-order Bi-indexes for the vertex, which are iteratively
defined using the vertex neighbors’ (n−1)-order Bi-indexes. Next,
we propose an algorithm for (α, β)-core decomposition through
iteratively calculating n-order Bi-indexes for every vertex. To
further improve the efficiency of the algorithm, we propose
two optimizations. Then, we extend our proposed algorithms to
different distributed graph processing frameworks to make them
run in distributed environments. Finally, extensive experimental
results on both real and synthetic bipartite graphs demonstrate
the efficiency of our proposed algorithms.

I. INTRODUCTION

Bipartite graphs [1], [2], denoted by G(UG, VG, EG), con-
sist of two different types of vertex sets UG and VG, and
all edges of EG connect one vertex type with the other.
Many real-world applications can be modeled as bipartite
graphs. For example, the movies rating graph [3] is a typical
bipartite graph, where the vertices represent users and movies,
respectively, and each edge represents a user’s rating of a
movie. Recently, a lot of research efforts have been devoted to
the study of cohesive subgraph discovery over bipartite graphs,
and many cohesive subgraph models have been proposed, such
as (α, β)-core [3]–[5], biclique [6]–[10], and bitruss [11], [12].
In this paper, we mainly focus on the study of (α, β)-core
due to its wide applications. Specifically, a (α, β)-core is the
maximal subgraph H of the given bipartite graph G such that
the vertices of UH and VH have at least α and β neighbors,
respectively. For example, in Figure 1, the subgraph H induced
by vertex set {u1, u2, u4, v1, v2, v3, v4} is a (3, 2)-core since
the vertices of UH and VH have at least 3 and 2 neighbors,
respectively. The (α, β)-core is widely used in applications
of critical relationship identification [13], fault-tolerant group
recommendation [14], community discovery [15], [16], and
fraudsters detection [17].
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Fig. 1: A motivating example

Given a bipartite graph G, it may contain (α, β)-cores
with different values of α and β. The problem of (α, β)-core
decomposition aims to compute non-empty (α, β)-cores for
all possible values of α and β. The (α, β)-core decomposition
can be used to facilitate (α, β)-core-related applications. For
example, to compute (α, β)-core for specific α and β values,
a straightforward method is to traverse the whole graph to
delete the vertices whose degrees do not satisfy the (α, β)-
core constraints. This process could be time consuming. In-
stead, [17] and [15] use the (α, β)-core decomposition results
to build indexes and perform the (α, β)-core computation
through traversing the corresponding indexes, thus improving
the efficiency. The state-of-the-art algorithm for (α, β)-core
decomposition is a peeling-based algorithm [17]. The basic
idea is to compute the βmax,α(u) (resp. αmax,β(v)) for each
possible value of α (resp. β) by iteratively deleting the vertices
that violate the degree constraints. Here, βmax,α(u) denotes the
maximum value of β regarding the specific value of α such
that u is in the corresponding (α, β)-core.

Motivations. Distributed graph processing has recently re-
ceived considerable attention due to two facts [18]–[23]. First,
in the real world, the graphs may be fragmented and distributed
across multiple data centers. Second, the scale of graphs is
growing exponentially, which raises two issues over a single
machine: 1) the large-scale graph may be too large to fit into
the memory; 2) the complexity of large-scale graph processing
is high. For example, the time complexity of the peeling-based
(α, β)-core decomposition algorithm is O(m

3
2 ) [17]. When

m is large, the algorithm may not be scalable. In contrast,
the distributed graph processing techniques can well handle
the above problems. Therefore, we explore the (α, β)-core
decomposition in distributed environments.

However, the existing peeling-based algorithm of (α, β)-
core decomposition is designed for centralized environ-



ments [17], which cannot support distributed processing on
partitioned graphs. Specifically, the peeling-based algorithm
works in a sequential way, that is to maintain the degree
information of the whole graph and iteratively delete the vertex
from high degree to low degree until the graph is empty. How-
ever, in distributed environments, each machine has only local
graph information. It is costly in terms of both time and com-
munication to get the vertex with the minimum degree among
different machines. In addition, many works have proposed
different methods for distributed core decomposition, e.g., k-
core [24]–[27] and D-core [28]. But, these methods also cannot
be used to solve the distributed (α, β)-core decomposition
problem since different core models have different semantics,
which require specialized processing techniques. Hence, there
is a need to propose new algorithms for distributed (α, β)-core
decomposition.

Challenges and Our Solutions. When developing the algo-
rithms for distributed (α, β)-core decomposition, we face two
challenges. First, in distributed environments, communications
occur among blocks (in a block-centric framework) or vertices
(in a vertex-centric framework). Thus, we can only get the
information of the vertices in the same block or from a
vertex’s neighbors. It is critical for us to leverage the local
information to compute βmax,α(u) or αmax,β(v). Second, for
many distributed graph processing frameworks, the operations
are usually executed on vertices. Since a bipartite graph has
two different types of vertices, there does not exist a unified
operation for both types of vertices. Different operations
should be designed for different types of vertices.

To tackle these challenges, we first reveal two relationships
within (α, β)-core: (1) the relationship between βmax,α(u) of
u and αmax,β(v) of u’s neighbor v; and (2) the relationship
between αmax,β(v) of v and βmax,α(u) of v’s neighbor u.
Based on that, we devise n-order Bi-indexes for vertices
u ∈ UG and v ∈ VG, respectively, which are iteratively
defined using their neighbors’ (n − 1)-order Bi-indexes. The
n-order Bi-indexes have a good property of convergence, i.e.,
the vertex’s n-order Bi-indexes finally converge to βmax,α(u)
and αmax,β(v) for u and v, respectively. Then, we propose
an algorithm for (α, β)-core decomposition through iteratively
calculating n-order Bi-indexes for all vertices. Moreover, we
devise two optimizations to improve the efficiency of the
proposed algorithm by introducing lower and upper bounds
and leveraging intermediate results. It is worth mentioning that
the Bi-indexes-based (α, β)-core decomposition algorithms
only utilize the information of vertices’ neighbors, which
matches with the mechanism of distributed graph processing
frameworks mentioned in the first challenge. On the basis of
that, we implement the proposed algorithms using different
distributed graph processing frameworks to show its flexibility.

Contributions. To be specific, we make the following contri-
butions:

1) We propose the problem of distributed (α, β)-core de-
composition, which is studied for the first time to the
best of our knowledge.

2) We analyze the local property of (α, β)-core, based on
which we propose n-order Bi-indexes for vertices and
demonstrate the convergence of n-order Bi-indexes.

3) We develop an algorithm for (α, β)-core decomposition
using n-order Bi-indexes and propose two optimizations
to further improve the efficiency.

4) We extend the proposed algorithms to distributed graph
processing frameworks and conduct extensive experi-
ments on both real and synthetic bipartite graphs to
demonstrate the efficiency of the proposed algorithms.

Paper Organization. Section II defines the problem. Sec-
tion III presents the proposed algorithms and their distributed
implementations. Section IV reports and analyzes experi-
mental results. Finally, Section V reviews related work and
Section VI concludes the paper.

II. PROBLEM FORMULATION

A bipartite graph consists of two disjoint sets of vertices
such that every edge only joins two vertices from different
vertex sets. In this paper, we denote a bipartite graph by
G = (UG, VG, EG), where UG and VG are two disjoint vertex
sets and EG ⊆ UG × VG. We use u, v, and w to denote the
vertices of UG, VG, and UG ∪ VG, respectively. For a vertex
w, we denote the neighbor of w by NG(w) = {w′|w′ ∈
UG ∪ VG, (w′, w) ∈ EG}. The degree of w is denoted by
degG(w) = |NG(w)|.

Definition 1. ((α,β)-core [14]). Given a bipartite graph G,
two integers α and β, the (α, β)-core of G is a maximal
connected subgraph H = (UH , VH , EH) ⊆ G such that
∀u ∈ UH , degH(u) ≥ α, and ∀v ∈ VH , degH(v) ≥ β.

Take the subgraph H in Figure 1 as an example, ∀u ∈ UH ,
degH(u) ≥ 3, and ∀v ∈ VH , degH(v) ≥ 2. Thus, H is a (3,
2)-core. For a vertex w, it might be in multiple (α, β)-cores.
It is cumbersome to record all the (α, β) pairs for w such
that the corresponding (α, β)-core contains w. To this end,
we introduce βmax,α(u) and αmax,β(v) [17].

Definition 2. (βmax,α(u), αmax,β(v)). Given a bipartite
graph G and integers α and β,
(1) βmax,α(u) = max{β′ | u is in a non-empty (α, β′)-core}.
(2) αmax,β(v) = max{α′ | v is in a non-empty (α′, β)-core}.

