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Abstract—The multilayer (ML) graph model provides a robust
representation of multi-sourced relationships among real-world
entities, laying a solid foundation for reliable knowledge discov-
ery. ML core decomposition is a fundamental analytical tool for
ML graphs. It offers valuable insights into the dense structures
in ML graphs and forms the basis for many complex analysis
tasks. However, existing ML core decomposition algorithms face
performance issues due to unavoidably unnecessary computations
and are inherently serial, unable to fully leverage the multi-
core processors. In this paper, we reformulate the search space
of this problem with a tree-shaped structure called MLC-tree.
Based on it, we present an efficient serial ML core decomposition
algorithm that achieves improved time complexity over existing
solutions and the first parallel framework for this problem by
exploiting the path-decomposition of the MLC-tree. Two practi-
cal optimizations are introduced to further boost the parallel
efficiency. To facilitate applications built upon ML cores, we
construct a compact storage and index structure for ML cores
based on the MLC-tree. The usefulness of this index is showcased
through two applications: ML core search and a novel weighted
densest subgraph discovery problem. Extensive experiments on 9
real-world ML graphs show that our MLC-tree-based ML core
decomposition algorithm achieves a speedup of up to 128× over
existing baselines and the parallel approach attains an additional
speedup of up to 30.6× using 40 cores. Moreover, the MLC-tree
index can efficiently support the studied applications.

Index Terms—Multilayer graphs, core decomposition, parallel
algorithms, the densest subgraph

I. INTRODUCTION

Connections between real-world entities originate from var-

ious sources, such as social relationships across diverse social

media platforms [1] and biomolecular relationships derived

from different biological experiments [2]. Multilayer (ML)

graphs, structured as a series of layered graphs (layers) with

each representing a specific relationship, have demonstrated

the ability to provide a robust representation of such complex

relationships and establish a solid foundation for reliable and

accurate knowledge discovery [3]–[6].

Cohesive subgraph mining (CSM), a key primitive in graph

analysis, aims at finding densely connected vertices and has

witnessed extensive applications [5], [7]–[11]. Among various

cohesive subgraph models proposed in the literature, the notion

of k-core [12] stands out for its computational efficiency [13]

and hierarchical structures. The core decomposition of a graph,

defined as the set of all nonempty k-cores in the graph, has

proven useful in plenty of applications, such as community

detection [8], anomaly detection [14], engagement dynamic

modeling [15], graph visualization [10], etc.

Building upon the k-core model, Azimi et al. [16] intro-

duced the notion of multilayer (ML) core for ML graphs.
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Fig. 1. An example of a 3-layer ML graph and examples of ML cores.

Given an ML graph with l layers, ML cores are identified by

l-dimensional non-negative integer vectors k: the ML k-core

is the maximal subset of vertices that forms a k[i]-core on each

i-th layer. The ML core model inherits an elegant hierarchical

property from the k-core: the ML k-core is a subset of the

ML k′-core if k′ is element-wisely no larger than k.

Example 1. Fig. 1(a) depicts a toy ML graph with 3 layers
denoted as G1, G2, and G3. These layers share the same set
of vertices but have varying edge sets representing different
relationships. Fig. 1(b) displays several ML cores and the
subgraphs induced by them. For example, the vertex set
{c, d, e, f} forms the (3, 3, 3)-core as each vertex in it is
adjacent to at least 3 other vertices in every layer, forming
a 3-core in each layer. Moreover, the (3, 3, 3)-core is nested
within other shown ML cores due to the hierarchical structure.

Galimberti et al. [17] investigated the ML core decomposi-

tion problem, pioneering the study of the CSM problem in ML

graphs using core-based approaches. ML core decomposition

of an ML graph is defined as the set of all nonempty ML

k-cores in the graph. It provides a fine-grained view of the

cohesive structures in ML graphs, revealing the connections

among cohesive areas on different layers. It also serves as a

foundation for a range of analysis tasks in ML graphs [18]:

1) It is proven to be an efficient pre-processing tool for

solving more complex CSM problems on ML graphs

such as finding cross-layer quasi-cliques [6], [19].

2) It offers a solution to the densest subgraph problem in

ML graphs with a guaranteed approximation ratio.

3) It provides solutions for the community search problem

in ML graphs, which identifies communities containing

a given set of queried vertices.

4) Moreover, similar to the single-layer case [10], the hier-
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archical structure of the ML core decomposition shows

promise in guiding the visualization of ML graphs.

Computing the ML core decomposition is much more chal-

lenging than its single-layer counterpart: it has to consider each

combination of layers, which results in an exponential time

complexity in the number of layers. To tackle this challenge,

Galimberti et al. [17], [18] use a lattice structure to organize all

potential ML cores based on their containment relationships.

They devise three algorithms differing in respective search

orders on the lattice and pruning techniques to solve this prob-

lem. However, all these algorithms face performance issues.

Firstly, the complex lattice structure causes all traversal orders

to unavoidably visit, even compute, an ML core in the lattice

multiple times, leading to massive unnecessary computations.

Secondly, these algorithms heavily rely on the results of

previous computations, making it challenging to parallelize

and leverage the multi-core capabilities of processors.
Other researches have explored simpler models such as d-

CC [5], [20] and (k, λ)-FirmCore [21], and the decomposition

problems based on them. d-CC simplifies the vector k in the

ML core model to a single integer d, and requires vertices

to form d-cores on given layers. In a (k, λ)-FirmCore [21],

vertices must connect to ≥ k other vertices in ≥ λ layers.

Decomposition problems for these two models have lower

time complexities of O(2|L||G|) and O(|L||G|), respectively.

However, these two models impose inflexible cohesive con-

straints, i.e., employ the same minimum degree requirement on

each layer, overlooking the inherently different cohesiveness

of varying layers. This limitation makes them unsuitable as

a substitute for the ML core model in many scenarios. For

example, in ML social networks describing both the ‘who-
follows-who’ relationship on an online social platform and

the ‘friendship’ connections in real life, vertices in the former

layer are certainly expected to have more neighbors. Using the

same minimum degree constraints for both layers is evidently

inappropriate and may lead to undesired results.
Given the above limitations in existing researches and the

diverse applications built upon ML cores, this paper revisits

the ML core decomposition problem, develops more efficient

solutions, and addresses the associated ML core indexing

problem that builds a compact storage and index structure for

ML cores to facilitate further analytical tasks.
To efficiently solve the ML core decomposition problem,

we overcome the limitations in the existing lattice-based solu-

tions [18] by both reducing the search space and introducing

parallelism. Specifically, we reformulate the search space for

this problem using a simple tree-shaped structure called MLC-

tree. The MLC-tree determines a DFS-order generation of the

ML core decomposition, ensuring a unique visit to each ML

core and improving the time complexity over lattice-based

approaches. Going a step further, we explore parallel solutions.

The distinct features of ML cores – notably smaller in size

than the k-cores but numerous – make existing parallel core

decomposition methods [22], [23] inefficient in computing ML

cores. Facing this challenge, we propose a novel path-level-

parallel paradigm tailored to this problem, which concurrently

computes ML cores on independent paths of the MLC-tree. To

further boost efficiency, we design two optimization strategies

including core-level-parallel startup and path merging. To the

best of our knowledge, this is the first parallel algorithm for

the ML core decomposition problem in the literature.

Leveraging the containment relationships among ML cores

embedded in the MLC-tree, we augment the MLC-tree and

build a compact storage and index structure for ML cores. We

showcase an index-based ML core search algorithm running

in linear time in the height of the MLC-tree and the size of

the queried ML core. As a further application, we generalize

the existing densest subgraph problem [18] in ML graphs

to incorporate layer weights, allowing for considering users’

different preferences across layers. An efficient solution with

guaranteed quality of the results is built upon the index.

