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Abstract—Graph Neural Networks (GNNs) have proven to
be highly effective in addressing the link prediction problem.
However, the need for large amounts of user data to learn repre-
sentations of user interactions raises concerns about data privacy.
While differential privacy (DP) techniques have been widely used
for node-level tasks in graphs, incorporating DP into GNNs for
link prediction is challenging due to data dependency. To this end,
in this work we propose a differentially private link prediction
(DPLP) framework, building upon subgraph-based GNNs. DPLP
includes a DP-compliant subgraph extraction module as its core
component. We first propose a neighborhood subgraph extraction
method, and carefully analyze its data dependency level. To
reduce this dependency, we optimize DPLP by integrating a
novel path subgraph extraction method, which alleviates the
utility loss in GNNs by reducing the noise sensitivity. Theoretical
analysis demonstrates that our approaches achieve a good bal-
ance between privacy protection and prediction accuracy, even
when using GNNs with few layers. We extensively evaluate our
approaches on benchmark datasets and show that they can learn
accurate privacy-preserving GNNs and outperforms the existing
methods for link prediction.

Index Terms—Data privacy, Link prediction, Graph neural
networks, Differential privacy

I. INTRODUCTION

Link prediction is the problem of predicting the existence

of a link between two nodes within a graph [1]. Given the

ubiquitous existence of graph data, this field finds applications

in a multitude of domains, such as friend recommendation

within social networks [2], movie recommendation on Netflix

[3], co-authorship prediction in citation networks [4]. Re-

cently, graph neural networks (GNNs) have shown superior

performance in link prediction when compared to traditional

methods [5], [6]. In particular, by leveraging a localized

subgraph surrounding each target link, subgraph-based GNNs

(SGNNs) have been demonstrated to learn the most expressive

structural representations of links for prediction.

On the other side of the coin of using GNN models for link

prediction, the users’ privacy is at risk. Privacy breaches can

happen in various ways since an attacker can infer sensitive

node features or links from the trained models [7], [8].

Differential Privacy (DP) has received significant attention

in incorporating it into GNN-based methods to mitigate the

privacy risks. However, current studies primarily focus on

developing differentially private GNNs for node classification

[9]–[13], leaving a noticeable gap in research concerning link
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prediction. To bridge the gap, our work focuses on learning

GNNs for accurate link prediction while preserving differential

privacy.
Extending approaches designed for node-level tasks to link

prediction is nontrivial. In GNNs, learning the representation

of each node relies not only on its own features but also on

aggregated information from its neighborhood. This introduces

a complex data dependency issue, which poses additional

challenges in the context of link prediction compared to node-

level tasks. To illustrate the challenges, Figure 1 shows an

example involving a 1-hop neighborhood subgraph.

Example 1. In node-level tasks, to determine the nodes af-
fected when a specific node s is removed, we can simply count
its 1-hop neighbors (i.e., nodes a, b, c, d in Figure 1 (a)). The
number of affected nodes is bounded by the maximum node
degree θ, which is 4 in this case. Regarding link prediction,
removing the link (s, q) in Figure 1 (b) will affect all the red
links since they all have their 1-hop neighborhood subgraphs
containing the link (s, q). However, enumerating these affected
links becomes challenging because their relative positions to
(s, q) vary from case to case (e.g., links (q, b), (q, a), (c, d)).
Additionally, to train a link prediction model, we should
also consider the non-existent links (e.g., (a, b)) sampled as
negative examples. In the worst case, the total number of
affected links can reach Ω(θ2).
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(a) Node-level tasks
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(b) Link prediction

Fig. 1: Data dependency issues in 1-hop subgraph, with the

maximum node degree θ = 4.

Accurately measuring data dependency is crucial for calcu-

lating noise sensitivity to comply with DP. In the literature,

two paradigms have been studied to address the issue of data

dependency in GNNs. The first approach is to avoid the
complexity of measuring dependencies by introducing DP

noise to either the input, such as adjacency matrix [9], or

the aggregation functions [10] used in GNNs. However, the
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former often introduces excessive noise that compromises the

model utility, and the later lacks adaptability to diverse GNN

architectures since the aggregation function is non-learnable.

Moreover, this approach suffers from a loss of model utility

as the depth of GNNs increases.
The second paradigm measures the dependency among

nodes, focusing on the task of node classification [13]. In

particular, an upper bound of interdependent nodes is derived

by sampling the incoming neighbors of any nodes in a graph.

However, this approach cannot be directly applied to link

prediction for several reasons: (i) The dependency analysis

of node-level tasks considers neighboring nodes, but there

is no off-the-shelf definition of neighboring links. (ii) Link

prediction requires considering the neighborhoods of both two

nodes, introducing a higher level of dependency compared to

node classification. (iii) To train a link prediction model, it is

essential to account for non-existent links (e.g., link (a, b) in

Figure 1(b)), as their presence increases the noise sensitivity.

These factors collectively contribute to the increased complex-

ity of dependency analysis for link prediction.
In this work, we propose a differentially private link predic-

tion (DPLP) framework based on GNNs, which is compatible

with various GNN blocks with learnable aggregation functions.

In the framework, the sensitivity analysis module introduces

the notion of link-based subgraph contextual neighbor and

gives the theoretical results of dependency level. To constrain

the dependency level, our framework employs a graph projec-

tion step to bound the node degree and a subgraph extraction

step with a tunable negative sampling rate. Our method yields

a tight upper bound of dependency level for determining a

sound noise scale to comply with DP.
To improve the utility, we propose an optimized path-

based subgraph extraction module for the DPLP framework.

This method is built upon the observation that the prevail-

ing subgraph extraction technique often generates subgraphs

containing dangling edges. Such dangling edges amplify inter-

subgraph dependencies but offer limited contribution to link

prediction. By dropping these edges, the information carried

by the subgraph is confined to the paths connecting the nodes

of a target link. Consequently, this reduces the dependency

level while preserving link structural information. As a result,

this optimization leads to higher prediction accuracy while

maintaining strict privacy requirements. Overall, the contribu-

tions of our work are summarized as follows:

• We propose a differential privacy-preserving link predic-

tion (DPLP) framework. To the best of our knowledge,

this is the first framework to learn differentially private

GNN for link prediction. This framework is adaptable to

various GNN architectures.

• We design an optimized path-based subgraph extraction

module for the DPLP framework, which reduces data

dependency by focusing on the paths connecting the

nodes of a target link, resulting in improved prediction

accuracy.

• We conduct extensive theoretical analysis on both privacy

and utility aspects. In particular, we prove that our algo-

rithm approximates the predictive performance of multi-

layer GNNs using fewer layers.

• We evaluate the effectiveness of DPLP over real-world

datasets. The experimental results validate our theoretical

findings and demonstrate the effectiveness of the pro-

posed methods. The results also present that our method

strikes a balance between link prediction accuracy and

privacy protection.

The remainder of this paper is organized as follows. Sec-

tion II reviews related works. Section III introduces pre-

liminaries and the studied problem. Section IV presents the

overview and the implementation details of the DPLP frame-

work. Section V proposes the optimized path-based subgraph

extraction method. Section VI shows the theoretical analysis of

the proposed methods. Section VII presents the experimental

results, followed by a conclusion in Section VIII.

