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Abstract—Community search is a query-dependent graph task
to find communities containing a given set of query vertices,
which is useful for personalized search and recommendation.
Recently, community search over multilayer networks has gained
attention thanks to its strong ability to capture cross-layer
relationships among diverse entities from multiple domains. This
brings significant advantages against the classical studies of
community search over only single-layer graphs. However, most
existing multilayer community models suffer from two major
limitations: 1) failure to identify informative communities with
the most layers when a multilayer graph is associated with a
large number of layers; 2) missing to distinguish the degree of
connections in internal layers and cross-layers.
To tackle the above limitations, this paper proposes a novel

multilayer subgraph model called (k, d)-core. A (k, d)-core based
community requires that every two layers have enough k internal
layer connections and d cross-layer connections for each vertex in
this community. We formulate the problem of multilayer commu-
nity search (MCS-problem), which finds a (k, d)-core connected
subgraph H containing query vertices to achieve the largest
number of cross-layers. For cross-layer connectivity, we consider
two-fold definitions of full-layer and path-layer connectivities.
First, we consider a strong definition of full-layer connectivity,
which constrains that every two layers are connected in H . We
show that the MCS-problem under full-layer connectivity is NP-
hard. We propose two methods of exact exploration and heuristic
search for findingMCS answers. Second, to improve the efficiency
of community search, we further study a relaxation of path-
layer connectivity, allowing two layers to be connected via a path
of immediate layers. Then, we develop a fast search algorithm
to identify path-layer-based communities and then refine them
to full-layer answers. Furthermore, we develop a novel (k, d)-
core index that effectively captures essential (k, d)-core structure,
including the neighborhood information, the layer connectivities,
and the internal/cross-layer corenesses. Extensive experiments on
nine real-world multilayer graphs demonstrate the effectiveness
and efficiency of our MCS model and algorithms.

I. INTRODUCTION

Graph is a mathematical model widely used to represent

entities and their relationships in real-world scenarios, such as

social networks, biological networks, financial networks, brain

networks, transportation systems, and so on [1]–[3]. However,

a simple single-layer graph model is often hard to depict

various kinds of entities and the complex characteristics of

relationships, which brings significant challenges in compre-

hensive graph data analytics [4], [5]. Multilayer graph (MG)
is an advanced graph model that consists of multiple layers,

where each layer represents a different type of relationship
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Fig. 1. An example of community search in a multilayer collaboration
network with four layers of published paper layer, research expertise layer,
interest group layer, and scholar collaboration layer.

or interaction between nodes. Multilayer graphs have many

real-world applications in society, finance, and biology. For

instance, a multilayer social network can represent different

types of relationships between individuals, such as friendships,

professional connections, family ties, and online interactions.

Each layer captures a different aspect of the social network.

Thus, the integrated information of all layers offers a compre-

hensive social overview. In biology, multilayer graphs are used

to represent complex interactions within biological systems.

A multilayer graph can model protein-protein interactions,

gene regulatory networks, and metabolic pathways. Each layer

captures a specific aspect of the biological system, providing

insights into its layered structure and diverse functions. A

multilayer financial graph can model complex interactions

between financial entities, such as banks and companies

associated with stock exchanges and financial transactions.

Fig. 1(a) shows a collaboration network of multilayer graph

MG, associated with four different layers of published paper
layer in G1, research expertise layer in G2, interest group layer

in G3, and scholar collaboration layer in G4.

Several studies work on multilayer community detection,

which identifies all communities with cohesive multilayer

connectivity and attribute similarity [6]–[10]. Different from

community detection, community search is a query-oriented

task to uncover highly personalized and densely interconnected

communities containing the given query vertices [11]–[14].

The applications of community search are demonstrated, e.g.,

influential communities in social networks, determining effi-

cient travel routes in transportation networks, and uncovering

relationships between genes and proteins in biological net-
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works [15]–[18]. However, extending the existing techniques

of multilayer community detection to community search is

difficult, which desires new models and efficient solutions.

On the other hand, existing community search over multi-

layer networks [12]–[14] also suffers from several limitations.

First, the models [12]–[14] are developed upon multiplex
graphs, which is a special instance of multilayer graphs re-
quiring that vertices in various layers are identical. Extending

the models and algorithms to general multilayer graphs is

challenging, where vertices at each layer represent different

entities of distinct types. Another variant of MLG called

heterogeneous information network (HIN) [19]–[22] focuses
on meta-path-based models that mainly consider cross-layer

relationships and ignore internal layer connections. Second,

existing studies [23], [24] extend from single-layer graphs

to handle multiple layers, which may lead to a significantly

increased complexity with the increased number of layers.

Scalable algorithms and techniques are needed to handle

a multilayer graph with a large number of layers. Third,

there is an inflexible density balance between the internal

layer and cross-layer. Existing community models [12], [14]

give a hard constraint for layer density failing to balance

between internal and cross-layer densities, which may result

in an inflexible model to fit more real communities. Thus,

defining a reasonable density measure to capture the strength

of internal layer and cross-layer connections is a challenging

but important task.

To address the above limitations, we propose a novel

multilayer community search model. Specifically, we design a

flexible community model called (k, d)-core in general MGs
by considering the connections of internal layers and cross-

layers, respectively. k-core is a fundamental dense subgraph
model in a single-layer homogeneous graph, which requires

each vertex in k-core to have at least k neighbors. We extend
k-core to (k, d)-core in multilayer graphs. In the (k, d)-core,
every pair of layers requires the vertices to have at least k
internal edges in its layer and at least d cross-layer edges to
vertices in another layer. Based on the fundamental element

of (k, d)-core, we formally formulate the community search
problem in multilayer graphs (MCS-problem). Given a multi-
layer graph MG, a set of query vertices Q, parameters k and
d, MCS-problem is to find a connected multilayer subgraph H
containing all query vertices Q such that every pair of layers
exists a (k, d)-core of H , meanwhile H achieves the largest

number of layers indicating the most meaningful cross-layers.

Consider an example of collaboration network MG in Fig. 1
with four layers G1, G2, G3, and G4, the subgraph H1 is a

(2, 1)-core located in layers G2 and G3, which is depicted in

grey region. Each vertex in G2 has at least 2 neighbors in G2

and 1 cross-layer neighbor with G3. In this example, the user

queries a collaboration community related to the query author

in layer G2; our problem will return the multilayer community

H shown in Fig. 1(b), there exists a (2, 1)-core between every
two layers, which also achieves the largest number of 3 layers,
i.e., G2, G3, and G4.

We theoretically analyze the structural properties of (k, d)-

core and also the problem hardness. We show that the MCS-
problem is NP-hard, which can be reduced from a classical
NP-complete Maximum Clique decision problem. This brings

significant challenges to the development of fast multilayer

community search algorithms. To tackle it efficiently, we

propose a MCS framework. It consists of three steps: (1)
extracting k-core components in each layer; (2) checking the
existence of (k, d)-core for every two layers; and (3) finding a
layer-clique community with the maximum number of layers.

Among these three steps, the most time-consuming operations

are Steps 2 and 3. We further propose fast techniques to

accelerate them respectively. As Step 2 needs to check a total

of
l×(l−1)

2 for l-layered graph, we design an index that effec-
tively captures essential graph structure features to speed up

the search process, including neighborhood information, layer

connectivity, and the vertex coreness in internal layers/cross-

layers. Leveraging the (k, d)-core index, we can quickly deter-
mine if two layers have no (k, d)-core connectivity and safely
prune such layer candidates. Due to the problem NP-hardness

for checking maximum clique in Step 3, we first propose a

greedy algorithm to find heuristic answers directly. Then, we

obtain an upper bound of layers and design a bounded pruning

algorithm to reduce search space.