We conducted extensive experiments on 9 real-world ML

graphs to evaluate the performances of the proposed algo-

rithms and highlight the following results: (1) Our MLC-tree-

based ML core decomposition algorithm achieves a speedup

of 3− 128× compared to the fastest lattice-based algorithms

across tested graphs. (2) The parallel decomposition algorithm

attains a speedup of up to 30.6× on 40 cores with hyper-

threading over the enhanced MLC-tree-based serial baseline.

(3) The MLC-tree index demonstrates comparable perfor-

mance in supporting ML core search compared with the hash-

table-based naı̈ve storage while attaining 11% − 98% space

reductions. Additionally, it facilitates the efficient detection of

qualified weighted dense subgraphs in ML graphs.

Contributions: The main contributions of this paper are

summarized as follows:

1) A tree-shaped search space for the ML core decompo-

sition problem and an efficient DFS-based solution.

2) The first parallel framework for computing the ML core

decomposition and two practical enhancement strategies.

3) A compact storage and index structure for the ML core

decomposition that supports fast ML core search.

4) A novel formulation of the weighted densest subgraph

problem in ML graphs and an efficient solution based

on the index with guaranteed quality of the results.

5) Extensive experimental results on 9 real-world ML

graphs, demonstrating the high practical performance of

the proposed algorithms.

For space limitations, we leave some proofs and experimen-

tal results in the supplementary material [24].

II. PRELIMINARIES

In this section, we introduce some notations related to the

ML graph model and ML cores. Then, the problems studied

in this paper are formalized.

A. Multilayer Graphs

A multilayer graph (ML graph for short) is represented

by G = (V,E, L), where V is a set of vertices, L =
{1, 2, . . . , |L|} is a set of layer numbers, and E ⊆ V ×V ×L
is a set of edges. An edge (u, v, i) ∈ E indicates that the

vertices u and v are adjacent on layer i. In the ML graph
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G = (V,E, L), each layer i ∈ L has its own set of edges

denoted as Ei, that is, Ei = {(u, v)|(u, v, i) ∈ E}. The

graph on layer i is denoted as Gi = (V,Ei). For any vertex

v ∈ V , let Ni(v) be the set of neighbors of v in Gi, and let

di(v) = |Ni(v)| be the degree of v in Gi.

Given a vertex subset S ⊆ V , the subgraph of Gi induced

by S is Gi[S] = (S,Ei[S]), where Ei[S] is the set of edges

in Ei with both endpoints in S. Similarly, the subgraph of

the ML graph G induced by S is G[S] = (S,E[S], L), where

E[S] is the set of edges in E with both endpoints in S. The

set of neighbors and the degree of any vertex v ∈ S in Gi[S]
are denoted as NS

i (v) and dSi (v), respectively.

B. Multilayer k-Cores

Definition 1 ( [25]). Given an ML graph G = (V,E, L) and
an |L|-dimensional non-negative integer vector k = [ki]i∈L,
the multilayer k-core (ML k-core for short) of G is a maximal
subset C ⊆ V such that dCi (v) ≥ ki for all v ∈ V and i ∈ L.

For ease of notation, we use Ck to denote an ML k-core

of G, and accordingly, k is called the coreness vector of

Ck. Galimberti et al. [18] have introduced the following two

elegant properties of ML cores.

Property 1 (Uniqueness). Given an ML graph G = (V,E, L)
and an |L|-dimensional integer vector k = [ki]i∈L, there is
one unique ML k-core Ck.

Property 2 (Containment). Given an ML graph G =
(V,E, L) and two |L|-dimensional integer vectors k = [ki]i∈L

and k′ = [k′i]i∈L, we have Ck ⊆ Ck′ if k′i ≤ ki for all i ∈ L.

C. Problem Formulation

Aiming for fast computation of the ML core decomposition

and facilitating tasks built upon ML cores, this paper addresses

the following two problems:

Problem 1. (Multilayer Core Decomposition, ML-CD) Given
an ML graph G = (V,E, L), find the set of all nonempty ML
k-cores of G for all possible coreness vectors k, which is
referred to as the ML core decomposition of G.

Problem 2. (Multilayer Core Indexing, ML-CI) Given an
ML graph G = (V,E, L), build a data structure to compactly
store the ML core decomposition of G, enabling fast retrieval
of any ML k-core given a coreness vector k.

III. MULTILAYER CORE DECOMPOSITION (ML-CD)

In this section, we first discuss the existing solutions [18] to

the ML-CD problem and then propose novel and more efficient

algorithms based on a tree-shaped search space.

A. Review of Lattice-based ML-CD Algorithms

Given an ML graph G = (V,E, L), the existing solutions to

the ML-CD problem on G utilize various search strategies on

the search space represented as a core lattice as depicted in

Fig. 2(a). The core lattice is a directed acyclic graph (DAG),

where each node represents a coreness vector, which uniquely

corresponds to an ML core in G (Property 1), and each edge

0,0,0

3,0,0 2,1,0 2,0,1 1,2,0 1,1,1 1,0,2 0,3,0 0,2,1 0,1,2 0,0,3

2,0,0 1,1,0 1,0,1 0,2,0 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

0,0,0

3,0,0 2,1,0 2,0,1 1,2,0 1,1,1 1,0,2 0,3,0 0,2,1 0,1,2 0,0,3

2,0,0 1,1,0 1,0,1 0,2,0 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

(a) Core-lattice of a 3-layer graph

(b) MLC-tree of a 3-layer graph

Fig. 2. Core lattice and MLC-tree of a 3-layer graph.

represents the containment relationship between two end ML

cores. We refer to the node representing the ML k-core Ck

as the k-node. In the core lattice, the [0]|L|-node is the single

root node. The k-node is the father of the k′-node if k′ is

obtained by increasing exactly one component of k by 1.

Property 2 ensures that each node in the core lattice repre-

sents an ML core that is a subset of the ML cores represented

by its father nodes. Taking advantage of this fact, Galimberti

et al. [18] have proposed the following three traversal orders

to search the core lattice in order to reduce the overheads of

computing empty or redundant ML cores.

• Breadth-First Search (BFS): Nodes in the core lattice

are traversed level by level. The ML k-core represented

by the k-node is computed based on the intersection of

ML cores represented by all father nodes of the k-node.

• Depth-First Search (DFS): Nodes in the core lattice are

visited along paths from internal nodes deep down to

leaf nodes. On a search path, the ML k-core is computed

solely based on the ML core represented by the father

node of the k-node on the path.

• Hybrid Search: Combining BFS and DFS, nodes along

the paths from the root to the leaf nodes, which have

only one non-zero component in their associated coreness

vectors, are visited in a DFS order, while the remaining

nodes are visited in a BFS order.

Although the core lattice provides a complete representation

of the containment relationships between ML cores, it involves

a substantial number of edges, complicating the implementa-

tions of the above search orders. Specifically, all three traversal

orders involve visiting and/or computing a node in the core

lattice multiple times due to the presence of multiple father

nodes of this node. Additionally, adopting any of the above

traversal orders requires storing certain ML cores to facilitate

subsequent traversal, leading to considerable space costs.
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Algorithm 1 MLCD (Serial ML-CD)
Input: An ML graph G = (V,E, L)
Output: The set R of all nonempty ML cores in G with their coreness vectors

1: R ← {([0]|L|, V )}
2: DFSDEC(G, [0]|L|, R)
3: return R
4: procedure DFSDEC(G,k, R)
5: for i ← |L|, |L| − 1, . . . , lnz(k) do
6: k′ ← k
7: k′[i] ← k′[i] + 1
8: C ← PEEL(G,k′)
9: if C �= ∅ then

10: R ← R ∪ {(k′, C)}
11: DFSDEC(G[C], k′, R)

B. Tree-based ML-DC Algorithm

To overcome the limitations of the core lattice, we propose

to remove certain edges from it and transform it into a tree

structure, as illustrated in Fig. 2(b), which we refer to as

the multi-layer core tree (MLC-tree). The MLC-tree allows

for a simpler traversal order to solve the ML-CD problem

without requiring additional space for storing intermediate

results. Furthermore, we will later demonstrate its usefulness

in supporting parallel ML-CD and indexing the ML core

decomposition, which facilitates fast retrieval of ML cores.

