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Abstract—Socially tenuous groups (or simply tenuous groups)
in a social network/graph refer to subgraphs with few social
interactions and weak relationships among members. However,
existing studies on tenuous group queries do not consider the
user profiles (keywords) of the members whereas in many social
network applications, e.g., finding reviewers for paper selection
and recommending seed users in social advertising, keywords
also need to be considered. Thus, in this paper, we investigate
the problem of keywords-based socially tenous group (KTG)
queries. A KTG query is to find top N tenuous groups in
which the members of each group jointly cover the most number
of query keywords. To address the KTG problem, we first
propose two exact algorithms, namely KTG-VKC and KTG-VKC-
DEG, which give priority to the valid keyword coverage and the
combination of valid keyword coverage and degree, respectively,
to select members to form a feasible group by adopting a
branch and bound (BB) strategy. Moreover, we propose keyword
pruning and k-line filtering to accelerate the algorithms. To yield
diversified KTG results, we also study the problem of diversified
keywords-based socially tenous group (DKTG) queries. To deal
with the DKTG problem, we propose a DKTG-Greedy algorithm
by exploiting a greedy heuristic in combination with KTG-VKC-
DEG. Furthermore, we design two alternative indexes, namely
NL and NLRNL, to efficiently check whether the social distance
of any two members is greater than the social constraint k in
the above algorithms. We conduct extensive experiments using
real datasets to validate our ideas and evaluate the proposed
algorithms. Experimental results show that the NLRNL index
achieves a better performance than the NL index.

Index Terms—Tenuous group queries, keyword, social network

I. INTRODUCTION

The problem of finding tenuous groups in social networks,
i.e., groups with few social interactions (or weak relationships)
among members, has received growing research interests
recently [1]–[4]. However, most of the existing works on
this problem focus only on the tenuous social relationships
among group members without considering their profiles. We
observe that in many social network applications, keywords
also need to be considered, such as finding reviewers for paper
selection and recommending seed users in social advertising.
For reviewer selection, it is quite desirable to find reviewers
with research expertise to match the topic of a paper under
review. For social advertising in marketing campaigns, it is
preferable to have seed users not familiar with each other so
as to increase the propagation influence. Moreover, the seed
users should cover the keywords associated with the product.
An example of reviewer selection is shown as follows.
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Figure 1. Attributed social networks with keywords.

Example 1: Figure 1 depicts a running example based on
an attributed social network. The top part of the figure shows
the social relationships among reviewers (vertices) and each
reviewer is profiled by a list of keyword terms in the research
area of database and data mining. The bottom part lists all the
keywords and their abbreviations. Suppose that our goal is to
find 3 reviewers whose combined expertise can cover as many
keywords of a given paper, e.g., {SN,QP,DQ,GQ,GD},
as possible. It is very desirable that the reviewers’ exper-
tise should match the keywords of the allocated papers in
order to ensure proper review and assessment of submitted
manuscripts. To ensure the fairness, there should be no close
social relationships among all the reviewers to avoid leading
unanimous but nonobjective review comments. This is because
it may lead to consistent but potentially biased reviews.
For example, junior reviewers could be easily influenced by
the opinions of senior reviewers. In this figure, u6 and u7
should not together be the reviewers because they are directly
connected to each other. In addition, the reviewers should
cover as many keywords in a paper as possible so as to ensure
that the paper is reviewed by experts. For example, u0 and u7
do not cover many keywords of the paper, thus it is not ideal to
have them assigned together in a reviewer panel. As another
example, {u10, u1, u4} is a good choice because the group
members are not closely socially related but do cover many



keywords of the paper.
Under the scenarios of reviewer selection and recommend-

ing seed users, the need for tenuous group queries that incor-
porate keywords matching has inspired our research presented
in this paper. Specifically, we propose a new tenuous group
query, namely, keyword-based tenuous group (KTG) query.
Consider an attributed social network represented by a graph
G. Given a KTG query, specified in the form 〈WQ, p, k,N〉,
the KTG query aims to find top N groups of size p in which
each result group is a tenuous group (i.e., the social distance
of any two result members is greater than tenuity constraint k),
the members of each result group jointly cover the most query
keywords in the query keyword set WQ (i.e., paper keywords),
and each vertex in the result group should contain at least one
query keyword. An example of a KTG query is shown in Fig-
ure 1. Given a KTG query 〈WQ = {SN,QP,DQ,GQ,GD},
p=3, k=1, N=2〉, the result groups of this KTG query are
{u10, u1, u4} and {u10, u1, u5}, both of which cover the most
query keywords {SN,QP,DQ,GD}.

Dealing with the KTG problem efficiently is challenging
due to tenuity and keyword constraints. A simple solution to
the KTG problem is the brute-force method, which needs to
enumerate all groups of p vertices, and then determine whether
they are tenuous groups. If they are tenuous groups, we
calculate the number of query keywords which the members
jointly cover and return the groups with the highest number
of covered query keywords. However, this method is clearly
inefficient. To obtain the query result, the method needs to
enumerate Cp|V | possible groups, and thus its time complexity
is O(|V |p). Note that, as we show later, the problem of pro-
cessing KTG is NP-hard. Nevertheless, due to the importance
of keyword and social factors considered in KTG, we exploit
the keyword and social constraints specified in KTG while
forming the candidate groups to alleviate the processing cost.
Our idea is to expand the solution space in a systematical
way such that we can efficiently find the solution without
examining all candidate groups in details. In other words, we
incrementally select the members by giving priority to those
(a) who maximize the query keywords increment of the result
and (b) who are strangers. Finding tenuous groups which best
meet both conditions of (a) and (b) is not trivial.

To measure the tenuity of a group, we first introduce a
newly designed metric, called k-distance group, to formalize
the KTG problem. Then we prove that KTG is an NP-hard
problem. Fortunately, while the problem is very challenging,
it is still tractable since the size of p is relatively small in
reviewer selection.

To tackle the KTG problem, we first propose an exact
algorithm, namely KTG-VKC, which gives priority to the valid
keyword coverage to select the users to form a good solution
early for KTG queries while exploiting a branch-and-bound
method to explore the possible groups. This branch-and-bound
exploration idea is equipped with the keyword pruning and
k-line filtering to avoid traversing unnecessary combinations.
The valid keyword coverage of a user u is the ratio of the
number of query keywords covered by u minus the query

keywords already contained in the intermediate result set to
the number of query keywords. Moreover, to improve the
efficiency, we also propose another new algorithm, namely
KTG-VKC-DEG, which first gives priority to user’s valid
keyword coverage and then takes the user’s degree to select
the users to form the solution. For the vertices in the remaining
users set, some vertices have the same valid keyword coverage
after the valid keyword coverage sorting. For those vertices
with the same valid keyword coverage, we further take priority
on sorted vertex degree in descending order. The smaller
is the degree of a vertex, the more vertices are unfamiliar
with this vertex so that we easily form a good combination
earlier. That is, we give priority to the users whose degree is
small to form the combinations to find a better combination
as early as possible. Moreover, the degree of a vertex does
not change as the procedure proceeds, so the computational
overhead is small. In addition, for efficiently checking whether
the social distance of any two members is greater than the
social constraint k, we design two alternative indexes, namely
NL (h-hop neighbors list) and NLRNL ((c-1)-hop neighbors
list and reverse c-hop neighbors list).