In other words, βmax,α(u) is the maximum value of β′ w.r.t.
the given integer α such that u is in the corresponding (α, β′)-
core. αmax,β(v) is the maximum value of α w.r.t. the given
integer β such that v is in the corresponding (α′, β)-core.
For example, in Figure 1, (1) for vertex u1, let α = 3, as
u1 ∈ (3, 2)-core but u1 /∈ (3, 3)-core, βmax,3(u1) = 2; (2) for
vertex v1, let β = 2, as v1 ∈ (3, 2)-core but v1 /∈ (4, 2)-core,
αmax,2(v1) = 3. It is worth mentioning that βmax,α(u) and
αmax,β(v) also can be extended to v and u, respectively.

According to Definition 2, for a vertex u and an integer
α, u is contained in all (α, β)-cores with β ≤ βmax,α(u).
Similarly, for a vertex v and an integer β, v is contained in all



TABLE I: (α, β)-core decomposition results

ID B(u) ID A(v)

u1 {(1, 4), (2, 3), (3, 2)} v1 {(3, 1), (3, 2)}
u2 {(1, 4), (2, 2), (3, 2)} v2 {(4, 1), (3, 2), (2, 3), (1, 4)}
u3 {(1, 4), (2, 3)} v3 {(4, 1), (3, 2), (2, 3)}
u4 {(1, 4), (2, 3), (3, 2), (4, 1)} v4 {(4, 1), (3, 2), (1, 3)}
u5 {(1, 4), (2, 2), (3, 1)} v5 {(4, 1), (2, 2), (1, 3), (1, 4)}
u6 {(1, 4), (2, 2), (3, 1)} v6 {(3, 1), (2, 2)}
u7 {(1, 4), (2, 2), (3, 1)} v7 {(3, 1), (2, 2)}

v8 {(3, 1)}

(α, β)-cores with α ≤ αmax,β(v). Given a bipartite graph G, if
we can compute the βmax,α(u)/αmax,β(v) for all vertices and
values of α/β, we can directly get (α, β)-cores of all possible
(α, β) pairs for G. To this end, we formally define our studied
problem as follows.

Problem 1. (Distributed (α,β)-core Decomposition). Given
a bipartite graph G, which has been partitioned into multiple
subgraphs and distributed in different machines, the problem
of distributed (α, β)-core decomposition is to collectively
compute B(u) = {(α, βmax,α(u))|∀α ∈ [1,degG(u)]} and
A(v) = {(αmax,α(v), β)|∀β ∈ [1,degG(v)]} for every u and
v, respectively.

In Problem 1, B(u) and A(v) denote all possible
(α, βmax,α(u)) and (αmax,α(v), β) pairs for vertices u and
v, respectively. For example, Table I shows the (α, β)-core
decomposition results of bipartite graph in Figure 1. Note that
for vertices u and v, the ranges of α and β are [1,degG(u)]
and [1,degG(v)], respectively. It is because (1) vertex u can
form (1, 1)-core with any one of its neighbors, and can form
(degG(u), 1)-core with all of its neighbors, but cannot form
(degG(u) + 1, 1)-core with any other vertices; (2) vertex v
can form (1, 1)-core with any one of its neighbors, and form
(1,degG(v))-core with all of its neighbors, but cannot form
(1,degG(v) + 1)-core with any other vertices. In addition, u
and v should be connected to the (α, β)-core. Hence, both α
and β cannot be 0. Unless otherwise specified, we assume α ∈
[1,degG(u)] and β ∈ [1,degG(v)] in the rest of the paper.

III. DISTRIBUTED (α, β)-CORE DECOMPOSITION
ALGORITHMS

This section introduces our proposed distributed (α, β)-
core decomposition algorithms. First, we analyze the rela-
tionships of βmax,α(u) and αmax,β(v) among neighboring
vertices, based on which a new concept called n-order Bi-
index is proposed (Section III-A). Then, we present an algo-
rithm for (α, β)-core decomposition through n-order Bi-index
computation (Section III-B), and corresponding optimizations
(Section III-C). Since the computation of a vertex’s n-order Bi-
index only requires its neighbors’ information, which matches
with the mechanism of existing distributed graph systems,
we introduce the distributed implementation of (α, β)-core
decomposition algorithms (Section III-D).

A. n-order Bi-indexes

In distributed environments, we can only get local infor-
mation directly. It is important to explore local information
to facilitate graph analysis. Thus, we try to explore the
relationships of βmax,α(u) and αmax,β(v) among neighboring
vertices within a (α, β)-core. First, we introduce the concept of
dominance. Given two pairs (α1, β1) and (α2, β2), and a set
of (α, β) pairs P : (1) (α1, β1) dominates (α2, β2), denoted
by (α1, β1) � (α2, β2), iff (i) α1 ≥ α2 and β1 ≥ β2; and
(ii) α1 > α2 or β1 > β2. (2) If (α1, β1) � (α2, β2) or
(α1, β1) = (α2, β2), we denote it by (α1, β1) � (α2, β2).
(3) If ∃(α, β) ∈ P such that (α, β) � (α1, β1), we denote it
by P � (α1, β1).

Theorem 1. Given a bipartite graph G, two vertices u and
v, two integers α and β.

(1) The vertex u has at least α neighbors v′ such that
∃(αmax,β′(v′), β′) ∈ A(v′) satisfying (αmax,β′(v′), β′) �
(α, βmax,α(u)).

(2) The vertex v has at least β neighbors u′ such
that ∃(α′, βmax,α′(u′)) ∈ B(u′) satisfying (α′, βmax,α′(u′))
�(αmax,β′(v), β) .

Proof. We first prove Theorem 1 (1). According to the given
condition, u is in (α, βmax,α(u))-core, denoted by H1. In H1,
u has at least α neighbors v′ whose degree is not less than
βmax,α(u). Let β′ = βmax,α(u), for these α neighbors v′ of
u, it must satisfy that α ≤ αmax,β′(v′). Hence, (α, βmax,α(u))
� (αmax,β′(v′), βmax,α(u)) = (αmax,β′(v′), β′). In the same
way, we can prove Theorem 1 (2). Due to the space limitation,
the details are omitted.

For example, let α = 2 for vertex u1 in Figure 1. According
to Table I, βmax,2(u1) = 3, and we can find two neighbors of
u1, i.e., v2 and v3, with A(v2) � (2, 3) and A(v3) � (2, 3).
According to Theorem 1, given an integer α (resp. β), we
can compute corresponding βmax,α(u) (resp. αmax,β(v)) from
A(v′) of u’s neighbors v′ (resp. B(u′) of v’s neighbors u′).
To this end, we define two operations as follows.

Definition 3. (α and β Operations). Given a bipartite graph
G, two vertices u and v, two integers α and β, let S(u) =
{A(vi)|∀vi ∈ NG(u)} and S(v) = {B(ui)|∀ui ∈ NG(v)}.

(1) The β operation over pairs set S(u) w.r.t., α is defined
as β(α, S(u)) = max{β′| there are at least α A(vi) ∈ S(u)
with A(vi) � (α, β′)}.

(2) The α operation over pairs set S(v) w.r.t., β is defined
as α(β, S(v)) = max{α′| there are at least β B(ui) ∈ S(v)
with B(ui) � (α′, β)}.

Obviously, β(α, S(u)) = βmax,α(u) and α(β, S(v)) =
αmax,β(v). For example, let α = 3 for u1 in Figure 1.
S(u1) = {A(v1),A(v2), A(v3)}. According to Table I,
A(v1) � (3, 2) but A(v1) � (3, 3), which also hold for A(v2)
and A(v3). Therefore, β(3, S(u1)) = 2 = βmax,3(u1).

The above analysis is under the assumption that we have
known the (α, β)-core decomposition results. However, given
a bipartite graph, we only have the degree information of every



vertex and our goal is to compute the (α, β)-core decomposi-
tion results. Thus, combining Theorem 1, Definition 3 and the
degree information of vertices, we propose a novel concept
called n-order Bi-indexes for u and v as follows, which are
defined in an iterative way.

Definition 4. (n-order Bi-indexes). Given a bipartite graph
G, two vertices u and v, two integers α and β, the n-order
Bi-index of u w.r.t.,α is defined as follows:

B(n)
U (α, u) =

 max
∀vi∈NG(u)

degG(vi) n = 0

β(α, S(n−1)(u)) n > 0
(1)

where S(n−1)(u) = {A(n−1)(vi)|∀vi ∈ NG(u)} and
A(n−1)(vi) = {(B(n−1)

V (β′, vi), β
′)|∀β′ ∈ [1,degG(vi)]}.

Similarly, the n-order Bi-index of v w.r.t., β is defined as
follows:

B(n)
V (β, v) =

 max
∀ui∈NG(v)

degG(ui) n = 0

α(β, S(n−1)(v)) n > 0
(2)

where S(n−1)(v) = {B(n−1)(ui)|∀ui ∈ NG(v)} and
B(n−1)(ui) = {(α′,B(n−1)

U (α′, ui))|∀α′ ∈ [1,degG(ui)]}.

