2024 IEEE 40th International Conference on Data Engineering (ICDE)

Fast Multilayer Core Decomposition and Indexing

Dandan Liuf, Run-An Wangi, Zhaonian Zou*, Xin Huang§
t1*Harbin Institute of Technology, China $ Hong Kong Baptist University, China
fddliu@hit.edu.cn fwangrunan@stu.hit.edu.cn *znzou@hit.edu.cn Sxinhuang@comp.hkbu.edu.hk

Abstract—The multilayer (ML) graph model provides a robust
representation of multi-sourced relationships among real-world
entities, laying a solid foundation for reliable knowledge discov-
ery. ML core decomposition is a fundamental analytical tool for
ML graphs. It offers valuable insights into the dense structures
in ML graphs and forms the basis for many complex analysis
tasks. However, existing ML core decomposition algorithms face
performance issues due to unavoidably unnecessary computations
and are inherently serial, unable to fully leverage the multi-
core processors. In this paper, we reformulate the search space
of this problem with a tree-shaped structure called MLC-tree.
Based on it, we present an efficient serial ML core decomposition
algorithm that achieves improved time complexity over existing
solutions and the first parallel framework for this problem by
exploiting the path-decomposition of the MLC-tree. Two practi-
cal optimizations are introduced to further boost the parallel
efficiency. To facilitate applications built upon ML cores, we
construct a compact storage and index structure for ML cores
based on the MLC-tree. The usefulness of this index is showcased
through two applications: ML core search and a novel weighted
densest subgraph discovery problem. Extensive experiments on 9
real-world ML graphs show that our MLC-tree-based ML core
decomposition algorithm achieves a speedup of up to 128 x over
existing baselines and the parallel approach attains an additional
speedup of up to 30.6x using 40 cores. Moreover, the MLC-tree
index can efficiently support the studied applications.

Index Terms—Multilayer graphs, core decomposition, parallel
algorithms, the densest subgraph

I. INTRODUCTION

Connections between real-world entities originate from var-
ious sources, such as social relationships across diverse social
media platforms [1] and biomolecular relationships derived
from different biological experiments [2]. Multilayer (ML)
graphs, structured as a series of layered graphs (layers) with
each representing a specific relationship, have demonstrated
the ability to provide a robust representation of such complex
relationships and establish a solid foundation for reliable and
accurate knowledge discovery [3]-[6].

Cohesive subgraph mining (CSM), a key primitive in graph
analysis, aims at finding densely connected vertices and has
witnessed extensive applications [5], [7]-[11]. Among various
cohesive subgraph models proposed in the literature, the notion
of k-core [12] stands out for its computational efficiency [13]
and hierarchical structures. The core decomposition of a graph,
defined as the set of all nonempty k-cores in the graph, has
proven useful in plenty of applications, such as community
detection [8], anomaly detection [14], engagement dynamic
modeling [15], graph visualization [10], etc.

Building upon the k-core model, Azimi et al. [16] intro-
duced the notion of multilayer (ML) core for ML graphs.

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00211

2695

©®© @ — Edge in 3 layers --- Edge in 2 layers
%
s Ol el
Be oo 60w &b
@ O ® D @D
":‘ ©@ (1,1,1)-core (2,1,2)-core
ool I ep ap
O E <X [<]
UXTw| | -0 @
® @‘fj (2,2,1)-core (3,3,3)-core

(a) An example ML graph (b) Subgraphs induced by ML cores

Fig. 1. An example of a 3-layer ML graph and examples of ML cores.

Given an ML graph with [layers, ML cores are identified by
[-dimensional non-negative integer vectors k: the ML k-core
is the maximal subset of vertices that forms a k[¢]-core on each
i-th layer. The ML core model inherits an elegant hierarchical
property from the k-core: the ML k-core is a subset of the
ML k’-core if k’ is element-wisely no larger than k.

Example 1. Fig. I(a) depicts a toy ML graph with 3 layers
denoted as G, Gy, and G3. These layers share the same set
of vertices but have varying edge sets representing different
relationships. Fig. 1(b) displays several ML cores and the
subgraphs induced by them. For example, the vertex set
{c,d,e, f} forms the (3,3,3)-core as each vertex in it is
adjacent to at least 3 other vertices in every layer, forming
a 3-core in each layer. Moreover, the (3,3, 3)-core is nested
within other shown ML cores due to the hierarchical structure.

Galimberti et al. [17] investigated the ML core decomposi-
tion problem, pioneering the study of the CSM problem in ML
graphs using core-based approaches. ML core decomposition
of an ML graph is defined as the set of all nonempty ML
k-cores in the graph. It provides a fine-grained view of the
cohesive structures in ML graphs, revealing the connections
among cohesive areas on different layers. It also serves as a
foundation for a range of analysis tasks in ML graphs [18]:

1) It is proven to be an efficient pre-processing tool for
solving more complex CSM problems on ML graphs
such as finding cross-layer quasi-cliques [6], [19].

It offers a solution to the densest subgraph problem in
ML graphs with a guaranteed approximation ratio.

It provides solutions for the community search problem
in ML graphs, which identifies communities containing
a given set of queried vertices.

4) Moreover, similar to the single-layer case [10], the hier-

2)

3)

archical structure of the ML core decomposition shows
promise in guiding the visualization of ML graphs.

Computing the ML core decomposition is much more chal-
lenging than its single-layer counterpart: it has to consider each
combination of layers, which results in an exponential time
complexity in the number of layers. To tackle this challenge,
Galimberti et al. [17], [18] use a lattice structure to organize all
potential ML cores based on their containment relationships.
They devise three algorithms differing in respective search
orders on the lattice and pruning techniques to solve this prob-
lem. However, all these algorithms face performance issues.
Firstly, the complex lattice structure causes all traversal orders
to unavoidably visit, even compute, an ML core in the lattice
multiple times, leading to massive unnecessary computations.
Secondly, these algorithms heavily rely on the results of
previous computations, making it challenging to parallelize
and leverage the multi-core capabilities of processors.

Other researches have explored simpler models such as d-
CC [5], [20] and (k, \)-FirmCore [21], and the decomposition
problems based on them. d-CC simplifies the vector k in the
ML core model to a single integer d, and requires vertices
to form d-cores on given layers. In a (k, \)-FirmCore [21],
vertices must connect to > k other vertices in > A layers.
Decomposition problems for these two models have lower
time complexities of O(2/*!|G|) and O(|L||G|), respectively.
However, these two models impose inflexible cohesive con-
straints, i.e., employ the same minimum degree requirement on
each layer, overlooking the inherently different cohesiveness
of varying layers. This limitation makes them unsuitable as
a substitute for the ML core model in many scenarios. For
example, in ML social networks describing both the ‘who-
follows-who’ relationship on an online social platform and
the ‘friendship’ connections in real life, vertices in the former
layer are certainly expected to have more neighbors. Using the
same minimum degree constraints for both layers is evidently
inappropriate and may lead to undesired results.

Given the above limitations in existing researches and the
diverse applications built upon ML cores, this paper revisits
the ML core decomposition problem, develops more efficient
solutions, and addresses the associated ML core indexing
problem that builds a compact storage and index structure for
ML cores to facilitate further analytical tasks.

To efficiently solve the ML core decomposition problem,
we overcome the limitations in the existing lattice-based solu-
tions [18] by both reducing the search space and introducing
parallelism. Specifically, we reformulate the search space for
this problem using a simple tree-shaped structure called MLC-
tree. The MLC-tree determines a DFS-order generation of the
ML core decomposition, ensuring a unique visit to each ML
core and improving the time complexity over lattice-based
approaches. Going a step further, we explore parallel solutions.
The distinct features of ML cores — notably smaller in size
than the k-cores but numerous — make existing parallel core
decomposition methods [22], [23] inefficient in computing ML
cores. Facing this challenge, we propose a novel path-level-
parallel paradigm tailored to this problem, which concurrently

2696

computes ML cores on independent paths of the MLC-tree. To
further boost efficiency, we design two optimization strategies
including core-level-parallel startup and path merging. To the
best of our knowledge, this is the first parallel algorithm for
the ML core decomposition problem in the literature.

Leveraging the containment relationships among ML cores
embedded in the MLC-tree, we augment the MLC-tree and
build a compact storage and index structure for ML cores. We
showcase an index-based ML core search algorithm running
in linear time in the height of the MLC-tree and the size of
the queried ML core. As a further application, we generalize
the existing densest subgraph problem [18] in ML graphs
to incorporate layer weights, allowing for considering users’
different preferences across layers. An efficient solution with
guaranteed quality of the results is built upon the index.

We conducted extensive experiments on 9 real-world ML
graphs to evaluate the performances of the proposed algo-
rithms and highlight the following results: (1) Our MLC-tree-
based ML core decomposition algorithm achieves a speedup
of 3 — 128 compared to the fastest lattice-based algorithms
across tested graphs. (2) The parallel decomposition algorithm
attains a speedup of up to 30.6x on 40 cores with hyper-
threading over the enhanced MLC-tree-based serial baseline.
(3) The MLC-tree index demonstrates comparable perfor-
mance in supporting ML core search compared with the hash-
table-based naive storage while attaining 11% — 98% space
reductions. Additionally, it facilitates the efficient detection of
qualified weighted dense subgraphs in ML graphs.