To support the diversity of the result groups, we extend the
KTG query to study the diversified keyword-based tenuous
groups (DKTG) problem, which maximizes the diversity of
the members in the top N result groups. We propose a
new algorithm, called DKTG-Greedy, by exploiting a greedy
heuristic in a combination with KTG-VKC-DEG, to address
the DKTG problem. The main idea of DKTG-Greedy is to
first greedily achieve the largest contribution in the keyword
coverage part, and then to maximize the biggest diversity.
Finally, we conduct extensive experiments using four real
datasets to validate our ideas and evaluate the performance
of the proposed algorithms and indexes.

The contributions made in this paper are five-fold:
• We formalize a new variant of tenuous socially group

query, keyword-based tenuous group (KTG) query, for
reviewer selection. To the best of our knowledge, this is
the first attempt to tackle the KTG problem.

• We propose two exact algorithms, namely KTG-VKC and
KTG-VKC-DEG, which give priority to the valid keyword
coverage and the combination of valid keyword coverage
and degree, respectively, to select users to form a feasible
group while exploiting a branch and bound (BB) strategy,
equipped with keyword pruning and k-line filtering.

• We also design two alternative indexes, namely NL,
and NLRNL, for efficiently checking whether the social
distance of any two members is greater than k.

• In addition, we formalize and study the diversified
keyword-based tenuous groups (DKTG) problem, and
propose the DKTG-Greedy algorithm to exploit a greedy
heuristic combination with the above KTG-VKC-DEG
approach, to address the DKTG problem.

• We conduct extensive experiments to evaluate the pro-
posed algorithms and indexes. Experimental results show
that KTG-VKC-DEG significantly outperforms the KTG-
VKC algorithm.



The rest of this paper is organized as follows. Section
II reviews the related work. Section III gives some basic
definitions and formulates the KTG problem. Section IV
presents our two exact algorithms in detail. Section V shows
how to check whether the social distance of any two members
is greater than the social constraint k, by using NL and NLRNL
indexes. Section VI extends this work to study the DKTG
problem and proposes a new algorithm upon KTG-VKC-DEG.
Section VII reports the experimental results and our findings.
Finally, Section VIII concludes the paper.

II. RELATED WORK

In this section, we review two lines of research efforts,
tenuous group queries, and diversification of query results,
which are relevant to our work in the aspects of social group
queries and keyword search.

A. Tenuous Group Queries in Social Networks

Different from dense group query/search, which is to find a
dense group/community in social network, e.g., k-core [5]–[9],
k-truss [10]–[12], cliques and motifs [13], [14], the tenuous
group queries are proposed to find a group/subgraph with few
social interactions (or weak relationships) among members.
Several metrics are proposed to measure a socially tenuous
group, such as density [15], [16], the number of edges [17],
k-triangle [1], [4], k-line [2], k-tenuity [3], and so on. First,
the density and the number of edges do not guarantee that
there exist some directly connected edges in a tenuous group.
Simply limiting the number of edges to zero can overcome this
shortcoming, but it does not show the tenuity value of different
vertices pairs when there is no directly connected edge. k-line
is a concept proposed in the literature [2]. For vertices u and v,
(u, v) is a k-line if the hop count of the shortest path between
u, v is less than or equal to a given parameter k. When the
group has more k-lines, the tenuity of the group is worse. For
a triple (u, v, w), the triple is a k-triangle if the hop count
of the shortest path between every two nodes in it is less
than k. The smaller the number of k-triangles, the higher the
tenuity of the group. However, Li [2] finds that k-triangles
become invalid when there is no k-triangles but only k-lines
in the graph. Thus, [2] proposes the definition of k-line, which
allows the existence of k-line in a group, just to ensure that
the number of k-line is as small as possible. The idea of [2]
is to minimize the number of k-lines in a subgroup, while our
problem returns the tenuous groups that do not have any k-
line. Moreover, our goal is to jointly maximize the keywords
coverage of groups instead of minimizing the number of k-
lines. Although Li et al. [18] investigate the tenuous group
query by taking the keywords into consideration, our work is
different from it in three aspects. First, [18] is to maximize
the average coverage of query keywords for the result group.
Obviously, this may select some reviewers whose keywords
do not contain any of the query keywords. Instead, we require
the group to jointly cover as many query keywords as possible
and each reviewer should cover at least of the query keywords.
Second, Li et al. [18] propose the definition to measure the

tenuity of a group, namely k-tenuity, which is the ratio of the
number of node pairs within k hops to the total number of
node pairs in a group. Obviously, according to the definition
of k-tenuity, as long as the value of k-tenuity is greater than
0, there must be at least one node pair within k hops. In
a extreme case, there may be neighbors (i.e., 1-hop) in the
returned group. Thus, to some extent, this method can not
guarantee the tenuity of a group and is different from our work.
Third, we consider the diversity of group results to enrich the
results.

B. Diversification of the Query Results

The diversification of query results has attracted a lot of
attention recently as a method to improve the quality of
results by balancing similarity (relevance) to a query q and
dissimilarity among results [19]–[23]. In the literature, some
specific problems have been studied, such as top-r query
[24], [25], skyline query [26], keyword search [27] [39],
document retrieval [28], [29], pattern matching [30], maximal
clique search [31], coherent core [32] and (k, r)-core [33]
by taking diversify into consideration. Diversification has also
been considered in keyword search over graphs and databases,
where the result is usually a subgraph that contains the set
of query keywords. In conventional (nondiversified) keyword
search methods, a set of results usually consists of many
duplicated answers that contain the same set of vertices (i.e.,
vertices containing a query keyword). Thus, it’s desirable
to avoid many similar answers with minor differences [34].
Specially, PerK [35], DivQ [27], and Cai et al. [36], address
this problem by using Jaccard distance on the set of nodes of
the results, i.e., by considering the common nodes. Similarly,
we also utilize the Jaccard distance on the result groups in our
work.

However, the techniques in the above-mentioned works can
not be applied to solve our proposed diversified KTG queries
To the best of our knowledge, our study is the first attempt to
incorporate diversified top-N search in tenuous group queries.

III. PROBLEM FORMALIZATION

The attributed social network G can be represented as a
triple G = (V,E, κ), where V = {vi|1 ≤ i ≤ n} is the set of
vertices, n is the number of vertices, in G, E = {vi, vj |1 ≤
i, j ≤ n} is the set of edges, representing the relationship
between two vertices in the network, κ = {k1, k2, · · · , km}
represents a set of keywords in the network, and m is the
number of all keywords. Each vertex v is associated with a
set of keywords kv ⊆ κ.

Definition 1: Social distance. The social distance of a vertex
pair {u, v} in G, denoted as Dis(u, v), is the hop of shortest
path from u to v.

In this work, our goal is to find a set of vertices that are
tenuous (i.e., unfamiliar with each other). To measure the
tenuity of a group, we first introduce a metric, called k-line,
previously proposed by [2].

Definition 2: k-line. A k-line is a vertex pair {u, v} ∈ G
where Dis(u, v) ≤ k.



The definition of k-line only measures the tenuity between two
vertices, instead of the tenuity of a whole group. Therefore, we
give the definition of the tenuity of a whole group based on k-
line. In this paper, the notion of k-distance group is proposed
to guarantee the tenuity between any two vertices in a group.

Definition 3: k-distance group. Given an attributed social
network G = (V,E, κ), a k-distance group F is a subgraph
of G where the social distance between any two vertices in F
is greater than k, i.e., ∀u, v ∈ VF , Dis(u, v) > k.

In the above, VF is the vertices set in F . Group F is a k-
distance group, indicating that there are no interrelated pairs
of vertices with distances less than or equal to k, and therefore
F is tenuous.