We relax the full-layer connectivity to the path-layer one
to help improve the efficiency and obtain the upper bound for

Step 3. Specifically, a path-layer-based community does not

need that every pair of layers is (k, d)-core connected, but
only requires that there exists a path of (k, d)-core connected
layers connecting these two layers. Leveraging this, the search

for the path-layer community can be done in polynomial time.

Moreover, the discovery of path-layer community can be used

to accelerate the discovery of full-layer answers further. In

summary, we make the following contributions to this paper.

• We propose a novel dense subgraph of (k, d)-core in mul-
tilayer graphs, strengthening the connections in internal

layers and cross-layers. Based on (k, d)-core, we formu-
late our new problem of multilayer community search to

maximize the number of cross-layers. (Section III)

• We prove the MCS-problem to be NP-hard. We propose
an exact enumeration algorithm to find multilayer com-

munities. Furthermore, we develop heuristic techniques,

determine an upper bound of community layers, and then

design bound-and-search methods to accelerate efficiency.

(Section III, IV)

• We study a relaxation problem of multilayer community
search, which reduces the full-layer connectivity to path-

layer connectivity. We develop a polynomial-time online

search algorithm to find path-layer communities and

further improve the search for full-layer communities.

(Section V)

• In addition, we design a new (k, d)-core index to store
all (k, d)-core information and propose an index-based
algorithm to speed up community search. (Section VI)

• We conduct extensive experiments to evaluate the ef-
fectiveness and efficiency of our full-layer and path-

layer community models, the corresponding search al-
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gorithms, and the designed index. Experiments show the

superiority of our multilayer model against state-of-the-

art FirmTruss [14] and RWM [13] on nine real-world

datasets. (Section VII)

We discuss related work in Section II and conclude the

paper in Section VIII.

II. RELATED WORK

In this section, we review the related studies including com-
munity search, multilayer graph analytics, and heterogeneous
information network analytics.

Community search. Community search is a query processing
task to identify query-oriented densely connected communities

in a graph [11], [15]. In the literature, there are several

dense subgraph based community search models, including

k-core [19], [20], [25], [26], k-truss [14], [27], [28], k-
clique [29], k-plex [30], and so on. A cohesive subgraph of
k-core represents a group where all vertices have at least k
neighbors [25], [26], which are widely used for community

models and accelerating clique discovery. A comprehensive

survey of community search can be found in [11], [15].

Besides the structural community search over simple graphs,

community search has been studied in various graph data,

including dynamic graphs [16], [17], labeled graph [31], and

heterogeneous information networks [19], [20]. However, most
existing community search studies work on one single-layer
graph, but ignore the real-life multilayer interactions.

Multilayer graph analytics. Several graph analytics studies
have focused on multilayer graphs, addressing various tasks

such as clustering [32]–[34], graph summarization [2], com-

munity detection [6], [7], [10], community search [13], [14]

and advanced analytics tasks [1], [3], [35], [36]. SpectralMix

has been proposed by using a joint dimensionality reduction

technique for multi-relational graphs clustering with cate-

gorical node attributes [32]. MultiGBS is a domain-specific

summarizer for biomedical data summarization that utilizes the

multilayer graph model to help incorporate multiple features

of the text simultaneously [2]. The k-core-based model over
two-layer networks has been proposed to determine a user

community and a location cluster in geo-social networks [37].

A multilayer gCore is developed to find cohesive communities

that are densely connected to specified layers [10]. Luo et

al. study the community search problem by proposing ran-

dom walk-based algorithms on multiplex networks where the

vertices are the same at different layers [13]. Most recently,

FirmTruss is proposed to extend k-truss model to multiplex
networks [14]. A multilayer graph analytics survey for com-

munity detection can be found in [6]. Different from most
existing community search on multiplex networks, our problem
focuses on a more general multilayer graph model meanwhile
optimizing the communities′ cross-layer interactions.

Heterogeneous graph analytics. Heterogeneous information
networks (HINs) consist of multiple typed nodes and multiple

typed links representing various semantic relations. HIN ana-

lytics has been studied in dense structure analysis [38]–[40],

TABLE I
FREQUENTLY USED NOTATIONS

Notation Description
MG (VM , EM ,L) A multilayer graph MG
l The number of layers in MG
L(H) The set of layer types in H
|L(H)| The total number of layers in H
degH(v) The degree of v in subgraph H
Gi(Vi, Ei) The i-th induced layer
Gij(Gi, Gj , Eij) The induced subgraph cross i-th and j-th layers
Hi(Vi, Ei) The induced subgraph of H in i-th layer
Hij(Hi, Hj , E

H
ij ) The induced subgraph cross i-th and j-th layers

Hi
H←→ Hj Strong cross-layer connectivity SLC

Hi
H� Hj Path layer connectivity PLC

Φ((u, v)) (k, d)-coreness of cross-layer edge (u, v)

recommendation systems [41], item detection [42], [43], and

community search [19]–[22], [44]. A comprehensive survey

of HIN analytics can be found in [45]. Sun et al. propose a

graph mining approach to analyze semi-structured and multi-

typed HINs [38]. Another line of HIN analytics relevant to

ours is community search over HINs. Fang et al. propose

a meta-path-based (k,P)-core model and design algorithms
for community search in HINs [21]. The meta-path-based

structure is designed to capture closer relationships among

vertices on HINs [19] [20]. Random walk-based community

search algorithms are also proposed in HINs [13], [44]. Al-
though HINs also capture different typed entities and complex
relationships as multilayer graphs, most graph analytics tasks
need an input of meta-path patterns. A useful meta-path is
key for community search to produce high-quality results.
However, meta-paths are hard for users to formulate, and our
proposed multilayer community search is meta-path-free.

III. PRELIMINARIES

In this section, we first introduce multilayer graphs (MGs)
and a novel definition of multilayer dense subgraph as (k, d)-
core. Next, we formulate the problem of multilayer community

search, and provide the problem analysis and extensions.

A. Multilayer Graph and (k, d)-Core

A simple graph G(V,E) is formed by the vertices V and
the edges E ⊂ V × V where all vertices and edges belong
to the same type, regarded as a single-layer graph [15]. For

a subgraph H ⊆ G, we represent the neighbors of vertex
v ∈ V (H) as NH(v) = {u ∈ V : (v, u) ∈ E} and the degree
as degH(v) = |NH(v)| in subgraph H .

Multilayer graphs. A multilayer graph (MG) consists of
multiple graphs in different layers [1], [32], [46]. Assume

that MG has a total of l ∈ Z
+ layers and a layer function

L to identify the specifically located layer of vertex v by
L(v) ∈ L(MG) = {i ∈ Z

+ : 1 ≤ i ≤ l}. A multilayer
graph is denoted as MG = {Gi(Vi, Ei) : 1 ≤ i ≤ l} ∪ {Eij ⊆
Vi × Vj : 1 ≤ i < j ≤ l} [1]. At each layer, the graph
Gi has the same typed vertices Vi, where each vertex may

be associated with two kinds of edges (internal edges and
cross-layer edges). For an internal edge e = (v, u) ∈ Ei, two
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Fig. 2. Examples of multilayer (k, d)-core and multilayer community search. Here Q = {u1}, k = 2, and d = 1.

endpoints v, u are the same typed vertices at one layer graph,
i.e., L(v) = L(u). For a cross-layer edge eij = (v, u) ∈ Eij ,

the vertices v ∈ Vi and u ∈ Vj belong to two different i-
th and j-th layers, respectively, indicating L(v) �= L(u). The
vertices are disjoint, i.e., Vi ∩ Vj = ∅. Finally, we can model
a mutilayer graph as MG(VM , EM ,L), where VM =

⋃l
i=1 Vi,

EM =
⋃l

i=1{Ei ∪ ⋃
i<j≤l Eij}, and a function of layer

identification L(.) ∈ Z+. Moreover, the total number of

layers in MG is denoted as |L(MG)| = l. In addition, for a
multilayer subgraph H ⊆ MG, the subgraph of H located

at i-th layer is “projecting” H to Gi, denoted as Hi =
H ↓Gi

= (V (H) ∩ Vi, E(H) ∩Ei). Corresponding, the cross-
layer subgraph of H at two layers Gi and Gj is “projecting”

H to Eij , denoted as E
H
ij = H ↓Eij= E(H) ∩ Eij .