Contributions: The main contributions of this paper are
summarized as follows:

1) A tree-shaped search space for the ML core decompo-
sition problem and an efficient DFS-based solution.
The first parallel framework for computing the ML core
decomposition and two practical enhancement strategies.
A compact storage and index structure for the ML core
decomposition that supports fast ML core search.

A novel formulation of the weighted densest subgraph
problem in ML graphs and an efficient solution based
on the index with guaranteed quality of the results.
Extensive experimental results on 9 real-world ML
graphs, demonstrating the high practical performance of
the proposed algorithms.

2)
3)

4)

5)

For space limitations, we leave some proofs and experimen-
tal results in the supplementary material [24].

II. PRELIMINARIES

In this section, we introduce some notations related to the
ML graph model and ML cores. Then, the problems studied
in this paper are formalized.

A. Multilayer Graphs

A multilayer graph (ML graph for short) is represented
by G = (V,E,L), where V is a set of vertices, L
{1,2,...,|L|} is a set of layer numbers, and £ C V xV x L
is a set of edges. An edge (u,v,i) € E indicates that the
vertices v and v are adjacent on layer i. In the ML graph

G = (V,E, L), each layer i € L has its own set of edges
denoted as F;, that is, E; = {(u,v)|(u,v,i) € E}. The
graph on layer ¢ is denoted as G; = (V, E;). For any vertex
v €V, let N;(v) be the set of neighbors of v in G;, and let
d;(v) = |N;(v)| be the degree of v in G;.

Given a vertex subset S C V, the subgraph of GG; induced
by S is G;[S] = (S, E;[S]), where E;[S] is the set of edges
in E; with both endpoints in S. Similarly, the subgraph of
the ML graph G induced by S is G[S] = (S, E[S], L), where
E[S] is the set of edges in E with both endpoints in .S. The
set of neighbors and the degree of any vertex v € S in G;[5]
are denoted as N;°(v) and df (v), respectively.

B. Multilayer k-Cores

Definition 1 ([25]). Given an ML graph G = (V, E, L) and
an |L|-dimensional non-negative integer vector k = [k;icr,
the multilayer k-core (ML k-core for short) of G is a maximal
subset C C 'V such that d$ (v) > k; for allv € V and i € L.

For ease of notation, we use Cyx to denote an ML k-core
of G, and accordingly, k is called the coreness vector of
Ck. Galimberti et al. [18] have introduced the following two
elegant properties of ML cores.

Property 1 (Uniqueness). Given an ML graph G = (V, E, L)
and an |L|-dimensional integer vector k = [kilicp, there is
one unique ML k-core C.

Property 2 (Containment). Given an ML graph G
(V, E, L) and two |L|-dimensional integer vectors k = [k;]icL

and X' = [k})icr, we have Cx C Cy if ki < k; for all i € L.

C. Problem Formulation

Aiming for fast computation of the ML core decomposition
and facilitating tasks built upon ML cores, this paper addresses
the following two problems:

Problem 1. (Multilayer Core Decomposition, ML-CD) Given
an ML graph G = (V, E, L), find the set of all nonempty ML
k-cores of G for all possible coreness vectors Kk, which is
referred to as the ML core decomposition of G.

Problem 2. (Multilayer Core Indexing, ML-CI) Given an
ML graph G = (V, E, L), build a data structure to compactly
store the ML core decomposition of G, enabling fast retrieval
of any ML k-core given a coreness vector k.

III. MULTILAYER CORE DECOMPOSITION (ML-CD)

In this section, we first discuss the existing solutions [18] to
the ML-CD problem and then propose novel and more efficient
algorithms based on a tree-shaped search space.

A. Review of Lattice-based ML-CD Algorithms

Given an ML graph G = (V, E, L), the existing solutions to
the ML-CD problem on G utilize various search strategies on
the search space represented as a core lattice as depicted in
Fig. 2(a). The core lattice is a directed acyclic graph (DAG),
where each node represents a coreness vector, which uniquely
corresponds to an ML core in G (Property 1), and each edge

2697

(b) MLC-tree of a 3-layer graph

Fig. 2. Core lattice and MLC-tree of a 3-layer graph.

represents the containment relationship between two end ML
cores. We refer to the node representing the ML k-core Cy
as the k-node. In the core lattice, the [0]'“!-node is the single
root node. The k-node is the father of the k’-node if k' is
obtained by increasing exactly one component of k by 1.

Property 2 ensures that each node in the core lattice repre-
sents an ML core that is a subset of the ML cores represented
by its father nodes. Taking advantage of this fact, Galimberti
et al. [18] have proposed the following three traversal orders
to search the core lattice in order to reduce the overheads of
computing empty or redundant ML cores.

o Breadth-First Search (BFS): Nodes in the core lattice

are traversed level by level. The ML k-core represented
by the k-node is computed based on the intersection of
ML cores represented by all father nodes of the k-node.
Depth-First Search (DFS): Nodes in the core lattice are
visited along paths from internal nodes deep down to
leaf nodes. On a search path, the ML k-core is computed
solely based on the ML core represented by the father
node of the k-node on the path.
Hybrid Search: Combining BFS and DFS, nodes along
the paths from the root to the leaf nodes, which have
only one non-zero component in their associated coreness
vectors, are visited in a DFS order, while the remaining
nodes are visited in a BFS order.

Although the core lattice provides a complete representation
of the containment relationships between ML cores, it involves
a substantial number of edges, complicating the implementa-
tions of the above search orders. Specifically, all three traversal
orders involve visiting and/or computing a node in the core
lattice multiple times due to the presence of multiple father
nodes of this node. Additionally, adopting any of the above
traversal orders requires storing certain ML cores to facilitate
subsequent traversal, leading to considerable space costs.

Algorithm 1 MLCD (Serial ML-CD)

Input: An ML graph G = (V, E, L)
Output: The set R of all nonempty ML cores in G with their coreness vectors
DR {([0]'"],v)}
: DFsDEC(G, [0]/7], R)
: return R
: procedure DFSDEC(G, k, R)
for i < |L|,|L| —1,...,Inz(k) do
k' +— k
k'[i] « K'[i] + 1
C «+ PEEL(G, k')
if C' # () then
R+ RU{(K',C)}
DrsDEC(G[C], k’, R)

o0 RNUN A WD~

B. Tree-based ML-DC Algorithm

To overcome the limitations of the core lattice, we propose
to remove certain edges from it and transform it into a tree
structure, as illustrated in Fig. 2(b), which we refer to as
the multi-layer core tree (MLC-tree). The MLC-tree allows
for a simpler traversal order to solve the ML-CD problem
without requiring additional space for storing intermediate
results. Furthermore, we will later demonstrate its usefulness
in supporting parallel ML-CD and indexing the ML core
decomposition, which facilitates fast retrieval of ML cores.

MLC-trees: For an integer vector k, let Inz(k) denote the
index of the last non-zero component in k. Let the k-node be
the father of the k’-node in the core lattice. The edge between
the k-node and the k’-node is kept in the MLC-tree if k and
k’ differ in a component at an index no less than Inz(k). In
the core lattice depicted in Fig. 2(a), the green edges violate
this condition and are therefore discarded to form the MLC-
tree. Consequently, each node in the MLC-tree, except for the
root, has exactly one father node, making it a spanning tree
of the core lattice.

Algorithm: The ML-CD problem can be addressed by per-
forming a depth-first search on the MLC-tree and computing
the ML core represented by each visited node. Algorithm 1
outlines the procedure. Given an ML graph G = (V,E, L),
a set R is used to keep all discovered nonempty ML cores
along with their coreness vectors. In line 1, R is initialized to
contain the [0]/*I-core represented by the root of the MLC-
tree. Obviously, the [O]'L‘-core is V. Then, the algorithm calls
Procedure DFSDEC to conduct the depth-first search (line 2).
Finally, the results kept in R are returned in line 3.

Let us delve into Procedure DFSDEC. It takes 3 parameters:
an ML graph G, an integer vector k corresponding to the father
of the node under investigation, and the result set R. The
procedure performs a for loop (lines 5-11) that iterates over
the children of the k-node and explores the subtree rooted
at each child. Inside the loop, it creates the coreness vector
k' for a child node by incrementing a component of k at an
index at least Inz(k) by 1 (lines 6-7). Next, the procedure
calls Function PEEL to compute the ML k’-core C' on the ML
graph G using a peeling process [18] (line 8). The peeling
process iteratively removes all vertices that fail to satisfy the
degree constraint imposed by k’ on every layer. If there are
vertices in C' that survive the peeling process, C' is added
to the result set R in line 10, and the procedure continues

2698

to explore the children of the k’-node by recursively calling
Procedure DFSDEC with parameter k’ in line 11. According
to Property 2, the ML core represented by any child of the
k’-node must be a subset of C, we pass the subgraph of G
induced by C' to the call to Procedure DFSDEC in line 11.