II. RELATED WORK

Traditional link prediction techniques include heuristic,

latent-feature, and content-based methods. Heuristic methods

like Common Neighbors and Adamic-Adar [1], [2] estimate

link probabilities based on node similarity. Latent-feature

methods learn node embeddings through matrix factorization,

exemplified by DeepWalk and node2vec [14], [15]. Content-

based methods, on the other hand, utilize node attributes [16].

Recent advancements in link prediction are led by Graph

neural networks (GNNs), which outshine traditional meth-

ods by integrating graph structure with node/edge features.

Among GNN-based approaches, subgraph-based methods have

emerged as particularly effective [6], [17]. These methods

focus on local subgraphs around target links, applying a GNN

to learn representations for each subgraph, which then serve

as link representations for prediction.

Zhang et al.’s analysis [5] reveals that subgraph-based

methods excel over node-based methods in link prediction

by effectively capturing the relational context within local

subgraphs. While node-based methods falter in recognizing the

relative positioning of node pairs due to their isolated learning

approach, subgraph-based methods overcome this limitation

without deep GNNs. The impracticality of deep GNNs in

privacy-sensitive environments, owing to escalating data de-

pendencies, further underscores the suitability of subgraph-

based approaches, as a foundational framework for privacy-

preserving link prediction.

Research in link prediction privacy is bifurcated into cen-

tralized and decentralized approaches. Decentralized scenarios

involve collaboration among entities holding different parts of

graph data, aiming to secure data transactions and prevent

privacy breaches [9], [18]. Centralized models, conversely,

focus on developing robust privacy-preserving models to resist

attacks like model inversion and membership inference [7],

[8], [19]. Significantly, research has shown that link existence

alone can disclose sensitive user information [20], [21], un-

derscoring the importance of link-level privacy in centralized

settings. This work considers the problem of link prediction

preserving link-level privacy in a centralized setting.
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Differential Privacy (DP) has been extensively applied to

link prediction methods, including heuristic and latent-feature

approaches [22]–[26]. Traditional DP applications, such as

DP-SGD [27], face challenges with GNNs due to data de-

pendency issues, where computations rely on interconnected

user data, increasing privacy risks.
To address this, DP in GNNs is approached through input

perturbation, aggregation function perturbation, and gradient

perturbation [9], [10], [12], [13]. Input perturbation adds noise

to the graph data, aggregation function perturbation modifies

GNN’s message passing, and gradient perturbation involves

noise addition in GNN gradients. While each technique man-

ages data dependencies, they also face limitations like signal

loss or reduced learnability.
Mueller et al. proposed a DP method for graph-level

tasks [28], and Peng et al. proposed a differentially private

method for learning graph embeddings of federated knowl-

edge graphs [29]. However, the two methods are under the

assumption of independent instances in the training set, a

condition not always met in link prediction. Considering

these limitations, this work aims to develop an algorithm that

ensures DP while maintaining a balance between utility and

privacy, and is adaptable across various GNN modules.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations
Let G = (V,E) be an undirected graph where V is the

set of nodes, E is the set of observed links, and d(u, v)
denotes the shortest path between a pair of nodes u and v.

For a node u, its h-hop neighbors is denoted as Nh(u) =
{v | d(u, v) = h, v ∈ V }, and its h-hop neighborhood is

Γh(u) = ∪h
i=0Ni(u). Noted that nodes in Nh(u) are exactly

h hops away from u, and N0(u) denotes the node u itself.
Let S = (VS ⊆ V,ES ⊆ E) be a subgraph of G, it can

be extracted by a function g : G × E × N → S. Here, E is

an entity set, the elements of which can be either a vertex

u ∈ V or a pair of vertices u, v ∈ V . Any positive integer

h ∈ N denotes the size of the extracted subgraph. Let z ∈ E ,

Sz represents the enclosing subgraph that captures the local

structure around z.
In addition to the concepts mentioned above, the main

notations within this paper are listed in Table I.

TABLE I: Notations

Notation Description

G Undirected graph
V Node set
E Edge set
A Adjacency matrix
X Node feature matrix
E Entity set of a vertex or a pair of vertices.
Sz Enclosing subgraph of z, where z ∈ E .

d(u, v) Shortest distance between u and v

Nh(u)
Node u’s h-hop neighbors:
{v | d(u, v) = h, v ∈ V }

Γh(u) H-hop neighborhood of node u: ∪h
i=0Ni(u)

Γh(u, v) H-hop neighborhood of link (u, v): Γh(u)∪Γh(v)

LSNg
h(s, q)

Set of link-based subgraph contextual neighbors of
(s, q)

B. Graph Neural Networks

Let G = (V,E) be an undirected graph with an adjacency

matrix A ∈ {0, 1}n×n, where n = |V |. An r-layer GNN is a

parametric function that can be represented by the following

node-wise operations:

hu = GNN(A,xu,Θ)

= ψ (xu, ω ({φ(xu,xv) | v ∈ Γr(u)})) (1)

where xu ∈ R
d and hu ∈ R

d′
are d-dimensional input and

d′-dimensional output features of node u, respectively. All

functions ψ, ω, φ are learnable, and the parameters of the

whole network are denoted as Θ. The above equation can

be written in matrix representation as H = GNN(A,X,Θ)
across all nodes, where X ∈ R

n×d is the node features, and

H ∈ R
n×d′

is the node representations.

C. Subgraph-based GNNs (SGNNs)

Given an undirected graph G = (V,E) and a target z ∈
E (i.e., one or two nodes), SGNNs produce the embeddings

Hz = GNN(Az,Xz,Θ), where Az presents the structure of

the enclosing subgraph Sz , and Xz are the features of the

nodes in Sz . Capturing the local structure, the embeddings

can be effective for the downstream tasks.

In particular, for link prediction, the most common defi-

nition of the enclosing subgraph is the h-hop neighborhood

subgraph. Its formal definition is as follows:

Definition 1 (H-Hop Neighborhood Subgraph). Given an
undirected graph G = (V,E) and a pair of distinct nodes
u, v ∈ V , (u, v)’s h-hop neighborhood subgraph Suv is the
subgraph induced by the union of u’s and v’s h-hop neighbor-
hood Γh(u, v) = Γh(u) ∪ Γh(v), i.e., Suv = gn(G, (u, v), h),
where gn is the subgraph extraction function specific to the
context of neighborhood.

SGNNs can approximate global heuristics (i.e., graph struc-

tural features) from the h-hop neighborhood subgraph. The

precision loss of this approximation diminishes exponentially

with h [6].

D. Link-level Differential Privacy

This study aims to protect private links by applying differen-

tial privacy. As with the existing work [9], [30], we first define

neighboring graphs and link differential privacy as follows.

Definition 2 (Neighboring Graphs). Two graphs G and G′

are neighboring graphs if one can be obtained by adding or
removing a link to the other.

Definition 3 (Link Differential Privacy). A randomized mech-
anism M satisfies (ε, δ)-link differential privacy, if and only
if for any two neighboring graphs G, G′, and any possible
output Z ⊆ range(M), the following inequality holds:

Pr(M(G) ∈ Z) ≤ ε · Pr(M(G′) ∈ Z) + δ.

Intuitively, a randomized algorithm M is said to be link-

level differentially private if the addition or removal of a link in
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M’s input does not affect M’s output significantly. As shown

below, the impact of the link difference between neighboring

graphs influences the sensitivity analysis, which is critical to

determine the noise scale in compliance with DP.

Definition 4 (Sensitivity under link differential privacy). The
sensitivity Δ(f) of a function f defined on graph datasets is

Δ(f) = max
G,G′

‖f(G)− f(G′)‖.