If the context is clear, we call n-order Bi-index of u and
v for simplicity. The n-order Bi-indexes of u and v have
following properties.

Theorem 2. Given a bipartite graph G, the n-order and (n+
1)-order Bi-indexes of vertices u and v satisfy,

B(n)
U (α, u) ≥ B(n+1)

U (α, u) (3)

B(n)
V (β, v) ≥ B(n+1)

V (β, v) (4)

Proof. We prove Theorem 2 through mathematical induction.
Since the proofs for u and v follow the same idea, we provide
the proof for u in the following.

(1) n = 0. B(0)
U (α, u) = max

∀vi∈NG(u)
degG(vi). B(1)

U (α, u) =

β(α, S(0)(u)), where S(0)(u) = {A(0)(vi)|∀vi ∈ NG(u)} and
A(0)(vi) = {( max

∀uj∈NG(vi)
degG(uj), β)|∀β}. If there exists α

neighbors v′ of u with A(0)(v′) � (α, max
∀vi∈NG(u)

degG(vi)),

β(α, S(0)(u)) = max
∀vi∈NG(u)

degG(vi). Otherwise,

β(α, S(0)(u)) < max
∀vi∈NG(u)

degG(vi). Thus, B(1)
U (α, u) =

β(α, S(0)(u)) ≤ max
∀vi∈NG(u)

degG(vi) = B(0)
U (α, u).

(2) Assume Theorem 2 holds when n = m, i.e.,
B(m)
U (α, u) ≥ B(m+1)

U (α, u) and B(m)
V (β, v) ≥ B(m+1)

V (β, v).
B(m+1)
U (α, u) means u has at least α neighbors vi with
A(m)(vi) � (α,B(m+1)

U (α, u)). Since B(m)
V (β, v) ≥

B(m+1)
V (β, v), we consider two cases. (i) There are at least

α neighbors vi of u with A(m+1)(vi) � (α,B(m+1)
U (α, u)).

Then, B(m+2)
U (α, u) = β(α, S(m+1)(u)) = B(m+1)

U (α, u). (ii)
There are less than α neighbors vi of u with A(m+1)(vi) �

(α,B(m+1)
U (α, u)). In order to find at least α neighbors

vi of u with A(m+1)(vi) � (α, β′), β′ should be less
than B(m+1)

U (α, u). In other words, B(m+2)
U (α, u) = β′ <

B(m+1)
U (α, u). Hence, B(m+1)

U (α, u) ≥ B(m+2)
U (α, u).

Combining (1) and (2), we arrive at B(n)
U (α, u) ≥

B(n+1)
U (α, u).

Theorem 2 indicates that B(n)
U (α, u) and B(n)

V (β, v) are
non-increasing with the increase of n. Moreover, since
B(n)
U (α, u) > 0 and B(n)

V (β, v) > 0, B(n)
U (α, u) and B(n)

V (β, v)
can finally converge to an integer when n is big enough.

Theorem 3. Given a bipartite graph G, the n-order Bi-indexes
of vertices u and v satisfy:

lim
n→∞

B(n)
U (α, u) = βmax,α(u) (5)

lim
n→∞

B(n)
V (β, v) = αmax,α(v) (6)

Proof. We prove Theorem 3 from two aspects.
(1) Let U ′ = {u′|∀u′ ∈ UG,B(∞)(u′) � (α,B(∞)

U (α, u))},
V ′ = {v′|∀v′ ∈ VG,A(∞)(v′) � (α,B(∞)

U (α, u))}, and G′ ⊆
G be the subgraph induced by vertices U ′ ∪ V ′. According
to Definitions 3 and 4, G′ is a (α,B(∞)

U (α, u))-core. Thus,
βmax,α(u) ≥ B(∞)

U (α, u).
(2) Let U ′′ = {u′′|∀u′′ ∈ UG,B(u′′) � βmax,α(u)},

V ′′ = {v′′|∀v′′ ∈ VG,A(v′′) � (α, βmax,α(u)}, and G′′ ⊆
G be the subgraph induced by vertices U ′′ ∪ V ′′. Obvi-
ously, for subgraph G′′, (i) min

v′′∈V ′′
degG′′(v′′) = βmax,α(u),

and (ii) B(n)
U (α, u) ≥ min

v′′∈V ′′
degG′′(v′′) for any n. Hence,

B(∞)
U (α, u) ≥ βmax,α(u).
Therefore, B(∞)

U (α, u) = βmax,α(u). In the same way, we
can also prove that B(∞)

V (β, v) = αmax,α(v).

B. (α, β)-core Decomposition Algorithm

Based on Theorem 3, B(n)
U (α, u) and B(n)

V (β, v) eventually
converge to βmax,α(u) and αmax,α(v), respectively. Moreover,
the computation of B(n)

U (α, u) and B(n)
V (β, v) only require

A(n−1)(vi) of u’s neighbors vi and B(n−1)(ui) of v’s neigh-
bors ui, respectively, which is easy to realize in distributed
environments. Motivated by it, we propose a new algorithm
for (α, β)-core decomposition. The basic idea is to iteratively
compute the n-order Bi-indexes of u and v for all values of
α and β, respectively, i.e., B(n)(u) and A(n)(v). When all
n-order Bi-indexes converge, we get the final results.

Algorithm 1 shows the pseudo-code of (α, β)-core De-
composition. First, Algorithm 1 initializes B(u) and A(v)
using 0-order Bi-indexes for every u and v (lines 1-6). Then,
Algorithm 1 iteratively computes the n-order Bi-indexes for
each vertex until it converges (lines 7-17). Note that the
condition for judging convergence is B(u) = B′(u) (lines 12-
13) and A(v) = A′(v) (lines 16-17). Next, we present the
details of the n-order Bi-indexes computation algorithm.

Recall that, in Definition 3, β(α, S(u)) is defined as the
maximum of β′ such that there are at least α A(vi) ∈ S(u)



Algorithm 1: (α, β)-core Decomposition
Input: bipartite graph G
Output: ∀u, B(u); ∀v, A(v)

1 for ∀u ∈ UG do
2 for ∀α ∈ [1,degG(u)] do
3 B(u)← B(u) ∪ (α, max

∀vi∈NG(u)
degG(vi));

4 for ∀v ∈ VG do
5 for ∀β ∈ [1,degG(v)] do
6 A(v)← A(v) ∪ ( max

∀ui∈NG(v)
degG(ui), β);

7 Tag ← True;
8 while Tag = True do
9 Tag ← False;

10 for ∀u ∈ UG do
11 B′(u)← compute n-order Bi-indexes of u

w.r.t., ∀α ∈ [1,degG(u)] using Algorithm 2;
12 if B(u) 6= B′(u) then
13 Tag ← True; B(u)← B′(u);

14 for ∀v ∈ VG do
15 A′(v)← compute n-order Bi-indexes of v

w.r.t., ∀β ∈ [1,degG(v)] using Algorithm 2;
16 if A(v) 6= A′(v) then
17 Tag ← True; A(v)← A′(v);

18 return B(u) and A(v) for all u and v;

with A(vi) � (α, β′). A straightforward way to compute
such qualified β′ is to enumerate possible β′ values in de-
scending order. The first qualified β′ value is just the result
of β(α, S(u)). Moreover, in Algorithm 1, B′(u) contains n-
order Bi-indexes of u w.r.t., ∀α ∈ [1,degG(u)]. To compute
β(α, S(u)), we can first fix α, and then compute the n-
order Bi-indexes of u through enumerating method mentioned
above. Following this idea, we propose an algorithm for n-
order Bi-indexes computation, whose pseudo-code is shown in
Algorithm 2. Specifically, Algorithm 2 enumerates all possible
values of i and j (lines 2-3). Then, Algorithm 2 checks
whether the j is the n-order Bi-indexes of u (lines 4-7) or
v (lines 10-13) w.r.t., i. If yes, (i, j) is added to the final pair
set for u (lines 8-9), or (j, i) is added to the final pair set for
v (lines 14-15).