Theorem 1. Algorithm 1 finds all nonempty ML cores in the
ML graph G in O(TTH " k(GH)(|L| - [V| + | E))) time, where
k(G;) denotes the degeneracy of G;.

The proof of Theorem 1 requires the following two impor-
tant concepts that will also be frequently used in the rest of
the paper. For any k-node in the MLC-tree, let k’-node be a
child of the k-node. The k’-node is said to be the rightmost
child of the k-node if k and k’ are only different in their last
(rightmost) components, more precisely, k’[i] = k][] for all
i < |L|, and X'[|L|] = K[|L|] + 1. Furthermore, we can figure
out the rightmost path from the k-node to a leaf node by
following the rightmost child of every encountered node until
reaching a leaf node. For example, in the MLC-tree shown
in Fig. 2(b), the (0,0, 1)-node is the rightmost child of the
(0,0,0)-node, and the rightmost path from the (0,0, 0)-node
is composed of nodes with vectors (0, 0,0), (0,0, 1), (0,0,2),
and (0,0, 3) (nodes with rose red borders).

Proof Sketch. The correctness of Algorithm 1 is guaranteed by
Property 2. The DFS order enforced by Procedure DFSDEC
ensures that every node in the MLC-tree is visited followed
by its rightmost child (if it exists). As a result, for any k-node
with k[|L|] = 0, all ML cores represented by the nodes on
the rightmost path starting from the k-node to a leaf node
are computed consecutively. This forms a complete peeling
process on G[C|], where C' is the ML core represented by the
father of the k-node. This peeling process involves visiting the
neighbors of all vertices in G[C] and removing all edges in
G[C], which totally takes O(|L|-|C|+|E[C]|) time. In addition,
the number of rightmost paths to be handled is equal to the
number of k-nodes in the MLC-tree with k[|L|] = 0, which is
bounded by O(lei‘f ! k(G;)). Therefore, the time complexity
of Algorithm 1 is O(TTE w(G)(IL] - V] + | E))). O

Ordering of Layers: The order of layers in G determines
the organization, specifically, the father-child relationships, of
the nodes in the MLC-tree, thereby significantly impacting
the performance of Algorithm 1. For instance, in the MLC-
tree shown in Fig. 2(b), the (1,0, 0)-node is the father of the
(1,0, 1)-node. If a graph order designates G5 ahead of Gy, the
(0,0, 1)-node will become the father of the (1,0, 1)-node in
the new MLC-tree. Intuitively, if Gy is denser or has a larger
degeneracy than (3, the same minimum degree constraint on
(3 holds more power to reduce the graph size than that on G,
and thereby the (0,0, 1)-core is likely to have a smaller size
than the (1,0, 0)-core. In this case, allowing the (0, 0, 1)-node
to be the father of the (1,0, 1)-node is more advantageous as
fewer vertices need to be peeled. Therefore, we order layers
in a non-decreasing order of layer density or layer degeneracy
to enhance the practical efficiency of Algorithm 1.

MLC-tree O ML core Rightmost path

(a) MLC-tree decomposition

Fig.

C. Parallel ML-CD Algorithm

In this section, we explore parallel approaches to solving the
ML-CD problem, capitalizing on the multicore capabilities of
modern processors. We begin by introducing two key metrics
for evaluating the performance of parallel algorithms: (1)
work, which counts the total number of operations performed,
and (2) depth, representing the length of the longest sequence
of dependent operations. Depth quantifies the minimum run-
ning time on an infinite number of processors.

As the number of layers |L| is typically small in practice,
we can consider it as a constant, and the ML-CD problem is
thereby polynomial-time solvable (Algorithm 1)!. However, as
its solution encompasses the solution to the decision problem
of the k-core (k > 3) on every single layer, which is known
to be P-complete [26], this problem is inherently sequential
and is unlikely to be solved in polylogarithmic depth unless P
= NC2. Facing this challenge, we first propose a novel MLC-
tree-based parallel framework for this problem, which is then
complemented by two optimizations to further boost efficiency.

1) Basic Framework: As analyzed in the proof of Theo-
rem 1, the process of MLCD (Algorithm 1) can be seen as
computing ML cores on the rightmost path starting from each
k-node in the MLC-tree, where k[|L|] = 0, through a single
peeling process. Building on this idea, we decompose the
MLC-tree into a series of independent rightmost paths, as
depicted in Fig. 3(a), and devise a basic parallel framework
that exploits the path-level parallelism: the computation of ML
cores following each rightmost path is carried out indepen-
dently in parallel. Fig. 3(b) illustrates this idea.

Algorithm 2 outlines the implementation. It employs a
similar DFS traversal on the MLC-tree as MLCD. However, it
always initiates a new task for traversing each non-rightmost
child of the currently visited k-node (line 11), while the thread
visiting this node proceeds to compute the ML cores repre-
sented by nodes on the rightmost path of this k-node through
a peeling process (Procedure SEARCHRMPATH). Note that
during the execution, each idle thread acquires and processes
a task, with no predetermined order for the task execution.

"When |L| is large and cannot be treated as a constant, the number of
ML cores can grow exponentially with | L|, bounded by O(|V[IZ1). It is then
infeasible to solve the ML-CD problem with limited computational resources.

2NC is the set of decision problems decidable in polylogarithmic time on
a parallel computer with a polynomial number of processors.

Processed by

(b) Basic parallel framework

2699

Thread 1 Thread 2

Thread 3

Barrier

(c) Core-level-parallel startup

3. Mlustrations of the parallel ML-CD algorithms.

Algorithm 2 ParMLCD-Basic (Parallel ML-CD with the
basic path-level parallelism)

Input: An ML graph G = (V, E, L)
Output: The set R of all nonempty ML cores in G with their coreness vectors
I: R+ 0
2: PARDFSDEC(G, [O]‘L‘, R)
3: return R
4: procedure PARDFSDEC(G, k, R)
Cy < PEEL(G, k)
if Cx # 0 then
R+ RU{(k, Ci)}

for i < |L| —1,|L| -2, ,lnz(k) do
k' + k
k'[i] < k'[i] + 1

Create a new task running PARDFSDEC(G, k’, R)
SEARCHRMPATH(G [Ck], k, R)
: procedure SEARCHRMPATH(G, k, R)
while true do

K[|L[] « K[|L|]] + 1

C <« PEEL(G, k)

: if C # (then
18: R+ RU{(k,C)}
19: G+ G[C]
20: else break

Theorem 2. Algorithm 2 ﬁnds all nonempty ML cores in the
ML graph G in O(HIL‘ k(Gi)(|L| - |V + |E|)) work and
O w(G(IL]- [V + |E))) depih.

Remark: An alternative parallel framework for the ML-
CD problem, inspired by its single-layer counterpart proposed
in [23], is to perform the computations on each rightmost path,
one after another, using available threads. By parallelizing
Function PEEL and introducing the bucketing technique to
dynamically maintain vertex degrees, each rightmost path can
be handled in the same expected work as the serial case
with a depth of p|L| - log|V| with high probability®, where
p is bounded by the maximum number of vertices across
layers. However, the practical implementation of this approach
involves significant synchronization between key operators.
Moreover, as ML cores typically have smaller sizes but larger
numbers compared with k-cores, the computations required to
obtain ML cores from their fathers cannot effectively utilize all
available threads. These factors collectively result in a notably
poor practical performance.

Drawbacks: This basic parallel framework has the fol-
lowing drawbacks: (1) Each thread needs to maintain thread-

3 An algorithm is considered to have a O(f(n)) cost with hlgh probability
if it costs O(k - f(n)) with a probability of at least 1 — 1/n*.

1.00 i 100 [—
075k 107
E 102f
= s =S |
§0.50:— :10 : J
E 10°F
0.25:— 105 l B
000k W= o6k L LT
1 2 3 4 5 6 1 2 3 4 5 6
level level
(a) Friendfeed (b) Dblp-coauthor

Fig. 4. Sizes of the ML cores C' at different levels of the MLC-tree
(normalized by the total number of vertices in the input ML graph).