E. Problem Formulation

This work studies the problem of link prediction, which

aims to predict the probability, denoted as p(u, v), of a

link between two nodes u and v. In this context, SGNNs

have demonstrated effectiveness, and the link probability is

computed based on the enclosing subgraph Suv . Formally,

p(u, v) = R(GNN(Auv,Xuv,Θ)), (2)

where R is a learnable readout function.

Our work focuses on the problem of designing an algorithm

to learn GNNs while preserving link differential privacy. The

difficulty in sensitivity analysis makes this problem non-trivial.

Due to the data dependency issue in GNNs, the sensitivity

requires a careful analysis of the maximum number of link

embeddings that are affected by the removal of a link. This

requires us to develop an analytical approach to derive a tight

upper bound of this quantity to constrain the dependency level.

IV. DIFFERENTIALLY PRIVATE LINK PREDICTION

In this section, we propose a GNN-enabled framework for

differentially private link prediction (DPLP). We first show an

overview of the framework DPLP in Section IV-A, and then

elaborate on the implementation details in Section IV-B.

A. DPLP Overview

DPLP framework is designed to train a link prediction

model that is compatible with a wide range of GNN architec-

tures, balancing differential privacy (DP) protection and model

utility. DPLP works as shown in Figure 2, which includes three

modules, namely subgraph extraction, sensitivity analysis, and

DPGNN training. In what follows, we will present the design

rationale of each module.

Subgraph Extraction. Following the success of SGNNs in

capturing the local structure, DPLP incorporates SGNNs for

link embedding and integrates a subgraph extraction module

to support different subgraph extraction functions. Before

subgraph extraction, DPLP includes a graph-specific projec-

tion step. This is because, the scale of DP noise increases

exponentially with the maximum node degree, as will be

elaborated in Lemma 3. To address the issue, this step projects

the original graph to ensure a maximum node degree θ. In

conjunction with the negative sampling in subgraph extraction,

this step efficiently reduces and bounds the noise scale.

Sensitivity Analysis. We incorporate a sensitivity analysis

module to examine link dependency by introducing the con-

cept of link-based subgraph contextual neighbor, ensuring a

precise and optimized sensitivity measure for link differential

privacy.

DPGNN Training. Gradient perturbation is a paradigm

solution for training differentially private GNN. Due to its

architecture-agnostic nature, the paradigm allows the private

learning to be applied across different GNNs and aggrega-

tion functions. However, conventional gradient perturbation

methods, such as DP-SGD [27], are not directly applicable to

GNNs. This arises from the inherent structure of GNNs where

each per-sample (or per-link) gradient is influenced by private

links from multiple users. This complexity poses challenges

in determining an appropriate noise scale for achieving private

gradients. In DPLP, this interdependency measured by the

sensitivity analysis module allows us to accurately control the

noise magnitude to derive the private gradient. Additionally, in

Section VI, we will demonstrate that our perturbation approach

also amplifies privacy.

Putting three modules together leads to our framework

DPLP. As shown in Figure 2, the original graph G = (V,E)
is projected to graph Gθ with a maximum node degree θ
(step (1)). For every edge in the projected graph Gθ, including

those from negative sampling, their respective subgraphs are

extracted. These subgraphs, paired with their labels, form

the training dataset (step (2)). Given the subgraph extraction

function g, and the subgraph size h, the maximum num-

ber of subgraph contextual neighbors of any link in G is

computed, i.e., max(s,q)∈E |LSNg
h(s, q)| (step (3)). Then, the

sensitivity is derived (step (4)). The progression of training

the differentially private GNN is presented in steps (5) - (9).

Initially, a batch of subgraphs is uniformly sampled from the

training set and fed into the GNN (step (5)). The gradient

perturbation mechanism involves two steps, namely clipping

per-sample gradients (step (6)) and injecting noise into the

batched gradient to yield a private gradient vector (step (8)),

where the noise is sampled according to the sensitivity (step

(7)). This sequence, spanning from step (5) to step (9), is

iterated until the stop condition is achieved. Finally, DPLP

outputs a trained GNN model preserving link differential

privacy.

B. DPLP Implementation

In this section, we shows the implementation details of

DPLP. In particular, we first present subgraph extraction and

DPGNN training, followed by sensitivity analysis which intro-

duces the notion of link-based subgraph contextual neighbor

and gives the theoretical results.

1) Subgraphs Extraction: Given a maximum node degree

of θ, the graph projection step projects the original graph into

Gθ so that the degree of each node is bounded by θ. As

outlined in Algorithm 1 (Lines 9-15), for each node v, we

randomly sample at most θ immediate neighbors from Eθ of

Gθ, and update the edges in Eθ by dropping the edges between

v and the excessive neighbors. The parameter θ decides the

number of available samples for the training module and the

scale of influence when a link is removed, which in turn affects
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Fig. 2: The overview of the DPLP framework.

the sensitivity of DP noise. In Section 5.2, we will delve into

the selection of this parameter.

Then the subgraph extraction step extracts a set of subgraphs

along with their node labels, constituting training dataset for

link prediction model. The purpose is to acquire the local

structure of the target link to be classified. Specifically, for

each link in projected graph Gθ, we will extract a correspond-

ing subgraph, which serves as a positive sample in the training

dataset. To prevent model bias, we sample some non-existent

links and extract their subgraphs as negative samples.

Algorithm 1 demonstrates the neighborhood subgraph ex-

traction process. Note that for each node v, there are |N1(v)|
positive links. Thus, given the negative sampling rate λ,

λ|N1(v)| negative links will be sampled from V \N1(v) (Line

3). Then for each positive or negative link, a subgraph will

be extracted by the subgraph extraction function gn (Line 6),

along with a binary label (Line 7).

2) Training Differentially private GNNs: Learning a GNN

is equivalent to finding optimal parameters Θ∗ that minimizes

the loss function L(S,Θ). Formally

Θ∗ = argmin
Θ

L(S,Θ) (3)

= argmin
Θ

∑
Suv,yuv∈S

	 (R (GNN (Auv,Xuv,Θ)) , yuv),

where S is the training subgraphs returned by Algorithm 1.

The learning algorithm towards the above loss is summarized

in Algorithm 2. First, the training set is established (Line 1),

and the noise scale σ is computed via sensitivity analysis

(Line 2). Next, we iteratively update the GNN model after

model initialization. In iteration t, a batch Bt of m subgraphs

is uniformly sampled from S. It guarantees each subgraph

appears only one time within Bt. Subsequently, per-sample

gradients are computed and clipped (Lines 7-10) with a given

l2 norm threshold C. Gaussian noise is added to the batched

gradient that is aggregated from clipped per-sample gradients

(Lines 11-12). The private gradients are employed for model

updating. This process continues until the maximum number

of iterations T is reached.

Algorithm 1: EXTRACT-SUBGRAPHS (Extract

Neighborhood Subgraphs)

Data: Graph G = (V,E); Maximum node degree θ;
Negative sampling rate λ; Neighborhood radius h;
Neighborhood subgraph extraction function gn.

Result: Set of subgraphs Suv and lables yuv for target links.
1 Gθ ← PROJECTION(G, θ),NE← ∅.
2 for v ∈ V do
3 Uniformly sample negative edges of v with λ:

N̄1(v)← sample(V \N1(v), λ|N1(v)|).
4 Add the negative edges to NE.
5 for i ∈ N1(v) ∪ N̄1(v) do
6 Extract subgraph: Svi ← gn(G

θ, (v, i), h).