Example 1. Fig. 2(a) shows an example of multilayer graph
MG with l = 4 layers. The vertex u1 located at layer G2,
has three internal edges (u1, u2), (u1, u3), (u1, u4), and three
cross-layer edges (u1, v1), (u1, w1), (u1, r2) with layer G1,
G3, and G4 respectively.

(k, d)-Core. We consider a typical two-layer subgraph of MG
asGij = (Gi, Gj , Eij), which is a two-layer induced subgraph
of MG formed by two typed vertices Vi and Vj . In addition, a

well-known concept of k-core H is a useful dense subgraph

in single-layer graphs, requiring that each vertex has at least

k neighbors in H , i.e., ∀v ∈ V (H), degH(v) ≥ k [25]. The
minimum degree of k-core H is used to quantify structural

cohesiveness. Extending from k-core to multilayer graphs, we
give a new definition of multilayer subgraph (k, d)-core H ⊆
MG with |L(H)| = 2 in the following.

Definition 1 ((k, d)-core). Given a multilayer graph MG and
two parameters k, d ∈ Z

≥0, a connected two-layer subgraph
H(Hi, Hj , E

H
ij ) ⊆ MG located at layers Gi and Gj is (k, d)-

core if and only if H admits the following conditions:

1) ∀v ∈ Vi(H), the intra-degree at layer Gi: degHi
(v) ≥ k;

2) ∀v ∈ Vj(H), the intra-degree at layer Gj : degHj
(v) ≥

k;
3) ∀v ∈ Vi(H) ∪ Vj(H), the inter-degree: degEH

ij
(v) ≥ d.

Example 2. Fig. 2(b) shows a (2, 1)-core subgraph Ha(H
a
2 ,

Ha
3 , E

Ha
23 ) cross two layers G2 and G3. Each vertex u ∈ Ha

2

has at least 2 internal neighbors in Ha
2 and 1 cross-layer

neighbor in Ha
3 ; each vertex w ∈ Ha

3 has at least 2 internal
neighbors in Ha

3 and 1 cross-layer neighbor in Ha
2 , such that

degHa
2
(u) ≥ 2, degHa

3
(w) ≥ 2, and degEHa

23
(u,w) ≥ 1.

B. Multilayer Community and Problem Formulation

Based on the two-layer (k, d)-core, we can give a definition
of strong cross-layer connectivity (SLC) as follows.

Definition 2 (Strong Cross-layer Connectivity). Given a mul-
tilayer graph H , we say that H has the strong cross-layer
connectivity between two layers Gi and Gj if and only if there
exists a non-empty two-layer subgraph of (k, d)-core H ′ ⊆ H

at layers Gi, Gj , denoted as Hi
H←→ Hj .

Here H ′ = (H ′
i, H

′
j , E

H′
ij ) is a (k, d)-core cross layers

Gi and Gj . Note that the (k, d)-core constraint in the SLC
definition is a decision version of the problem of finding (k, d)-
core, such that given two parameters k, d, to check whether
there exists a (k, d)-core H ′ cross layers Gi and Gj in the

target multilayer connected subgraph H , such that H ′ ⊆ H .

Example 3. Consider the subgraph Ha in Fig. 2(b) and Hb

in Fig. 2(c). Ha is a (2, 1)-core, Ha is a subgraph of Hb.
We say that Hb has SLC cross layers G2 and G3, denoted as
Hb

2
Hb←→ Hb

3 , although w4 is not a vertex of (2, 1)-core.

Fully-connected multilayer community. Based on two
layers′ SLC, we can define a novel multilayer community
model H , which has much stronger cross-layer connectivity
among multiple layers. We require that every pair of layers

has SLC in H , denoted as the full-layer connectivity (FLC).
The detailed definition of our fully-connected multilayer com-

munity is described as follows.

Definition 3 (Fully-connected Multilayer Community). Given
a multilayer subgraph H ⊆ MG and two numbers k, d, we
say that H is a full-layer connected multilayer community if
and only if for every pair of layers i, j ∈ L(H), there exists a
strong cross-layer connectivity between Gi and Gj , such that,

∀i, j ∈ L(H), Hi
H←→ Hj .
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Example 4. Given a multilayer graph MG, k = 2, and d = 1,
Hc in Fig. 2(d) is a fully-connected multilayer community.
For L(Hc) = {2, 3, 4}, there exists SLC on Hc, such that
Hc

2
Hc←→ Hc

3 , Hc
2

Hc←→ Hc
4 , Hc

3
Hc←→ Hc

4 .

Built upon the proposed model of fully-connected multi-

layer community by Def. 3, we can formulate the problem of

cross-layer community search over multilayer graphs MCS-
problem as follows.

Problem 1 (MCS-problem). Given a multilayer graph
MG(VM , EM ,L), a set of query vertices Q ⊆ VM , two
parameters k, d ∈ Z

≥0, the problem of cross-layer community
search in MG (MCS-problem) is to find a connected commu-
nity H ⊆ MG satisfying the following four constraints:

1) Query-dependent personalization: Q ⊆ V (H);
2) Core-dense internal layers: ∀i ∈ L(H), Hi is a

connected k-core;
3) Fully-connected cross-layers: ∀i, j ∈ L(H), two layers

Hi and Hj are connected via a (k, d)-core in H;
4) Cross-layer maximization: |L(H)| is maximized.

The constraint (1) of query-dependent personalization en-

sures that the result H contains all query vertices. Moreover,

the constraint (2) of k-core requires that all members in
each layer are densely connected with at least k neighbors
internally. The constraint (3) of fully-connected cross-layers

ensures a cohesive cross-layer relationship for every two lay-

ers. In addition, the constraint (4) of cross-layer maximization

ensures that the community H has the most layers of various

typed entities and connections, indicating the most informative

community w.r.t. query Q.

Example 5. For a given multilayer graph MG, a query vertex
Q = {u1}, k = 2, and d = 1, Hd in Fig. 2(e) is the answer for
MCS-problem. Hd satisfies all 4 constraints: (i) u1 ∈ V (Hd);
(ii) Hd

2 , Hd
3 , and Hd

4 are 2-cores; r4, r5 are not belong to
2-core in G4; (iii) Hd is FLC; (iv) Hd has the largest layer
number of 3 among all candidates.

C. Problem Analysis and Extensions

We analyze the hardness of MCS-problem and also the

extension of MCS-problem over other complex graphs.

Problem hardness. We prove that the MCS-problem is NP-
hard reduced from a well-known NP-complete problem Max-

imum Clique (MC) problem. Formally, given an undirected

graph G(V,E), a positive integer k, a k-clique is a complete
subgraph of G with size k. The Maximum Clique decision
problem is to check whether a k-clique H exists in graph

G(V,E) for a given k. We first present the decision version
of multilayer community search (dMCS-problem).

Problem 2 (dMCS-problem). Given a multilayer graph MG,
query vertices Q, parameters k, d, and α ∈ Z

+, the problem
is to check whether there exists a fully-connected multilayer
community H containing Q in MG satisfies the constraint of
an exact layer number |L(H)| = α.

Theorem 1. The dMCS-problem is NP-hard.