Accordingly, we define the tenuity of a group below.
Definition 4: The tenuity of a group. Given an attributed

social network G = (V,E, κ), the tenuity of a group F is the
smallest social distance between any two vertices in F .

Property 1: (Increase.) When k1 > k2, the tenuity of the k1-
distance group is greater than the tenuity of the k2- distance
group, and the k1- distance group must be the k2- distance
group.

Property 2: (Inclusion.) Suppose that F1 ⊂ F2, if F2 is a
k-distance group, then F1 is must be a k-distance group.

In addition to ensuring the result group to be a k-distance
group, we also need to ensure that the group covers the
maximum number of query keywords. We define the query
keyword coverage for a vertex below.

Definition 5: Query keyword coverage of a vertex. Given
a vertex v with keywords set kv , a query keyword set WQ,
the query keyword coverage of a vertex v is the ratio of the
query keywords associated with v to the total number of query
keywords, i.e., QKC(v) =

|kv∩WQ|
|WQ| .

Based on query keyword coverage of a vertex, we further
define the query keyword coverage of a group, as shown in
Definition 6.

Definition 6: Query keyword coverage of a group. Given a
query keyword set WQ, the query keyword coverage of a group
F is the ratio of the query keywords associated with vertices
in VF to the number of query keywords, i.e., QKC(F ) =
|
⋃

v∈VF
(kv∩WQ)|
|WQ| .

According to Definition 6, a higher query keyword coverage
of a group F indicates that it covers more query keywords, and
thus group F has more potential as one of the result groups.

As shown in Figure. 1, assume F1 = {u5, u7}, F2 =
{u4, u6}, and WQ = {SN,QP,DQ,GQ,GD}. According to
Definition 5, the the query keyword coverage for the vertices
u4 and u6 in group F2 is 0.2 and 0.4, respectively. According
to Definition 6, the query keyword coverage for F1 and F2 is
0.2 and 0.6, respectively. Thus, F2 is more suitable as a result
than F1.

We formally define the KTG problem as follows.
Definition 7: KTG. Given an attributed social network

G = (V,E, κ), a query keyword set WQ, a tenuity constraint
parameter k, an integer N , and a tenuous group size parameter
p, a KTG query finds the top N groups set RG such that each
result group g ∈ RG,QKC(g) ≥ QKC(g′) where g′ /∈ RG,

where each group in RG is a k-distance group of size p, and
each user in the result group should cover at least one query
keyword. Each result group g should satisfy the following
condition.
• ∀Dis(u, v)(u,v∈Vg) > k.
• |g| = p.
• For each v, 0 < QKC(v) ≤ 1.
Theorem 1: The KTG query is NP-hard.
Proof : We prove the NP-hardness of the KTG problem

by reduction from a decision version of the well-known
Independent Set of size p problem, i.e., checking whether
there exists a non-empty independent set of size n in graph
G(V,E). We construct an instance of KTG for graph G(V,E)
with query 〈WQ, p, k,N〉, by setting the parameters n = p,
k=1, N=1 and WQ = κ such that every user v ∈ V satisfies
∀QKC(v) > 0. k=1 means that there is no edge connecting
any two vertices, In other words, the KTG problem is to find
an independent set of size n. Thus, the decision problem of
independent set of size n is a Yes-instance if and only if the
corresponding case of our KTG is also a Yes-instance. This
completes the proof.

A naive idea regarding how to tackle the KTG problem
is the brute force method. In detail, we first enumerate all
the possible combinations/groups of p vertices, followed by
determining whether each group is a k-distance group. If it
is, we then calculate its query keyword coverage to select the
N groups with the highest coverage. However, this method is
clearly inefficient. To explore all the possible result groups,
the method needs to enumerate Cp|V | possible combinations,
and thus its time complexity is O(|V |p).

IV. EXACT ALGORITHMS

To address the KTG problem, we first propose two exact
algorithms.

A. KTG-VKC

As mentioned, a naive idea to solve the problem is to
enumerate every possible combination of p members and
choose the top N groups with the highest keyword coverage.
Thus, we adopt a branch and bound strategy to explore the
possible combinations.

Specifically, let SI and SR denote the intermediate result
set and the remaining set of candidate users, respectively. At
first, SI is empty and SR is V . In each subsequent iteration,
we select a vertex from SR to SI . SI is considered as a
feasible solution when it contains p vertices and follows the
constraints of the KTG problem. Then, to optimize the feasible
solution, our algorithm backtracks to the previous iteration and
the previous SI and selects another vertex from SR to SI
while maintaining a branch-and-bound tree to keep track of
the backtracking exploration process.

To accelerate the exploration process, it is essential to design
some pruning/filtering strategies to avoid the exploration of
the invalid combinations. To carry out effective pruning or
filtering, obtaining a feasible group with high keyword cov-
erage early is desirable, since the goal is to maximize the



keyword coverage of the result group. Obtaining a feasible
solution with high keyword coverage early is highly related to
selecting which vertex first from SR to SI . Thus, the KTG-
VKC algorithm gives priority to the users whose valid keyword
coverage to query keyword is high (also referred to as valid
keyword coverage sorting.) when performing the branch and
bound exploration.

The valid keyword coverage of a vertex is defined as
follows.

Definition 8: Valid keyword coverage of a vertex w.r.t.
an intermediate result set. Given a vertex v, an intermediate
result set SI and a query keyword set WQ, the valid keyword
coverage of a vertex to query keyword set WQ is the ratio
of the query keywords covered by vertex v divided by the
query keywords already covered by SI to the number of query
keywords, i.e., V KC(v) =

|kv∩WQ−
⋃

u∈SI
(ku∩WQ)|

|WQ| .
An example of valid keyword coverage sorting is illustrated

in Figure 1. Suppose SI = {u0}, SR = {u1, u2, u5, u10},
WQ = {SN,QP,DQ,GQ,GD}. For the valid keyword
coverage sorting, we first compute the valid keyword coverage
for each vertex in SR and sort them according to the cor-
responding value in a descending order. The valid keyword
set covered by u0 is

⋃
u∈SI

(ku ∩ WQ) = {SN,GD,DQ}.
We then compute the set of valid keywords for each vertex
in SR, ku1 ∩WQ = ∅, ku2 ∩WQ = ∅, ku5 ∩WQ = ∅, and
ku10
∩WQ = {QP}. Accordingly, we obtain the valid keyword

coverage for each vertex in SR, V KC(u1) = 0, V KC(u2) =
0, V KC(u5) = 0, V KC(u10) = 1/2. Sorted by V KC(u) in
the descending order, SR becomes {u10, u1, u2, u5}.

Note that the valid keyword coverage is different from the
query keyword coverage (as shown in Definition 3). Therefore,
we can also exploit the query keyword coverage to sort the
vertices. The advantage of this sorting is that we only need to
calculate query keyword coverage once for each vertex and
only need sorting once, while for valid keyword coverage
sorting, we should compute it for different SI and require
continuous sorting. However, the query keyword coverage
sorting does not make SI always have the largest increment
of keyword coverage, thus it can not produce the group with
high keyword coverage and does not facilitate the pruning.
For comparison, we evaluate both sorting strategies in Section
VII.

Keyword pruning. For pruning the invalid branches, we
propose a keyword pruning strategy (as shown in Theorem 2),
which effectively filters those vertices in SR not qualified to be
a member of a better result group by calculating upper bounds
on the number of valid keywords for SI and the number of
valid keywords for SR.