We use the bipartite graph in Figure 1 to illustrate Algo-
rithms 1 and 2. Table II shows B(n)(u) and A(n)(v) for each
round. We take vertex u1 as an example. In Figure 1, we
can observe that degG(u1) = 3 and max

∀v∈NG(u1)
degG(v

′) =

degG(v2) = 4. So, B(0)
U (3, u1) = B(0)

U (2, u1) = B(0)
U (1, u1) =

4 and B(0)(u1) = {(1, 4), (2, 4), (3, 4)}. In the first iter-
ation, we first check the pair (3, 4) for u1 and find that
A(v1) � (3, 4), A(v2) � (3, 4), and A(v3) � (3, 4). Thus,
B(1)
U (3, u1) 6= 4. Then, we check pairs (3, 3) and (3, 2), and

find that B(1)
U (3, u1) = 2. (3, 2) is added into B(1)(u1). In

Algorithm 2: n-order Bi-indexes Computation
Input: vertex w, B(·), A(·)
Output: C(w)

1 C(w) ← ∅;
2 for i← degG(w) to 1 do
3 for j ← max

∀w′∈NG(w)
degG(w

′) to 1 do

4 if w belongs to UG then
5 for ∀w′ ∈ NG(w) do
6 if B(w′) � (i, j) then
7 V ← V ∪ w′;

8 if |V | ≥ i then
9 C(w)← C(w) ∪ (i, j); Break;

10 else
11 for ∀w′ ∈ NG(w) do
12 if A(w′) � (j, i) then
13 V ← V ∪ w′;

14 if |V | ≥ i then
15 C(w)← C(w) ∪ (j, i); Break;

16 return C(w);

the same way, we can check the remaining pairs and get
B(1)(u1) = {(1, 4), (2, 3), (3, 2)}. In the next three rounds,
we can compute B(2)(u1), B(3)(u1), and B(4)(u1), similarly.
Since B(3)(u) = B(4)(u) and A(3)(v) = A(4)(v) for all u and
v, respectively, the algorithm terminates. The final results are
consistent with Table I.

Next, we analyze the bound of the number of iterations
required for convergence. Given a bipartite graph G, we first
introduce the concept of hierarchical sets, which is defined as
follows. Specifically, the 0-th hierarchical set S0 consists of the
vertices with the minimum degree in G. The i-th hierarchical
set Si consists of the vertices with the minimum degree in the
graph induced by vertex (UG ∪ VG)−∪j<iSj . Based on this
concept, we have the following theorem.

Theorem 4. The number of iterations needed for convergence
is bounded by the number of hierarchical sets.

Proof. Given a bipartite graph G, it is obvious that the vertices
with the minimum degree converge within the first iteration
according to the definition of Bi-indexes. Assume that ∀j < i,
the hierarchical set Sj has converged. Then, we can delete the
vertices ∪j<iSj from G and the remaining vertices with the
minimum degree, i.e., Si, will converge in the next iteration.
Therefore, in each iteration, at least one hierarchical set
converges and the number of iterations needed for convergence
is bounded by the number of hierarchical sets.

Then, we give the time and space complexity of Algo-
rithm 1. Let r be the number of iterations required for
convergence, nU = |UG|, nV = |VG|, and m = |EG|.



TABLE II: Illustrations of (α, β)-core decomposition algorithms on bipartite graph in Figure 1

ID B(0)(u) B(1)(u) B(2)(u) B(3)(u) B(4)(u)

u1 {(1, 4), (2, 4), (3, 4)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 3), (3, 2)}
u2 {(1, 4), (2, 4), (3, 4)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 2), (3, 2)} {(1, 4), (2, 2), (3, 2)}
u3 {(1, 4), (2, 4)} {(1, 4), (2, 3)} {(1, 4), (2, 3)} {(1, 4), (2, 3)} {(1, 4), (2, 3)}
u4 {(1, 4), (2, 4), (3, 4), (4, 4)} {(1, 4), (2, 4), (3, 3), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)}
u5 {(1, 4), (2, 4), (3, 4)} {(1, 4), (2, 3), (3, 2)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)}
u6 {(1, 4), (2, 4), (3, 4)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)}
u7 {(1, 4), (2, 4), (3, 4)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)} {(1, 4), (2, 2), (3, 1)}

ID A(0)(v) A(1)(v) A(2)(v) A(3)(v) A(4)(v)

v1 {(3, 1), (3, 2)} {(3, 1), (3, 2)} {(3, 1), (3, 2)} {(3, 1), (3, 2)} {(3, 1), (3, 2)}
v2 {(4, 1), (4, 2), (4, 3), (4, 4)} {(4, 1), (3, 2), (2, 3), (1, 4)} {(4, 1), (3, 2), (2, 3), (1, 4)} {(4, 1), (3, 2), (2, 3), (1, 4)} {(4, 1), (3, 2), (2, 3), (1, 4)}
v3 {(4, 1), (4, 2), (4, 3)} {(4, 1), (3, 2), (2, 3)} {(4, 1), (3, 2), (2, 3)} {(4, 1), (3, 2), (2, 3)} {(4, 1), (3, 2), (2, 3)}
v4 {(4, 1), (4, 2), (4, 3)} {(4, 1), (3, 2), (3, 3)} {(4, 1), (3, 2), (1, 3)} {(4, 1), (3, 2), (1, 3)} {(4, 1), (3, 2), (1, 3)}
v5 {(4, 1), (4, 2), (4, 3), (4, 4)} {(4, 1), (3, 2), (1, 3), (1, 4)} {(4, 1), (2, 2), (1, 3), (1, 4)} {(4, 1), (2, 2), (1, 3), (1, 4)} {(4, 1), (2, 2), (1, 3), (1, 4)}
v6 {(3, 1), (3, 2)} {(3, 1), (3, 2)} {(3, 1), (2, 2)} {(3, 1), (2, 2)} {(3, 1), (2, 2)}
v7 {(3, 1), (3, 2)} {(3, 1), (2, 2)} {(3, 1), (2, 2)} {(3, 1), (2, 2)} {(3, 1), (2, 2)}
v8 {(3, 1)} {(3, 1)} {(3, 1)} {(3, 1)} {(3, 1)}

ID B(0)(v) B(1)(v) B(2)(v) B(3)(v) B(4)(v)

v1 {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)}
v2 {(1, 4), (2, 4), (3, 4), (4, 4)} {(1, 4), (2, 3), (3, 2), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)} {(1, 4), (2, 3), (3, 2), (4, 1)}
v3 {(1, 3), (2, 3), (3, 3), (4, 3)} {(1, 3), (2, 3), (3, 2), (4, 1)} {(1, 3), (2, 3), (3, 2), (4, 1)} {(1, 3), (2, 3), (3, 2), (4, 1)} {(1, 3), (2, 3), (3, 2), (4, 1)}
v4 {(1, 3), (2, 3), (3, 3), (4, 3)} {(1, 3), (2, 3), (3, 3), (4, 1)} {(1, 3), (2, 2), (3, 2), (4, 1)} {(1, 3), (2, 2), (3, 2), (4, 1)} {(1, 3), (2, 2), (3, 2), (4, 1)}
v5 {(1, 4), (2, 4), (3, 4), (4, 4)} {(1, 4), (2, 2), (3, 2), (4, 1)} {(1, 4), (2, 2), (3, 2), (4, 1)} {(1, 4), (2, 2), (3, 1), (4, 1)} {(1, 4), (2, 2), (3, 1), (4, 1)}
v6 {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 1)} {(1, 2), (2, 2), (3, 1)}
v7 {(1, 2), (2, 2), (3, 2)} {(1, 2), (2, 2), (3, 1)} {(1, 2), (2, 2), (3, 1)} {(1, 2), (2, 2), (3, 1)} {(1, 2), (2, 2), (3, 1)}
v8 {(1, 1), (2, 1), (3, 1)} {(1, 1), (2, 1), (3, 1)} {(1, 1), (2, 1), (3, 1)} {(1, 1), (2, 1), (3, 1)} {(1, 1), (2, 1), (3, 1)}

Theorem 5. The time and space complexity of Algorithm 1 is
O(r ·m · (max{nU , nV })2) and O(m), respectively.

Proof. Algorithm 1 iteratively computes B(n)(u) and A(n)(v)
until convergence. Thus, the time complexity of Algorithm 1 is
determined by the number of iterations and the time required
for each iteration. In each iteration, Algorithm 1 computes
B(n)(u) and A(n)(v) for each u and v, respectively, using
Algorithm 2. For each vertex w ∈ UG ∪ VG, Algorithm 2
enumerates all possible pairs for examination, whose time
complexity is O(degG(w) · max

∀w′∈NG(w)
degG(w

′) · degG(w)).

Thus, the time for one iteration is O(
∑
w∈UG∪VG

degG(w) ·
max

∀w′∈NG(w)
degG(w

′) ·degG(w)) = O(m · (max{nU , nV |})2).

Therefore, the time complexity of Algorithm 1 is O(r · m ·
(max{nU , nV })2).

Algorithm 1 should compute B(u) and A(v) for every
u and v, respectively. |B(u)| = degG(u) and |A(v)| =
degG(v). Hence, the space complexity of Algorithm 1 is
O(

∑
w∈UG∪VG

degG(w)) = O(m).

C. Optimized (α, β)-core Decomposition Algorithm

Theorem 5 shows that it is computationally expensive to
enumerating all pairs for examination when computing n-order
Bi-indexes. In this subsection, we propose two optimizations
to improve the performance of (α, β)-core decomposition.