Proof. We reduce the Maximum Clique decision problem
to the dMCS-problem. Let the graph G(V,E) with n vertices
be an instance of the Maximum Clique decision problem.

We construct a corresponding instance of dMCS-problem as
follows. We reconstruct the homogeneous single-layer graph

G(V,E) as a multilayer graph MG(VM , EM ,L). First, we put
each vertex vi in V to a separate layer Gi, i.e., VGi = {vi}
for 1 ≤ i ≤ |V |. In addition, we add a set of dummy vertex
Q where |Q| ≥ 1. Let each dummy vertex be located in
one new layer. Thus, VM = V ∪ Q and the total number of
layers is |L(MG)| = |V | + |Q| = |VM |. Second, we connect
each vertex q ∈ Q with each other vertex in VM , such that

EM = E ∪ {(u, v)|u ∈ Q, v ∈ VM \ {u}}. Based on MG,
we set the query as Q and parameters k = 0, d = 1 for the
dMCS-problem. Given the graph G(V,E) and an integer α, we
show that the instance of Maximum Clique decision problem

is a YES-instance, if and only if the corresponding instance
of dMCS-problem is a YES-instance in the following.

(⇐): Suppose that there is a α-clique H in graph G(V,E),
that is, for each pair of vertices u, v ∈ V (H), there exists
an edge (u, v) ∈ E(H) and |V (H)| = α. The correspond-
ing answer H ′ induced by V (H) ∪ Q in MG containing
|L(H ′)| = α + |Q| layers is a connected (α + |Q|)-clique,
which satisfies the rule of strong cross-layer connectivity, i.e.,

(0, 1)-core exists in each pair of layers in H ′. Moreover, for
i ∈ L(H ′), H ′

i is a 0-core since each layer only contains
one vertex. Thus, H ′ satisfies the conditions of multilayer
community, which is a YES-instance of dMCS-problem.

(⇒): Suppose that a connected H ′ is a YES-instance
of dMCS-problem in multilayer graph MG. Let H be the

subgraph induced by V (H ′) \ Q of MG. We infer that
|L(H ′)| = α + |Q|. Since H ′ has only one vertex in each
layer, the number of vertices in H ′ is |V (H ′)| = α+ |Q|. Due
to the strong cross-layer connectivity of multilayer community

H ′ by Def. 2, H ′ must be a connected (α+ |Q|)-clique, such
that each vertex in H ′ must have α+ |Q|−1 neighbors. After
deleting the vertices Q and their induced edges from H ′, the
rest of subgraph H ′ is the α-clique H in graph G. Thus, H
is a YES-instance of the Maximum Clique decision problem.

Extending multilayer graphs to handle other graph in-
stances. Note that our multilayer graph is a general graph type,
which can be used to equivalently model other graph instances,

e.g., a pillar multilayer graph is our multilayer graph with

the same typed vertices; a multiplex graph is our multilayer

graph MG with the same set of vertices at all layers, i.e.,
V1 = V2 = . . . = Vl; one single-layer homogeneous graphs

G1(V1, E1) is our multilayer graph MG for |L(MG)| = 1; a
bipartite graph G12(V1, V2, E12) is our multilayer graph MG
for E1 = E2 = ∅ and |L(MG)| = 2, and so on. In addition,
our full-layer connected community model can be extended

to path-layer connected community model, which makes a

relaxation of NP-hard problem to another problem that can

be done in polynomial-time (Section V).
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IV. THE MCS FRAMEWORK

In this section, we propose a novel MCS framework to
address the MCS-problem, which finds a connected multilayer
community H containing the input query vertices Q mean-

while achieving the maximum layer |L(H)|.
A. Solution Overview

In the following, we present an overview of MCS frame-
work. The key idea of MCS consists of three phases: (1)
extracting k-core components at all layers, (2) identifying the
strong cross-layer connectivity for any two k-core components
at different layers, and (3) starting from Q to search fully-

connected multilayer community H . The detailed phases are
described below.

- Phase I: k-core component extraction. For each layer
graph Gi, we apply the core decomposition [47] on

Gi and then use BFS to identify all connected k-core
components.

- Phase II: cross-layer (k, d)-core validation. We propose
a (k, d)-core decomposition algorithm to check whether
there exists a (k, d)-core for each pair of k-core compo-
nents at two different layers.

- Phase III: FLC-based multilayer community refine-
ment for layer maximization. After determining the
strong cross-layer connectivity for all possible layers, we

obtain a set of valid components and prune those disqual-

ified candidates for FLC-based communities. Then, we
start from k-core components containing Q to expand and
refine to an exact community answer with the maximum

number of layers.

Fig. 3 shows an overview of our MCS framework. The
detailed algorithm of MCS is presented in Algorithm 1. Note
that we design the (k, d)-core index computed offline to help
improve the efficiency (Algorithm 7), which can accelerate the

above online query processing for fast MCS search.

B. Phase-I: K-Core Component Extraction for All Layers

We present the Phase-I of k-core component extraction for
all layers in Algorithm 2. The algorithm has two main steps.

For each layer graph Gi where 1 ≤ i ≤ |L(MG)|, we first

Algorithm 1: MCS Framework

Input: Multilayer graph MG = (VM , EM ,L),
parameters k, d, and query vertices Q

Output: Multilayer community H
1 Extract k-core connected components C in all layers
by invoking Algorithm 2;

2 Verify the strong cross-layer connectivity between two

different layered components Ci, Cj ∈ C, and store
the valid pair (Ci, Cj) into SLCp by invoking

Algorithm 3;

3 Start from query Q to find a valid full-layer connected
community H with the largest |L(H)| by invoking
Algorithm 4;

4 return H;

Algorithm 2: K-Core Component Extraction
Input: Multilayer graph MG and parameter k
Output: C = {Cx

i : the k-core components at layer Gi

for 1 ≤ i ≤ |L(MG)|}
1 C ← ∅;
2 for each layer Gi where 1 ≤ i ≤ |L(MG)| do
3 while ∃v ∈ Vi with degGi

(v) < k do
4 Remove v and its incident edges from Gi;

5 All remaining vertices satisfy the k-core degree;
6 Find all maximal connected k-core components

{C1
i , . . . , C

t
i} by applying BFS at layer Gi;

7 C ← C ∪ {C1
i , . . . , C

t
i};

8 return C;
apply the core decomposition algorithm [47] to remove all

disqualified vertices v with degGi
(v) < k. Thus, we obtain

the k-core subgraph of Gi (lines 3-5). After that, the algorithm

uses the breadth-first search (BFS) to split the vertices in Gi

into independent components of k-core as {C1
i , C

2
i , ..., C

t
i},

where each Cx
i represents the x-th connected k-core in layer

Gi and 1 ≤ x ≤ t (line 6). Finally, the procedure assigns all
k-core components for all layers into the set C and returns C
(lines 7-8).
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C. Phase-II: Cross-layer (k, d)-Core Verification

Next, we present the Phase-II of cross-layer (k, d)-core
verification in Algorithm 3. The algorithm aims at finding

all qualified pairs of layers satisfying the strong cross-layer
connectivity (SLC). Thus, for each pair of k-core components
Ci, Cj ∈ C, it needs to verify the existence of a (k, d)-core
between them (lines 1-6). If (Ci, Cj) satisfy the SLC, we
add the pair (Ci, Cj) into answer SLCp (line 5). Note that

the main procedure invoked by Algorithm 3 is ComputeSLC,
which computes valid (k, d)-cores (lines 7-21). It starts from
an induced cross-layer subgraph Cij formed by Ci, Cj in

MG (line 9). The algorithm continues to remove vertices

with internal layer degree less than k, or vertices with cross-
layer degree less than d, along with their incident edges,
which is to find a (k, d)-core Cij (lines 10-11). However, the

remaining Cij above can be disconnected, which violates the

SLC constraint. We further check the connectivity of those
components as follows (lines 12-20). First, if both Ci and Cj

are unique k-core components, they are valid and added to the
valid set KD (lines 13-16). Otherwise, the algorithm iterates
over each connected component in Ci and Cj , recursively

calling ComputeSLC to add valid results to KD (lines 17-

20). If the ComputeSLC function returns a non-empty set, it
indicates a valid SLC pair, which is finally added to our answer
SLCp.