7 yvi =

{
1 if i ∈ N1(v);

0 otherwise.

8 return {Suv, yuv | (u, v) ∈ Eθ ∪ NE}.
9 Function PROJECTION(G, θ):

10 Initialize Gθ = (V,Eθ)← G.
11 for v ∈ V do
12 Nθ

1 (v)← Randomly sample at most θ immediate

neighbors of v by Eθ .
13 e = {(u, v) | u ∈ {N1(v)\Nθ

1 (v)}}.
14 Update Eθ by dropping edges in e from Eθ .

15 return Gθ = (V,Eθ).

3) Sensitivity Analysis: For sensitivity analysis in subgraph-

based GNNs, understanding link dependency is crucial. While

node-level tasks leverage neighboring relationships to measure

node dependency, no such standard exists for links. Con-

sequently, we introduce the notion of link-based subgraph

contextual neighbor to describe the interdependency between

links.

Definition 5 (Link-based Subgraph Contextual Neighbor).
Given an undirected graph G = (V,E), a pair of nodes
u, v ∈ V , a subgraph extraction function g and the subgraph
size h. If the subgraph g(G, (u, v), h) contains a link (s, q),
then (u, v) is a subgraph contextual neighbor of (s, q), which
is denoted as (u, v) ∈ LSNg

h(s, q).

Given a graph G = (V,E) and a neighborhood subgraph ex-
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Algorithm 2: TRAIN-DPGNN (Neighborhood

Subgraph-based DPGNN)

Data: Graph G = (V,E); Node features matrix X;
Maximum node degree θ; Negative sampling rate λ;
Neighborhood radius h; Neighborhood subgraph
extraction function gn; Maximum # of iterations T .

Result: The trained model ΘT .
1 Construct the set of training subgraphs and labels: S ←

EXTRACT-SUBGRAPHS(G, θ, λ, h, gn).
2 Compute σ via sensitivity analysis.
3 Initialize Θ0 randomly.
4 for t = 0 to T do
5 Sample set Bt ⊆ S of size m uniformly.
6 for each (Suv, yuv) in Bt do
7 Compute gradient:
8 gt(Suv, yuv)←

∇Θ� (R (GNN (Auv,Xuv,Θt)) , yuv).
9 Clip gradient:

10 ĝt(Suv, yuv)←
gt(Suv, yuv)/max

(
1,

‖gt(Suv,yuv)‖2
C

)
.

11 gt ←
∑

Suv,yuv∈Bt
ĝt(Suv, yuv).

12 Add noise: g̃t ← gt +N (
0, σ2

I
)
.

13 Update the parameters with rate η: Θt+1 ← Θt − η
m
gt.

traction function gn, the maximum of link dependency can be

measured by the maximum of subgraph contextual neighbors

of any link (s, q) ∈ E, i.e., max(s,q)∈E |LSNgn
h (s, q)|, which

in turn determines the sensitivity. The following Lemma 1

shows the derivation of LSNgn
h (s, q), and then Lemma 2

provides the upper bound of its maximum. Based on the

derived bound, the sensitivity is given by Lemma 3.

Lemma 1. Let (s, q) is any link in an undirected graph G,
consider the following link sets after the graph projection and
negative sampling:

• e1 = {(u, v) | u ∈ Γh(s) ∩ Γh(q), v ∈ N1(u) ∪ N̄1(u)};
• e2 = {(u, v) | u ∈ Γh(s)\Γh(q), v ∈ Γh(q)\Γh(s)}.

then LSNgn
h (s, q) = e1 ∪ e2.

Proof. Please refer to the full version [31].

Lemma 2. Given an undirected graph G = (V,E), let λ
be the negative sampling rate for each node, θ > 2 be
the maximum node degree, and h ≥ 1 be the radius of
the neighborhood. Then, max(s,q)∈E |LSNgn

h (s, q)| is upper
bounded by Mgn(h, θ, λ), where

Mgn(h, θ, λ) = (1 + λ)

(
θh+1 +

∑h−1

i=0
2θi+1

)
(4)

Proof. Please refer to the full version [31].

Lemma 3 (Link-level Sensitivity of Neighborhood Sub-

graph-based GNN). Let Gθ be a graph with bounded degree
θ, λ be the negative sampling rate, h be the radius of the
neighborhood. Considering the batched gradient gt obtained
from aggregating the gradient clipped by parameter C at step
t in Algorithm 2. Let Mgn(h, θ, λ) be the upper bound of

dependency level derived in Lemma 2. Then the following
inequality holds:

Δ(gt) < 2C ·Mgn(h, θ, λ). (5)

Proof. Please refer to the full version [31].

V. DPLP WITH PATH SUBGRAPH EXTRACTION

The sensitivity analysis in Section IV reveals that, the

number of subgraph contextual neighbors relies on the sub-

graph extraction procedure. While the h-hop neighborhood

subgraph is effective at learning diverse heuristic methods

for link prediction [6], the maximum of subgraph contextual

neighbors is large even when h = 1, leading to a significant

noise sensitivity. This motivates the design of a method

that decreases the number of subgraph contextual neighbors

while preserving the capability to efficiently learn informative

heuristics. In this section, we present a balanced approach to

subgraph extraction.

A. Path Subgraph

To reduce the noise sensitivity, in this section we propose

an optimized path subgraph extraction approach, which ex-

clusively extracts the links on paths between a pair of nodes.

Formally, a k-hop path subgraph is defined as follows:

Definition 6 (K-Hop Path Subgraph). Given an undirected
graph G = (V,E) and a pair of distinct nodes u, v ∈ V , let
P j
uv be the set of paths from u to v with length j. For any link

(u, v), the k-hop path subgraph Suv consists of all the links
Euv =

⋃k
j=2

⋃
w∈P j

uv

⋃j−1
i=0{(wi, wi+1)}.

Figure 3 illustrates a comparison of neighborhood and path

subgraphs. Figure 3(a) showcases the neighborhood subgraph

for the link (u, v) when h = 1, which corresponds to a path

subgraph with k ≤ 3 in Figure 3(b). In the path subgraph, only

the paths between (u, v) in the neighborhood are included,

while redundant links (marked by blue links) and dangling

links (marked by green links) are removed. Redundant links,

which are induced by neighborhood nodes, fall out of any path

from u to v with a length up to k. Dangling links connect

dangling nodes, which are nodes that can only reach one of

the vertices (u, v) within a 1-hop distance.

By excluding dangling links in the subgraph of a link, the

path subgraph effectively reduces the number of subgraph

contextual neighbors. The examples provided in Figure 4

clearly demonstrate our rationale for this approach.
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(a) 1-hop neighborhood subgraph
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(b) 3-hop path subgraph

Fig. 3: Examples of neighborhood and path subgraphs
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Let’s consider the impact of adding a link (u, g) to the

graphs in Figure 4, where the maximum node degree θ = 5.

The link-based subgraph contextual neighbors of the link

(u, g) in each subfigure are highlighted in red (excluding (u, g)
itself). The red solid lines represent observed links, a.k.a.

positive links, while the red dashed lines indicate negative

links after negative sampling with a rate of λ. Figure 4(a)

shows the case of extracting neighborhood subgraphs, while

Figure 4(b) demonstrates the case of extracting path subgraphs.