Theorem 2: Given the N -th group H in the currently best
top N groups and the current intermediate group SI , SI can
not form a qualified result group iff

QKC(SI) +
∑

(v∈top p−|SI | in SR)

V KC(v) ≤ QKC(H).

(1)

For SR, here we only visit vertices with the valid
keyword coverage values in the top p − |SI |, and∑

(v∈top p−|SI | in SR) V KC(v) is the sum of the valid key-
word coverage of the top p − |SI | vertices. Since the valid
keyword coverage of the top vertices can be obtained from
the valid keyword coverage ranking, keyword pruning is not
time-consuming.

Consider an example with p=2 and WQ =
{SN,QP,DQ,GQ,GD}, as shown in Figure 1. Assume
that the current N -th group g= {u10, u1}, and we update
its valid keyword coverage value as 4

5 . When exploring
the branch SI = {u4} and SR = {u5, u6, u9}, since
|
⋃

u∈SI
(Au∩WQ)|
|WQ| +

∑
(v∈top p−|SI | in SR) V KC(v) =

1
5 + 1

5 = 2
5 < QKC(g)= 4

5 , we safely prune the branch
SI = {u0}, and backtrack to its previous state according to
the keyword pruning.

With regard to V KC(v) =
|Av∩WQ−

⋃
u∈SI

(Au∩WQ)|
|WQ| , we

can see that the valid keyword coverage of the vertex is related
to SI . When SI changes, we need to update the valid keyword
coverage of the vertices in SR.

Note that the algorithm equipped with the keyword pruning
only removes the unqualified groups with low query keyword
coverage. To further filter the invalid groups, we propose a
k-line filtering strategy, which removes the infeasible groups
(groups that do not satisfy the k-distance group).

Theorem 3: Given the current intermediate set SI and the
remaining candidate vertex set SR, for a vertex v ∈ SR, v can
be safely filtered iff there exists one vertex u ∈ SI so that v, u
is a k-line.
k-line filtering. At each iteration, after selecting a vertex

from SR to SI , k-line filtering removes vertices in SR that
form a k-line group with that vertex. Obviously, we do not
need to consider those deleted vertices. If they are selected into
SI , SI is not a k-distance group. Then the result obtained from
expanding SI is not a k-distance group (the inverse proposition
of Prop. 2), which is not consistent with the definition of the
KTG problem, thus these vertices should be filtered from SR.

For example, as in Figure 1, assume that SI = {u8}, k = 2.
The vertices that can form a k-line with SI are u0, u7, u3,
u4, u6. When any of these vertices join SI , SI will not be
a k-distance group (i.e., it does not satisfy the constraints of
the KTG problem), so SR becomes {u1, u2, u5, u9} after the
k-line filtering.

The pseudo-code of KTG-VKC is shown in Algorithm 1.
Initially, we remove the unqualified users whose keywords do
not contain at least one query keyword and SR is initialized
with the remaining qualified users. At each iteration, we first
check whether the size of SI is equal to p. If it is, we check
whether the query keyword coverage of SI is greater than
Cmax and update the result if possible (Lines 2-4). If the size
of SI is smaller than p, we fist check whether SI can be
pruned through the keyword pruning. If it is not pruned, we
put the first element in SR (e.g., SR[0] ) into SI and delete
it from SI (Lines 8-10). Then we invoke the k-line filtering
to filter those unqualified users from SR and obtain the valid



keyword coverage of each users with respect to the new SI
(i.e., tempSI ) (Lines 11-14). These remaining qualified users
in SR are sorted again using SortSR according to the new
valid keyword coverage of each user. After that, the KTG-VKC
algorithm is invoked recursively with tempSI and SortSR to
explore the possible groups (Lines 15).

Algorithm 1: The KTG-VKC Algorithm
Input: A KTG query 〈WQ, p, k,N〉, an intermediate

solution set SI , a remaining qualified users set
SR, and the current highest keyword coverage
Cmax

Output: Top N KTG result groups RG
1 if |SI | == p then
2 if QKC(SI) > Cmax then
3 updateRS(R, Cmax, SI );

4 return;

5 else
6 if

QKC(SI)+
∑

(v∈top p−|SI | in SR) V KC(v) ≤ Cmax
then

7 return; /* keyword pruning; */

8 tempSI ← SI ;
9 tempSI .push back(SR[0]);

10 delete SR[0] from SR;
11 for each user ui ∈ SR do
12 if ! kline filtering(ui, tempSI) then
13 V CR(ui)= getVKC(ui, tempSI ,WQ);
14 insert ui into sorting users set SortSR by

V CR ;

15 KTG-VKC(tempSI , SortSR);

16 return RG;
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Figure 2. An exmample of KTG-VKC.

An example of KTG-VKC is shown in Figure 2. Given a
KTG 〈WQ = {SN,QP,DQ,GQ,GD}, p = 3, k = 1, N =
2〉 query, at first, we remove the unqualified users and the
remaining users set SR is {u0, u1, u2, u3, u4, u5, u7, u10,
u11}. According to the valid keyword sorting in the descending
order, SR becomes {u0, u10, u1, u2, u3, u7, u11, u4, u5}. Then
we invoke the KTG-VKC algorithm to explore the candidate
groups as shown in Figure 2. Firstly, SI is initialized with
{u0} according to the sorting. At the same time, SR is sorted

again according to the valid keyword coverage with k-line
filtering, and SR becomes {u5}. At this stage, the size of
SR is smaller than 3-1=2, thus branch {u0} is finished. After
that, we continue to select u10 into SI and form a new branch
{u10} and SR = {u1, u2, u3, u4, u5 }. Then, u1 is selected
from SR and SI becomes {u10, u1}. At this time, SR becomes
{ u4, u5 }. By selecting a vertex from SR to SI iteratively,
we first get two result groups {u10, u1, u4}, and {u10, u1, u5}
of size 3 with the query keyword coverage 0.8, sequentially.
Branch {u10, u1} is finished and KTG-VKC backtraces to the
branch {u10} and u2 is selected to form {u10, u2}. Similarly,
two groups {u10, u2, u4}, and {u10, u2, u5} are obtained.
However, the query keyword coverage of these two groups
are not greater than 0.8, thus they cannot update the result
groups. Continuing with the above steps, since there is no
better result groups whose query keyword coverage is greater
than 0.8, the query processing ends. The final top-2 result
groups are {u10, u1, u4} and {u10, u1, u5}.

KTG-VKC, combining the valid keyword coverage while
performing the branch and bound exploration, serves as a
natural baseline in our problem. However, this idea has some
pitfalls, i.e., the social distance of the selected users is greater
than k and KTG-VKC is not efficient in forming a good
solution early for pruning and filtering. Thus, we propose a
new algorithm, namely KTG-VKC-DEG in the following.

B. KTG-VKC-DEG

The valid keyword coverage sorting maximizes the incre-
ment of valid keyword coverage of SI , which allows us to get
a feasible group of size p with a high valid keyword coverage
early. However, some vertices in SR have the same valid
keyword coverage after the valid keyword coverage sorting.
For those vertices with the same valid keyword coverage, we
utilize the degree sorting (i.e., sorting by the vertex degree in
descending order), as a tie-breaker. That is, the smaller the
vertex degree is, the higher priority we choose this vertex in
from SR into SI since this vertex is less likely be familiar with
other vertices. Therefore, in this section we combine the above
proposed valid keyword coverage sorting with the degree
sorting to propose a new algorithm, called KTG-VKC-DEG,
which improves the query efficiency of the KTG problem.