Optimization 1: Reducing Candidate Pairs Checking

Algorithm 2 should check degG(w)× max
∀w′∈NG(w)

degG(w
′)

candidate pairs for each vertex w in an iteration. Totally,
for the entire bipartite graph, the algorithm should check∑
w∈UG∪VG

degG(w)× max
∀w′∈NG(w)

degG(w
′) candidate pairs

in an iteration. However, we find that some pairs can be
directly pruned without checking. To this end, we propose
the first optimization via reducing candidate pairs checking.
First, we present a theorem to support the first optimization.

Theorem 6. (1) B(n)
U (α+1, u) ≤ B(n)

U (α, u) ≤ B(n−1)
U (α, u);

(2) B(n)
V (β + 1, v) ≤ B(n)

V (β, v) ≤ B(n−1)
V (β, v);

Proof. We first prove Theorem 6 (1). B(n)
U (α, u) ≤

B(n−1)
U (α, u) has been proved in Theorem 2. We focus on

the proof of B(n)
U (α + 1, u) ≤ B(n)

U (α, u). According to
Definition 4, B(n)

U (α + 1, u) means that vertex u has at least
α + 1 neighbors vi with A(n)(vi) � (α + 1,B(n)

U (α + 1, u)).
As α+1 > α, these neighbors vi of u also satisfy A(n)(vi) �
(α + 1,B(n)

U (α + 1, u)) � (α,B(n)
U (α + 1, u)). In other

words, vertex u has at least α neighbors vi with A(n)(vi) �
(α,B(n)

U (α + 1, u)). Thus, B(n)
V (α, v) ≥ B(n)

V (α + 1, v).
Theorem 6 (2) also can be proved in the same way.

Theorem 6 points out the lower and upper bounds for
B(n)
U (α, u) and B(n)

V (β, v). Therefore, in line 3 of Algo-
rithm 2, when enumerating j, we can reduce the range of



j from [1, max
∀w′∈NG(w)

degG(w
′)] to lower and upper bounds.

It is worth mentioning that the lower and upper bounds
have already been calculated before computing B(n)

U (α, u)

and B(n)
V (β, v). So, Optimization 1 does not require other

additional calculations and can have good improvement for
Algorithm 1. Moreover, we would like to highlight two
points. First, when α = degG(w), the lower bound is set
to max
∀w′∈NG(w)

degG(w
′) since B(n)

U (α + 1, u) does not exist.

Second, if (i) the lower bound equals to upper bound, or
(2) j equals to the lower bound, the n-order Bi-indexes, i.e.,
B(n)
U (α, u) and B(n)

V (β, v), equal to the lower bound.

Optimization 2: Computing A(v) via B(v)
The reason for traversing j in Algorithm 2 is that B(n)(u) is

α-dimension-centric while A(n)(v) is β-dimension-centric. To
be specific, from Table I, we can observe that the (α, β) pairs
in B(n)(u) and A(n)(v) are continuous in α-dimension and
β-dimension, respectively. Thus, we cannot directly compute
the value of j in Algorithm 2. Motivated by it, if we can make
B(n)(u) and A(n)(v) to be the same dimension-centric, it will
benefit the computation of j. Motivated by it, we propose the
second optimization.

First, we define B(v), which is modified from
B(u) and A(v) in Definition 1. Specifically,
B(v) = {(α, βmax,α(v))|∀α ∈ [1, max

∀u′∈NG(v)
degG(u

′)]}.

For A(v) and B(v), we have the following theorem.

Theorem 7. (1) If we have B(v), ∀β ∈ [1,degG(v)],

αmax,β(v) = max{α′|βmax,α′(v) ≥ β} (7)

(2) If we have A(v), ∀α ∈ [1, max
∀u′∈NG(v)

degG(u
′)],

βmax,α(v) = max{β′|αmax,β′(v) ≥ α} (8)

Proof. If v ∈ (α, β)-core, it holds that v ∈ (α′, β′)-core with
α′ ≤ α and β′ < β. Combing the definitions of αmax,β(v)
and βmax,α(v), we easily can get Equations 7 and 8.

Obviously, Theorem 7 indicates that A(v) and B(v) are
equivalent, and they can be converted to each other. Therefore,
for Problem 1, we can first compute B(u) and B(v) for each u
and v, and then convert B(v) to A(v), which is the basic idea
of Optimization 2. To iteratively compute B(u) and B(v), we
re-define the n-order Bi-indexes as follows.

Definition 5. Given a bipartite graph G, two vertices u
and v, an integer α, the n-order Bi-index of u w.r.t., α ∈
[1,degG(u)], is defined as follows:

B(n)
U (α, u) =

 max
∀vi∈NG(u)

degG(vi) n = 0

β(α, S(n−1)(u)) n > 0
(9)

where S(n−1)(u) = {B(n−1)(vi)|∀vi ∈ NG(u)}
and B(n−1)(vi) = {(α′,B(n−1)

V (α′, vi))|∀α′ ∈
[1, max
∀u′∈NG(vi)

degG(u
′)]}.

The n-order Bi-index of v w.r.t., α ∈
[1, max
∀ui∈NG(v)

degG(ui)] is defined as follows:

B(n)
V (α, v) =

{
degG(v) n = 0

γ(α, S(n−1)(v)) n > 0
(10)

where γ(α, S(n−1)(v)) = max{β′| there are at least
β′ B(n−1)(ui) ∈ S(n−1)(v) such that B(n−1)(ui) � (α, β′)},
S(n−1)(v) = {B(n−1)(ui)|∀ui ∈ NG(v)}, and B(n−1)(ui) =
{(α′,B(n−1)

U (α′, ui))|∀α′ ∈ [1,degG(ui)]}.

Like the original n-order Bi-indexes in Definition 4, the
above re-defined n-order Bi-indexes are convergent as well,
which are shown in the following theorem.

Theorem 8.

∀α ∈ [1,degG(u)], lim
n→∞

B(n)
U (α, u) = βmax,α(u) (11)

∀α ∈ [1, max
∀ui∈NG(v)

degG(ui)], lim
n→∞

B(n)
V (α, v) = βmax,α(v)

(12)

Proof. Theorem 8 can be proved in the same way as Theo-
rem 3. Due to the space limitation, we omit the details.

Theorem 8 shows that B(n)
U (α, u) and B(n)

V (α, v) can finally
converge to βmax,α(u) and βmax,α(v), respectively, indicating
that we can compute B(u) and B(v) in an iterative manner.
What’s more, when B(n)

U (α, u) and B(n)
V (α, v) are of the

same dimension centric, the computation of B(n)
U (α, u) and

B(n)
V (α, v) are more convenient, as illustrated in Theorem 9.

Theorem 9. For the n-order Bi-indexes of u and v defined in
Definition 5, when n > 0,

B(n)
U (α, u) = β(α, S(n−1)(u)) = TOP(α, I) (13)

where TOP(α, I) denotes the top α-th value of integer set
I = {B(n−1)

V (α, vi)|∀vi ∈ NG(u) ∧ max
∀u′∈NG(vi)

degG(u
′) ≥

α}.

B(n)
V (α, v) = γ(α, S(n−1)(v)) = H(I) (14)

where H(I) = max{i|I has i integers, whose value is
not less than i} denotes the H-index [29] of integer set
I = {B(n−1)

V (α, ui)|∀ui ∈ NG(v) ∧ degG(ui) ≥ α}.

Proof. We first prove Equation 13. According to Definitions 3
and 5, β(α, S(n−1)(u)) is the maximum value of β′ such that
u has at least α neighbors vi with (α, β′) � B(n−1)(vi).
Since (α, β′) � B(n−1)(vi) ⇔ (α, β′) � (α,B(n−1)

V (α, vi)),
β(α, S(n−1)(u)) is equivalent to find the maximum value of
β′ such that u has at least α neighbors vi with (α, β′) �
(α,B(n−1)

V (α, vi)). Therefore, β′ is the top α-th value of
B(n−1)
V (α, vi) of all u’s neighbors vi.
Then, we prove Equation 14. According to Definitions 5,

γ(α, S(n−1)(v)) is the maximum value of β′ such that v
has at least β′ neighbors ui with B(n−1)(ui) � (α, β′).