Fig. 4 gives an example of splitting a (2, 1)-core subgraph
to two (2, 1)-core subgraphs when extracting a connected
(k, d)-core. The connectivity constraint confirms the high
cohesiveness of our (k, d)-core model.

D. Phase-III: FLC-based Community Layer Maximization

Based on the obtained components C and the layer connec-
tivity pairs SLCp from Phases-I&II, we present the Phase-III

of FLC-based community layer maximization in Algorithm 4.
The key to MCS is to find a multilayer community with
the maximum number of layers. Thus, the general idea of

Algorithm 4 is to treat each k-core component of C as
single vertex and the connectivity pairs SLCp as the set of

edges, which finally discovers the maximum “clique” as the
community answer H . The algorithm initializes an empty set
H (line 1) and updates C by removing the disqualified k-
core components by SLCp (line 2). Next, it extracts the set

of components containing all query vertices Q as CQ (line
3). If one pair of components Ci, Cj ∈ CQ does not satisfy
the SLC condition, i.e., (Ci, Cj) /∈ SLCp, the algorithm can

early terminate and return empty set which indicates no valid

community H (lines 4-6). Otherwise, we explore and find

a valid community H (lines 7-10). Next, we initialize H

Algorithm 3: Cross-layer (k, d)-Core Verification
Input: MG, integers k, d, and k-core components C
Output: A set of valid component pairs satisfying

SLC: SLCp = {(Cx
i , C

y
j ) : C

x
i , C

y
j ∈ C}

1 SLCp ← ∅;
2 for ∀Cx

i ∈ C and ∀Cy
j ∈ C with i �= j do

3 // Check SLC between components Cx
i , C

y
j by

calling the procedure ComputeSLC(.);

4 if ComputeSLC(Cx
i , C

y
j ) �= ∅ then

5 SLCp ← SLCp ∪ {(Cx
i , C

y
j )};

6 return SLCp;

7 procedure ComputeSLC(Ci, Cj)

8 KD ← ∅;
9 Extract a cross-layer induced subgraph of MG

formed by two sets of vertices Ci and Cj ,

denoted as Cij ;

10 while ∃v ∈ Ci ∪ Cj having internal layer degree
less than k or cross-layer degree less than d in
Cij do

11 Remove v and its incident edges from Cij ;

12 if Ci �= ∅ and Cj �= ∅ then
13 Identify all connected components in the

remaining graph of two layers Ci and Cj ;

14 if both Ci and Cj have one unique component
then

15 // Indicating the holding SLC: Ci
Cij←→ Cj ;

16 KD ← KD ∪ {(Ci, Cj)};
17 else
18 foreach component C ′i ⊆ Ci do
19 foreach component C ′j ⊆ Cj do
20 KD ← KD∪ComputeSLC(C ′i, C ′j);

21 return KD;

as CQ and update the remaining components C \ CQ, which
represents the candidate components that have not yet been

included in the multilayer community (line 8). Then, it calls

the procedure of FindMaxFLC to recursively explore different

combinations of components to find the maximum multilayer

community (lines 11-20). It starts with an unvisited component

Ci and adds it to multilayer community H by checking the

FLC connectivity (lines 15-19). The procedure stops when all
components are visited in the exploration process. Finally,

the algorithm returns a multilayer community H with the

maximum layers |L(H)|.

Fig. 3 gives an example of the whole three phases. Given

a multilayer graph MG, query Q = {u1}, parameters k = 2,
d = 1, theMCS framework first extracts all k-core components
C in MG in Fig. 3(b), then verifies the (k, d)-core existence
between each pair of k-core components in Fig. 3(c), and
finally computes the full-layer connected community with

three layers in Fig. 3(d).

2965



Algorithm 4: FLC-based Community Layer Maxi-
mization

Input: MG, integers k, d, query vertices Q,
components C, and all valid SLC pairs SLCp

Output: FLC-based multilayer community H
1 Initialize the answer H ← ∅;
2 Extract the candidate components C = {Ci :

(Ci,Cj)∈SLCp} by Algorithm 3;
3 Extract a set of components CQ ⊆ C containing all
query vertices Q, i.e., Q ⊆ ⋃

C∈CQ C;

4 if ∃Ci, Cj ∈ CQ such that (Ci, Cj) /∈ SLCp then
5 //No valid multilayer community containing Q;
6 return ∅;
7 else
8 Update the community H ← CQ; Update the

candidate components: C ← C \ CQ;
9 H ←FindMaxFLC(H , C);
10 return H;

11 procedure FindMaxFLC(H , Cunvisited)

12 Initialize MaxH ← H;
13 foreach component Ci ∈ Cunvisited do
14 // Starting from H to expand community layers

by picking a component Ci;

15 Check the layer connectivity FLC between Ci

and existing components′ layers in H;
16 if ∀Cj ∈ H with (Ci, Cj) ∈ SLCp then
17 H ′ ← FindMaxFLC(H ∪ Ci,

Cunvisited \ Ci);

18 if |L(H ′)| > |L(MaxH)| then
19 MaxH ← H ′;

20 return MaxH;

Complexity analysis. We denote the number of vertices,
edges, layers and components inMG as n = |VM |,m = |EM |,
l = |L(MG)|, and c = |C| respectively. For 1 ≤ i < j ≤ l, we
denote vertex size and edge size of Gi, and cross-layer edge

size between Gi and Gj as ni = |V (Gi)|, mi = |E(Gi)|,
and mij = |E(Gij)| respectively. The total number of internal
edges at all layers is ml =

∑l
i=1mi, and the number of cross-

layer edges is ms =
∑

1≤i<j≤l mij . Thus, m = ml+ms. Al-

gorithm 2 involves iterating through each layer and removing

vertices and their incident edges with internal layer degrees

less than k, which takes O(
∑l

i=1mi) = O(ml) time. The

BFS-based splitting procedure takes O(
∑l

i=1(mi + ni)) =
O(ml) time. The overall time complexity of Algorithm 2
is O(ml). Algorithm 3 within the ComputeSLC procedure
takes O(mci + mcj + mcij ) time for extracting the cross-
layer induced subgraph. The overall time complexity can

be expressed as O(
∑

1≤i≤c

∑
1≤j≤c(mci + mcj + mcij )) =

O(
∑

1≤i≤c(ml +ml +ms)) = O(cm). The time complexity
of Algorithm 4 depends on the size of the input SLCp and the

number of valid k-core components C. It involves recursive
calls and iterations over sets of components. The time com-

plexity for checking the connectivity in line 15 is O(l2). The
total time complexity of Algorithm 4 is O(l2 ·(cl

)
) = O(l22c).

In summary, the total time complexity of MCS framework is
O(ml+cm+l22c) = O(cm+l22c), and the space complexity
is O(m).

V. RELAXED PROBLEM AND FAST ALGORITHMS

Due to the NP-hardness of MCS-problem as shown in

Section III, it leads to highly expensive computation of Al-

gorithm 1 to find exact answers. To improve the efficiency,

we propose a fast MCS algorithm in this section. First, we
relax the strict constraint of full-layer connectivity to a new
version of path-layer connectivity. Based on the path-layer
connectivity, we reformulate our MCS-problem to a relaxation
problem of path-layer MCS, which can be optimally addressed
in polynomial time. Leveraging the answer of path-layer based

multilayer community as an upper bound, we develop a new

MCS algorithm to further accelerate the search process.