Notice that in KTG-VKC-DEG, the degree of vertex does
not change as the query processing proceeds. Thus, it only
needs to be calculated once and doesnt take a great deal of
query time.

With regard to the combination of valid keyword coverage
sorting with the degree sorting to rank the users in SR, we
first use the valid keyword coverage to sort the vertices, and
for vertices with the same valid keyword coverage, we then
sort the vertices according to their degrees. According to
this combination, selecting vertices from SR to SI at each
iteration can guarantee the size of SI on the basis of ensuring
the maximum increment of effective keyword coverage of
candidate vertices in SR, forming a feasible solution as early
as possible and improving the pruning efficiency.



Example 2: Recall the example in Figure 1 for illustration
of the KTG-VKC-DEG algorithm. Give a KTG 〈 WQ =
{SN,QP,DQ,GQ,GD}, p=3, k=1, N=2〉 query. Similar to
KTG-VKC, we first fetch the remaining users set SR= {u0, u1,
u2, u3, u4, u5, u7, u10, u11} be removing those unqualified
users. Different from KTG-VKC, KTG-VKC-DEG utilizes the
valid keyword sorting and degree as the sorting, SR becomes
{u10, u0, u11, u1, u2, u3, u7, u5, u4 }. Then we invoke the
KTG-VKC-DEG to explore the candidate groups, similar to
the process in Figure 2. Firstly, SI is initialized with {u10}.
At the same time, SR is sorted again according to the valid
keyword coverage and degree, and becomes {u5, u1, u2, u3,
u4 }. Then u5 is selected to form a new branch {u10, u5}
and SR = { u1, u2, u3, u4 }. By selecting a vertex from SR
to SI iteratively, we first get two result groups {u10, u5, u1},
and {u10, u5, u2} of size 3 with the query keyword coverage
0.8, sequentially. Notice that the feasible groups {u10, u5, u3}
and {u10, u5, u4} have the same query keyword coverage, they
can not update the current result groups. After that, we move
forward on the branch SI= {u0}, and UR becomes {u5, u7}.
Then we select u5 from UR and SI= {u0, u5}. At this time,
SR becomes empty since u7 is filtered due to k-line filtering.
Similar to the above steps, branches {u11}, {u1}, ..., {u7}
are explored. Since there is no better result groups that have
query keyword coverage greater than 0.8, the query processing
ends and the final top-2 result groups are {u10, u5, u1}, and
{u10, u5, u2}. Compared with the two examples of KTG-VKC
and KTG-VKC-DEG, KTG-VKC-DEG gets the result groups
with high query keyword coverage earlier than KTG-VKC
since KTG-VKC requires to explore the branch {u0} first and
then the branch {u10}.

Discussion. To handle the scenarios in which the authors are
familiar with the reviewers, our techniques can be extended to
handle the query including multiple query vertices (i.e., the
authors). The main idea is to remove those reviewers who are
familiar with the authors, i.e., only reviewers whose social
distance from the authors is greater than k remain.

V. INDEX-BASED ALGORITHM FOR FAST SOCIAL
DISTANCE CHECKING

Notice that in k-line filtering, checking whether the social
distance of two members is greater than k is an important
operation. Moreover, in our KTG-VKC algorithm, this oper-
ation is performed many times. Accordingly, in this section,
we propose an efficient algorithm to check the social distance
of two members is greater than k. Inspired by the 1-hop or
2-hop label index [37], we first propose an h-hop neighbors
list index, called NL index.

A. Using h-hop Neighbors List (NL) Index

To design a good h-hop neighbor index, we consider the
value of tenuity constraint k and the number of h-hop neigh-
bors of each vertex.

Checking whether the social distance of two members ui, uj
is greater than k can be processed in two aspects, (1) checking
whether ui is one of the uj’ l-hop neighbors where l=1, 2, ...,

k. If it is, their social distance is not greater than k; Otherwise,
their social distance is greater than k. Or (2) checking whether
ui is one of the u-hop neighbors where u= k+1, k+2, ..., kmax.
If it is, their social distance is greater than k.

Thus, for maintaining the top h-hop neighbors list, there
exist two cases. Case 1: h is greater than k. We just check
whether member ui is one of the uj’ 1-hop, 2-hop,..., k-hop
neighbors. Case 2: h is not greater than k. We first should
check whether ui is one of the uj’ 1-hop, 2-hop,..., h-hop
neighbors. If it is not, we continue to check whether ui is
one of the uj’ (h+1)-hop, (h+2)-hop,..., k-hop neighbors. For
this situation, we expand the neighbors of h-hop neighbors as
(h+1)-hop neighbors, the neighbors of (h+1)-hop neighbors
as (h+2)-hop neighbors until the k-hop neighbors or ui is
one (h+i)- hop neighbor. Moreover, with regard to expanding
neighbors, we remove the neighbors who are already one of
m-hop neighbors where m < h+1 when obtaining (h+1)-hop
neighbors. The pseudo-code of checking the social distance
using the top h-hop neighbors list is shown in Algorithm 2.

Algorithm 2: CheckSocialDistance using NL Algorithm
Input: Users ui and uj , top h-hop neighbors list L, k
Output: Greater than k or not

1 if h > k then
2 for i=1,2,...,k do
3 /* L[uj ][i] denotes the i-hop neighbors of uj ; */
4 if ui is in L[uj ][i] then
5 return false;

6 else
7 for i=1,2,..., h do
8 if ui is in L[uj ][i] then
9 return false;

10 for j=h+1, h+2,..., k do
11 L[uj ][j + 1] = expandNeighbor(L[uj ][j]);
12 if ui is in L[uj ][j + 1] then
13 return false;

14 return true;

Since the cost of expanding the neighbors of h-hop neigh-
bors to be (h+1)-hop neighbors depends on the number of
h-hop neighbors and the number of corresponding neighbors,
we choose the number of m-hop neighbors with the maximal
one as h value. If h is not greater than k, this h-hop neighbors
may facilitate checking the social distance and thus reduce the
cost of expanding neighbors. However, this may incur some
space overhead to store the maximum number hop neighbors.

We use an example to illustrate how to check the social
distance using h-hop neighbors. Assume that we need to check
whether the social distance of u3 and u5 is greater than 3. We
have maintained the top 2-hop neighbors of u3 (e.g., its 1-hop
neighbors are u0, u2, u4, u9 and 2-hop neighbors are u6, u7,
u8, u10, u11). Based on Algorithm 2, we first compare h=2
with k=3. Since h < k, we first check whether u5 is one of 1-



hop neighbors and 2-hop neighbors of u3. Since u5 is not one
such neighbor, we require to expand 2-hop neighbors to 3-hop
neighbors and check whether u5 is one of 3-hop neighbors. We
find that u5 is one of the 3-hop neighbors of u3 and ascertain
that the social distance of u3 and u5 is not greater than 3.

If h is not greater than k, we still need to expand h-hop
neighbor to (h+1)-hop neighbors, (h+2)-hop neighbors and
even k-hop neighbors in the worst case. The expanding cost
may be high. Due to this worst case scenario, we need to check
whether one user ui is one of the u-hop neighbors where u=
k+1, k+2,..., kmax, we develop another new index.