Algorithm 3: Optimized n-order Bi-indexes Compu-
tation

Input: vertex w, B(·)
Output: C(w)

1 C(w)← ∅;
2 if w ∈ UG then
3 for i← degG(w) to 1 do
4 if i = degG(w) or

B(n)
U (i+ 1, w) < B(n−1)

U (i, w) then
5 I ← {B(n−1)

V (i, w′)|∀w′ ∈ NG(w)};
6 j ← TOP(α, I);
7 else
8 j ← B(n)

U (i+ 1, w);
9 C(w)← C(w) ∪ (i, j);

10 else
11 for i← max

∀w′∈NG(w)
degG(w

′) to 1 do

12 if i = max
∀w′∈NG(w)

degG(w
′) or

B(n)
V (i+ 1, w) < B(n−1)

V (i, w) then
13 I ← {B(n−1)

U (i, w′)|∀w′ ∈ NG(w)};
14 j ← H(I);
15 else
16 j ← B(n)

V (i+ 1, w);
17 C(w)← C(w) ∪ (i, j);

18 return C(w);

Since (α, β′) � B(n−1)(ui) ⇔ (α, β′) � (α,B(n−1)
U (α, ui)),

γ(α, S(n−1)(v)) is equivalent to find the maximum value of
β′ such that v has at least β′ neighbors ui with (α, β′) �
(α,B(n−1)

U (α, ui)). In other words, β′ is the H-index of integer
set consisting of all B(n−1)

U (α, ui).
Moreover, the integer sets I of Equations 13 and 14

contain degree constraints. It is because (1) for Equation 13,
if max
∀u′∈NG(vi)

degG(u
′) < α, B(n−1)

V (α, vi) does not exist; (2)

for Equation 14, if degG(ui) < α, B(n−1)
V (α, ui) does not

exist.

Optimized (α,β)-core Decomposition Algorithm. Com-
bining Optimizations 1 and 2, we propose an optimized
(α, β)-core decomposition algorithm. Since the pseudo-code
of optimized (α, β)-core decomposition algorithm is similar
to that of Algorithm 1, we omit the pseudo-code and mainly
discuss three differences compared with Algorithm 1.

First, for initialization of 0-order Bi-index for vertices v ∈
VG (lines 4-6 of Algorithm 1), we should use the degree of v
according to Equation 10.

Second, the computation of n-order Bi-indexes is differ-
ent (lines 11 and 15 of Algorithm 1). The pseudo-code of
the optimized n-order Bi-indexes computation is shown in
Algorithm 3, which integrates both Optimizations 1 and 2.
Specifically, when computing n-order Bi-indexes for each
value i, (1) if lower bound (i.e., B(n)

U (i+1, w)) equals to upper
bound (i.e., B(n−1)

U (i, w)), the n-order Bi-indexes equal to the

Algorithm 4: Converting B(v) to A(v)
Input: B(v),
Output: A(v)

1 j ← 1;
2 for i← degG(v) to 1 do
3 while βmax,j(v) ≥ i do
4 j ← j + 1;
5 A(v)← A(v) ∪ (j − 1, i);
6 return A(v);

lower bound (lines 7-8, 15-16); (2) otherwise, Algorithm 3
computes the n-order Bi-indexes using TOP(α, I) operation
and TOP(α, I) operation for u and v, respectively (lines 4-6,
12-14). Note that the range of i for u and v are different (lines
3 and 11).

Third, after n-order Bi-indexes are converged, the optimized
algorithm should convert B(v) to A(v) (between lines 17 and
18 of Algorithm 1). Algorithm 4 shows the corresponding
pseudo-code. To be specific, for each i ∈ [1,degG(v)],
Algorithm 4 finds the maximum j such that βmax,j(v) ≥ i
according to Equation 7, and then adds the pair (j− 1, i) into
final result set A(v) (lines 2-5).

We use the bipartite graph in Figure 1 to illustrate the opti-
mized (α, β)-core decomposition algorithm, and the details
are shown in Table II. We take vertex v1 as an example.
For v1, NG(v1) = {u1, u2}, degG(v1) = 2, degG(u1) = 3,
and degG(u1) = 3. Thus, B(0)(v1) = {(1, 2), (2, 2), (3, 2)}.
Then, the algorithm computes B(1)(v1). Since B(1)

V (3, v1) =

H({B(0)
U (3, u1),B

(0)
U (3, u2)}) = H({4, 4}) = 2, B(1)

V (2, v1)

= H({B(0)
U (2, u1),B

(0)
U (2, u2)}) = H({4, 4}) = 2, and

B(1)
V (1, v1) = H({B(0)

U (1, u1),B
(0)
U (1, u2)}) = H({4, 4}) =

2, B(1)(v1) = {(1, 2), (2, 2), (3, 2)}. Similarly, B(2)(v1),
B(3)(v1), and B(4)(v1) are computed. Since B(3)(v) = B(4)(v)
and B(3)(u) = B(4)(u), the algorithm terminates. Finally,
the algorithm converts B(4)(v) to A(4)(v) for all vertices in
VG. It is worth mentioning that the B(n)(u) computed in
the optimized algorithm is the same as that of non-optimized
algorithm, i.e., Algorithm 1.

Next, we analyze the time complexity of optimized (α, β)-
core decomposition algorithm.

Theorem 10. The optimized (α, β)-core decomposition algo-
rithm and Algorithm 1 have the same number of iterations.

Theorem 11. The time and space complexity of the optimized
(α, β)-core decomposition algorithm is O(r · m · nV ) and
O(m+ nV ·maxdegG(u)), respectively.

Proof. The optimized algorithm iteratively computes B(n)(u)
and B(n)(v) until convergence. Thus, the time complexity of
the optimized algorithm is also determined by the number of
iterations and the time required for each iteration. In each iter-
ation, (1) for a vertex u, Algorithm 3 computes B(n)

U (α, u) for
all α ∈ [1,degG(u)] using TOP(α, I), whose time complex-
ity is O(degG(u) · degG(u)); (2) for a vertex v, Algorithm 3



computes B(n)
V (α, v) for all α ∈ [1, max

∀ui∈NG(v)
degG(ui)]

using H(I), whose time complexity is O( max
∀ui∈NG(v)

degG(ui)·

degG(v)). Totally, the time complexity of a single round is
O(

∑
u∈UG

degG(u) ·degG(u)+
∑
v∈VG

max
∀ui∈NG(v)

degG(ui) ·

degG(v)) = O(m · nV ). As a result, the time complexity of
optimized (α, β)-core decomposition algorithm is O(r·m·nV ).

The optimized algorithm should compute B(u) and B(v)
for every u and v, respectively. |B(u)| = degG(u) and
|B(v)| = maxu∈NG(v) degG(u). Hence, the space com-
plexity of the optimized algorithm is O(

∑
u∈UG

degG(u) +∑
v∈VG

maxu∈NG(v) degG(u)) = O(m+nV ·maxdegG(u)).

D. Distributed (α, β)-core Decomposition Algorithm

In this subsection, we extend (α, β)-core decomposition
algorithms proposed in Sections III-B and III-C to distributed
graph processing frameworks. We consider two types of well
known frameworks, including vertex-centric framework and
block-centric framework. We take the Algorithm 1 as an
example. The optimized algorithm also can be extended in
the same way.

Vertex-centric Distributed (α, β)-core Decomposition Al-
gorithm.

For the vertex-centric framework, each vertex corresponds
to one computing node, which has two states, i.e., active and
inactive. To be specific, the vertex-centric framework works as
follows. First, the vertex-centric framework does some initial-
ization for each vertex and marks it as inactive. Then, when
a vertex receives messages from its neighbors, it becomes
active, executes a user-defined function, sends messages to its
neighbors if necessary, and resets to inactive. The framework
stops once all vertices become inactive. Pregel [30], GPS [31],
and GraphLab [32] are typical vertex-centric frameworks.

According to the workflow of vertex-centric framework,
we should consider the details of (1) initialization and (2)
operations after receiving messages for each vertex. Specif-
ically, in initialization step, the distributed algorithm should
set B(0)(u)/A(0)(v) for vertices, which corresponds to lines
1-6 of Algorithm 1, and then the B(0)(u)/A(0)(v) should
be broadcast to all neighbors of the vertex via messages,
which is to trigger 1-order Bi-indexes computation. Next, we
discuss the operations after receiving messages. Note that,
in our distributed algorithms, the messages just contain the
latest B(n)(u)/A(n)(v) of sender. So, after receiving mes-
sages, the vertex should update the latest B(n)(u)/A(n)(v)
of its neighbors. It is because for distributed algorithm,
each vertex should store the latest B(n)(u)/A(n)(v) of its
neighbors to compute its own B(n+1)(u)/A(n+1)(v). When
all messages are processed, the vertex should compute its
own B(n+1)(u)/A(n+1)(v), which corresponds to Algorithm 2.
When the B(n+1)(u)/A(n+1)(v) computation is finished, if
vertex’s B(n+1)(u) 6= B(n+1)(u)/A(n+1)(v) 6= A(n+1)(v), the
vertex should send B(n+1)(u)/A(n+1)(v) to all its neighbors.
Otherwise, the vertex does not need to broadcast the messages.

When no vertex broadcasts messages, the distributed algorithm
finished.

Block-centric Distributed (α, β)-core Decomposition Algo-
rithm.