A. The Relaxed pMCS-problem and Analysis

We begin with a new definition of path-layer connectivity

(PLC) as follows.

Definition 4 (Path-layer Connectivity). For a given multilayer
subgraph H ⊆ MG, two layers Hi and Hj with i, j ∈ L(H),
i �= j, we say that Hi and Hj has the path-layer connectivity,
denoted as Hi

H� Hj , if and only if there exists a path
(Hp1 , . . . , Hpr ) such that every pair of layers (Hpx , Hpx+1)
where 1 ≤ x < r, is strong cross-layer connected, i.e.,
Hpx

H←→ Hpx+1
, p1 = i, and pr = j.

Based on the path-layer connectivity, we make a relaxation

of MCS-problem as the new pMCS-problem.

Problem 3 (pMCS-problem). Given a multilayer graph MG,
a set of query vertices Q, two parameters k and d, the problem
of path-layer based multilayer community search is to find a
connected subgraph H ⊆ MG satisfying four constraints:
1) H contains all query vertices Q;
2) ∀i ∈ L(H), Hi is a k-core;
3) ∀i, j ∈ L(H), the path-layer connectivity Hi

H� Hj

always holds;
4) |L(H)| is maximized.

As we can see, pMCS-problem has the same three con-

straints of MCS-problem, in terms of the query-dependent
personalization, core-dense internal layers, and the optimized

objective of cross-layer maximization. The only one difference

lies on the constraint of path-layer connected cross-layers
in replace of full-connected cross-layers. Fig. 3(e) gives an
example of search result by applying the pMCS-problem
model.

Comparing MCS-problem and pMCS-problem, if we regard
a connected k-core component at each layer as a vertex,
then MCS-problem is corresponding to the maximum clique
search for the largest layers, while pMCS-problem can be

reformulated as finding out the largest component containing
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Algorithm 5: Path-layer based Community Search
Input: MG, integers k, d, and query vertices Q
Output: Path-layer based multilayer community Hpath

1 Extract k-core components CQ containing the query Q;
2 Initialize community: Hpath ← Ci for any one

Ci ∈ CQ;
3 Enlarge community Hpath through cross-layer

neighbors in BFS manner by expanding components

that satisfy SLC;
4 if CQ �⊆ Hpath then
5 return ∅;
6 else
7 return Hpath;

Q. However, the efficient search of relaxed pMCS-problem is
also challenging due to the complexity of multilayer graph

structure. Specifically, each layer may have several eligible

connected k-core components, which have many cross-layer
connections for one k-core component.

Path-based community search algorithm. We present Al-
gorithm 5 to find a path-based multilayer community with

the maximum number of layers. It first identifies the k-core
components of C containing query Q as CQ (line 1). Then, it
initializesHpath as one component of CQ (line 2). It then starts
the BFS search through the cross-layer neighbors of vertices

in CQ, expanding more components and enlarging the number
of layers by verifying whether they satisfy the SLC constraint
(line 3). If the final community Hpath involves the complete

query CQ, the algorithm terminates with a feasible answer
Hpath; otherwise, there is no answer of connected community

containing Q (lines 4-7).

B. Fast FLC-based Community Layer Maximization

In this section, we propose a fast algorithm for maximizing

FLC-based community layer under the framework in Algo-
rithm 1, which leverages the path-layer community answer in

Algorithm 5 for reducing search space.

FastMCS algorithm. We propose Algorithm 6 to fast search
community using a binary search strategy, which takes the

upper bound of path-layer community by Algorithm 5 and

the lower bound of query-based components CQ (lines 2-5).
Indeed, Algorithm 6 accelerates Algorithm 4 by replacing the

lines 8-9 of Algorithm 4. It begins by running Algorithm 5

to compute the upper bound lmax, which is the maximum

number of layers in community Hpath (lines 2-3). Next, it

finds CQ to contain all the query vertices Q and sets the

lower bound lmin as the number of layers in CQ. Moreover,
H is initially assigned to CQ (lines 4-5). Next, the algorithm

binary searches a possible answer by enumerating all candidate

communities Sh with h-layers |L(H)| = h, where the middle
value h = (lmax + lmin)/2 (lines 7-8). It then checks the
FLC connectivity of Sh (line 9). If such a FLC holds, lmin is

updated to h for finding a community with more layers, and
H is updated to Sh; otherwise, lmax is updated to h as the

Algorithm 6: Fast Community Layer Maximization
Input: MG, integers k, d, query vertices Q,

components C, and all valid SLC pairs SLCp

Output: FLC-based multilayer community H
1 //Replace the following steps with lines 8-9 in

Algorithm 4;

2 Apply Algorithm 5 to find path-layer based community

Hpath containing Q; Filter C by Hpath;

3 Set the upper bound of layers: lmax = |L(Hpath)|;
4 Initialize the community H ← CQ;
5 Set the lower bound of layers: lmin = |L(H)|;
6 while lmin < lmax do
7 h ← � lmin+lmax

2 �;
8 Enumerate the set of h components Sh ⊆ C at

different layers as |L(Sh)| = h;
9 Check the FLC connectivity of Sh;

10 if ∃Ci, Cj ∈ Sh with (Ci, Cj) /∈ SLCp then
11 lmax ← h;

12 else
13 lmin ← h, H ← Sh;

14 return H;

FLC does not hold (lines 10-13). Finally, it returns a multilayer
community H when lmin ≥ lmax (lines 6-14).

Complexity analysis. Algorithm 5 invokes Algorithms 2 and
3 to verify the SLC constraint, which has a time complexity
of O(cm). The community Hpath is initialized and extended

by expanding components using the SLC in a BFS manner,
which has a time complexity of O(cm + m) = O(cm) in
total. The total space complexity of Algorithm 5 is O(m).
Algorithm 6 first computes the upper bound of layer number

by applying Algorithm 5. It then does the binary search

which takes O(log l̂) time in the worst case, where l̂ denotes
the upper bound of layer number. During the while loop, it

enumerates the possible FLC combinations and checks the
SLC of components in Sh, which takes O(log l̂ · l̂2 · (ĉl̂

)
) =

O(l̂22ĉ log l̂) time in total, where ĉ is the number of filtered
k-core components. In summary, the complexity of the fast
MCS algorithm takes O(cm+ l̂22ĉ log l̂) time in O(m) space,
and we have l̂ ≤ l and ĉ << c in practice.

VI. (k, d)-CORE INDEXING

In this section, we design a novel (k, d)-core index to
accelerate MCS process. Specifically, we first present an
algorithm for (k, d)-core decomposition and indexing. This
algorithm precomputes all possible (k, d) pairs for cross-layer
edges over every pair of layers in MG and stores them into an
index of compact data structure. Then, we illustrate how we

apply the (k, d)-core index to help improve efficiency of our
proposed MCS algorithms in previous sections.