B. Using NLRNL Index

To avoid expanding the h-hop neighbor to (h+1)-hop neigh-
bors, we propose another index, made up of (c-1)-hop neigh-
bors list and reverse c-hop neighbors list, called NLRNL index.
In contrast to (c-1)-hop neighbor, the reverse c-hop neighbors
index maintains the neighbors whose social distance is greater
than c. For quickly checking whether the social distance of
two users is greater than k, choosing an appropriate c value is
important. Notice that in NLRNL index, we do not store c-hop
neighbors. Thus, we hope the number of c-hop neighbors is
the largest one among the 2-hop neighbors, 3-hop neighbors,...,
and so on. Since the number of c-hop neighbors is different
for each vertex, we keep various c for each vertex. To obtain
such a c value, our idea is to compute the number of the 2-
hop neighbors, 3-hop neighbors, and so on, and choose the
neighbors with the maximum number as c for each vertex.

Once we have built the NLNRL index, we utilize it to check
the social distance of two members as follows. We first check
whether c-1 is not less than k. If it is, we check ui is one
of the i-hop neighbors of uj where i= 1, 2,..., k. If it is one
such neighbor, we can determine the social distance of uj
and ui is not greater than k. Otherwise, the social distance of
uj and ui is greater than k. If c-1 is greater than k, we just
check the corresponding reverse neighbors list. If ui is one
of reverse j-hop neighbors where j=k+1, k+2, k+3, ..., kmax.
Notice that in a social network, the maximal hop between two
members is not very large, e.g., kmax=7 in DBLP dataset.
Moreover, for space saving, we only store the neighbors of ui
whose id is greater than i. For example, if u1 is one 2-hop
neighbor of u2, we do not store u1 as the 2-hop neighbor of
u2 and we only store u2 as the 2-hop neighbor of u1 since
they are symmetrical. Before checking the social distance, we
only compare which id is greater for two members and choose
uj as the user with the smaller id and ui as the member with
larger id.

Recall the example of checking the social distance of u3 and
u5 using (c-1)-hop neighbors and reverse c-hop neighbors. We
have maintained the top 1-hop neighbors of u3 (e.g.,its 1-hop
neighbors are u0, u2, u4, u9) and reverse 2-hop neighbors
(e.g., its 3-hop neighbor is u5 and 4-hop neighbor is empty.)
where c is 2. We also compare the value of (c-1)=1 with k=3.
Because (c-1) < 3, we check whether u5 is one of 4-hop
neighbors of u3. Since there is no 4-hop neighbors to u3, we
determine that the social distance of u3 and u5 is not greater

than 3. Compared with using h-hop neighbors in the above
example, we can see that checking the social distance using
(c-1)-hop neighbors and reverse c-hop neighbors requires less
examination than that using h-hop neighbors.

Note that, when storing the hop neighbors, we only store the
hop neighbor whose id is greater than the user. For example,
we only store 1-hop neighbors of u3 as {u4, u9}. The 1-hop
neighbors of u0 (which is also one of u3’ 1-hop neighbors)
are {u1, u2, u3, u4, u9, u11}, which contains u3. If we need
to check whether u3 is one of the 1-hop neighbors of u0 , we
first compare the id of u3 and u0 and find that u3 is in the
1-hop neighbors of u0. This reduces half of space cost.

With regard to the updates for NLRNL, since delet-
ing/inserting one vertex can be divided into edge dele-
tions/insertions, we mainly discuss how to update NLRNL
when inserting one new edge or deleting one old edge. For
inserting one new edge, it may affect the shortest hops between
two vertexes. The main idea is to quickly figure out those
affected shortest hops. For each vertex v, we should update its
corresponding hop neighbors. Let d be the distance of the new
edge to v. For the hop neighbors whose distance to v is less
than d+1, their distance to v does not change. That is, m-hop
neighbors (m ≤ d + 1) still are m-hop neighbors. For those
hop neighbors whose distance to v is greater than d+1, we
check whether the vertexes on the corresponding shortest path
contain both of the two ending vertexes of the new edge. If
they do, we update the shortest hops. Otherwise, the shortest
hops do not change. Thus, we should maintain the shortest
path for every two nodes. For deleting one edge, we first find
those hop neighbors whose shortest path to v goes through this
edge. After finding those hop neighbors, we check whether
the corresponding shortest path can be updated with this new
edge. If so, we update it and insert it into the corresponding
hop neighbors.

Space cost of indexes. Let n be the number of vertexes
in the social network. For the NL index, we store the 1-
hop neighbors, 2-hop neighbors,..., h-hop neighbors for each
vertex. Assume that the average number of neighbors for each
vertex is m. The number of 2-hop neighbors is m2, since
in the worst case all neighbors of 1-hop neihbors are 2-hop
neighbors. Thus, it needs to take O(m + m2 + ... + mh)=
O(m×(m

h−1)
m−1 ) space cost for each vertex to store its 1-hop

neighbors, 2-hop neighbors, ..., h-hop neighbors. In total, the
NL index requires O(n×m×(m

h−1)
m−1 )=O(n×mh) space cost. As

for the NLRNL index, it stores 1-hop neighbors, 2-hop neigh-
bors, ..., (c-1)-hop neighbors and reverse c-hop neighbors. That
is, it does not store the c-hop neighbors, and the size is mc

in the worst case. For each vertex, it takes O(n − mc − 1)
space cost for those top (c-1)-hop neighbors and reverse c-
hop neighbors. Note that, when storing the hop neighbors, we
only store the hop neighbor whose id is greater than the user.
Therefore, it only takes half of the space cost, i.e., the NLRNL
index takes O(n×(n−m

c−1)
2 )=O(n×min{mc, n−mc}).



VI. THE ALGORITHM FOR FINDING DIVERSE GROUPS

As shown in the experimental results, the groups returned by
KTG-VKC or KTG-VKC-DEG are not diverse. For example,
the returned groups of size 3 are sometimes the style like
“u1u2u3”, “u1u2u4”, and “u1u2u5”, where the groups are
heavily overlapped. If u1 or u2 is not available as a member,
those groups are all not available. Thus, in this section we
extend our algorithm to find the diverse groups.

A. Definition of diversified keyword-based tenuous groups

To address the diversity issue, we use Jaccard distance on
the set of the result groups, by considering their common
members (vertices), following the ideas of diversified groups
in work PerK [35] and DivQ [27]. The diversity function is
defined as below.

Definition 9: Diversity function. Given two groups g1 and
g2, we define the diversity score of these two groups, denoted
as dL, as follows.

dL(g1, g2) =
| g1 ∪ g2| − |g1 ∩ g2|

|g1 ∪ g2|
. (2)

The diversity score dL(RG) for the query result set RG
of size N is the average diversity score for all group pairs,
where N×(N−1)

2 is the total number of group pairs in RG, as
defined below.

dL(RG) =
2×

∑
gi 6=gj ,∈RG dL(gi, gj)

N × (N − 1)
. (3)

Accordingly, the diversity problem is to find an RG that
maximizes dL(RG). Combining with the goal with high query
keyword coverage for each group and high diversity between
the result groups, we define the totoal score as follows.

score(RG) = γ × min
g∈RG

QKC(g) + (1− γ)× dL(RG)

(4)
, where γ controls the contribution of the two components,
diversity and keyword coverage.

Based on Equation (5), we define the diversified keyword-
based tenuous groups retrieval problem as follows.

Definition 10: Diversified KTG (DKTG) problem. Given a
query Q with keyword set WQ, a tenuity constraint parameter
k, an integer N , and a tenuous group size p, the DKTG
query is to find top N groups set RG that have the highest
score(RG).