Algorithm 3 P-Peel (Parallel version of PEEL)

Input: An ML graph G = (V, E, L) and a vector k € NI*/

Output: The ML k-core of G

. Initialize global arrays D1, Do, - -
vinGyforveVandl € L

: Initialize global array invalid in parallel > invalid[v] indicates whether v has
already been removed

. Initialize thread-local array bu f and set s < 0, e <— 0

: for v € V do in parallel

if 3l € L s.t. D;[v] < k[I] then

bufle] + v

-, Dz in parallel > D;[v] is the degree of

e+e+1
/* Each thread performs a local peeling process in lines 818 asynchronously.*/
. while s < e do
€pre < €
for I < 1,2,--- ,|L| do
for i < s,s+1,---
v bufl[i]
for v € N;(v) do
dpre < FetchAndSub(D;[u], 1)
if dpre = k[l] and —TestAndsSet(invalid[u]) then
bufle] « u
e+e+1

,€pre — 1 do

54 epre
: Barrier synchronization
: return {v|v € V,invalid[v] = false}

local structures for the rightmost path processing, each using
O(|L||V]) space, leading to huge space costs. (2) The first ML
core on each rightmost path is computed from the input ML
graph G, resulting in massive repeated computations. (3) Tasks
are generated interdependently. There are a limited number of
tasks during the startup phase of the execution, which leads
to an underutilization of available threads.

2) Core-level-parallel Startup: We introduce a core-level
parallel paradigm in the startup phase of the decomposition
to handle the limitations of the path-level parallelism. This
approach is grounded in the observation that the sizes of ML
cores substantially degrade as their levels in the MLC-tree
become lower, which is due to the combinational degree con-
straints from each layer. Fig. 4 showcases the size distributions
of ML cores on different levels of the MLC-tree for two real-
world ML graphs Friendfeed [18] and DBLP-coauthor [27].
We can see that the median sizes of ML cores on the third
level degrade to 4% and 0.02% of the number of vertices in
the input graph, respectively. This suggests that a large number
of vertices will be peeled when computing ML cores on upper
levels, which offers the potential for efficient parallelization.

Algorithm 3 outlines P-Peel, a parallel version of Fun-
tion PEEL used for computing ML cores on upper levels
of the MLC-tree. It is built on two atomic instructions:

2700

FetchAndSub [28] and TestAndSet [29]. Given a mem-
ory address addr and an integer J, Fet chAndSub performs
an atomic decrement on the value at addr by § and returns
the old value stored at addr. TestAndSet takes a memory
address addr of a boolean value as input and atomically sets
the value at addr to true and returns the old value.

P-Peel works as follows. It initializes global arrays D;
for 1 < < |L| to track vertex degrees and array invalid to
mark removed vertices (lines 1-2). Each thread maintains a
local array buf that functions as a queue and tracks its head
and tail with variables s and e, respectively (line 3). Lines 4-7
identify the first batch of vertices to be removed, i.e., those
with a degree smaller than k[/] in some layer /. This process
is executed concurrently, and each thread adds its discovered
vertices into its own queue buf. Then, in lines 8-18, each
thread carries out a local peeling process asynchronously based
on its queue: for every vertex v in the queue, it iterates over
v’s neighbors, atomically updates the degrees of the neighbors,
and removes those (add those to the queue) failing to satisfy
the degree constraint imposed by k. The removal of vertices
is marked atomically to ensure that each vertex is removed
only once. After all threads have finished their execution, the
remaining vertices collectively form the ML k-core.

Replacing Function PEEL in line 8 of MLCD (Algorithm 1)
with P-Peel establishes our core-level-parallel algorithm to
compute ML cores. We adopt this approach to compute ML
cores in the startup phase of the decomposition, specifically
focusing on computing those on the first [levels of the MLC-
tree, where [is a user-specified integer. Then, by designating
the nodes on level [as new roots, we apply the path-level
parallel approach (Algorithm 2) to process the subtrees rooted
at them. According to Property 2, all ML-cores represented
by nodes in a subtree are subsets of the one represented by
the root of the subtree (root core for short), which generally
has a much smaller size than the vertex set of the input ML
graph. Therefore, we construct subgraphs induced by the root
cores of these subtrees and extract the rest of the ML cores
from them. Fig. 3(c) illustrates the whole process.

The above hybrid parallel framework typically outperforms
the basic one in both space utilization and execution time.
Firstly, it avoids the need for thread-local structures that cost
O(|L||V|) space. Secondly, it enables the computation of ML
cores on smaller subgraphs, alleviating the extensive repeated
computations involved in peeling from the input ML graph.
Additionally, it increases thread utilization during the startup
phase of the execution.

It should be noted that updating vertex degrees with multiple
threads during the execution of P-Peel unavoidably causes
thread contention. When computing ML cores on upper levels
of the MLC-tree, which usually contain a large number of
vertices, the thread contention is light. As the levels become
lower, the contention intensifies. Therefore, for graphs with a
large number of layers, we adopt a smaller [as the number of
threads increases to mitigate the thread contention. However,
for graphs with fewer layers, we opt for a larger value of
[when more threads are available. The aim is to generate

sufficient tasks to leverage the path-level parallelism, at the
expense of slightly higher thread contention overhead.

Remark: We can develop an alternative parallel implemen-
tation of Function PEEL following the idea in [23]. Specifi-
cally, in each iteration of the peeling process, edges adjacent to
all removed vertices are collected and grouped in parallel. In
this way, the changes in vertex degrees can be aggregated and
updated without conflicts. However, when practically applied
to compute ML cores on upper levels of the MLC-tree, the
overhead of heavy grouping and aggregating operations often
outweighs the benefits of non-conflicting degree updates.

3) Path merging: The startup phase picks a set of nodes
as new roots and builds small subgraphs induced by the ML
cores represented by these new roots for computing ML cores
in their respective subtrees. As the decomposition progresses
to lower levels of a subtree, the sizes of ML cores generally
become notably smaller in comparison to the root core of the
subtree. As a result, peeling from the root core to obtain these
small ML cores emerges as the most time-consuming step
within the processing of rightmost paths starting from the tree
nodes representing these small cores.

To tackle this issue, we implement a path merging strategy:
when a particular ML core C' is identified with a size smaller
than « - |Cyoot|, Where o € [0, 1] is a user-specified parameter,
and |Clo0t| is the size of the root core of the subtree, we let the
thread obtaining C' to continually compute all C"’s descendant
ML cores using Algorithm 1. This strategy reduces repeated
peeling operations for obtaining the descendant tiny ML cores
from the root core, improving the overall efficiency.

Typically, a larger o reduces repeated computations among
the processing of different rightmost paths, but it may lead
to obvious load imbalance. Conversely, a smaller « involves
more redundant computations but offers more tasks for parallel
computation and helps distribute the workload more evenly.
Therefore, we opt for a smaller o as the number of threads
increases to benefit from more parallelism, and a larger « for
fewer threads to take advantage of the reduced computation.
Moreover, when an ML graph has a small number of layers,
the number of rightmost paths in its MLC-tree is limited, and
thereby a smaller « is preferred.

4) Discussions: The path-level parallel framework and two
optimization strategies proposed in this section can be easily
adapted to address other cohesive subgraph decomposition
problems in ML graphs if the following conditions are met:
(1) The search space of the problem can be expressed as a tree
structure; (2) The cohesive subgraphs represented by the father
nodes in the tree are supersets of those represented by their
children nodes. We have outlined a detailed adapting method
for solving the gCore decomposition problem [4] in general
ML graphs in the supplementary material [24].

IV. MULTILAYER CORE INDEXING (ML-CI)

In a number of analytical tasks in ML graphs, e.g., trial-and-
error searches for ML cores with desirable characteristics and
identifying the densest subgraphs [18], there is often a need
to frequently access ML cores with various coreness vectors.

2701

L Ofb} Ofg) Ofaeg Olfgdef |

Fig. 5. Partial augmented MLC-tree for the ML graph in Fig. 1(a),
with node colors representing different associated vertex sets.

One approach to realizing fast ML core retrieval involves
storing the entire ML core decomposition in a hash table
with the coreness vectors of the ML cores as keys. However,
as mentioned in [18], the number of ML cores can grow
exponentially with the number of layers, thereby making this
approach impractical due to the significant storage overhead.
To address this challenge, we propose a more efficient method
to store and index ML cores based on the MLC-tree.

A. Storage and Index Structure

Recall that the MLC-tree systematically organizes all ML
cores and preserves their partial containment relationships
through the tree edges. By taking advantage of these facts,
we design a storage and index structure by augmenting the
MLC-tree with the following three steps:

1) Materialize all nodes in the MLC-tree that represent
nonempty ML cores and the tree edges between them.
We denote the materialized tree as 7.

2) For each non-leaf node NV in T', we associate with N
the difference set between the ML core represented by
N and the ML core represented by /N’s rightmost child.

3) For each leaf node N in T, we associate with N the
ML core represented by N.

Example 2. Fig. 5 depicts the top 4 levels of the augmented
MLC-tree for the ML graph in Fig. I(a). The k-node N
with k = (0,0, 2) represents the ML k-core {a,c,d, e, f, g}
The rightmost child of N is the k'-node with X' = (0,0, 3),
representing the ML X'-core {c,d, e, f}. The difference, {a, g},
is therefore associated with the node N.

The construction of the augmented MLC-tree can be seam-
lessly integrated into the computation of the ML core decom-
position. Whenever a node N in the MLC-tree is visited, and
the ML core C' represented by N is tested to be nonempty,
we materialize N and associate the difference set between C
and the ML core C’ represented by N’s father node with the
father. Indeed, this difference set C’ — C' is exactly the set of
vertices peeled from C’ to obtain C.