(k, d)-core index. In a single-layer graph G, the coreness of a
vertex v is represented as δ(v), referring to the maximum value
of k such that a non-empty k-core contains v [15], [25]. In our
MCS-problem, for two layers i and j, each cross-layer edge
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Algorithm 7: (k, d)-Core Index Construction
Input: Multilayer graph MG = (VM , EM ,L)
Output: the (k, d)-core index Φ(MG) = {Φ((u, v)) :

L(u) �= L(v), u, v ∈ VM}
1 Φ(MG) ← ∅;
2 for k ← 1 to kmax do
3 Compute the connected k-core components C by

invoking Algorithm 2;

4 for ∀Cx
i ∈ C and ∀Cy

j ∈ C with i �= j do
5 dmax ← 0;
6 if k = 1 then
7 while ComputeSLC(Cx

i , C
y
j , k, dmax) �= ∅

do
8 dmax ← dmax + 1;

9 else
10 dmax ← Φ(k−1)((u, v));
11 while ComputeSLC(Cx

i , C
y
j , k, dmax) = ∅

do
12 dmax ← dmax − 1;

13 for ∀(u, v), u ∈ Cx
i , v ∈ Cy

j do
14 Φ((u, v)) ← Φ((u, v)) ∪ {(k, dmax)};

15 return {Φ((u, v)) : L(u) �= L(v), u, v ∈ VM};
(u, v) ∈ Eij can belong to a set of various (k, d)-cores. We
develop a notation (k, d)-coreness Φ to store all the possible
non-dominant (k, d) pairs for cross-layer edges e = (u, v)
to determine whether there exists a (k, d)-core H such that

(u, v) ∈ EH
ij . Before introducing the (k, d)-coreness Φ, we

first give a definition of Φk((u, v)) to denote the maximum
coreness of value d for a given value k such that a (k, d)-core
contains cross-layer edge (u, v). Obviously, there is no (k, d′)-
core H ′ containing (u, v) with d′ > d = Φk((u, v)). Based on
Φk((u, v)), we give a definition of (k, d)-coreness.

Definition 5 ((k, d)-coreness). Given two layers Gi and Gj ,

the (k, d)-coreness of a cross-layer edge (u, v) in Eij , denoted

as Φ((u, v)), is a set of unique (k, d) pairs, such that for any
pair of (k, d) ∈ Φ((u, v)), Φk((u, v)) = d. Moreover, for any
(k, d) ∈ Φ((u, v)), there exists no (k′, d′) ∈ Φ((u, v)) such that
both k′ ≥ k and d′ ≥ d hold.

As a result, the (k, d)-core index of multilayer graph MG
is Φ(MG) = {Φ((u, v)) : L(u) �= L(v), (u, v) ∈ EM} to store
all cross-layer edges′ coreness by the Def. 5.

Example 6. Fig. 2(b) shows a multilayer (2, 1)-core subgraph
Ha cross two layers G2 and G3. Thus, {(2, 1)} ⊆ Φ((u1, w1)).
There does not exist a (k, d′)-core containing (u1, w1), where
d′ > 1, or a (k′, d)-core containing (u1, w1) where k′ > 2.

(k, d)-core index construction.We build the (k, d)-core index
by computing the (k, d) coreness Φ for all cross-layer edges
and extending the (k, d) value pairs to its corresponding
cross-layer connected k-core components. Formally, given
two layers i and j, the (k, d)-core index of edge (u, v) in

Hij(Hi, Hj , Eij), contains a value pair (k, d) if and only if
there exists (u′, v′) in Hij , where (k, d) ∈ Φ((u′, v′)), both Hi

and Hj are connected k-cores. The computations of (k, d)-
coreness and (k, d)-core index take the same procedure using
the same time cost. Our (k, d)-core index keeps a compact
index structure for saving space costs.
We present the procedure of (k, d)-core index construction

in Algorithm 7. The algorithm starts to iterate all possible

values of k from 1 to kmax. Then, it checks the components

Cx
i and Cy

j in each pair of layers Gi and Gj (lines 3-14). It

applies ComputeSLC algorithm to determine whether (k, d)-
cores exist in a pair of connected k-core components Cx

i and

Cy
j (lines 4-12). After computing all non-dominant pairs of

(k, d) values, the corresponding (k, d)-corenesses are kept into
Φ((u, v)) for each valid cross-layer edge (u, v) (lines 13-14).
Finally, it stores the (k, d)-corenesses of each cross-layer edge
(u, v) in the (k, d)-core index Φ(MG) (line 15).

Complexity analysis of (k, d)-core index construction. We
represent the maximum coreness as k̂. Overall, the index
size of Φ(MG) is bounded by O(k̂ · ms + ml) = O(k̂m).
Next, we analyze the time complexity of Algorithm 7. For

every two components in layers Gi and Gj , it invokes the

core decomposition algorithm of ComputeSLC to check two

components′ SLC, which takes O(mci + mcj + mcij ) time.

Thus, the overall time complexity of Algorithm 7 is O(k̂ ·∑
1≤i≤c

∑
1≤j≤c(mci +mcj +mcij )) = O(k̂ ·∑1≤i≤c(ml +

ml + ms)) = O(k̂cm). The total space complexity of index
construction is O(k̂m).

(k, d)-core index-based MCS algorithms. The proposed
(k, d)-core index can be easily used to help accelerate two
main procedures for both full-layer-based MCS algorithms
and pMCS-problem algorithms. First, the connected k-core
component extraction procedure in Algorithm 2 computes the

k-cores by scanning the neighborhood of vertex, which can
be replaced by checking the largest k value in the (k, d)-
core index. Second, we can address all SLC pairs and PLC
pairs computed in Algorithm 3 and Algorithm 5 by checking

whether there exists a cross-layer edge with a valid (k, d)-
core index between a pair of k-core components. It speeds
up the time-consuming procedure for cross-layer (k, d)-core
verification.

VII. EXPERIMENTS

In this section, we conduct experiments to evaluate the

performance of our proposed MCS model and algorithms on
real-world multilayer graph datasets.

A. Experimental Setup

Setup. We implemented all algorithms in C++. All experi-
ments were performed on a server with an Intel Xeon Gold

6330 2.0 GHz CPU and 1T RAM, running 64-bit Oracle Linux

8.8. Each test is obtained by averaging over the experimental

results of 100 query samples.

Datasets. We evaluate the proposed algorithms on nine
datasets of real multilayer graphs in Table II, including the
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TABLE II
NETWORK STATISTICS

Dataset n m ml ms l

DBLP 41,892 661,883 280,707 381,176 2
Twitter 47,280 535,062 445,287 89,775 3
6ng 4,500 29,984 9,000 20,984 5
9ng 6,750 44,980 13,500 31,480 5

Citeseer (CS) 15,533 68,376 56,548 11,828 3
Yeast 4,458 8,500,745 8,473,997 26,748 4
FAO 214 14,456,470 318,346 14,138,124 364

FriendFeed (FF) 510,338 20,204,534 18,673,520 1,531,014 3
Venetie 206 21,310 19,955 1,355 43

collaboration networks (DBLP, Citeseer [10]), social networks

(Twitter, Friendfeed, Venetie [48]), news groups (6ng, 9ng),

protein-protein networks (Yeast [14]), and agriculture data

(FAO [14]). The last four datasets are a variety of MGs called
multiplex graphs, which have the same vertices in all layers

and only have internal edges; we add the additional cross-

layer edges to make vertices one-to-one mapping between each

layer. The statistics of these graphs are presented in Table II,

where n = |V | denotes the total number of distinct vertices in
the whole MG, m = |E| denotes the total number of edges,
ml = |E(L)| represents the number of internal layer edges,
ms = |E(C)| denotes the number of cross-layer edges, and
l = |L(MG)| represents the layer number.
Compared algorithms.We compare seven algorithms includ-
ing our five algorithms against two state-of-the-art competitors

RWM [13] and FirmTruss [14] as follows.
• RWM: is a random-walk-based approach for local mul-
tilayer community search [13].

• FirmTruss: is truss-based community search approach in
multiplex networks [14].

• Naive-MCS: is our baseline method in Algorithm 1 using
Algorithm 4 for full-layered community enumerations.

• Path-MCS: is the path-layer community search algorithm
using Algorithm 5.

• MCS: is our fast approach for full-layer community
search in Algorithm 1 equipped Algorithm 6.