B. The DKTG-Greedy Algorithm

We develop a new algorithm, called DKTG-Greedy, by
exploiting a greedy heuristic on top of KTG-VKC-DEG to
address the DKTG problem. Initially, DKTG-Greedy greedily
finds the result group with the maximal keyword coverage. As
such, the current highest keyword coverage Cmax is initialized
with the maximal keyword coverage. The heuristic iteratively
finds a feasible group whose keyword coverage is not less than
Cmax in the remaining qualified users set SR via revising
KTG-VKC-DEG to return only one group and removes the
result users in existing result groups from SR until we obtain

top N groups. Notice that a feasible group with the highest
keyword coverage can make the largest contribution for the
keyword coverage part of the total score. Moreover, removing
the result users in existing result groups from SR can make
the largest contribution to the diversity part of score(RG).

After obtaining a group with the highest keyword coverage
with coverage Cmax, we first remove those users who are
already in RG from the remaining users set SR. Then we
invoke KTG-VKC-DEG to find a new result group whose
keyword coverage is not less than Cmax. If such a new result
group is not found, we have two strategies to deal with it.
(1) We add one user in the result group one by one into the
remaining users set and combine this user with the users in
SR until we find a new result group whose keyword coverage
is not less than Cmax. However, we may not find such a new
result group even if all the result users are added into SR. (2)
We keep the new group with keyword coverage C ′max (whose
keyword coverage is less than Cmax) as a result group and
update it as Cmax. In DKTG-Greedy, we adopt this strategy.

Example 3: Recall the example in Figure 1 for illustration
of the DKTG-Greedy algorithm. Given a DKTG 〈WQ =
{SN,QP,DQ,GQ,GD}, p=3, k=1, N=2〉 query, DKTG-
Greedy utilizes the valid keyword sorting and degree for
sorting. Similar with KTG-VKC-DEG, SR becomes {u10, u0,
u11, u1, u2, u3, u7, u5, u4 }. Then we invoke the DKTG-
Greedy to explore the candidate groups. By selecting a vertex
from SR to SI iteratively, we first obtain the top-1 result group
{u10, u5, u1} with the query keyword coverage 0.8. Notice
that if we take group {u10, u5, u2} as the 2-nd result group,
the diversity score of this results is dL(RG)=(4-2)/4=0.5. As
mentioned, there is only one reviewer who is different between
these two groups, and the diversity is not good. Accordingly,
we continue to move forward on the branch SI= {u0}, and SR
becomes {u7}. Since there is not enough reviewers with {u0}
to be a feasible group, we terminate the branch {u0}. In the
sequel, branch SI= {u11} is explored, and SR becomes { u7,
u2, u3, u4} since we remove the reviewers inside {u10, u5, u1}
from SR . By selecting u7 from SR according to the order in
SR and SI becomes {u11, u7}. At this time, SR becomes {
u2, u3, u4}. Similar to the above steps, DKTG-Greedy returns
{u11, u7, u2} the 2-nd result group with the query keyword
coverage 0.8. The diversity score of the two result groups {u10,
u5, u1} and {u11, u7, u2} is dL(RG)=(6-0)/6=1. The query
processing ends since the diversity score is the maximal score
without any repeated reviewers.

C. Theoretical Analysis

To analyze the approximation ratio of our DKTG-Greedy
algorithm, we first define the ∆-approximate DKTG problem
as follows.

Definition 11: (∆-approximate DKTG problem). Given an
DKTG query Q 〈WQ, p, k, N〉 and a scalar ∆ where ∆ <
1, suppose the total score of the optimal result groups for
Q is Sopt. The ∆-approximate DKTG problem is to find an
approximate solution with total score Sappr such that ∆ ≥
Sappr

Sopt
.



For the optimal result groups, denoted as Ropt,
ming∈Ropt QKC(g) is 1, and dL(Ropt) is also 1. Thus, the
corresponding score is score(Ropt) = γ × 1 + (1− γ)× 1=1.
While for our DKTG-Greedy algorithm, assume that the
returned result groups, denoted as Rgreedy, DKTG-Greedy
returns the result group which covers at least query one
keyword, therefore ming∈Rgreedy

QKC(g) is 1
|WQ| , where

|WQ| is the size of query keywords. Since DKTG-Greedy
removes the result users from the remaining users set, thus
this makes the largest diversity contribution and dL(Rgreedy)
is 1. Accordingly, score(Rgreedy) = γ× 1

|WQ| + (1− γ)× 1=

1+γ × ( 1
|WQ| − 1)=1+γ×(1−|WQ|)

|WQ| . Since |WQ| is not

less than 1, γ×(1−|WQ|)
|WQ| is less than 0. Let α denote

γ×(|WQ|−1)
|WQ| . Therefore, we have score(Rgreedy) = 1 − α

and the approximation ratio of DKTG-Greedy is
score(Rgreedy)
score(Ropt)

= 1− α.

VII. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithms for the KTG and DKTG queries. All the algorithms
are implemented in C++, while the experiments are conducted
on an Intel Core I7 2.3 GHz PC with 120GB RAM.

We conduct experiments on four real datasets.
• DBLP. It consists of 200000 nodes and 1228923 edges.1

• Gowalla. It consists of 67320 nodes and 559200 edges.2

• Brightkite. It contains 58288 users and 214038 edges.2

• Flickr. It consists of 157681 nodes and 1344397 edges.2

Table I
PARAMETER RANGES AND DEFAULTS VALUES

Parameters Range
] of group size (p) 3, 4, 5, 6, 7
] of social constraint (k) 1, 2, 3, 4
Query keyword size (|WQ|) 4, 5, 6, 7, 8
N value 3, 5, 7, 9, 11

We conduct a performance evaluation on the efficiency
of the KTG and DKTG algorithms in terms of the latency
of the proposed KTG and DKTG algorithms under various
parameter settings (summarized in Table I, numbers in bold
are the default settings). We measure the average latency as the
performance metric corresponding to five different parameters:
(a) group size p; (b) query keyword size |WQ|; (c) social
constraint k; and (d) the N value for returning top N groups.
We randomly generate four groups of queries corresponding
to each dataset where each group consists of 100 queries.
In each experiment, we test one parameter at a time (by
fixing other parameters at their default values). The reported
experimental results are obtained by averaging the processing
time of queries.

A. Efficiency of the KTG and DKTG Algorithms

In this section, we compare the efficiency of the proposed
KTG and DKTG algorithms, including KTG-QKC-NLRNL
(variant of Algorithm 1 using query keyword coverage as the

1https://github.com/samjjx/pp-data
2https://snap.stanford.edu/data/index.html.

sorting), KTG-VKC-NL (Algorithm 1), KTG-VKC-NLRNL,
KTG-VKC-DEG-NLRNL and DKTG-Greedy. QKC denotes the
algorihtm uses the query keyword coverage as the sorting,
VKC means using the valid keyword coverage as the sorting,
while VKC-DEG means the algorithm utilizes both the valid
keyword coverage and degree as the sorting. For the data
structures to check the social distance, NL means that the
algorithm utilizes the h-hop neighbor index to check the social
distance and NLRNL means that the algorithm utlizes the (c-
1)-hop neighbor and reverse c-hop neighbor index to check the
social distance. In DKTG-Greedy, we adopt KTG-VKC-DEG-
NLRNL in getOneGroup function. Accordingly, we test the
four KTG and one DKTG algorithms using different datasets
as described above.