Space cost: The space cost of the augmented MLC-tree
is O(Hlilfl k(G;)|V]) because there are O(Hlﬂfl k(Gy))
rightmost paths in the MLC-tree, and the difference sets stored
with all nodes on each rightmost path totally contain at most
|V| vertices (Theorem 3, which will be introduced later). We

also observe that the order of layers can affect the space cost
in practice, and ordering layers in a non-decreasing order of
their degeneracy often leads to a significant reduction in space
cost. This is because: (1) Selecting the layer with the largest
degeneracy as the |L|-th layer can be beneficial as it reduces
the number of rightmost paths to be stored. (2) In the MLC-
tree, a k-node with Inz(k) = [has |L| — [+ 1 children.
Therefore, if Inz(k) is small, it takes more space to store
|L] — 1 + 1 pointers pointing to the children of the k-node.
Since the number of k-nodes with Inz(k) = [is bounded by
Hf::1 k(@), this layer order can effectively save the space for
storing the tree nodes.

B. Applications

Let us demonstrate how the augmented MLC-tree supports
fast ML-core search and facilitates a novel dense subgraph
discovery problem in ML graphs. For brevity, we will refer
to the augmented MLC-tree index simply as the MLC-tree
throughout the rest of this paper.

1) ML Core Search: The ML core search problem aims to
find the ML core with a given coreness vector:

Problem 3. (Multilayer Core Search (ML-CS)) Given an
ML graph G = (V,E,L) and an |L|-dimensional vector
k = [kilicL, find the ML k-core of G.

This problem is crucial for retrieving cohesive subgraphs
with desirable features in ML graphs, especially in a trial-and-
error manner. In addition, it serves as a useful pre-processing
tool for reducing the search space of complex CSM problems
in ML graphs such as the detection of (frequent) cross-layer
quasi-cliques [6], [18], [19]. The following theorem lays the
foundation for fast ML core search based on the MLC-tree:

Theorem 3. For any node N in the MLC-tree, the union
of vertex sets associated with nodes along the rightmost path
from N to a leaf node forms the ML core represented by N.

Theorem 3 establishes a simple MLC-tree-based ML core
search approach, which is outlined in Algorithm 4. It consists
of two steps: (1) Locate the k-node N in the MLC-tree (using
Procedure SEARCH in line 1); (2) Recover the ML k-core
along the rightmost path of IV to a leaf node (using Procedure
RECOVER in line 2). The pseudocode is straightforward, and
we leave the detailed description in [24].

Theorem 4. Algorithm 4 returns the ML k-core C of G in
O(S\E k(Gi) +C) time,

2) Weighted Densest Subgraph Extraction: Existing stud-
ies have introduced ML-core-based [18] or (k, A)-FirmCore-
based [21] approximations to the densest subgraphs in ML
graphs. However, in an ML graph, not all layers show equal
importance to users. Some layers may be of special interest to
users, and prioritizing the consideration of the cohesiveness in
these layers is expected. This motivates us to study a weighted
version of the densest subgraph problem:

Problem 4. (Weighted Densest Subgraph Discovery (WDS))
Given an ML graph G = (V, E, L), a positive real number [3,

2702

Algorithm 4 MLCS (ML Core Search)

Input: The MLC-tree 7" for an ML graph G = (V, E, L) and a vector k € N/ZI
Output: The ML k-core in G

1: N + SEARCH(T, k)

2: return RECOVER(N)

3: procedure SEARCH(T, k)

4: N <« the root of the MLC-tree T'

5: i1

6: while ¢ < |L| do

7: (N, i) + FORWARD(N, i, k)

8: return N

9: procedure FORWARD(N, 7, k)

10: if kv [i] < k[i] then > kv is the coreness vector represented by N

11: for each child N’ of N do

12: if kv [i] # kv [4] then

13: return (N,)

14: else

15: return (N,i + 1)

16: procedure RECOVER(N)

17: C' + the vertex set associated with N
18: repeat

19: N < the rightmost child of N
20: S < the vertex set associated with N
21: C+Cus

22: until N is a leaf node

23: return C

|L| positive real numbers wy,ws, - - - swiz|, and a real-valued
weighted density function p : 2V — RY defined as

p(S) = maxminwim\ﬁw,
LCL iel S|

find a subset S* C 'V that maximizes p(S™).

(M

As with the unweighted density function proposed in [18],
the parameter (3 in Eq. (1) controls the trade-off between high
density and the number of layers exhibiting that density.

By setting larger weights to the layers of users’ interest,
the cohesiveness of subgraphs on these layers is strengthened,
while those on less relevant layers (with relatively small
weights) are weakened. The unweighted densest subgraph
problem in ML graphs is known to be NP-hard [18]. As the
unweighted version is a special case of our WDS problem
when wy = wp = -+ = wjg|, our WDS problem is also
NP-hard, unless P = NP.

We will next establish the connections between ML cores
and the weighted densest subgraph, followed by the solution
for the WDS problem based on the MLC-tree.

Theorem 5. Let C be the ML core decomposition of G, C*
be the ML core in G that maximizes p(C*) (Eq. (1)), ie.,
C* = argmaxcgee p(C), and S* be the optimal solution to
the WDS problem on G, we have

pC) 2 5 (ST, @

where w™ = min;er, w; and wT = max;er, w;.

Theorem 5 provides a foundation for an efficient solution
to the WDS problem based on the MLC-tree. The idea is to
make a DFS traversal on the MLC-tree and identify the ML-
core that maximizes p(-) as the result. Due to limited space,
we leave the pseudocode of the algorithm in the supplementary
material [24] and introduce some key techniques next.

The organization of the MLC-tree ensures that ML cores on
each rightmost path are nested within each other. This property
allows us to incrementally compute the information needed to
calculate the weighted density of these ML cores, including
the number of vertices and the number of edges in each layer
of the subgraph induced by the ML core. Specifically, during
the DFS traversal along a rightmost path, we first go straight
to its leaf node and identify the densest ML core represented
by the nodes on the path during the backtracking process.
Let N and N’ be two nodes on this rightmost path, with N
being the father of N’. Suppose C' and C’ are the ML cores
represented by N and N’, respectively. As we backtrack to
node N, the ML core C” and the per-layer edge numbers,
say 11, Mg, ..., m|r|, in G[C'], are already known. Let S be
the vertex set associated with N. According to Theorem 3, we
have |C| = |C'|+|S], and the per-layer edge numbers in G[C]
can be obtained by adding each |A;| to the corresponding m;,
where A; is the set of edges in the i-th layer newly introduced
due to the inclusion of S, i.e., the ones with one endpoint in
S and the other in SUC".

Moreover, if we augment the MLC-tree by storing each A;
associated with the node N during the MLC-tree construction
at a slightly higher space overhead, restoring the per-layer
edge numbers can be achieved by adding each A; stored in
the node to m;. We refer to this augmented MLC-tree as the
edge-difference-augmented MLC-tree. We have compared the
basic MLC-tree and the edge-difference-augmented MLC-tree
by experiments. We observe that the latter shows significant
efficiency improvements in supporting solving the WDS prob-
lem, with about an average of 10% increase in the space cost.

Theorem 6. Given an ML graph G, a W—appmximation
to the optimal solution of the WDS problem on G can be
obtained in O([TH k(G)(IL| - |V| + |E|)) time using
the basic MLC-tree or O(Higl k(G})) time using the edge-

difference-augmented MLC-tree.

Notably, when searching for the weighted densest ML cores,
each rightmost path can be independently explored, enabling
a path-level parallel execution, which is akin to the one em-
ployed in the parallel ML core decomposition (Algorithm 2).

V. EXPERIMENTS
A. Experimental Setup

Datasets. We conducted experiments on 9 real-world ML
graphs, with their characteristics presented in Table I. The first
6 graphs were obtained from [18]. Datasets DBLP-Large [27]
and FlickrGrowth [30], from the KONECT Project“, and
Wiki [31], from the SNAP Datasets®, are transformed into ML
graphs by organizing their edges into different layers based on
the timestamps. The graph abbreviations are shown in bold.

Environment. The experiments were conducted on a server
equipped with a 40-core Intel Xeon Gold 5218R processor,
supporting two-way hyper-threading, and 754GB of RAM.

“https://konect.cc/
Shttps://snap.stanford.edu/data/

2703

TABLE I
PROPERTIES OF GRAPHS USED IN EXPERIMENTS.
Graph V] [E] L] minep [EB] maxer [B]
SacchCere 6.5k 247k 7 1.3k 91k
DBLP-Small 513k 1.0M 10 96k 113k
Obamainlsrael | 2.2M 3.8M 3 557k 1.8M
Amazon 410k 8.1M 4 899k 2.4M
Higgs 456k 13M 4 28k 12M
Friendfeed 505k 18M 3 266k 18M
DBLP-Large 1.8M 10M 22 107 2.6M
Wiki 1.0M 29M 10 347 988k
FlickrGrowth 2.3M 23M 6 121k 13M
£ ML-Dfs ML-Bfs 1 ML-Hybrid MLCD B ParMLCD

Running time (s)

DS

A DL

Fig. 6. Running time of ML-CD algorithms.