• Path-iMCS: is our index-based Path-MCS approach us-
ing (k, d)-core index for accelerating efficiency.

• iMCS: is our index-based improved approach of MCS.

Evaluation metrics. We first evaluate the efficiency of all
algorithms on various datasets by comparing the running time.

Note that FirmTruss runs only on the last 4 multiplex networks
due to the nature design of algorithms. Next, we evaluate the

quality of community by comparing the number of layers in

community answers, i.e., |L(H)|. A large number of layers
|L(H)| indicates that the search result contains more types of
entities, reflecting a more informative community. To further

evaluate the approaches, we apply our algorithm to synthetic

datasets by generating a set of fixed-sized graphs and varying

the number of layers |L(MG)|. We randomly select 100 queries
for each task and randomly set a possible (k, d) pair for
each query. We evaluate the parameter sensitivity by varying

different (k, d) pairs. Furthermore, we compare the index size
and index construction time to analyze the compactness and

efficiency of (k, d)-core index vs FirmTruss index.

0.01
0.1

1
10

10
2

10
3

Inf

DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie

T
im

e
(s

)

Datasets

Naive-MCS
path-MCS

MCS
iMCS

path-iMCS
Firmtruss

RWM

Fig. 5. Efficiency evaluation for all algorithms on all datasets.

NA

1

10

10
2

DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie

|L
(H

)|

Datasets

Naive-MCS
iMCS

path-iMCS
Firmtruss

RWM

Fig. 6. Quality evaluation for all algorithms on all datasets.

B. Performance Evaluation

Exp-1: Running time of algorithms on all datasets. Fig. 5
shows the running time of two baseline algorithms RWM [13],
FirmTruss [14] and our five algorithms on nine real-world
datasets. Note that the FirmTruss can only execute on the
last four datasets due to the restriction of its model. Note

that if a query is not completed within 1200 seconds, we
will report “Inf”. As shown in Fig. 5, our (k, d)-core index-
based algorithms significantly improve the efficiency reflected

in both small and large datasets. Our Path-iMCS algorithm
outperforms all other algorithms for seven datasets. Path-
iMCS is slightly slower than RWM and our iMCS method for
FAO and Venetie. Our iMCS approach performs similarly to
our Path-iMCS approach except for the densest dataset FAO.
Our (k, d)-core index-based algorithms have demonstrated
a superior performance on the largest dataset, FriendFeed,

with an impressive response time of around 10 seconds.

In contrast, RWM and FirmTruss have failed to generate
comparable results. This outcome underscores the efficiency

of our algorithmic approach in multilayer community search.

Exp-2: Quality evaluation. Fig. 6 evaluates the layer number
of resulting community for all algorithms. A larger layer num-

ber represents various entity types in the densely connected

community. Note that our (k, d)-core index-based algorithm
can find the same result as our no-index methods. Our Path-
iMCS method performs the best on most datasets. FirmTruss
identifies communities with the largest number of layers on

FAO while it always costs more time among all competitors in

Fig. 5. Even though RWM has a competitive running time for
some datasets in Fig. 5, it always fails to find an informative

multilayer community cross various layer entities in practice.

Fig. 6 demonstrates a high-quality effectiveness of our Path-
iMCS approach on most datasets.

Exp-3: Parameter sensitivity evaluation by varying (k, d)
pairs. Fig. 7 and Fig. 8 show the running time of our two
(k, d)-core index-based algorithms iMCS and Path-iMCS by
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varying (k, d) pairs on Twitter and DBLP datasets, respec-
tively. We vary the setting of query parameters (k, d) in
{2, 3, 4, 5, 6}×{1, 2, 3}. The results show that our Path-iMCS
method always achieves a smaller running time. With the

increase of k, the running time of both methods decreases,
as it may decrease the number of connected k-cores when the
community becomes denser. Moreover, with the increase of

d, the running time remains stable; this is caused by using
our (k, d)-core index, which can help check out (k, d)-core
components in linear time. As a result, our methods have stable

efficiency performance over different settings of (k, d) pairs
on different datasets.

Exp-4: Scalability evaluation by varying the number of
layers |L(MG)|. We generate synthetic datasets to test the
scalability of our proposed algorithms. Specifically, we gener-

ate a multilayer graph consisting of 100k of vertices and 497k
edges, where the nodes follow power-law degree distribution.

The probability of adding a triangle after adding a random

edge is 0.99. We fix the graph size and then randomly assign
vertices into different layers with a list of increase numbers

{2, 4, 8, 16, 32, 64, 128}. As shown in Fig. 9(a), the running
time of iMCS approach increases significantly and fails on
MGs with |L(MG)| ≥ 64, which is because of the NP-hardness
of our problem. In contrast, with the layer number increase,

the computation time of Path-iMCS approach stays stable with
the help of pre-computed (k, d)-core index, which decreases
the computation cost, showing the superiority of the relaxation

property of our path-based model. Fig. 9(b) represents the in-

creased number of community layers found by our algorithms

with the graph layer number increased. By varying the layer

number |L(MG)|, our Path-iMCS approach demonstrates high
scalability on both efficiency and effectiveness, which shows

the goodness of our well-designed relaxed path-connected

multilayer model.

Exp-5: (k, d)-core index size and construction time. We
evaluate the (k, d)-core index size and construction time. We
compare our method to the state-of-the-art FirmTruss index in

TABLE III
A COMPARISON OF INDEX SIZE AND CONSTRUCTION TIME.

DBLP Twitter 6ng 9ng CS Yeast FAO FF Venetie

Graph Size (MB) 8.99 9.43 0.377 0.59 1.71 117 211 357 0.286

(k, d)-core Index Size (MB) 4.15 7.32 0.25 0.376 1.1 336 523 307 0.417
FirmTruss Index Size (MB) NA NA NA NA NA 1380 2600 2670 2.8

(k, d)-core-indexing Time (h) 3.63 3.44 0.005 0.009 0.01 29.02 4.27 98.39 0.001
FirmTruss-indexing Time (h) NA NA NA NA NA 15.54 0.71 11.55 0.008
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Fig. 9. Running time and layer number evaluation by varying |L(MG)| on
synthetic datasets.

Table III. The indexes are built offline and stored in memory.

We can see that the (k, d)-core index is at most three times
the original graph size |G|, and has a similar size to original
graph, which is compact and very competitive. The FirmTruss
index, available for the last four datasets, is at most 13 times
the original graph. It takes much more space than ours. On

the other hand, the construction time of (k, d)-core index
takes longer than the construction time of FirmTruss index;
this is because our index computes a large size of (k, d)-core
index while we store it in a compact structure to save space.

Therefore, as shown in Fig. 5, Fig. 7, Fig. 8, our (k, d)-core
index-based approach provides high-quality community results

and runs significantly faster than Naive-MCS without using an
index, even when compared to FirmTruss, especially on large
graphs and general multilayer graphs.

VIII. CONCLUSION

This paper proposes a (k, d)-core based community search
problem on multilayer graphs, which finds a multilayer com-

munity H connected by (k, d)-cores containing query vertices
to achieve the largest number of cross-layers. We consider two-

fold definitions of full-layer and path-layer connectivities for

cross-layer relationships. We show this MCS-problem under
full-layer connectivity is NP-hard and propose two methods

of exact exploration and heuristic search to find answers. We

develop a fast search algorithm to identify path-layer-based

communities and refine them to full-layer answers. Further-

more, we develop a novel (k, d)-core index of multilayer core
that effectively captures essential (k, d)-core structure, which
significantly speeds up the MCS algorithm up to 1000 times.
Extensive experiments on nine real-world multilayer graphs

demonstrate the robustness and scalability of our proposed

algorithms by comparing them to two state-of-the-art algo-

rithms.
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