MLC-trees: For an integer vector k, let lnz(k) denote the

index of the last non-zero component in k. Let the k-node be

the father of the k′-node in the core lattice. The edge between

the k-node and the k′-node is kept in the MLC-tree if k and

k′ differ in a component at an index no less than lnz(k). In

the core lattice depicted in Fig. 2(a), the green edges violate

this condition and are therefore discarded to form the MLC-

tree. Consequently, each node in the MLC-tree, except for the

root, has exactly one father node, making it a spanning tree

of the core lattice.

Algorithm: The ML-CD problem can be addressed by per-

forming a depth-first search on the MLC-tree and computing

the ML core represented by each visited node. Algorithm 1

outlines the procedure. Given an ML graph G = (V,E, L),
a set R is used to keep all discovered nonempty ML cores

along with their coreness vectors. In line 1, R is initialized to

contain the [0]|L|-core represented by the root of the MLC-

tree. Obviously, the [0]|L|-core is V . Then, the algorithm calls

Procedure DFSDEC to conduct the depth-first search (line 2).

Finally, the results kept in R are returned in line 3.

Let us delve into Procedure DFSDEC. It takes 3 parameters:

an ML graph G, an integer vector k corresponding to the father

of the node under investigation, and the result set R. The

procedure performs a for loop (lines 5-11) that iterates over

the children of the k-node and explores the subtree rooted

at each child. Inside the loop, it creates the coreness vector

k′ for a child node by incrementing a component of k at an

index at least lnz(k) by 1 (lines 6-7). Next, the procedure

calls Function PEEL to compute the ML k′-core C on the ML

graph G using a peeling process [18] (line 8). The peeling

process iteratively removes all vertices that fail to satisfy the

degree constraint imposed by k′ on every layer. If there are

vertices in C that survive the peeling process, C is added

to the result set R in line 10, and the procedure continues

to explore the children of the k′-node by recursively calling

Procedure DFSDEC with parameter k′ in line 11. According

to Property 2, the ML core represented by any child of the

k′-node must be a subset of C, we pass the subgraph of G
induced by C to the call to Procedure DFSDEC in line 11.

Theorem 1. Algorithm 1 finds all nonempty ML cores in the
ML graph G in O(

∏|L|−1
i=1 κ(Gi)(|L| · |V |+ |E|)) time, where

κ(Gi) denotes the degeneracy of Gi.

The proof of Theorem 1 requires the following two impor-

tant concepts that will also be frequently used in the rest of

the paper. For any k-node in the MLC-tree, let k′-node be a

child of the k-node. The k′-node is said to be the rightmost
child of the k-node if k and k′ are only different in their last

(rightmost) components, more precisely, k′[i] = k[i] for all

i < |L|, and k′[|L|] = k[|L|] + 1. Furthermore, we can figure

out the rightmost path from the k-node to a leaf node by

following the rightmost child of every encountered node until

reaching a leaf node. For example, in the MLC-tree shown

in Fig. 2(b), the (0, 0, 1)-node is the rightmost child of the

(0, 0, 0)-node, and the rightmost path from the (0, 0, 0)-node

is composed of nodes with vectors (0, 0, 0), (0, 0, 1), (0, 0, 2),
and (0, 0, 3) (nodes with rose red borders).

Proof Sketch. The correctness of Algorithm 1 is guaranteed by

Property 2. The DFS order enforced by Procedure DFSDEC

ensures that every node in the MLC-tree is visited followed

by its rightmost child (if it exists). As a result, for any k-node

with k[|L|] = 0, all ML cores represented by the nodes on

the rightmost path starting from the k-node to a leaf node

are computed consecutively. This forms a complete peeling

process on G[C], where C is the ML core represented by the

father of the k-node. This peeling process involves visiting the

neighbors of all vertices in G[C] and removing all edges in

G[C], which totally takes O(|L|·|C|+|E[C]|) time. In addition,

the number of rightmost paths to be handled is equal to the

number of k-nodes in the MLC-tree with k[|L|] = 0, which is

bounded by O(
∏|L|−1

i=1 κ(Gi)). Therefore, the time complexity

of Algorithm 1 is O(
∏|L|−1

i=1 κ(Gi)(|L| · |V |+ |E|)).

Ordering of Layers: The order of layers in G determines

the organization, specifically, the father-child relationships, of

the nodes in the MLC-tree, thereby significantly impacting

the performance of Algorithm 1. For instance, in the MLC-

tree shown in Fig. 2(b), the (1, 0, 0)-node is the father of the

(1, 0, 1)-node. If a graph order designates G3 ahead of G1, the

(0, 0, 1)-node will become the father of the (1, 0, 1)-node in

the new MLC-tree. Intuitively, if G1 is denser or has a larger

degeneracy than G3, the same minimum degree constraint on

G3 holds more power to reduce the graph size than that on G1,

and thereby the (0, 0, 1)-core is likely to have a smaller size

than the (1, 0, 0)-core. In this case, allowing the (0, 0, 1)-node

to be the father of the (1, 0, 1)-node is more advantageous as

fewer vertices need to be peeled. Therefore, we order layers

in a non-decreasing order of layer density or layer degeneracy

to enhance the practical efficiency of Algorithm 1.

2698



Processed by

…

…

Barrier

(b) Basic parallel framework (c) Core-level-parallel startup

Thread 2Thread 1

…

(a) MLC-tree decomposition

MLC-tree Rightmost pathML core Thread 3

Fig. 3. Illustrations of the parallel ML-CD algorithms.

C. Parallel ML-CD Algorithm

In this section, we explore parallel approaches to solving the

ML-CD problem, capitalizing on the multicore capabilities of

modern processors. We begin by introducing two key metrics

for evaluating the performance of parallel algorithms: (1)

work, which counts the total number of operations performed,

and (2) depth, representing the length of the longest sequence

of dependent operations. Depth quantifies the minimum run-

ning time on an infinite number of processors.

As the number of layers |L| is typically small in practice,

we can consider it as a constant, and the ML-CD problem is

thereby polynomial-time solvable (Algorithm 1)1. However, as

its solution encompasses the solution to the decision problem

of the k-core (k > 3) on every single layer, which is known

to be P-complete [26], this problem is inherently sequential

and is unlikely to be solved in polylogarithmic depth unless P

= NC2. Facing this challenge, we first propose a novel MLC-

tree-based parallel framework for this problem, which is then

complemented by two optimizations to further boost efficiency.

1) Basic Framework: As analyzed in the proof of Theo-

rem 1, the process of MLCD (Algorithm 1) can be seen as

computing ML cores on the rightmost path starting from each

k-node in the MLC-tree, where k[|L|] = 0, through a single

peeling process. Building on this idea, we decompose the

MLC-tree into a series of independent rightmost paths, as

depicted in Fig. 3(a), and devise a basic parallel framework

that exploits the path-level parallelism: the computation of ML

cores following each rightmost path is carried out indepen-

dently in parallel. Fig. 3(b) illustrates this idea.

Algorithm 2 outlines the implementation. It employs a

similar DFS traversal on the MLC-tree as MLCD. However, it

always initiates a new task for traversing each non-rightmost

child of the currently visited k-node (line 11), while the thread

visiting this node proceeds to compute the ML cores repre-

sented by nodes on the rightmost path of this k-node through

a peeling process (Procedure SEARCHRMPATH). Note that

during the execution, each idle thread acquires and processes

a task, with no predetermined order for the task execution.

1When |L| is large and cannot be treated as a constant, the number of
ML cores can grow exponentially with |L|, bounded by O(|V ||L|). It is then
infeasible to solve the ML-CD problem with limited computational resources.