Effect of p value. We first compare the average running time
of the four KTG algorithms for processing KTG queries and
DKTG-Greedy for processing DKTG queries by increasing
the group size p. Figure 3(a) shows the result on the Gowlla
dataset. As shown, KTG-VKC-DEG-NLRNL performs much
better than KTG-QKC-NLRNL, KTG-VKC-NL and KTG-
VKC-NLRNL, while KTG-VKC-NLRNL outperforms KTG-
VKC-NL and KTG-QKC-NLRNL. This shows that the KTG-
VKC-DEG-NLRNL algorithm giving priority to the combina-
tion of valid keyword coverage and degree, is more efficient
than that giving priority to valid keyword coverage because
the degree sorting allows the algorithm to form a feasible
solution early and the pruning improves efficiency. In addition,
the algorithm utilizing the NLRNL index is faster than that
using the NL index. Since the algorithm using the valid
keyword coverage for sorting is more efficient than that using
query keyword coverage, we do not show the time of KTG-
QKC-NLRNL in the remaining query results. While for the
DKTG algorithm, DKTG-Greedy outperforms KTG-VKC-NL
and KTG-VKC-NLRNL and is comparable with KTG-VKC-
DEG-NLRNL to support the diversity. When the p value
increases, the query time becomes longer, as more users need
to be examined and the number of combinations becomes
larger. The results on other three datasets are similar to that
on the Gowalla dataset.

Effect of social constraint k. Figure 4 compares the
performance of the three KTG algorithms and DKTG-Greedy
by varying k. For the Gowalla dataset, KTG-VKC-DEG-
NLRNL outperforms KTG-VKC-NL and KTG-VKC-NLRNL
significantly under various k values because KTG-VKC-DEG-
NLRNL gives priority to the combination of valid keyword
coverage and degree which avoids some invalid group combi-
nations to form a good and feasible group early compared to
KTG-VKC-NL and KTG-VKC-NLRNL. In addition, the re-
sults shows the superiority of KTG-VKC-NLRNL over KTG-
VKC-NL because checking the social distance using NLRNL
is more efficient than that using NL. DKTG-Greedy is faster
than KTG-VKC-NL and KTG-VKC-NLRNL, and is slower
than KTG-VKC-DEG-NLRNL. Moreover, the processing time
of all four algorithms increases as the k value increases on
Gowalla dataset. This is because there are less valid users
whose social distance is greater than k when k becomes larger.
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Figure 6. Performance vs. different N values

The results on the Flickr dataset in Figure 4(c) and DBLP
dataset in Figure 4(d) show the similar trend with the result
on the Gowalla dataset.

Effect of query keyword size. In addition, in Figure 5,
we compare the three KTG algorithms and DKTG-Greedy by
varying the query keyword size. If the query keyword size is
larger, more users cover at least one of the query keywords.
For the Gowalla dataset, the results in Figure 5(a) shows
the superiority of KTG-VKC-DEG-NLRNL over the KTG-
VKC-NL and KTG-VKC-NLRNL algorithms. The processing
time of KTG-VKC-DEG-NLRNL takes less than 5000 ms, but
KTG-VKC-NL and KTG-VKC-NLRNL take more than 10000
ms, because KTG-VKC-DEG-NLRNL prunes the unqualified
groups effectively via the degree sorting to accelerate the query
processing. All the algorithms are very stable when the query
keyword size becomes larger because all the algorithms have
enough qualified users covering the query keywords to form
top N groups, i.e., the groups jointly covering all the query
keywords. Similar results on Brightkite, Flickr and DBLP
dataset are observed in Figures 5(b), 5(c) and 5(d).

Impact on denser graph and large graph. At last, we
test our algorithms by varying the group size on one denser
graph, i.e., the Twitter dataset2 where the number of nodes
is 81,306 and the number of edges is 1,768,149, and one
large DBLP dataset with one million nodes. As shown in
Figure 7(a) of Twitter dataset, our KTG-VKD-DEG algorithm
outperforms KTG-VKD significantly. From Figure 7(b) by
varying the social constraint, KTG-VKC-DEG-NLRNL shows
good scalability on the large graph, while KTG-VKC-NL is
very slow (up to 16 hours) with a large social constraint c
(e.g., 4 and 5).

B. Effectiveness of the Algorithms

To demonstrate the effectiveness of our proposed algo-
rithms, we conduct a case study on DBLP dataset. In contrast
to the model in TAGQ [18], our models can ensure the
tenuity and keyword coverage over the reviewers to facilitate
a comprehensive review.

Figure 8 shows a case study on DBLP dataset. The top
part shows the detail of the query, the bottom part shows the
keywords of result users returned by the three algorithms and
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Figure 8. Case Study

the middle part shows the top 3 groups with the hop number
for every two reviewers in a group returned by each algorithm.
We compare our two algorithms KTG-VKD-DEG and DKTG-
Greedy with TAGQ by setting γ=0.5 for equally controlling
the contribution of the two components. We can see that the
reviewers (e.g., 2,164 and 2,228, as denoted by the red lines)
returned by TAGQ do not have any keywords covered by the
query keywords. That is because, the model used in TAGQ
aims to maximize the average coverage of query keywords
for the result group. However, this may lead some users do
not have any query keywords coverage. All the users in a
result group satisfy the social constraint. In addition, similar
to KTG-VKD-DEG, TAGQ also does not support the diversity
of the users in the result groups.

C. Space and Construction Overhead of Index

Finally, we compare the space overhead of using NL and
NLRNL indexes on all four datasets. Note that for NL index, it
stores 1-hop neighbors, 2-hop neighbors, ..., c-hop neighbors
for each node3, while for NLRNL index, it stores not only
1-hop neighbors, 2-hop neighbors, ..., (c-1)-hop neighbors
but also (c+1)-hop neighbors, (c+2)-hop neighbors,...hmax-
hop neighbors (hmax is the maximal hop neighbors of this

3c is the value with the most corresponding hop neighbors.

vertex). The results on Figure 9(a) show that the space cost of
the NLRNL index is less than that using the NL index. This is
because the number of c-hop neighbors is very large and the
NL index needs to store two times for the relationship of every
two vertexes ui and uj , i.e., ui is one of uj’ x-hop neighbors
and uj is also one of ui’ x-hop neighbors, to expand c-hop
neighbors to (c+1)-hop neighbors. Morever, we also test the
index construction overhead, as shown in Figure 9(b). The cost
of constructing NLRNL takes more time than constructing NL
because NLRNL also requires to maintain the reverse c-hop
neighbors besides maintaining the (c-1)-hop neihbors for each
vertex.
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Figure 9. Space and Construction Overhead

VIII. CONCLUSION

In this paper, we formulate the problem of keywords based
tenous-socially groups (KTG) query for finding top N tenuous
groups which jointly cover the most query keywords. We carry
out a systematic study on the KTG query. First, we propose
two exact algorithms, namely KTG-VKC and KTG-VKC-DEG,
which give priority to the valid keyword coverage and the
combination of valid keyword coverage and degree respec-
tively, to select one user to form a feasible group by adopting
a branch and bound (BB) strategy, also using keyword pruning
and k-line filtering. To support the diversity of KTG, we also
formalize the problem of diversified KTG(DKTG) problem. To
address the DKTG problem, we propose the DKTG-Greedy
algorithm to exploit a greedy heuristic in a combination with
KTG-VKC-DEG. Moreover,we design two alternative indexes,
namely NL and NLRNL indexes, to check whether the social
distance of any two users is greater than social constraint k in
the above algorithms. At last, a comprehensive performance
evaluation is conducted to validate the proposed ideas and
demonstrate the efficiency and effectiveness of the proposed
indexes and algorithms.
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