Given the neighborhood radius h = 1, the neighbor-

hood and path subgraph extraction functions are denoted

as gn and gp, respectively. As shown in Figure 4(a),

{(a, u), (b, u), (d, u), (f, u), (f, g)} ⊂ LSNgn
1 (u, g). And λθ

negative links incident to u, e.g., (u, v), are also encompassed

within LSNgn
1 (u, g). This is because all these links fall

into the set e1 with h = 1 defined in Lemma 1, where

u ∈ N0(u) ∩N1(g) and g ∈ N0(g) ∩N1(u). By comparison,

as shown in Figure 4(b), when extracting the path subgraph

from the same graph, LSN
gp
3 (u, g) = {(f, u), (f, g)}. This is

because (u, g) is only on the paths from node f to g and u.
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(a) Extracting Neighborhood Subgraphs
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(b) Extracting Path Subgraphs

Fig. 4: Link-based subgraph contextual neighbors of link (u, g)
in neighborhood and path subgraphs, when h = 1

The following theorem establishes the theoretical analysis

on data dependency of the proposed path-based subgraph

extraction approach.

Theorem 1. Given an undirected graph G = (V,E),
let λ be the negative sampling rate for each node and
θ be the maximum node degree. For any k, θ ≥ 2,
max(s,q)∈E |LSNgp

k (s, q)| is bounded by Mgp(k, θ, λ), where

Mgp(k, θ, λ) =
∑h−1−r

i=0
2λθi+1 + 2

∑h−r

i=1
min{θh+1, θi}

(6)

+ (1 + r)θh−r ·min {(1 + λ)θ, θh},
and h = �(k + 1)/2�, r = (k − 1) mod 2. Particularly, when
k = 2, Mgp(k, θ, λ) = 2θ.

Proof. Please refer to the full version [31].

Building on Lemma 2 and Theorem 1, the upper bound

of the maximum number of contextual neighbors in a path

subgraph can be reduced by at most θh, compared to an h-

hop neighborhood subgraph.

B. Parameter selection

In this section, we design an indicator to better determine

the parameters k and θ by considering the loss introduced by

projection and gradient perturbation. Let c ∈ R
n be the degree

distribution of a graph G, where n is the number of unique

degrees, and each ci denotes the number of nodes with degree

i. Since c is computed on G, it should be perturbed by DP

as well. Let c, c′ denote the degree distribution computed on

the neighboring graphs G  G′ that differ in one link, the

sensitivity can be bounded by

‖c− c′‖2 ≤
√
2. (7)

The private version of c is obtained by adding Gaussian

noise as follows:

c̃ = c+N (0, σ2
I). (8)

The loss caused by projection can be approximated as

	proj(θ, c̃) =
∑n

i=d∗ c̃i (9)

where d∗ = min{i | i > θ, i ∈ {1, 2, · · · , n}}. Given any k
and θ, we design an indicator as 1

�(k,θ) , where 	(k, θ) captures

the projection and perturbation loss, which is defined as

	(k, θ) =
a|E|

(1− γk)(|E| − 	proj)
+ b · σc(M, |E|,m, ε) (10)

Note that in Equation 10, |E| is the number of observed

links in the original graph, and σc computes the noise multi-

plier with a given privacy budget ε, where M = Mgp(k, θ, λ)
in Equation 6, and m is the batch size. The first term computes

the ratio of the total links to the remaining links after projec-

tion with a decaying factor γ ∈ (0, 1) weighting the length

of the path. The second terms approximates the magnitude

of perturbation during DPGNN training. Two parameters a
and b weight these two parts. Using this indicator, we can

more adeptly choose optimal values for k and θ to minimize

the overall loss introduced by the projection and perturbation

process. The efficacy of this indicator will be further evaluated

in Section VII.

VI. THEORETIC ANALYSES

In this section, we establish theoretical analysis of the DPLP

framework in terms of privacy and utility guarantee.

A. Privacy Analysis

The following theorem shows that DPLP achieves Link

DP by offering (α, ερ(α))-Rényi differential privacy. Here,

according to [32], we use the functional view of Rényi

differential privacy in which ε is a function of α, where

1 < α < ∞, and this function is determined by the private

algorithm.

Theorem 2. Let N be the number of training subgraphs, m
be the batch size, g be the subgraph extraction function, h be
the size of subgraphs, λ be the negative sampling rate, and θ
be the maximum node degree, Mg(h, θ, λ) be the upper bound
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of subgraph contextual neighbors. Then, every iteration t of
Algorithm 2 satisfies (α, ερ(α))-Rényi DP, where

ερ(α) ≤ 1

α− 1
log

(
1 + ρ2

(
α
2

)
min

{
4
(
eε(2) − 1

)
,

eε(2) min

{
2,
(
eε(∞) − 1

)2
}}

(11)

+
∑α

j=3
ρj

(
α
j

)
e(j−1)ε(j) min

{
2,
(
eε(∞) − 1

)j
})

,

and

ρ = 1−
(

N −Mg(h, θ, λ)
m

)/(
N
m

)
. (12)

By the standard composition theorem of Rényi Differential
Privacy [33], over T iterations, Algorithm 2 is (α, ερ(α)T )-
Rényi DP.

Proof. Please refer to the full version [31].

Notably, the key difference of Theorem 2 from the un-

amplified Rényi differential privacy [33] is the introduction

of ρ (as shown in Equation 12) to calculate the final privacy

parameter. Given a graph, a smaller bound of dependency

level Mg(h, θ, λ) leads to a smaller ρ, indicating a lower

probability of including dependent subgraphs within each

training batch. This reduction in ρ can enhance the effect of

privacy amplification. Finally, we apply the conversion rule

in [33] to convert the Rényi differential privacy back to the

standard link DP.

B. Utility Analysis

Theorem 1 proves the advantage of the path subgraph

compared to the neighborhood subgraph in terms of noise

sensitivity. This improvement is primarily attributed to the

fact that, when extracting the neighborhood subgraphs, many

dangling links are included in sensitivity analysis as worst-

case scenarios, leading to an increasing number of dependent

links. By limiting the count of dangling edges, the sensitivity

can be notably reduced.

Although the path subgraph effectively reduces the number

of subgraph contextual neighbors, it unavoidably results in

information loss when edges are dropped. One type of infor-

mation missing in the path subgraph is the real node degrees.

Degree information is widely utilized in local heuristic meth-

ods, especially those that rely on popularity measures (e.g.,

Preferential Attachment [34]). Nevertheless, there are global

heuristic methods can be learned from path subgraphs [6]. The

gloabl heuristic methods such as Common Neighbors, Local

Path Index and Katz Index rely on predicting based on paths

between nodes (u, v). The path subgraph-based DPLP makes

the private learning of global heuristics achievable. Let Suv

denote the subgraph extracted by function gp, we can establish

the following Theorem.

Theorem 3. Given a graph G = (V,E) with maximum node
degree D, let Gθ be the θ-bounded graph after projection
with a threshold θ ≤ D. Let N be the number of training

subgraphs, and Mgp be the upper bound of the maximum
number of path subgraph contextual neighbors in G. When
θ → D, (Mgp − 1)/N → 0, global heuristic score for (u, v)
can be accurately approximated from the k-hop path subgraph
Suv around (u, v) and the approximation error decreases at
least exponentially with k.

Proof. Please refer to the full version [31].