2NC is the set of decision problems decidable in polylogarithmic time on
a parallel computer with a polynomial number of processors.

Algorithm 2 ParMLCD-Basic (Parallel ML-CD with the

basic path-level parallelism)

Input: An ML graph G = (V,E, L)
Output: The set R of all nonempty ML cores in G with their coreness vectors
1: R ← ∅
2: PARDFSDEC(G, [0]|L|, R)
3: return R
4: procedure PARDFSDEC(G,k, R)
5: Ck ← PEEL(G,k)
6: if Ck �= ∅ then
7: R ← R ∪ {(k, Ck)}
8: for i ← |L| − 1, |L| − 2, · · · , lnz(k) do
9: k′ ← k

10: k′[i] ← k′[i] + 1
11: Create a new task running PARDFSDEC(G, k′, R)

12: SEARCHRMPATH(G[Ck], k, R)

13: procedure SEARCHRMPATH(G, k, R)
14: while true do
15: k[|L|] ← k[|L|] + 1
16: C ← PEEL(G,k)
17: if C �= ∅ then
18: R ← R ∪ {(k, C)}
19: G ← G[C]
20: else break

Theorem 2. Algorithm 2 finds all nonempty ML cores in the
ML graph G in O(

∏|L|−1
i=1 κ(Gi)(|L| · |V | + |E|)) work and

O(
∑|L|−1

i=1 κ(Gi)(|L| · |V |+ |E|)) depth.

Remark: An alternative parallel framework for the ML-

CD problem, inspired by its single-layer counterpart proposed

in [23], is to perform the computations on each rightmost path,

one after another, using available threads. By parallelizing

Function PEEL and introducing the bucketing technique to

dynamically maintain vertex degrees, each rightmost path can

be handled in the same expected work as the serial case

with a depth of ρ|L| · log |V | with high probability3, where

ρ is bounded by the maximum number of vertices across

layers. However, the practical implementation of this approach

involves significant synchronization between key operators.

Moreover, as ML cores typically have smaller sizes but larger

numbers compared with k-cores, the computations required to

obtain ML cores from their fathers cannot effectively utilize all

available threads. These factors collectively result in a notably

poor practical performance.

Drawbacks: This basic parallel framework has the fol-

lowing drawbacks: (1) Each thread needs to maintain thread-

3An algorithm is considered to have a O(f(n)) cost with high probability
if it costs O(k · f(n)) with a probability of at least 1− 1/nk .
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Fig. 4. Sizes of the ML cores C at different levels of the MLC-tree
(normalized by the total number of vertices in the input ML graph).

Algorithm 3 P-Peel (Parallel version of PEEL)

Input: An ML graph G = (V,E, L) and a vector k ∈ N
|L|

Output: The ML k-core of G
1: Initialize global arrays D1, D2, · · · , D|L| in parallel � Dl[v] is the degree of

v in Gl for v ∈ V and l ∈ L
2: Initialize global array invalid in parallel � invalid[v] indicates whether v has

already been removed
3: Initialize thread-local array buf and set s ← 0 , e ← 0
4: for v ∈ V do in parallel
5: if ∃l ∈ L s.t. Dl[v] < k[l] then
6: buf [e] ← v
7: e ← e + 1

/* Each thread performs a local peeling process in lines 8–18 asynchronously.*/
8: while s < e do
9: epre ← e

10: for l ← 1, 2, · · · , |L| do
11: for i ← s, s + 1, · · · , epre − 1 do
12: v ← buf [i]
13: for u ∈ Nl(v) do
14: dpre ← FetchAndSub(Dl[u], 1)
15: if dpre = k[l] and ¬TestAndSet(invalid[u]) then
16: buf [e] ← u
17: e ← e + 1

18: s ← epre

19: Barrier synchronization
20: return {v|v ∈ V, invalid[v] = false}

local structures for the rightmost path processing, each using

O(|L||V |) space, leading to huge space costs. (2) The first ML

core on each rightmost path is computed from the input ML

graph G, resulting in massive repeated computations. (3) Tasks

are generated interdependently. There are a limited number of

tasks during the startup phase of the execution, which leads

to an underutilization of available threads.

2) Core-level-parallel Startup: We introduce a core-level
parallel paradigm in the startup phase of the decomposition

to handle the limitations of the path-level parallelism. This

approach is grounded in the observation that the sizes of ML

cores substantially degrade as their levels in the MLC-tree

become lower, which is due to the combinational degree con-

straints from each layer. Fig. 4 showcases the size distributions

of ML cores on different levels of the MLC-tree for two real-

world ML graphs Friendfeed [18] and DBLP-coauthor [27].

We can see that the median sizes of ML cores on the third

level degrade to 4% and 0.02% of the number of vertices in

the input graph, respectively. This suggests that a large number

of vertices will be peeled when computing ML cores on upper

levels, which offers the potential for efficient parallelization.

Algorithm 3 outlines P-Peel, a parallel version of Fun-

tion PEEL used for computing ML cores on upper levels

of the MLC-tree. It is built on two atomic instructions:

FetchAndSub [28] and TestAndSet [29]. Given a mem-

ory address addr and an integer δ, FetchAndSub performs

an atomic decrement on the value at addr by δ and returns

the old value stored at addr. TestAndSet takes a memory

address addr of a boolean value as input and atomically sets

the value at addr to true and returns the old value.

P-Peel works as follows. It initializes global arrays Dl

for 1 ≤ l ≤ |L| to track vertex degrees and array invalid to

mark removed vertices (lines 1–2). Each thread maintains a

local array buf that functions as a queue and tracks its head

and tail with variables s and e, respectively (line 3). Lines 4–7

identify the first batch of vertices to be removed, i.e., those

with a degree smaller than k[l] in some layer l. This process

is executed concurrently, and each thread adds its discovered

vertices into its own queue buf . Then, in lines 8–18, each

thread carries out a local peeling process asynchronously based

on its queue: for every vertex v in the queue, it iterates over

v’s neighbors, atomically updates the degrees of the neighbors,

and removes those (add those to the queue) failing to satisfy

the degree constraint imposed by k. The removal of vertices

is marked atomically to ensure that each vertex is removed

only once. After all threads have finished their execution, the

remaining vertices collectively form the ML k-core.

Replacing Function PEEL in line 8 of MLCD (Algorithm 1)

with P-Peel establishes our core-level-parallel algorithm to

compute ML cores. We adopt this approach to compute ML

cores in the startup phase of the decomposition, specifically

focusing on computing those on the first l levels of the MLC-

tree, where l is a user-specified integer. Then, by designating

the nodes on level l as new roots, we apply the path-level

parallel approach (Algorithm 2) to process the subtrees rooted

at them. According to Property 2, all ML-cores represented

by nodes in a subtree are subsets of the one represented by

the root of the subtree (root core for short), which generally

has a much smaller size than the vertex set of the input ML

graph. Therefore, we construct subgraphs induced by the root

cores of these subtrees and extract the rest of the ML cores

from them. Fig. 3(c) illustrates the whole process.

The above hybrid parallel framework typically outperforms

the basic one in both space utilization and execution time.

Firstly, it avoids the need for thread-local structures that cost

O(|L||V |) space. Secondly, it enables the computation of ML

cores on smaller subgraphs, alleviating the extensive repeated

computations involved in peeling from the input ML graph.

Additionally, it increases thread utilization during the startup

phase of the execution.

It should be noted that updating vertex degrees with multiple

threads during the execution of P-Peel unavoidably causes

thread contention. When computing ML cores on upper levels

of the MLC-tree, which usually contain a large number of

vertices, the thread contention is light. As the levels become

lower, the contention intensifies. Therefore, for graphs with a

large number of layers, we adopt a smaller l as the number of

threads increases to mitigate the thread contention. However,

for graphs with fewer layers, we opt for a larger value of

l when more threads are available. The aim is to generate
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sufficient tasks to leverage the path-level parallelism, at the

expense of slightly higher thread contention overhead.