Source codes from [18] and [21] are compiled using Cython,
while the algorithms proposed in this paper are implemented
in C++ and compiled with GCC 9.4.0, both utilizing -03
optimization. OpenMP is used to express parallelism.

B. Performance of ML-CD.

MLC-tree V.S. Core lattice. We begin by demonstrating the
effectiveness of our reduced search space MLC-tree for the
ML-CD problem. Three lattice-based ML-CD algorithms [18],
namely ML-Dfs, ML-Bfs, and ML-Hybrid, based on dif-
ferent search orders on the core lattice are compared with
our MLC-tree-based algorithm MLCD (Algorithm 1) and the
parallel version ParMLCD (Section III-C) executed with 40
threads. Fig. 6 reports the results. The empty bars labeled with
‘N/A’ indicate that the corresponding algorithms could not
finish within 12 hours. We observe a remarkable speedup of
3 —128x with MLCD compared to all lattice-based algorithms
across tested graphs. Moreover, the parallel approach attains
an overall speedup ranging in 32 — 1606 x. The improvement
arises from the smarter reuse of previous computations during
the DFS traversal on the MLC-tree and the guarantee that each
ML core is visited and computed exactly once. This verifies
the effectiveness of our MLC-tree-based approach.

Parallel efficiency. We then evaluate the efficiency of our
parallel ML core decomposition algorithms, encompassing:

ParMLCD-Basic: the basic parallel framework using
path-level parallelism (Alogrithm 2).

ParMLCD-S: ParMLCD-Basic equipped with the
core-level-parallel startup (Section III-C2).
ParMLCD-M: ParMLCD-Basic using the path merging
strategy (Section III-C3).

ParMLCD: ParMLCD-Basic with all optimizations.

We configured the parameters [and « used in the core-level-
parallel startup and path merging as 3 and 0.1, respectively.

[ParMLCD-Basic ParMLCD-S

ParMLCD-M BN ParMLCD

Running time (s)

A

H Ff DL W SC DS O A H F DL W FG

(a) Running time (b) Memory usage

Fig. 7. Comparison between parallel ML-CD algorithms with different
optimizations in terms of (a) running time and (b) memory usage.

Fig. 7 depicts the running time and memory costs of these
algorithms on different graphs. Our observations include:

(1) ParMLCD-S exhibits significant improvements over
ParMLCD-Basic in terms of both running time and memory
usage for sparse graphs like DBLP-Large (DL), where the
sizes of ML cores dramatically decrease as their levels in the
MLC-tree increase (see Fig. 4(b)). For example, it achieves a
notable speedup of 43.5x and a 37% space reduction on DL.
This is because the subgraphs constructed in the startup phase
are much smaller than the original ML graph, enhancing the
efficiency. Furthermore, it avoids the allocation of per-thread
local structures with space costs proportional to the size of the
input ML graph. However, for dense ML graphs like Amazon
(A), where vertices exhibit high cohesiveness across layers,
ParMLCD-S attains a small speedup because the sizes of ML
cores decrease slowly, and the decomposition process benefits
less from the constructed subgraphs. Moreover, ParMLCD—-S
may cost more space than the basic version in such graphs, as
each built subgraph has a similar size to the input ML graph.

(2) The standalone adoption of the path merging strategy
on ParMLCD-Basic demonstrates improved computational
efficiency on most graphs. Nevertheless, we also observe
performance degradations on certain graphs like Friendfeed
(Ff). This is because the default value of o = 0.1 is too large
for such sparse ML graphs with few layers, leading to severe
load imbalance. It can be alleviated by adopting a smaller «
value. Besides, ParMLCD-M incurs basically the same space
cost as ParMLCD-Basic. However, in scenarios where the
path merging strategy substantially reduces the number of
tasks, ParMLCD-M exhibits lower space costs.

(3) By leveraging both the core-level-parallel startup and the
path merging strategies, ParMLCD attains a speedup ranging
from 1.49x to 478.8x compared with ParMLCD-Basic,
with a relative space cost between 0.23 and 1.97, depending
on the graph characteristics. In fact, these two strategies com-
plement each other: performing ML-CD on small subgraphs
built in the startup phase helps alleviate the load imbalance
caused by path merging, enhancing its benefits. Meanwhile,
path merging reduces overall tasks, resulting in a smaller space
consumption compared to ParMLCD-S.

Fig. 8 shows the speedup of ParMLCD over the serial MLCD
(Algorithm 1) and its relative memory usage for varying num-
bers of threads. When using 40 threads, ParMLCD achieves

2704

—6— Speedup

—A— Relative Memory Usage

RN Y
1 2 4 8 16 32 4040h
#threads
(e 01

0 TR B
1 2 4 8 16 324040h
#threads

(b) DS

PR Y
1 2 4 8 16 32 4040h
#threads
(a)SC

I Y

1 2 4 8 16 32 4040h
#threads

(@ Ff

1 2 4 8 16 324040h
#threads
OH

1 2 4 8 16 32 4040h
#threads
@A

113

> 225

S
{1 g
g

{110

g
1 2 4 8 16 32 4040h
#threads
() FG

AR Py
1 2 4 8 16 32 40400
#threads
HwW

o PR PO
1 2 4 8 16 32 4040
#threads
(h) DL

Fig. 8. The speedup and relative memory cost of ParMLCD compared
to MLCD. “40h” refers to 80 hyper-threads.

| [Peeling
EZ27 HT-search

224 Hashtable EZE MLCT-search

MLC-tree
EEN EA-MLC-tree " z

Memory (MB)
Running time

%
W FG

i + |
SC DS O A H Ff DL

Fig. 9. Memory comparison.

Fig. 10. Efficiency of ML-CS.

a speedup ranging from 7.7x to 30.6x and incurs a relative
increase in space costs from 0.02 to 3.44. It is also observed
that ML graphs with a larger number of layers, such as DBLP-
Large (DL), benefit more from the parallelism. The MLC-
trees for such graphs hold more rightmost paths, allowing
for better utilization of available threads. However, for graphs
with few layers like Amazon (Fig. 8(d)) and Higgs (Fig. 8(f)),
both comprising 4 layers, increasing the number of threads
may lead to performance degradations. This is because when
processing a node, as many new tasks as the number of the
non-rightmost children of this node are created. In graphs
with fewer layers, there are fewer tasks generated, leading to
underutilization of threads. As a result, the increasing thread
overhead outweighs the benefits of parallelism. Moreover, our
core-level-parallel startup strategy helps alleviate the increase
in the space occupation with the growing number of threads.

C. Performance of ML-CI.
We next evaluate the effectiveness of our MLC-tree index.

Space reduction. As a key metric for evaluating an index,

we examine the space efficiency of our MLC-tree-based index
over the naive storage that stores each nonempty ML k-core
in a hash table with the key k. Fig. 9 presents the results,
where “Hashtable”, “MLC-tree” and “EA-MLC-tree” denote
the hash-table-based storage, the basic augmented MLC-tree,
and the edge-difference-augmented MLC-tree used to sup-

port the densest subgraph discovery, respectively. We observe
11.2%—98.1% space reductions in the MLC-trees compared to
the hash tables, highlighting the redundancy between ML cores
and the promising ability of the MLC-tree to mitigate such
redundancy. Moreover, we see marginal increases in space
overhead for EA-MLC-trees compared to basic MLC-trees,
ranging from 0.01% to 20.8% across tested graphs.
Supporting ML-CS. To evaluate the effectiveness of the
MLC-tree index in supporting ML core search, we compare
the running time of three ML-CS approaches:

e Peeling: peeling-based search that computes the ML
k-core by iteratively removing all vertices failing to
satisfy the degree constraints imposed by k.

e MLCT-search: MLC-tree-based search (Algorithm 4).

e HT-search: hash-table-based search that searches the
hash table holding the ML cores with the key k.

We run 1000 ML core search queries using these algorithms.
To avoid obtaining massive empty results, we generate queried
vectors k by randomly sampling each component k[i] in
the range [0, x(G;)/4]. Fig. 10 reports the results, and our
observations are as follows: (1) MLCT-search, based on a
pre-computed MLC-tree index, significantly outperforms the
peeling-based approach, achieving a speedup ratio ranging
from 2 to 6 orders of magnitude across all tested graphs. (2)
MLCT-search exhibits competitive, and in some cases su-
perior, running time compared to the hash-table-based search.
Importantly, the space overhead of the MLC-tree index is
much less than that of the hash table.

Supporting WDS. We test the effectiveness of the MLC-tree
index in supporting the weighted densest subgraph discovery
in ML graphs. We assess the performance of the following
densest subgraph detection algorithms in terms of efficiency:

e Lattice-DS [18]: compute the ML core decomposition
using the lattice-based algorithm ML~-Bfs and output the
densest ML core as an approximation.