Theorem 3 not only establishes that the global heuristics can

be estimated by the path subgraph-based DPLP method, but

also indicates that using smaller-scale local path subgraphs

(i.e., smaller k) can lead to accurate approximations. This

suggests the potential for precise learning of a wide range

of higher-order path-based heuristics with minimal error from

fewer-hop path subgraphs, and allows the proposed method to

reach the expressive power of multi-layer GNNs with fewer

layers.

C. Time Complexity Analysis

In order to present the performance of the DPLP methods,

we analyze the time complexity of Algorithm 2. Let d(v) be

the degree of node v, and dmax be the max degree in the

original graph, we analyze the time complexity in different

phases of Algorithm 2 as follows.

Projection: In Algorithm 1, the function iterates through

each node v in V , sampling up to θ immediate neighbors in

O(θ) time and updating the filtered edge set Eθ can be com-

pleted in constant time through the adjacency matrix. Hence,

the total loop’s time complexity is O(|V | · θ), combining

initialization for overall complexity.

Subgraph extraction: According to the Algorithm 1, the

subgraph extraction process iterates through all nodes v in

V , uniformly sampling v’s negative edges in O(λθ) time

and adding non-neighbors N̄1(v) to the negative edge set NE
instantly. For each v, it examines nodes in N1(v) ∪ N̄1(v),
employing function g to extract subgraph Svi in O(g(h))
time. Specifically, for neighborhood subgraphs, Breadth-First

Search (BFS) identifies h-hop neighbors within O(θh) time,

while Depth-First Search (DFS) locates k-hop path subgraphs

in O(θk) time. Assigning yvi values, based on i’s presence

in N1(v), is immediate. Consequently, the complexity of the

inner loop is O((1 + λ)θ), resulting in an overall complexity

for Algorithm 1 of O(|V |·θh+1). For path subgraph extraction,

the time complexity is O(|V | · θk+1).
Training iterations: Assume the GNN model’s complexity

for processing a single instance is O(f), where f is a function

representing the computational cost of the GNN over the

subgraph. Thus, the main training loop contributes O(T ·m·f),
where T is the number of iterations, and m represents the

times for gradient clipping within a batch.

Therefore, the overall time complexity of the Algorithm 2

can be approximated as O(|V | · θξ+1) +O(T ·m · f), where

ξ denotes either neighborhood radius h or the path length

k, contingent upon the subgraph extraction function utilized.

When we apply the path subgraph-based method to extremely

large and dense graphs and explore paths with a large length k,
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the cost of extracting subgraphs O(|V | ·θk+1) is the dominant

term. Nevertheless, in most real-world graph data scenarios,

as demonstrated by Theorem 3, employing path subgraphs

with a small k suffices for the majority of cases. Moreover,

because the extraction of subgraphs is independent, it allows

for parallelization and ensures algorithm’s practical efficiency.

We validate these analytical results in Section VII-B.

VII. EXPERIMENTAL EVALUATIONS

In this section, we conduct extensive experiments to em-

pirically evaluate DPLP’s performance in terms of privacy,

accuracy, and the effectiveness of parameter selection.

A. Experimental Setting

Dataset. We evaluate the proposed methods on several

publicly available link prediction datasets, by considering

varying degree distributions, and the numbers of nodes and

edges.

• USAir 1 is a network of US Airlines with 332 nodes and

2,126 edges. The average node degree is 12.81.

• PB 2 is a network of US political blogs with 1,222 nodes

and 16,714 edges. The average node degree is 27.36.

• Yeast 3 is a protein-protein interaction network in yeast

with 2,375 nodes and 11,693 edges. The average node

degree is 9.85.

• C.ele 4 is a neural network of C. elegans with 297 nodes

and 2,148 edges. The average node degree is 14.46.

Experiment Design. We implement DPLP with neighbor-

hood subgraph extraction as our baseline, referred to as DPLP-

NS. Next, we optimize the subgraph extraction module of

DPLP by implementing path subgraph extraction, denoted as

DPLP-PS. We then compare our methods with three other

techniques: SEAL [6], which represents a non-private GNN

method for link prediction, LapGraph [9], which is a state-

of-the-art differentially private technique designed for graph

data, and FKGE, which learns differentially private graph

embedding for link prediction. [29] The aggregation perturba-

tion method [10] and other gradient perturbation method [13]

are not suitable for comparison in our experiments, as these

methods are exclusively applicable to node-level tasks.

Implementation and Parameters. For DPLP methods

(DPLP-NS and DPLP-PS), we use GCN as the default ar-

chitecture of SGNN, and we set the number of SGNN layers

to k for DPLP-PS and h = �(k + 1)/2� for DPLP-NS. For

the LapGraph method, we use the SGNN based on the neigh-

borhood subgraph as its backbone for link prediction. Similar

to DPLP-NS, the number of layers is set to h = �(k+ 1)/2�.

For all subgraph-based methods, we use the Double-Radius

Node Labeling (DRNL) as the labeling method [6]. We set

the number of hidden units to 32, and use the Relu activation

function at every layer. Dropout layers are also used for all

methods.

1http://vlado.fmf.uni-lj.si/pub/networks/data/mix/USAir97.net
2https://sites.cc.gatech.edu/dimacs10/archive/clustering.shtml
3http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
4https://snap.stanford.edu/data/C-elegans-frontal.html

We train all methods over 50 epochs with a batch size

of 1024 on PB, and 128 on the rest 3 datasets, i.e., USAir,

Yeast and Celegans. For DPLP-NS, DPLP-PS, we use the same

parameter setting for training GNN modules. We train all the

methods with a learning rate of 0.01 and repeat each combi-

nation of possible hyperparameter values 10 times. Since the

original FKGE algorithm is primarily designed for knowledge

graph, to accommodate the datasets used in this experiment,

we learn the graph embedding from scratch. For fairness,

similarly to other methods, FKGE is applied in a centralized

setting. Specifically, after obtaining the embeddings, FKGE

trains the differentiall private version of these embeddings via

PATE-GAN [29] locally. Aligned with the original works, the

number of teachers is set to 32.

Performance Measurement. Area Under the Curve (AUC)

is a commonly used performance measurement of a binary

classification model [35]. AUC ranges from 0 to 1, with

a higher value indicating better model performance. In the

experiment, we pick the best-performing model based on

validation AUC and report the average test AUC with standard

error.

Privacy setting. We numerically calibrate the noise scale

(i.e., the noise standard deviation σ divided by the sensitivity)

of the DPLP-NS and DPLP-PS methods and the Gaussian

mechanism to achieve the desired (ε, δ)-Link DP with 0.1ε
for parameter selection. We report results for several values

of ε, while δ is set to be smaller than the inverse number of

private entities (i.e., links for link-level privacy).

All the models are implemented in PyTorch using PyTorch-

Geometric (PyG). Experiments are conducted on two devices

with NVIDIA GeForce RTX 4090 GPUs, Intel Xeon 6238

CPUs, and 32 GB RAM.

B. Experimental Results and Analysis

1) Overall Results: We first compare the AUC of our

proposed methods against the non-private and the differentially

private baseline (i.e., LapGraph and FKGE). We fix the privacy

budget to ε = 4 for the private methods. The results are

presented in Table II. We observe that the proposed path

subgraph-based method (DPLP-PS) is competitive with SEAL,

with a decrease within 6.5% in AUC on the four datasets.