Remark: We can develop an alternative parallel implemen-

tation of Function PEEL following the idea in [23]. Specifi-

cally, in each iteration of the peeling process, edges adjacent to

all removed vertices are collected and grouped in parallel. In

this way, the changes in vertex degrees can be aggregated and

updated without conflicts. However, when practically applied

to compute ML cores on upper levels of the MLC-tree, the

overhead of heavy grouping and aggregating operations often

outweighs the benefits of non-conflicting degree updates.

3) Path merging: The startup phase picks a set of nodes

as new roots and builds small subgraphs induced by the ML

cores represented by these new roots for computing ML cores

in their respective subtrees. As the decomposition progresses

to lower levels of a subtree, the sizes of ML cores generally

become notably smaller in comparison to the root core of the

subtree. As a result, peeling from the root core to obtain these

small ML cores emerges as the most time-consuming step

within the processing of rightmost paths starting from the tree

nodes representing these small cores.

To tackle this issue, we implement a path merging strategy:

when a particular ML core C is identified with a size smaller

than α · |Croot|, where α ∈ [0, 1] is a user-specified parameter,

and |Croot| is the size of the root core of the subtree, we let the

thread obtaining C to continually compute all C’s descendant

ML cores using Algorithm 1. This strategy reduces repeated

peeling operations for obtaining the descendant tiny ML cores

from the root core, improving the overall efficiency.

Typically, a larger α reduces repeated computations among

the processing of different rightmost paths, but it may lead

to obvious load imbalance. Conversely, a smaller α involves

more redundant computations but offers more tasks for parallel

computation and helps distribute the workload more evenly.

Therefore, we opt for a smaller α as the number of threads

increases to benefit from more parallelism, and a larger α for

fewer threads to take advantage of the reduced computation.

Moreover, when an ML graph has a small number of layers,

the number of rightmost paths in its MLC-tree is limited, and

thereby a smaller α is preferred.

4) Discussions: The path-level parallel framework and two

optimization strategies proposed in this section can be easily

adapted to address other cohesive subgraph decomposition

problems in ML graphs if the following conditions are met:

(1) The search space of the problem can be expressed as a tree

structure; (2) The cohesive subgraphs represented by the father

nodes in the tree are supersets of those represented by their

children nodes. We have outlined a detailed adapting method

for solving the gCore decomposition problem [4] in general

ML graphs in the supplementary material [24].

IV. MULTILAYER CORE INDEXING (ML-CI)

In a number of analytical tasks in ML graphs, e.g., trial-and-

error searches for ML cores with desirable characteristics and

identifying the densest subgraphs [18], there is often a need

to frequently access ML cores with various coreness vectors.

0,0,0

3,0,0 2,1,0 2,0,1 1,2,0 1,1,1 1,0,2 0,3,0 0,2,1 0,1,2 0,0,3

2,0,0 1,1,0 1,0,1 0,2,0 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

{b} {g} {a, g} {c, d, e, f}

Fig. 5. Partial augmented MLC-tree for the ML graph in Fig. 1(a),
with node colors representing different associated vertex sets.

One approach to realizing fast ML core retrieval involves

storing the entire ML core decomposition in a hash table

with the coreness vectors of the ML cores as keys. However,

as mentioned in [18], the number of ML cores can grow

exponentially with the number of layers, thereby making this

approach impractical due to the significant storage overhead.

To address this challenge, we propose a more efficient method

to store and index ML cores based on the MLC-tree.

A. Storage and Index Structure

Recall that the MLC-tree systematically organizes all ML

cores and preserves their partial containment relationships

through the tree edges. By taking advantage of these facts,

we design a storage and index structure by augmenting the

MLC-tree with the following three steps:

1) Materialize all nodes in the MLC-tree that represent

nonempty ML cores and the tree edges between them.

We denote the materialized tree as T .

2) For each non-leaf node N in T , we associate with N
the difference set between the ML core represented by

N and the ML core represented by N ’s rightmost child.

3) For each leaf node N in T , we associate with N the

ML core represented by N .

Example 2. Fig. 5 depicts the top 4 levels of the augmented
MLC-tree for the ML graph in Fig. 1(a). The k-node N
with k = (0, 0, 2) represents the ML k-core {a, c, d, e, f, g}.
The rightmost child of N is the k′-node with k′ = (0, 0, 3),
representing the ML k′-core {c, d, e, f}. The difference, {a, g},
is therefore associated with the node N .

The construction of the augmented MLC-tree can be seam-

lessly integrated into the computation of the ML core decom-

position. Whenever a node N in the MLC-tree is visited, and

the ML core C represented by N is tested to be nonempty,

we materialize N and associate the difference set between C
and the ML core C ′ represented by N ’s father node with the

father. Indeed, this difference set C ′ −C is exactly the set of

vertices peeled from C ′ to obtain C.

Space cost: The space cost of the augmented MLC-tree

is O(
∏|L|−1

i=1 κ(Gi)|V |) because there are O(
∏|L|−1

i=1 κ(Gi))
rightmost paths in the MLC-tree, and the difference sets stored

with all nodes on each rightmost path totally contain at most

|V | vertices (Theorem 3, which will be introduced later). We
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also observe that the order of layers can affect the space cost

in practice, and ordering layers in a non-decreasing order of

their degeneracy often leads to a significant reduction in space

cost. This is because: (1) Selecting the layer with the largest

degeneracy as the |L|-th layer can be beneficial as it reduces

the number of rightmost paths to be stored. (2) In the MLC-

tree, a k-node with lnz(k) = l has |L| − l + 1 children.

Therefore, if lnz(k) is small, it takes more space to store

|L| − l + 1 pointers pointing to the children of the k-node.

Since the number of k-nodes with lnz(k) = l is bounded by∏l
i=1 κ(G), this layer order can effectively save the space for

storing the tree nodes.

B. Applications
Let us demonstrate how the augmented MLC-tree supports

fast ML-core search and facilitates a novel dense subgraph

discovery problem in ML graphs. For brevity, we will refer

to the augmented MLC-tree index simply as the MLC-tree

throughout the rest of this paper.
1) ML Core Search: The ML core search problem aims to

find the ML core with a given coreness vector:

Problem 3. (Multilayer Core Search (ML-CS)) Given an
ML graph G = (V,E, L) and an |L|-dimensional vector
k = [ki]i∈L, find the ML k-core of G.

This problem is crucial for retrieving cohesive subgraphs

with desirable features in ML graphs, especially in a trial-and-

error manner. In addition, it serves as a useful pre-processing

tool for reducing the search space of complex CSM problems

in ML graphs such as the detection of (frequent) cross-layer

quasi-cliques [6], [18], [19]. The following theorem lays the

foundation for fast ML core search based on the MLC-tree:

Theorem 3. For any node N in the MLC-tree, the union
of vertex sets associated with nodes along the rightmost path
from N to a leaf node forms the ML core represented by N .

Theorem 3 establishes a simple MLC-tree-based ML core

search approach, which is outlined in Algorithm 4. It consists

of two steps: (1) Locate the k-node N in the MLC-tree (using

Procedure SEARCH in line 1); (2) Recover the ML k-core

along the rightmost path of N to a leaf node (using Procedure

RECOVER in line 2). The pseudocode is straightforward, and

we leave the detailed description in [24].

Theorem 4. Algorithm 4 returns the ML k-core C of G in
O(

∑|L|
i=1 κ(Gi) + |C|) time.