FC-DS [21]: compute the FirmCore decomposition and
output the densest FirmCore as an approximation.
MLCD-DS: compute the ML core decomposition using
the MLC-tree-based parallel algorithm ParMLCD (Sec-
tion III-C) and output the densest ML core.

MLCT-DS: weighted densest subgraph search algorithm
using the MLC-tree index (Section IV-B2).
EA-MLCT-DS: variant of MLCT-DS using the edge-
difference-augmented MLC-tree, EA-MLC-tree for short.

As Lattice-DS and FC-DS cannot handle weighted
cases, we set each w; = 1 and 8 = 2 for the efficiency test.
Fig. 11 shows the results. Note that we ran both MLCD-DS
and MLCT-DS using 1 and 40 threads, with the running
time range depicted by the black error bars on corresponding
bars for these algorithms. We have observed that: (1) For
algorithms without indexes, MLCD-DS consistently outper-
forms the lattice-based approach Lattice-DS, confirming
the effectiveness of our tree-shaped search space. Notably,
MLCD-DS even demonstrates better performance compared to
FC-DS for certain graphs, despite the FirmCore decomposi-

2705

E24 Lattice-DS FC-DS] MLCD-DS EE MLCT-DS BN EA-MLCT-DS

Running time (s)

Fig. 11. Running time of the densest subgraph detection algorithms
in ML graphs.

TABLE I
COMPARISONS BETWEEN APPROXIMATIONS TO THE WEIGHTED DENSEST
SUBGRAPHS ON GRAPH SC

Model b s ln s Is T » |L|
WC-App (1) | 552 082 545 544 1141 1007 11.37 19581 6
C-App | 395 054 745 749 877 1017 1511 18627 5
FC-App |370 1255 543 055 1107 1163 2777 17712 4
WC-App (2) | 044 701 694 7020 1027 1260 1502 24982 6
C-App | 040 542 745 749 877 1017 1511 19519 6
FC-App | 037 12550 543 055 1107 1163 27.77 17712 4
WC-App (3) | 037 046 4239 1128 1160 1141 2403 28211 5
C-App | 040 054 7451 749 877 1017 1511 187.19 5
FC-App | 037 1255 5430 055 1107 1163 2777 27675 5
WC-App (4) | 024 037 237 8346 2630 4.10 2666 23671 3
C-App | 040 054 745 7488 877 1017 1511 18627 5
FC-App |037 1255 543 550 1107 1163 27.77 19548 6
WC-App (5) | 0.16 045 139 605 28923 298 1940 28923 1
C-App | 040 054 745 749 8774 1017 1511 18627 5
FC-App |037 1255 543 055 11070 11.63 27.77 18608 4

For ¢ € L, column [; displays the weighted density in layer ¢
(the standard density multiplied by the layer weight). p is the
overall weighted density defined in Eq. (1), and |L| indicates the
number of layers contributing to p.

tion problem having a linear time complexity. (2) Leveraging
the pre-computed MLC-tree index, MLCT-DS achieves time
savings of up to 88.5% compared to MLCD-DS when using
40 threads. Benefiting from the edge differences in the EA-
MLC-tree, EA-MLCT-DS attains a speedup of 1 to 3 orders
of magnitude over MLCT-DS (40 threads) and outperforms
Lattice-DS and FC-DS from previous work by 4 — 6 and
2 — 5 orders of magnitude, respectively.

We proceed to examine the quality of the dense subgraphs
identified by various algorithms. In this experiment, we vary
the layer of priority and set its weight to 10 while keeping
the others of weight 1. Additionally, /3 is set to 2. The results
obtained on graph SacchCere (SC) are presented in Table II.
Here, WC-App(x) represents the output of EA-MLCT-DS with
the z-th layer set priority, while C-App and FC-App denote
the results of Lattice—-DS and FC-DS, respectively.

We can see that when varying the layer set priority, WC-
App consistently shows the highest overall weighted density
and guarantees a large weighted density in the prioritized layer,
highlighting the effectiveness of EA-MLCT-DS in handling
different layer preferences. Furthermore, WC-App considers
a better trade-off in optimizing the density in the prioritized
layer and in other layers. As we can see in cases where © = 2
and 3, although it displays a lower density than C-App and/or
FC-App in the prioritized layer, the optimization of the density

on other layers contributes to the highest overall density.

D. Impact of layer orders.

We evaluate the impact of different layer orders on the
efficiency of computing the ML core decomposition and the
memory usage of the MLC-tree index. The results [24] are
consistent with our earlier analysis: (1) Ordering layers in
non-decreasing order of their density or degeneracy generally
incurs minimal time overhead for most graphs, especially for
those exhibiting wide variations in layer densities and de-
generacies. (2) The non-decreasing order of layer degeneracy
always leads to the smallest MLC-tree.

VI. RELATED WORK

This section presents a brief overview of the existing work
related to the ML core decomposition problem.
Core Decomposition. Core decomposition is a fundamental
graph-analysis tool and has seen a wide range of appli-
cations [8], [10], [14], [15], [32]. The state-of-the-art core
decomposition algorithm [13] employs the vertex peeling
paradigm and achieves a cost of O(m + n) time, where
m and n represent the number of edges and vertices in
the graph, respectively. A local algorithm based on the h-
index [33] for calculating the coreness values of vertices in
a graph, equivalent to computing the core decomposition, is
shown in [8]. It allows for a natural parallel implementation.
Core decomposition has been extended to various types of
graphs [34]-[37] and studied in distributed environment [38],
[39] or on external memory [40], [41], as well as handling
dynamic graphs [42], [43].
Parallel Core Decomposition. We here focus on works with
shared-memory parallelism. Dasari et al. [44] and Kabir et
al. [22] proposed straightforward parallelizations of the serial
peeling-based core decomposition algorithm [13], with the
latter featuring fewer synchronization barriers. By introducing
the bucketing technique, Dhulipala et al. [23] proposed the first
work-efficient parallel core decomposition paradigm. Rooted
in the h-index-based approach, Sariyuce et al. [45] presented
parallelizations in both synchronous and asynchronous man-
ners, with the latter usually demonstrating faster convergence.
Additionally, related issues, such as the dynamic maintenance
of coreness values [46] and computing the core hierarchy [47],
have also been investigated. However, all these parallel algo-
rithms cannot be applied to ML graphs directly. Furthermore,
the distinct features of ML cores from k-cores make the above
parallel paradigms inefficient in computing ML cores.
Multilayer Core Decomposition. Azimi et al. [16] extended
the k-core model to ML graphs and introduced the notion of
ML k-core. Galimberti et al. [17], [18] employed a lattice
structure to organize the ML cores of an ML graph and pro-
posed three algorithms to compute the ML core decomposition
based on different search orders on the lattice and pruning
techniques. However, these algorithms face scalability issues
and are hard to parallelize.

Relaxations of the ML core model like the d-CC model [5],
[20] and the (k, \)-FirmCore model [21] have been studied in

2706

the literature. These models impose uniform degree constraints
across all layers, simplifying the search spaces of their de-
composition problems. However, these models are not suitable
substitutes for the ML core model in many scenarios as their
simplified constraints overlook the inherent differences in the
cohesiveness of different layers.

Densest Subgraph Discovery in ML graphs. Tommaso et
al. [48] surveyed researches related to the densest subgraph
problem. Here, we only focus on the works studied in multi-
layer settings. Jethava and Beerenwinkel [49] formulated the
densest common subgraph problem that finds vertex subsets
maximizing the minimum density across layers and proposed
both linear-programming-based and greedy-peeling-based so-
lutions. Galimberti et al. [18] proposed a generalization of the
densest common subgraph problem that exploits a trade-off
between high average-degree density and the number of layers
exhibiting that density. They demonstrated that the densest
ML core unfolds an approximation solution to this problem.
Hashemi et al. [21] presented another (k, \)-FirmCore-based
approximate solution, which improves the one given in [18]
in terms of both computational efficiency and approximation
guarantee. Additionally, Semertzidis et al. [50] introduced a
series of variants of the densest common subgraph problem
that consider different intra-layer and cross-layer information
aggregation patterns, and they demonstrate the computational
complexity and algorithmic solution for each case. However,
the weighted densest subgraph problem explored in this paper
considers users’ different preferences across layers, which is
not taken into account in the above works.

VII. CONCLUSIONS

Multilayer (ML) core decomposition is a fundamental tool
for analyzing dense structures in ML graphs. We present
a novel MLC-tree-based ML core decomposition algorithm
that demonstrates improved time complexity over existing
lattice-based approaches and achieves a practical speedup
of up to 128% on tested graphs. Based on the rightmost-
path-decomposition of the MLC-tree, we propose the first
parallel framework for computing the ML core decomposition.
Enhanced by two optimization strategies including the core-
level-parallel startup and path merging, it attains an additional
speedup of up to 30.6x on 40 cores over the serial version.
The augmented MLC-tree offers a compact storage and index
for the ML core decomposition, supporting fast retrieval of
any ML core C in linear time in the height of the MLC-
tree and the size of C. The further application of a novel
weighted densest subgraph problem in ML graphs is also
shown to be efficiently solved using the MLC-tree index, with
guaranteed quality of the results. Extensive experiments verify
the significant improvements in the practical performance of
the proposed algorithms over existing baselines.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant No. 62072138) and the Hong
Kong RGC (Grant No. 22200320).