Another popular distributed graph processing framework is
block-centric framework, such as Giraph++ [33], Blogel [34],
and GRAPE [35]. For the block-centric framework, the graph
is partitioned into many blocks and a single computing node
stores one block of vertices. As for the communication of
block-centric framework, (1) the communication occurs after
the computation within a block reaches convergence; (2)
the communication occurs between blocks. The block-centric
framework stops when there is no communication between any
two blocks.

Next, we extend Algorithm 1 to the block-centric frame-
work. At initialization step, each block also should set
B(0)(u)/A(0)(v) for all vertices within the block. Then,
B(0)(u)/A(0)(v) of a block are broadcast to other blocks.
When the block receives messages (i.e., the B(n)(u)/A(n)(v)
of vertices in other blocks), it first updates B(n)(u)/A(n)(v),
and then the block computes the B(n+1)(u)/A(n+1)(v)
of vertices in its own block. When B(n+1)(u)/A(n+1)(v)
is converged within the block, the block broadcasts
B(n+1)(u)/A(n+1)(v) to other blocks. If there are no messages
broadcast between any two blocks, the distributed algorithm
terminates.

In the following, we analyze the communication complexity
for distributed (α, β)-core decomposition.

Theorem 12. The total communication complexity of the
distributed (α, β)-core decomposition algorithm is O(r ·m).

Proof. The distributed (α, β)-core decomposition algorithm
iteratively computes the n-order Bi-indexes until convergence.
Thus, the total communication complexity is determined by
the number of iterations and the communication complexity
of each iteration. For each iteration, at worst, every vertex
w should send one message, whose size is O(degG(w)).
The communication complexity for each iteration is thus
O(

∑
w∈UG∪VG

degG(w)) = O(m). Therefore, the total com-
munication complexity for distributed (α, β)-core decomposi-
tion is O(r ·m).

IV. EMPIRICAL EVALUATION

A. Experimental Settings

All experiments are conducted on a collection of Amazon
EC2 r5.2x large instances, each powered by 8 vCPUs and
64GB memory. The network bandwidth is up to 10G Gb/s.
All experiments are implemented in C++ on the Ubuntu 18.04
operating system.

Datasets. We use eleven datasets to evaluate the algorithms,
including nine real bipartite graphs and two synthetic bipartite
graphs. For the real bipartite graphs, MovieLens-100K and
MovieLens-10M are the bipartite graphs of user’s rating of
movies; Daily Kos, Enron Words, and PubMed are the bipartite
graphs of word’s occurrence in different documents. YouTube



TABLE III: Dataset Statistics (dmax represents the maximum
degree of a bipartite graph; K = 103, M = 106, and B = 109)

Dataset Abbr. |UV | |VG| |EG| dmax
MovieLens-100K ML100 943 1,682 100K 737

Daily Kos DK 3,430 6,906 353K 2,123
YouTube YT 94.2K 30.1K 293K 7,591

BookCrossing BC 78K 186K 434K 8,524
Genres GR 259K 7,783 463K 25K

Enron Words EW 39.9K 28.1K 3.71M 7,190
MovieLens-10M ML10 70K 11K 10M 35K

LiveJournal LJ 3.20M 7.49M 11.3M 1.05M
PubMed PM 8.2M 141K 483M 2.32M
Uniform UD 5M 5M 1.06B 211

Power Law PL 5M 5M 1.06B 38.1K
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Fig. 2: Efficiency of optimizations (Running time)

and LiveJournal are the bipartite graphs of user’s membership
w.r.t., different groups. BookCrossing is a bipartite graph
of user’s rating of books. Genres is a bipartite graph of
relationship between genres and works. All the real datasets
are downloaded from the website KONECT1. In addition, we
also generate two synthetic bipartite graphs, i.e., Uniform and
Power Law, whose degree distributions follow uniform dis-
tribution and power-law distribution, respectively. The dataset
statistics are summarized in Table III.

Algorithms. We compare a set of algorithms in our ex-
periments. Specifically, VDDA and BDDA are the dis-
tributed (α, β)-core decomposition algorithms, which extend
Algorithm 1 to vertex-centric and block-centric frameworks,
respectively. VDDA+OPT1 and BDDA+OPT1 are VDDA
and BDDA integrated with Optimization 1, respectively.
VDDA+OPT2 and BDDA+OPT2 are VDDA and BDDA in-
tegrated with Optimization 2, respectively. OVDDA and OB-
DDA are VDDA and BDDA integrated with 2 optimizations,
respectively.

In our experiments, we employ a popular block-centric
framework GRAPE [35] to realize the block-centric distributed
algorithms, and use the hash partitioner for graph partitioning
by default. For the sake of fairness, we also employ GRAPE
to simulate the vertex-centric framework. Specifically, at each
round, all vertices execute computations only once and broad-
cast to their neighbors immediately.

B. Experimental Results

Exp-1: Evaluation of optimization efficiency. We start
by evaluating the efficiency of two optimizations proposed

1http://konect.cc/networks/
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Fig. 3: Efficiency of optimizations (Communication)

in Section III-C. Figures 2 and 3 report the running time
and communication overhead of all algorithms, respectively.
For the running time shown in Figure 2, within the same
framework, the performance of algorithms with two optimiza-
tions are the best, following by the algorithms with only one
optimization. The algorithms without any optimizations have
the worst performance. This phenomenon demonstrates the
effectiveness of Optimizations 1 and 2. Moreover, we can
observe that the algorithms with optimizations consistently
outperform the algorithms without optimizations by 1-3 orders
of magnitude on all datasets. For example, OBDDA has three
orders of magnitude improvement compared with BDDA. In
addition, the two optimizations have different strengths on
different datasets. For example, Optimization 1 outperforms
Optimization 2 over datasets ML100 and DK while Optimiza-
tion 2 works better over datasets GR and YT.

For the communication overhead reported in Figure 3, we
have following observations: (1) VDDA and VDDA+OPT1
have the same communication overhead; (2) VDDA+2 and
OVDDA have the same communication overhead; and (3)
the communication overheads of VDDA and VDDA+OPT1
are smaller than that of VDDA+2 and OVDDA. The rea-
sons behind are that (1) both VDDA and VDDA+OPT1
broadcast B(n)(u) and A(n)(v); (2) both VDDA+OPT2 and
OVDDA broadcast B(n)(u) and B(n)(v); (3) according to
Definitions 4 and 5, |B(n)(u)| = degG(u), |A(n)(v)| =
degG(v), and |B(n)(v)| = max

∀ui∈NG(v)
degG(ui). Obviously,∑

∀v∈VG
degG(v) <

∑
∀v∈VG

max
∀ui∈NG(v)

degG(ui). There-

fore, VDDA+2 and OVDDA have more communication over-
head. However, the magnitude of the increase in communica-
tion is small. For example, in Figure3(a), OVDDA has 14%
more communication overhead than that of VDDA on dataset
GR. In addition, the increase of communication overhead is
less than an order of magnitude for all datesets. Compared
the significant improvement of running time, the increase of
communication overhead is acceptable. Overall, our proposed
optimizations are effective.

Exp-2: Evaluation on the number of iterations. In this
experiments, we explore the number of iterations for all
algorithms. Table IV reports the results on datasets ML100,
GR, DK, and YT. We can observe that, first, the algorithms of
the same framework have the same number of iterations. It is
because Optimization 1 employs the lower and upper bounds
to reduce the candidate pairs examination and Optimization 2



TABLE IV: # Iterations required for the algorithms

Algorithms
Dataset

ML100 GR DK YT

Vertex-centric

VDDA 38 39 76 39

VDDA+OPT1 38 39 76 39

VDDA+OPT2 38 39 76 39

OVDDA 38 39 76 39

Block-centric

BDDA 27 29 54 26

BDDA+OPT1 27 29 54 26

BDDA+OPT2 27 29 54 26

OBDDA 27 29 54 26

VDDA,VDDA+OPT1,VDDA+OPT2,OVDDA
BDDA,BDDA+OPT1,BDDA+OPT2,OBDDA
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Fig. 4: Convergence Rate

speed up the A(n)(v) computation via B(n)(v). Both optimiza-
tions only accelerate the calculation of A(n)(v) within a single
iteration, and does not influence other iterations. Second, the
number of iterations for block-centric algorithms are less than
that of the vertex-centric algorithms. The reason behind is
that in block-centric algorithms, the vertices have been locally
converged before the blocks broadcast messages. Thus, block-
centric algorithms converge faster globally. Third, for a given
graph G, all of our proposed algorithms have few iterations.
It also shows the efficiency of our proposed algorithms.