2) Weighted Densest Subgraph Extraction: Existing stud-

ies have introduced ML-core-based [18] or (k, λ)-FirmCore-

based [21] approximations to the densest subgraphs in ML

graphs. However, in an ML graph, not all layers show equal

importance to users. Some layers may be of special interest to

users, and prioritizing the consideration of the cohesiveness in

these layers is expected. This motivates us to study a weighted

version of the densest subgraph problem:

Problem 4. (Weighted Densest Subgraph Discovery (WDS))
Given an ML graph G = (V,E, L), a positive real number β,

Algorithm 4 MLCS (ML Core Search)

Input: The MLC-tree T for an ML graph G = (V,E, L) and a vector k ∈ N
|L|

Output: The ML k-core in G
1: N ← SEARCH(T,k)
2: return RECOVER(N )
3: procedure SEARCH(T,k)
4: N ← the root of the MLC-tree T
5: i ← 1
6: while i ≤ |L| do
7: (N, i) ← FORWARD(N, i,k)

8: return N
9: procedure FORWARD(N, i,k)

10: if kN [i] < k[i] then � kN is the coreness vector represented by N
11: for each child N ′ of N do
12: if kN [i] �= kN′ [i] then
13: return (N ′, i)
14: else
15: return (N, i + 1)

16: procedure RECOVER(N )
17: C ← the vertex set associated with N
18: repeat
19: N ← the rightmost child of N
20: S ← the vertex set associated with N
21: C ← C ∪ S
22: until N is a leaf node
23: return C

|L| positive real numbers w1, w2, · · · , w|L|, and a real-valued
weighted density function ρ : 2V → R

+ defined as

ρ(S) = max
L̂⊆L

min
i∈L̂

wi|L̂|β |Ei[S]|
|S| , (1)

find a subset S∗ ⊆ V that maximizes ρ(S∗).

As with the unweighted density function proposed in [18],

the parameter β in Eq. (1) controls the trade-off between high

density and the number of layers exhibiting that density.

By setting larger weights to the layers of users’ interest,

the cohesiveness of subgraphs on these layers is strengthened,

while those on less relevant layers (with relatively small

weights) are weakened. The unweighted densest subgraph

problem in ML graphs is known to be NP-hard [18]. As the

unweighted version is a special case of our WDS problem

when w1 = w2 = · · · = w|L|, our WDS problem is also

NP-hard, unless P = NP.

We will next establish the connections between ML cores

and the weighted densest subgraph, followed by the solution

for the WDS problem based on the MLC-tree.

Theorem 5. Let C be the ML core decomposition of G, C∗

be the ML core in G that maximizes ρ(C∗) (Eq. (1)), i.e.,
C∗ = argmaxC∈C ρ(C), and S∗ be the optimal solution to
the WDS problem on G, we have

ρ(C∗) ≥ w−

2w+|L|β ρ(S
∗), (2)

where w− = mini∈L wi and w+ = maxi∈L wi.

Theorem 5 provides a foundation for an efficient solution

to the WDS problem based on the MLC-tree. The idea is to

make a DFS traversal on the MLC-tree and identify the ML-

core that maximizes ρ(·) as the result. Due to limited space,

we leave the pseudocode of the algorithm in the supplementary

material [24] and introduce some key techniques next.
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The organization of the MLC-tree ensures that ML cores on

each rightmost path are nested within each other. This property

allows us to incrementally compute the information needed to

calculate the weighted density of these ML cores, including

the number of vertices and the number of edges in each layer

of the subgraph induced by the ML core. Specifically, during

the DFS traversal along a rightmost path, we first go straight

to its leaf node and identify the densest ML core represented

by the nodes on the path during the backtracking process.

Let N and N ′ be two nodes on this rightmost path, with N
being the father of N ′. Suppose C and C ′ are the ML cores

represented by N and N ′, respectively. As we backtrack to

node N , the ML core C ′ and the per-layer edge numbers,

say m1,m2, . . . ,m|L|, in G[C ′], are already known. Let S be

the vertex set associated with N . According to Theorem 3, we

have |C| = |C ′|+ |S|, and the per-layer edge numbers in G[C]
can be obtained by adding each |Δi| to the corresponding mi,

where Δi is the set of edges in the i-th layer newly introduced

due to the inclusion of S, i.e., the ones with one endpoint in

S and the other in S ∪ C ′.
Moreover, if we augment the MLC-tree by storing each Δi

associated with the node N during the MLC-tree construction

at a slightly higher space overhead, restoring the per-layer

edge numbers can be achieved by adding each Δi stored in

the node to mi. We refer to this augmented MLC-tree as the

edge-difference-augmented MLC-tree. We have compared the

basic MLC-tree and the edge-difference-augmented MLC-tree

by experiments. We observe that the latter shows significant

efficiency improvements in supporting solving the WDS prob-

lem, with about an average of 10% increase in the space cost.

Theorem 6. Given an ML graph G, a w−
2w+|L|β -approximation

to the optimal solution of the WDS problem on G can be
obtained in O(

∏|L|−1
i=1 κ(Gi)(|L| · |V | + |E|)) time using

the basic MLC-tree or O(
∏|L|

i=1 κ(Gi)) time using the edge-
difference-augmented MLC-tree.

Notably, when searching for the weighted densest ML cores,

each rightmost path can be independently explored, enabling

a path-level parallel execution, which is akin to the one em-

ployed in the parallel ML core decomposition (Algorithm 2).

V. EXPERIMENTS

A. Experimental Setup

Datasets. We conducted experiments on 9 real-world ML

graphs, with their characteristics presented in Table I. The first

6 graphs were obtained from [18]. Datasets DBLP-Large [27]

and FlickrGrowth [30], from the KONECT Project4, and

Wiki [31], from the SNAP Datasets5, are transformed into ML

graphs by organizing their edges into different layers based on

the timestamps. The graph abbreviations are shown in bold.

Environment. The experiments were conducted on a server

equipped with a 40-core Intel Xeon Gold 5218R processor,

supporting two-way hyper-threading, and 754GB of RAM.

4https://konect.cc/
5https://snap.stanford.edu/data/

TABLE I
PROPERTIES OF GRAPHS USED IN EXPERIMENTS.

Graph |V | |E| |L| minl∈L |El| maxl∈L |El|
SacchCere 6.5k 247k 7 1.3k 91k

DBLP-Small 513k 1.0M 10 96k 113k
ObamainIsrael 2.2M 3.8M 3 557k 1.8M

Amazon 410k 8.1M 4 899k 2.4M
Higgs 456k 13M 4 28k 12M

Friendfeed 505k 18M 3 266k 18M
DBLP-Large 1.8M 10M 22 107 2.6M

Wiki 1.0M 2.9M 10 347 988k
FlickrGrowth 2.3M 23M 6 121k 13M

Fig. 6. Running time of ML-CD algorithms.

Source codes from [18] and [21] are compiled using Cython,

while the algorithms proposed in this paper are implemented

in C++ and compiled with GCC 9.4.0, both utilizing -O3
optimization. OpenMP is used to express parallelism.

B. Performance of ML-CD.

MLC-tree V.S. Core lattice. We begin by demonstrating the

effectiveness of our reduced search space MLC-tree for the

ML-CD problem. Three lattice-based ML-CD algorithms [18],

namely ML-Dfs, ML-Bfs, and ML-Hybrid, based on dif-

ferent search orders on the core lattice are compared with

our MLC-tree-based algorithm MLCD (Algorithm 1) and the

parallel version ParMLCD (Section III-C) executed with 40
threads. Fig. 6 reports the results. The empty bars labeled with

‘N/A’ indicate that the corresponding algorithms could not

finish within 12 hours. We observe a remarkable speedup of

3−128× with MLCD compared to all lattice-based algorithms

across tested graphs. Moreover, the parallel approach attains

an overall speedup ranging in 32− 1606×. The improvement

arises from the smarter reuse of previous computations during

the DFS traversal on the MLC-tree and the guarantee that each

ML core is visited and computed exactly once. This verifies

the effectiveness of our MLC-tree-based approach.

Parallel efficiency. We then evaluate the efficiency of our

parallel ML core decomposition algorithms, encompassing:

• ParMLCD-Basic: the basic parallel framework using

path-level parallelism (Alogrithm 2).