DPLP-PS significantly outperforms the private competitors

LapGraph, FKGE and DPLP-NS. The AUC of DPLP-PS

surpasses that of LapGraph by approximately 37, 16, 25,

and 5 points for the Yeast, USAir, C.ele, and PB datasets,

respectively. Furthermore, it exhibits an increase of roughly 5,

7, 6, and 4 points compared to FKGE across the same datasets.

The DPLP-NS model performs better than LapGraph on

the Yeast, USAir, and C.ele datasets, demonstrating the argu-

ment that our gradient-perturbation paradigms are superior to

input perturbation methods under strict privacy requirement.

However, on the PB dataset, LapGraph achieves a higher

AUC by approximately 4 points compared to DPLP-NS. This

discrepancy can be attributed to the high average degree in PB,

necessitating a higher θ to retain sufficient training samples.

Nevertheless, an excessively large θ in DPLP-NS results in
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(a) C.ele (b) USAir (c) Yeast (d) PB

Fig. 5: Results of AUC by varying privacy budgets.

TABLE II: Test AUC(%) of different methods with ε = 4.
The best-performing private method is highlighted.

Model Yeast USAir C.ele PB

SEAL 97.91± 0.52 96.62± 0.72 90.30± 1.35 94.72± 0.46
LapGraph 54.82± 8.90 76.99± 11.18 58.26± 15.25 85.08± 5.24

FKGE 87.49± 2.24 86.78± 3.23 78.07± 1.49 86.59± 0.37
DPLP-NS 85.89± 7.26 79.90± 14.09 71.88± 5.94 81.69± 11.66
DPLP-PS 92.02± 1.18 93.74± 0.04 84.12± 0.29 90.75± 0.24

high sensitivity, thereby impacting the model’s performance-

a phenomenon not significantly observed in DPLP-PS. This

results substantiates our theoretical findings that DPLP-PS

enhances the model performance of privacy models on dense

datasets by learning with lower sensitivity.

According to Table II, we observe that FKGE consistently

outperforms DPLP-NS across all datasets. This indicates that

at high dependency levels, the noise introduced by DP di-

minishes the expressive power of GNNs, rendering them less

effective compared to FKGE. Conversely, DPLP-PS surpasses

FKGE in all datasets, highlighting the efficiency of path sub-

graph extraction in reducing dependency levels and improving

privacy amplification.

As shown in Figure 5, as ε increases, the suboptimal

outcomes following FKGE’s convergence reveal its limitations

in link prediction. This is primarily due to FKGE’s use of

translation or latent factor models for graph embeddings,

which struggle to capture structural node similarities [36].

Additionally, the graph embeddings might necessitate large

dimensions to express some simple heuristics, leading to

inferior performance under DP noise compared to global

heuristics [37]. In contrast, DPLP-PS employs GNN models

capable of learning structural similarities between nodes based

on path subgraphs. Its superior performance over FKGE across

all privacy budgets validates Theorem 3, demonstrating that

DPLP-PS can maintain link prediction accuracy by learning

various global heuristics.

To study the impact of different privacy budgets on the

performance of link prediction, we present the AUC for each

method by varying ε from 1 to 10. The results are illustrated in

Figure 5. It’s obvious that DPLP-PS consistently outperforms

LapGraph, FKGE and DPLP-NS, particularly in more strict

privacy settings (i.e., when given a small privacy budget).

Specifically, DPLP-NS converges to its optimal value faster,

yielding a superior AUC than LapGraph when the privacy

budget is stringent (i.e., ε ≤ 2.5). However, due to the larger

noise added by DPLP-NS, it has a larger standard deviation,

making its performance less stable. As the privacy budget

increases, it is eventually surpassed by LapGraph.

The performance gap between DPLP methods and Lap-

Graph is influenced by the dataset’s degree distribution. For in-

stance, on the Yeast dataset, which has lowest average degree,

LapGraph necessitates a high privacy budget (with ε > 7.5) to

achieve satisfactory accuracy. Conversely, on PB, possessing

the highest average degree, LapGraph surpasses the DPLP-

NS baseline with a privacy budget of merely 2.5. Notably, the

AUC of DPLP-PS method that of the non-private SEAL with

much smaller privacy budgets and consistently outperforms

LapGraph when ε < 10. This notable performance gap is

attributed to LapGraph’s direct perturbation of input, which

alters the sparsity of the original graph. The sparsity of the

graph serves as a crucial feature influencing the performance

of link prediction models. Experimental results validate this

observation, as LapGraph performs most poorly on the most

sparse Yeast dataset, with a AUC gap of over 30% compared

to DPLP-PS when ε < 2.5.

2) Correctness of the indicator design: We now validate

the correctness of our designed performance indicator (see

Equation 10) by comparing its values i.e., 1
�(k,θ) , with the

performance of DPLP. By varying combinations of (θ, k), we

report the values of indicator and the AUC of DPLP-PS on four

datasets in Figure 6, where the privacy budget ε = 11 (with

0.1ε for computing indicator). We can observe that, the AUC

and the indicator values show a similar trend across different

combinations of (θ, k) on all datasets. This indicates that our

designed loss function accurately captures the projection and

perturbation loss, enabling DPLP-PS to benefit from parameter

selection effectively.

On the USAir and PB datasets, fluctuations in data points

are observed, and the prediction of trends for specific points

deviates, such as the transition from point (60, 3) to (60, 4) on

USAir. This is attributed to the relatively small size of these

datasets, introducing biases in estimating projection and per-

turbation losses. However, even with such challenges, DPLP-

PS remains viable to avoid unfavorable parameter selections on

both datasets. This demonstrates the capability of our designed

loss function to serve as a performance indicator and save

privacy budget for expensive hyperparameter searching.

3) Ablation study on parameters k and θ: Now we further

study the impact of parameters k and θ on the performance

of DPLP-PS, respectively. As for the number of hops k, we

restrict our selection of k to the set {2, 3, 4}. This decision

is informed by two primary observations. Firstly, empirical
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(a) C.ele (b) USAir (c) Yeast (d) PB

Fig. 6: Comparison of indicator value and AUC of DPLP-PS.

Fig. 7: Effect of the number of hops k on the AUC perfor-

mance of the DPLP-PS on 4 datasets.

assessments reveal that performance generally plateaus or does

not improve significantly for k ≥ 5 [6]. This aligns with our

theoretical findings emphasizing that the most valuable infor-

mation predominantly resides within shorter paths. Secondly,

even at k = 4, the inclusion of a hub node can sometimes

lead to exceedingly large subgraphs. Based on this setting, we

report the AUC under a privacy budget of ε = 4. The findings

are presented in Figure 7.

We observe that DPLP-PS exhibited peak performance for

k = 2 on the C.ele, USAir, and PB datasets. For these datasets,

as k increases to 4, the AUC of the DPLP-PS initially declines

at k = 3 and then rebounds at k = 4. This fluctuation can

be attributed to the fact that involving more hops augments

the noise in the gradient, which in turn negatively impacts

the model’s AUC. Yet, with an increased k, the model can

leverage information from more distant nodes for predictions,

potentially counterbalancing the gradient perturbation. This

phenomenon is particularly pronounced in datasets with a

smaller average degree. As illustrated in Figure 7, DPLP-PS

optimally capitalizes on multiple hops within the Yeast dataset,

achieving the highest efficacy at k = 4. This is because the

information aggregated from more distant nodes is sufficient

to compensate for the introduced noise from a larger k.