Exp-3: Evaluation of convergence rate. According to Ta-
ble II, many vertices converge within few iterations. For
example, vertex u2 has converged in the first iteration. To
this end, we evaluate the convergence rate for each algorithm,
i.e., the percentage of vertices with B(n)(u) = B(u), or
B(n)(v) = B(v), or A(n)(v) = A(v) after an iteration
finishes. Figure 4 shows the results over four datasets. As
expected, the algorithms of the same framework have the same
convergence rate, and the block-centric algorithms converges
faster, which are consistent with the results of Exp-2. Overall,
all algorithms have fast convergence rate. For example, for
the dataset GR in Figure 4(b), 99.7% and 96.8%vertices have
been converged after 16 iterations for block-centric and vertex-
centric algorithms, respectively.

In the rest of experiments, we evaluate the efficiency of
proposed algorithms. We only report the results of the OVDDA
and OBDDA algorithms due to the inefficiency of the other
algorithms over large datasets.

Exp-4: Effect of the number of machines. This set of
experiments test the effect of the number of machines, whose
range varies from 1 to 16, where 1 represents centralized
setting and the others represent distributed settings. Figures 5
and 6 show the running time and communication overhead,
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respectively. In Figure 5, we can observe that (1) in distributed
setting, our proposed algorithms have better performance, and
(2) when the number of machines increases, OVDDA and OB-
DDA take less running time. This is because more machines
render more computing power for distributed algorithms.
Thus, both algorithms have better performance. In addition,
OVDDA takes less time than OBDDA, which is caused by
straggler [36]. Recall that in each iteration, OBDDA should
iteratively compute B(n)(u) and B(n)(v) until convergence
within the block. There may be some blocks that converge
very slowly, and thus deteriorates the overall performance of
the OBDDA. Moreover, the smaller the blocks, the weaker the
effect of straggler. Hence, with the increase of the number of
machines, the gap between the performance of OVDDA and
OBDDA becomes smaller.

In Figure 6, we can observe that OBDDA has less communi-
cation overhead than OVDDA. Although the communication
overhead of OBDDA is more than that of OVDDA in each
iteration, OBDDA takes much less iterations than OVDDA.
Totally, OBDDA has less communication overhead. With the
increase of the number of machines, we have the following
observations. (1) The communication overhead of OVDDA
almost remain stable. This is because vertex-centric framework
considers each vertex as a machine and the communication
occurs between edges. Changes in the number of machines do
not affect edges, and therefore the communication overhead.
(2) The communication overhead of OBDDA increases. It is
because, when the number of machines increases, each block
becomes smaller and the block-centric framework is more
similar to the vertex-centric framework, meaning that OBDDA
takes more iterations. Thus, the communication overhead of
OBDDA increases, and becomes closer to that of OVDDA.

Exp-5: Effect of dataset cardinality. We randomly select
different fractions of vertices from the original graphs, which
vary from 20% to 100%, and generate a set of induced
subgraphs. We employ these subgraphs to test the effect of
dataset cardinality over OVDDA and OBDDA. Figures 7 and
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8 show the running time and communication overhead, respec-
tively. It is within expected that both the running time and
communication overhead increase with the dataset cardinality.

Exp-6: Effect of partition strategies. As block-centric frame-
work partitions graph into blocks, finally, we test the effect of
partition strategies for OBDDA. Four partition strategies are
compared, including (1) SEG [35], which allocates vertex to
the vid/C-th subgraph (vid and C denote vertex ID and the
maximum cardinality of partitioned subgraphs, respectively);
(2) HASH [35], which allocates vertex to the vid%N -th
subgraph (N denotes the number of partitioned subgraphs);
(3) FENNEL [37], which subsumes the folklore heuristic that
places a vertex to the subgraph with the fewest non-neighbors
and the degree-based heuristic that uses different heuristics to
place a vertex based on its degree, to partition the graph; and
(4) METIS [38], which partitions the graph into subgraphs
with minimum crossing edges. The corresponding results are
shown in Figure 9. We can observe that (1) HASH is the
best in terms of running time , which is due to its balanced
partitions, i.e., each partition has almost an equal number of
vertices. (2) METIS and FENNEL are worse than HASH in
terms of running time, sometimes by an order of magnitude.
But, their communications are relatively less than HASH.
This is because METIS and FENNEL have higher locality,
leading to more prominent effect of straggler. Considering
the running time advantage of HASH, and not much worse
in communication overhead, we employ HASH as default
partition strategy in experiments.

Exp-7: Bi-indexes-based algorithm vs. Peeling-based al-
gorithm. Our proposed Bi-indexes-based algorithms can be
implemented in both centralized setting and existing dis-
tributed graph frameworks. In this experiment, we compare our
proposed algorithm and peeling-based algorithm in centralized
settings. The result is shown in Figure 10. We can observe
that the peeling-based algorithm is better in terms of running
time while it takes more memory. Therefore, our proposed
algorithms are more preferable for distributed settings.
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V. RELATED WORK

Distributed Core Decomposition. The k-core is an impor-
tant model for cohesive subgraph analysis [39]. Given an
undirected graph, the problem of k-core decomposition aims
at finding the k-cores for all possible values of k. By now,
many efficient algorithms have been proposed to handle k-core
decomposition [40]–[43]. Moreover, several parallel [44]–[46]
and distributed [24]–[28] algorithms for k-core decomposition
also have been proposed, which cannot be applied to handle
our problem. It is because different core models require
different core decomposition techniques, and these work do
not involve (α, β)-core.

Cohesive Subgraphs Discovery over Bipartite Graphs.
Apart from (α, β)-core, other cohesive subgraph models also
have been proposed for bipartite graphs, such as biclique [6]–
[10], bitruss [11], [12], [47], biplex [48], [49], and (α, β, η)-
core [50]. However, these work also cannot be applied to our
work. The reason is two folded. First, these cohesive subgraph
models are different from (α, β)-core. Second, these work
focus on centralized environments.

VI. CONCLUSION

In this paper, we explore the problem of distributed (α, β)-
core decomposition. To solve this problem, we first analyze the
relationship between vertex and its neighbors and propose n-
order Bi-indexes for vertices. Then, we propose an algorithm
of (α, β)-core decomposition through iteratively computing
n-order Bi-indexes. We also present two optimizations to
accelerate the algorithm and discuss how to implement the
algorithm into different distributed graph processing frame-
works. Finally, we conduct extensive experiments using real
and synthetic graphs to evaluate the proposed algorithms. The
results demonstrate the efficiency, scalability and effectiveness
of proposed algorithms and optimizations.
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[23] C. Rost, K. Gómez, M. Täschner, P. Fritzsche, L. Schons, L. Christ,
T. Adameit, M. Junghanns, and E. Rahm, “Distributed temporal graph
analytics with GRADOOP,” VLDB J., vol. 31, no. 2, pp. 375–401, 2022.

[24] A. Montresor, F. D. Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” IEEE Trans. Parallel Distributed Syst., vol. 24, no. 2,
pp. 288–300, 2013.

[25] N. S. Dasari, D. Ranjan, and M. Zubair, “Park: An efficient algorithm
for k-core decomposition on multicore processors,” in Big Data, 2014,
pp. 9–16.

[26] A. Mandal and M. A. Hasan, “A distributed k-core decomposition
algorithm on spark,” in Big Data, 2017, pp. 976–981.

[27] T. H. Chan, M. Sozio, and B. Sun, “Distributed approximate k-core
decomposition and min-max edge orientation: Breaking the diameter
barrier,” in IPDPS, 2019, pp. 345–354.

[28] X. Liao, Q. Liu, J. Jiang, X. Huang, J. Xu, and B. Choi, “Distributed
d-core decomposition over large directed graphs,” Proc. VLDB Endow.,
vol. 15, no. 8, pp. 1546–1558, 2022.

[29] J. E. Hirsch, “An index to quantify an individual’s scientific research
output,” Proceedings of the National academy of Sciences, vol. 102,
no. 46, pp. 16 569–16 572, 2005.

[30] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in SIGMOD, 2010, pp. 135–146.

[31] S. Salihoglu and J. Widom, “GPS: a graph processing system,” in
SSDBM, 2013, pp. 22:1–22:12.

[32] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
in the cloud,” PVLDB, vol. 5, no. 8, pp. 716–727, 2012.

[33] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From ”think like a vertex” to ”think like a graph”,” PVLDB, vol. 7,
no. 3, pp. 193–204, 2013.

[34] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” PVLDB, vol. 7,
no. 14, pp. 1981–1992, 2014.

[35] W. Fan, W. Yu, J. Xu, J. Zhou, X. Luo, Q. Yin, P. Lu, Y. Cao, and R. Xu,
“Parallelizing sequential graph computations,” ACM Trans. Database
Syst., vol. 43, no. 4, pp. 18:1–18:39, 2018.

[36] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in OSDI, 2010, pp. 265–278.

[37] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“FENNEL: streaming graph partitioning for massive scale graphs,” in
WSDM, 2014, pp. 333–342.

[38] G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs,” Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices, Version, vol. 4, no. 0, 1998.

[39] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[40] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
sition of networks,” arXiv preprint cs/0310049, 2003.

[41] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
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