• ParMLCD-S: ParMLCD-Basic equipped with the

core-level-parallel startup (Section III-C2).

• ParMLCD-M: ParMLCD-Basic using the path merging

strategy (Section III-C3).

• ParMLCD: ParMLCD-Basic with all optimizations.

We configured the parameters l and α used in the core-level-

parallel startup and path merging as 3 and 0.1, respectively.
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Fig. 7. Comparison between parallel ML-CD algorithms with different
optimizations in terms of (a) running time and (b) memory usage.

Fig. 7 depicts the running time and memory costs of these

algorithms on different graphs. Our observations include:

(1) ParMLCD-S exhibits significant improvements over

ParMLCD-Basic in terms of both running time and memory

usage for sparse graphs like DBLP-Large (DL), where the

sizes of ML cores dramatically decrease as their levels in the

MLC-tree increase (see Fig. 4(b)). For example, it achieves a

notable speedup of 43.5× and a 37% space reduction on DL.

This is because the subgraphs constructed in the startup phase

are much smaller than the original ML graph, enhancing the

efficiency. Furthermore, it avoids the allocation of per-thread

local structures with space costs proportional to the size of the

input ML graph. However, for dense ML graphs like Amazon

(A), where vertices exhibit high cohesiveness across layers,

ParMLCD-S attains a small speedup because the sizes of ML

cores decrease slowly, and the decomposition process benefits

less from the constructed subgraphs. Moreover, ParMLCD-S
may cost more space than the basic version in such graphs, as

each built subgraph has a similar size to the input ML graph.

(2) The standalone adoption of the path merging strategy

on ParMLCD-Basic demonstrates improved computational

efficiency on most graphs. Nevertheless, we also observe

performance degradations on certain graphs like Friendfeed

(Ff). This is because the default value of α = 0.1 is too large

for such sparse ML graphs with few layers, leading to severe

load imbalance. It can be alleviated by adopting a smaller α
value. Besides, ParMLCD-M incurs basically the same space

cost as ParMLCD-Basic. However, in scenarios where the

path merging strategy substantially reduces the number of

tasks, ParMLCD-M exhibits lower space costs.

(3) By leveraging both the core-level-parallel startup and the

path merging strategies, ParMLCD attains a speedup ranging

from 1.49× to 478.8× compared with ParMLCD-Basic,

with a relative space cost between 0.23 and 1.97, depending

on the graph characteristics. In fact, these two strategies com-

plement each other: performing ML-CD on small subgraphs

built in the startup phase helps alleviate the load imbalance

caused by path merging, enhancing its benefits. Meanwhile,

path merging reduces overall tasks, resulting in a smaller space

consumption compared to ParMLCD-S.

Fig. 8 shows the speedup of ParMLCD over the serial MLCD
(Algorithm 1) and its relative memory usage for varying num-

bers of threads. When using 40 threads, ParMLCD achieves

Fig. 8. The speedup and relative memory cost of ParMLCD compared
to MLCD. “40h” refers to 80 hyper-threads.

Fig. 9. Memory comparison. Fig. 10. Efficiency of ML-CS.

a speedup ranging from 7.7× to 30.6× and incurs a relative

increase in space costs from 0.02 to 3.44. It is also observed

that ML graphs with a larger number of layers, such as DBLP-

Large (DL), benefit more from the parallelism. The MLC-

trees for such graphs hold more rightmost paths, allowing

for better utilization of available threads. However, for graphs

with few layers like Amazon (Fig. 8(d)) and Higgs (Fig. 8(f)),

both comprising 4 layers, increasing the number of threads

may lead to performance degradations. This is because when

processing a node, as many new tasks as the number of the

non-rightmost children of this node are created. In graphs

with fewer layers, there are fewer tasks generated, leading to

underutilization of threads. As a result, the increasing thread

overhead outweighs the benefits of parallelism. Moreover, our

core-level-parallel startup strategy helps alleviate the increase

in the space occupation with the growing number of threads.

C. Performance of ML-CI.

We next evaluate the effectiveness of our MLC-tree index.

Space reduction. As a key metric for evaluating an index,

we examine the space efficiency of our MLC-tree-based index

over the naı̈ve storage that stores each nonempty ML k-core

in a hash table with the key k. Fig. 9 presents the results,

where “Hashtable”, “MLC-tree” and “EA-MLC-tree” denote

the hash-table-based storage, the basic augmented MLC-tree,

and the edge-difference-augmented MLC-tree used to sup-
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port the densest subgraph discovery, respectively. We observe

11.2%−98.1% space reductions in the MLC-trees compared to

the hash tables, highlighting the redundancy between ML cores

and the promising ability of the MLC-tree to mitigate such

redundancy. Moreover, we see marginal increases in space

overhead for EA-MLC-trees compared to basic MLC-trees,

ranging from 0.01% to 20.8% across tested graphs.

Supporting ML-CS. To evaluate the effectiveness of the

MLC-tree index in supporting ML core search, we compare

the running time of three ML-CS approaches:

• Peeling: peeling-based search that computes the ML

k-core by iteratively removing all vertices failing to

satisfy the degree constraints imposed by k.

• MLCT-search: MLC-tree-based search (Algorithm 4).

• HT-search: hash-table-based search that searches the

hash table holding the ML cores with the key k.

We run 1000 ML core search queries using these algorithms.

To avoid obtaining massive empty results, we generate queried

vectors k by randomly sampling each component k[i] in

the range [0, κ(Gi)/4]. Fig. 10 reports the results, and our

observations are as follows: (1) MLCT-search, based on a

pre-computed MLC-tree index, significantly outperforms the

peeling-based approach, achieving a speedup ratio ranging

from 2 to 6 orders of magnitude across all tested graphs. (2)

MLCT-search exhibits competitive, and in some cases su-

perior, running time compared to the hash-table-based search.

Importantly, the space overhead of the MLC-tree index is

much less than that of the hash table.

Supporting WDS. We test the effectiveness of the MLC-tree

index in supporting the weighted densest subgraph discovery

in ML graphs. We assess the performance of the following

densest subgraph detection algorithms in terms of efficiency:

• Lattice-DS [18]: compute the ML core decomposition

using the lattice-based algorithm ML-Bfs and output the

densest ML core as an approximation.

• FC-DS [21]: compute the FirmCore decomposition and

output the densest FirmCore as an approximation.

• MLCD-DS: compute the ML core decomposition using

the MLC-tree-based parallel algorithm ParMLCD (Sec-

tion III-C) and output the densest ML core.

• MLCT-DS: weighted densest subgraph search algorithm

using the MLC-tree index (Section IV-B2).

• EA-MLCT-DS: variant of MLCT-DS using the edge-

difference-augmented MLC-tree, EA-MLC-tree for short.

As Lattice-DS and FC-DS cannot handle weighted

cases, we set each wi = 1 and β = 2 for the efficiency test.

Fig. 11 shows the results. Note that we ran both MLCD-DS
and MLCT-DS using 1 and 40 threads, with the running

time range depicted by the black error bars on corresponding

bars for these algorithms. We have observed that: (1) For

algorithms without indexes, MLCD-DS consistently outper-

forms the lattice-based approach Lattice-DS, confirming

the effectiveness of our tree-shaped search space. Notably,

MLCD-DS even demonstrates better performance compared to

FC-DS for certain graphs, despite the FirmCore decomposi-

Fig. 11. Running time of the densest subgraph detection algorithms
in ML graphs.