(11

(31

[4

=

[7

—

[8

=

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. E. Dickison, M. Magnani, and L. Rossi, Multilayer social networks.
Cambridge University Press, 2016.

H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou, “Mining coherent
dense subgraphs across massive biological networks for functional
discovery,” Bioinformatics, vol. 21, no. suppl_1I, pp. i213-i221, 2005.
D. Luo, Y. Bian, Y. Yan, X. Liu, J. Huan, and X. Zhang, “Local
community detection in multiple networks,” in Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2020, pp. 266-274.

D. Liu and Z. Zou, “gcore: Exploring cross-layer cohesiveness in multi-
layer graphs,” Proceedings of the VLDB Endowment, vol. 16, no. 11,
pp. 3201-3213, 2023.

R. Zhu, Z. Zou, and J. Li, “Diversified coherent core search on multi-
layer graphs,” in 2018 IEEE 34th International Conference on Data
Engineering (ICDE). 1EEE, 2018, pp. 701-712.

J. Pei, D. Jiang, and A. Zhang, “On mining cross-graph quasi-cliques,”
in Proceedings of the eleventh ACM SIGKDD international conference
on Knowledge discovery in data mining, 2005, pp. 228-238.

Z. Hammoud and F. Kramer, “Multilayer networks: aspects, implementa-
tions, and application in biomedicine,” Big Data Analytics, vol. 5, no. 1,
p. 2, 2020.

L. Chang and L. Qin, “Cohesive subgraph computation over large
sparse graphs,” in 2019 IEEE 35th International Conference on Data
Engineering (ICDE). 1EEE, 2019, pp. 2068-2071.

X. Meng, H. Huo, X. Zhang, W. Wang, and J. Zhu, “A survey of
personalized news recommendation,” Data Science and Engineering,
vol. 8, no. 4, pp. 396-416, 2023.

J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “k-
core decomposition: A tool for the visualization of large scale networks,”
arXiv preprint cs/0504107, 2005.

Y. Fang, K. Wang, X. Lin, and W. Zhang, Cohesive Subgraph Search
Over Large Heterogeneous Information Networks. Springer, 2022.

S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269-287, 1983.

V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
sition of networks,” arXiv preprint cs/0310049, 2003.

K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis—patterns, anomalies and algorithms,” in 2016
IEEE 16th international conference on data mining (ICDM). 1EEE,
2016, pp. 469-478.

F. D. Malliaros and M. Vazirgiannis, “To stay or not to stay: modeling
engagement dynamics in social graphs,” in Proceedings of the 22nd ACM
international conference on Information & Knowledge Management,
2013, pp. 469-478.

N. Azimi-Tafreshi, J. Gémez-Gardenes, and S. Dorogovtsev, “k- core
percolation on multiplex networks,” Physical Review E, vol. 90, no. 3,
p. 032816, 2014.

E. Galimberti, F. Bonchi, and F. Gullo, “Core decomposition and densest
subgraph in multilayer networks,” in Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management, 2017, pp.
1807-1816.

E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano, “Core decomposi-
tion in multilayer networks: Theory, algorithms, and applications,” ACM
Trans. Knowl. Discov. Data, vol. 14, no. 1, pp. 11:1-11:40, 2020.

D. Jiang and J. Pei, “Mining frequent cross-graph quasi-cliques,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 2, no. 4,
pp. 1-42, 2009.

B. Liu, F. Zhang, C. Zhang, W. Zhang, and X. Lin, “Corecube:
Core decomposition in multilayer graphs,” in Web Information Systems
Engineering—WISE 2019: 20th International Conference, Hong Kong,
China, January 19-22, 2020, Proceedings 20. Springer, 2019, pp.
694-710.

F. Hashemi, A. Behrouz, and L. V. Lakshmanan, “Firmcore decomposi-
tion of multilayer networks,” in Proceedings of the ACM Web Conference
2022, 2022, pp. 1589-1600.

H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore
platforms,” in 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). 1EEE, 2017, pp. 1482-1491.
L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proceed-
ings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, 2017, pp. 293-304.

2707

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

(2024) Supplementary material — fast multilayer core decomposition and
indexing. [Online]. Available: https://github.com/MDCGraph/MlcDec/
blob/master/Appendix.pdf

N. Azimi-Tafreshi, J. Go6mez-Gardefies, and S. N. Dorogovtsev,
“k—core percolation on multiplex networks,” Phys. Rev. E, vol. 90,
p. 032816, Sep 2014.

R. Anderson and E. W. Mayr, A P-complete problem and approximations
to it. Stanford University, 1984.

M. Ley, “The dblp computer science bibliography: Evolution, research
issues, perspectives,” in International symposium on string processing
and information retrieval. ~Springer, 2002, pp. 1-10.

__sync builtins (using the gnu compiler collection (gcc)). Accessed:
2023-11. [Online]. Available: https://gcc.gnu.org/onlinedocs/gee/__
sync-Builtins.html

__atomic builtins (using the gnu compiler collection (gcc)). Accessed:
2023-11. [Online]. Available: https://gcc.gnu.org/onlinedocs/gee/__
atomic-Builtins.html

A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Growth of the flickr social network,” in Proceedings of the
1st ACM SIGCOMM Workshop on Social Networks (WOSN’08), August
2008.

A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the tenth ACM international conference
on web search and data mining, 2017, pp. 601-610.

M. Charikar, “Greedy approximation algorithms for finding dense com-
ponents in a graph,” in Approximation Algorithms for Combinatorial Op-
timization: Third International Workshop, APPROX 2000 Saarbriicken,
Germany, September 5-8, 2000 Proceedings. Springer, 2003, pp. 84—
95.

L. Li, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of a
network node and its relation to degree and coreness,” Nature commu-
nications, vol. 7, no. 1, p. 10168, 2016.

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: measuring
collaboration of directed graphs based on degeneracy,” Knowledge and
information systems, vol. 35, no. 2, pp. 311-343, 2013.

F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core de-
composition of uncertain graphs,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 1316-1325.

Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient proba-
bilistic k-core computation on uncertain graphs,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1192-1203.

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “Evaluating cooper-
ation in communities with the k-core structure,” in 2011 International
conference on advances in social networks analysis and mining. TEEE,
2011, pp. 87-93.

A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” in Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on principles of distributed computing, 2011, pp.
207-208.

M. Ghaftfari, S. Lattanzi, and S. Mitrovi¢, “Improved parallel algorithms
for density-based network clustering,” in International Conference on
Machine Learning. PMLR, 2019, pp. 2201-2210.

J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu, “Efficient core decomposition
in massive networks,” in 2011 IEEE 27th International Conference on
Data Engineering. IEEE, 2011, pp. 51-62.

W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decom-
position of large networks on a single pc,” Proceedings of the VLDB
Endowment, vol. 9, no. 1, pp. 13-23, 2015.

Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). 1EEE, 2017, pp. 337-348.

Q. C. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun, “Parallel batch-
dynamic algorithms for k-core decomposition and related graph prob-
lems,” in Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures, 2022, pp. 191-204.

N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm
for k-core decomposition on multicore processors,” in 2014 IEEE
International Conference on Big Data (Big Data). 1EEE, 2014, pp.
9-16.

A. E. Sariyiice, C. Seshadhri, and A. Pinar, “Local algorithms for hierar-
chical dense subgraph discovery,” Proceedings of the VLDB Endowment,
vol. 12, no. 1, pp. 43-56, 2018.

[46]

[47]

[48]

[49]

[50]

Q. C. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun, “Parallel batch-
dynamic k-core decomposition,” arXiv e-prints, pp. arXiv—2106, 2021.
D. Chu, F. Zhang, W. Zhang, X. Lin, and Y. Zhang, “Hierarchical core
decomposition in parallel: From construction to subgraph search,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022, pp. 1138-1151.

T. Lanciano, A. Miyauchi, A. Fazzone, and F. Bonchi, “A survey
on the densest subgraph problem and its variants,” arXiv preprint
arXiv:2303.14467, 2023.

V. Jethava and N. Beerenwinkel, “Finding dense subgraphs in relational
graphs,” in Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2015, Porto, Portugal, September
7-11, 2015, Proceedings, Part Il 15. Springer, 2015, pp. 641-654.

K. Semertzidis, E. Pitoura, E. Terzi, and P. Tsaparas, “Finding lasting
dense subgraphs,” Data Mining and Knowledge Discovery, vol. 33, pp.
1417-1445, 2019

2708