Then we study the influence of threshold θ on the AUC

of DPLP-PS, where θ varies from 20 to 100 and the privacy

budget ε is set to 3 or 11. Figure 8 shows that the AUC keeps

growing with θ on PB (which has a high average degree),

while on C.ele, USAir and Yeast (with lower average degrees),

the AUC increases with θ up to a peak point around 40 or

60, and then becomes steady or decreases. This is due to the

trade-off between having more samples for training and the

amount of noise injected: the larger θ, the fewer samples are

excluded from the aggregations (i.e., less information loss), but

on the other hand, a larger sensitivity of the batched gradient

introduces more noise.

4) Results with different GNN architectures and link pre-
diction strategies: As mentioned in Section IV, the pro-

posed DPLP paradigm can be implemented with most GNN

architectures. We investigate the performance of DPLP-PS

with three more GNN architectures apart from the default

GCN architecture, namely GraphSAGE [38], GIN [39] and

DGCNN [40]. The results are shown in the Table III.

We observed that GraphSAGE exhibits the least effective

performance. This can be attributed to its method of em-

ploying the Hadamard product for pairwise node represen-

tations derived from a GNN, while omitting the use of a

labeling trick [6]. Consequently, it fails to learn even basic

neighborhood-overlap heuristics, confirming our arguments in

the Introduction. Furthermore, our analysis shows a marginally

better performance of GIN compared to GCN. This improve-

ment stems from GIN’s substitution of linear feature trans-

formations in GCN with Multi-Layer Perceptrons (MLPs),

enhancing its expressiveness in message-passing-based GNNs.

As for DGCNN, it features a SortPooling readout layer that

comprehensively processes all nodes in the enclosing sub-

graph. This methodology markedly improves its performance

in specific datasets, notably Yeast, C.ele, and PB. However,

there is a minor decline in effectiveness when applied to the

USAir dataset. This variation in performance underlines the

fact that employing a subgraph readout layer can be beneficial

in certain contexts, a point that resonates with our initial

discussion in the Introduction.

The aforementioned findings illustrate that DPLP is adapt-

able across a range of GNN architectures. Notably, even the

GAE, which shows the least performance, can yield a model of

acceptable usability. Despite the potential superiority of other

models on varied datasets, GCN remains the preferred frame-

work for DPLP. This preference is due to GCN’s extensive

application and its ability to outperform other architectures in

certain scenarios, such as with the USAir dataset.

We then apply DPLP to the state-of-the-art model ELPH

for link prediction [17] to demonstrate that the proposed

framework can be implemented with more advanced algo-

rithms other than SEAL. Although subgraphs are not explicitly
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Fig. 8: Impact of the threshold θ on the AUC performance of DPLP-PS.

TABLE III: Test AUC(%) of different GNN architectures
with ε = 4. The best result on each dataset is highlighted.

Model Yeast USAir C.ele PB

GCN 92.02± 1.18 93.74± 0.04 84.12± 0.29 90.75± 0.24
GraphSAGE 84.23± 1.25 86.29± 0.79 77.34± 2.37 80.53± 0.74

GIN 93.23± 1.24 93.48± 0.96 85.73± 0.18 91.79± 0.09
DGCNN 94.76± 0.96 93.33± 0.47 88.75± 0.54 92.87± 0.08

extracted in ELPH, this method estimates the structure features

within neighborhood subgraphs for link embedding learning.

Thus, the sensitivity can be computed by our analytical results,

and our gradient perturbation method can be applied to ensure

DP training. Comparative results are shown in the Table IV.

Although ELPH outperforms SEAL, its dependency level

remains high as it is still based on neighborhood subgraphs,

resulting its private method (i.e., DPLP-ELPH) in greater

magnitude of noises and loss of utility. This demonstrates that

even the best methods in non-private settings need to be re-

evaluated for their utility under DP.

TABLE IV: Test AUC(%) of different link prediction
model with ε = 1, 10. The best result on each dataset
is highlighted.

Model Privacy level Yeast USAir C.ele PB

SEAL N/A 92.02± 1.18 93.74± 0.04 84.12± 0.29 90.75± 0.24
ELPH N/A 94.13± 1.02 95.82± 0.02 86.23± 0.18 93.25± 0.16

DPLP-PS ε = 1 90.54± 3.39 91.90± 3.49 80.56± 7.53 89.87± 8.35
ε = 10 91.68± 1.39 93.42± 0.85 84.01± 0.21 90.83± 0.55

DPLP-ELPH ε = 1 83.28± 5.26 82.54± 12.23 75.37± 4.07 82.59± 10.06
ε = 10 86.60± 3.19 82.09± 11.93 77.90± 2.78 84.18± 8.62

5) Time consumption: We evaluate the time cost of DPLP

methods in different phases and compare them with that of

the ground truth (i.e., SEAL). We extract subgraphs using

8 parallel processors. As indicated in Table V, DPLP-PS

exhibits a higher time cost for subgraph extraction compared

to other methods, consistent with the time complexity analysis

in Section VI-B. DPLP-PS requires additional time to identify

the path between target node pairs compared to DPLP-NS,

particularly evident in the Yeast and PB datasets, indicating

an increase in time cost with graph size expansion. This

discrepancy is attributed to the maximum path length k of 4

in the Yeast dataset. Notably, DPLP-PS features slightly lower

training time than DPLP-NS due to the smaller size of the

path subgraph, reducing computational workload. Conversely,

DPLP-NS exhibits higher subgraph extraction time than SEAL

due to projection operations, albeit the difference is marginal

since both methods extract neighborhood subgraphs. Addition-

ally, the training time of DPLP-NS surpasses that of SEAL

slightly, attributable to the gradient clipping required within

batches during DPLP’s training process. Furthermore, we can

use more processors to improve the efficiency, the results are

shown in [31]

TABLE V: The time costs (s) of SEAL, DPLP-NS and
DPLP-PS in different phases.

Method Phase Yeast USAir C.ele PB

SEAL Subgraph Extraction 3.52 0.48 0.52 2.54
Training(per epoch) 0.08 0.08 0.07 0.12

DPLP-NS Subgraph Extraction 3.67 0.50 0.52 3.00
Training(per epoch) 0.51 0.22 0.18 0.24

DPLP-PS Subgraph Extraction 150.02 2.15 2.53 80.00
Training(per epoch) 0.22 0.12 0.11 0.2

VIII. CONCLUSION

This work introduces a pioneering privacy-preserving link

prediction framework, named DPLP. DPLP is the first work

to learn differentially private GNNs tailored to link predic-

tion, while being adaptable across various GNN architectures.

Within DPLP framework, the subgraph extraction module

serves as the building block to achieve high model utility.

A neighborhood subgraph extraction method is first designed

for DPLP, then we optimize it by devising a path subgraph

extraction scheme, which minimizes data dependency by con-

centrating on the information within the paths connecting the

nodes of a target link. As a result, we have achieved notable

improvements in prediction accuracy. Our extensive theoretical

analysis, encompassing both privacy and utility dimensions,

validates the framework’s efficacy.

In future work, we aim to investigate whether the most

appropriate subgraph construction method can be determined

using our dataset knowledge. A key challenge involves devis-

ing a versatile sensitivity analysis method suitable for vari-

ous subgraph construction techniques. Our future objectives

include investigating the possible approaches such as local

sensitivity to tackle the above challenges, and extend the

framewrok to more strict privacy protection scenarios.
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