TABLE II
COMPARISONS BETWEEN APPROXIMATIONS TO THE WEIGHTED DENSEST

SUBGRAPHS ON GRAPH SC

Model l1 l2 l3 l4 l5 l6 l7 ρ |L̂|
WC-App (1) 5.52 0.82 5.45 5.44 11.41 10.07 11.37 195.81 6

C-App 3.95 0.54 7.45 7.49 8.77 10.17 15.11 186.27 5
FC-App 3.70 12.55 5.43 0.55 11.07 11.63 27.77 177.12 4

WC-App (2) 0.44 7.01 6.94 7.02 10.27 12.60 15.02 249.82 6
C-App 0.40 5.42 7.45 7.49 8.77 10.17 15.11 195.19 6

FC-App 0.37 125.50 5.43 0.55 11.07 11.63 27.77 177.12 4

WC-App (3) 0.37 0.46 42.39 11.28 11.60 11.41 24.03 282.11 5
C-App 0.40 0.54 74.51 7.49 8.77 10.17 15.11 187.19 5

FC-App 0.37 12.55 54.30 0.55 11.07 11.63 27.77 276.75 5

WC-App (4) 0.24 0.37 2.37 83.46 26.30 4.10 26.66 236.71 3
C-App 0.40 0.54 7.45 74.88 8.77 10.17 15.11 186.27 5

FC-App 0.37 12.55 5.43 5.50 11.07 11.63 27.77 195.48 6

WC-App (5) 0.16 0.45 1.39 6.05 289.23 2.98 19.40 289.23 1
C-App 0.40 0.54 7.45 7.49 87.74 10.17 15.11 186.27 5

FC-App 0.37 12.55 5.43 0.55 110.70 11.63 27.77 186.08 4

For i ∈ L, column li displays the weighted density in layer i
(the standard density multiplied by the layer weight). ρ is the
overall weighted density defined in Eq. (1), and |L̂| indicates the
number of layers contributing to ρ.

tion problem having a linear time complexity. (2) Leveraging

the pre-computed MLC-tree index, MLCT-DS achieves time

savings of up to 88.5% compared to MLCD-DS when using

40 threads. Benefiting from the edge differences in the EA-

MLC-tree, EA-MLCT-DS attains a speedup of 1 to 3 orders

of magnitude over MLCT-DS (40 threads) and outperforms

Lattice-DS and FC-DS from previous work by 4− 6 and

2− 5 orders of magnitude, respectively.

We proceed to examine the quality of the dense subgraphs

identified by various algorithms. In this experiment, we vary

the layer of priority and set its weight to 10 while keeping

the others of weight 1. Additionally, β is set to 2. The results

obtained on graph SacchCere (SC) are presented in Table II.

Here, WC-App(x) represents the output of EA-MLCT-DS with

the x-th layer set priority, while C-App and FC-App denote

the results of Lattice-DS and FC-DS, respectively.

We can see that when varying the layer set priority, WC-

App consistently shows the highest overall weighted density

and guarantees a large weighted density in the prioritized layer,

highlighting the effectiveness of EA-MLCT-DS in handling

different layer preferences. Furthermore, WC-App considers

a better trade-off in optimizing the density in the prioritized

layer and in other layers. As we can see in cases where x = 2
and 3, although it displays a lower density than C-App and/or

FC-App in the prioritized layer, the optimization of the density
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on other layers contributes to the highest overall density.

D. Impact of layer orders.

We evaluate the impact of different layer orders on the

efficiency of computing the ML core decomposition and the

memory usage of the MLC-tree index. The results [24] are

consistent with our earlier analysis: (1) Ordering layers in

non-decreasing order of their density or degeneracy generally

incurs minimal time overhead for most graphs, especially for

those exhibiting wide variations in layer densities and de-

generacies. (2) The non-decreasing order of layer degeneracy

always leads to the smallest MLC-tree.

VI. RELATED WORK

This section presents a brief overview of the existing work

related to the ML core decomposition problem.

Core Decomposition. Core decomposition is a fundamental

graph-analysis tool and has seen a wide range of appli-

cations [8], [10], [14], [15], [32]. The state-of-the-art core

decomposition algorithm [13] employs the vertex peeling

paradigm and achieves a cost of O(m + n) time, where

m and n represent the number of edges and vertices in

the graph, respectively. A local algorithm based on the h-

index [33] for calculating the coreness values of vertices in

a graph, equivalent to computing the core decomposition, is

shown in [8]. It allows for a natural parallel implementation.

Core decomposition has been extended to various types of

graphs [34]–[37] and studied in distributed environment [38],

[39] or on external memory [40], [41], as well as handling

dynamic graphs [42], [43].

Parallel Core Decomposition. We here focus on works with

shared-memory parallelism. Dasari et al. [44] and Kabir et

al. [22] proposed straightforward parallelizations of the serial

peeling-based core decomposition algorithm [13], with the

latter featuring fewer synchronization barriers. By introducing

the bucketing technique, Dhulipala et al. [23] proposed the first

work-efficient parallel core decomposition paradigm. Rooted

in the h-index-based approach, Sariyuce et al. [45] presented

parallelizations in both synchronous and asynchronous man-

ners, with the latter usually demonstrating faster convergence.

Additionally, related issues, such as the dynamic maintenance

of coreness values [46] and computing the core hierarchy [47],

have also been investigated. However, all these parallel algo-

rithms cannot be applied to ML graphs directly. Furthermore,

the distinct features of ML cores from k-cores make the above

parallel paradigms inefficient in computing ML cores.

Multilayer Core Decomposition. Azimi et al. [16] extended

the k-core model to ML graphs and introduced the notion of

ML k-core. Galimberti et al. [17], [18] employed a lattice

structure to organize the ML cores of an ML graph and pro-

posed three algorithms to compute the ML core decomposition

based on different search orders on the lattice and pruning

techniques. However, these algorithms face scalability issues

and are hard to parallelize.

Relaxations of the ML core model like the d-CC model [5],

[20] and the (k, λ)-FirmCore model [21] have been studied in

the literature. These models impose uniform degree constraints

across all layers, simplifying the search spaces of their de-

composition problems. However, these models are not suitable

substitutes for the ML core model in many scenarios as their

simplified constraints overlook the inherent differences in the

cohesiveness of different layers.

Densest Subgraph Discovery in ML graphs. Tommaso et

al. [48] surveyed researches related to the densest subgraph

problem. Here, we only focus on the works studied in multi-

layer settings. Jethava and Beerenwinkel [49] formulated the

densest common subgraph problem that finds vertex subsets

maximizing the minimum density across layers and proposed

both linear-programming-based and greedy-peeling-based so-

lutions. Galimberti et al. [18] proposed a generalization of the

densest common subgraph problem that exploits a trade-off

between high average-degree density and the number of layers

exhibiting that density. They demonstrated that the densest

ML core unfolds an approximation solution to this problem.

Hashemi et al. [21] presented another (k, λ)-FirmCore-based

approximate solution, which improves the one given in [18]

in terms of both computational efficiency and approximation

guarantee. Additionally, Semertzidis et al. [50] introduced a

series of variants of the densest common subgraph problem

that consider different intra-layer and cross-layer information

aggregation patterns, and they demonstrate the computational

complexity and algorithmic solution for each case. However,

the weighted densest subgraph problem explored in this paper

considers users’ different preferences across layers, which is

not taken into account in the above works.

VII. CONCLUSIONS

Multilayer (ML) core decomposition is a fundamental tool

for analyzing dense structures in ML graphs. We present

a novel MLC-tree-based ML core decomposition algorithm

that demonstrates improved time complexity over existing

lattice-based approaches and achieves a practical speedup

of up to 128× on tested graphs. Based on the rightmost-

path-decomposition of the MLC-tree, we propose the first

parallel framework for computing the ML core decomposition.

Enhanced by two optimization strategies including the core-

level-parallel startup and path merging, it attains an additional

speedup of up to 30.6× on 40 cores over the serial version.

The augmented MLC-tree offers a compact storage and index

for the ML core decomposition, supporting fast retrieval of

any ML core C in linear time in the height of the MLC-

tree and the size of C. The further application of a novel

weighted densest subgraph problem in ML graphs is also

shown to be efficiently solved using the MLC-tree index, with

guaranteed quality of the results. Extensive experiments verify

the significant improvements in the practical performance of

the proposed algorithms over existing baselines.
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