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Abstract—A cohesive subgraph of k-truss requires that each
edge has at least (k−2) triangles, which has wide applications of
modeling social communities and complex network visualization.
Recently, the study of truss maximization has gained attention,
which aims to enlarge k-truss most by inserting b new edges into a
graph G. However, existing maximization methods suffer from a
stiff strategy of complete truss conversion, that is either converting
the whole (k−1)-truss component to k-truss or converting no edge
to k-truss without using any budget. To tackle this bottleneck,
we develop a novel partial conversion strategy to explore more
insertion plans.

Based on partial conversion strategy, we revisit the problem
of truss maximization in this paper and propose adaptive
solutions by achieving more new k-truss edges. Specifically,
we first decompose all (k − 1)-truss into a series of disjoint
components via the triangle connectivity, where each component’s
conversion is independent to each other. Then, for each (k− 1)-
truss component, we explore possible insertion plans of partial
conversions. An intuitive method is to randomly insert a budget
no more than b new edges and check the expected profit of new
k-truss edges. Obviously, this method is inefficient due to a large
search space of edge insertions and many times of expensive
k-truss verification. To improve it, we propose a new minimum-
cut based approach, which converts a subgraph of (k− 1)-truss
component into a flow graph with weighted edges and finds a key
of maximum-flow answer corresponding to a k-truss conversion
plan with the minimum budget consumption. Next, we develop
a new dynamic programming framework to find the best way
to allocate the budget b to all components. We design two fast
dynamic programming algorithms and analyze the complexities
theoretically. In addition, we explore the case of a large given
budget b and extend our techniques to handle the conversion of
(k−h)-truss into k-truss for 2 ≤ h ≤ k−2. Extensive experiment
results demonstrate the superiority of our algorithms against the
state-of-the-art methods.

Index Terms—k-truss, graph enhancement, minimum cut,
maximization, dynamic

I. INTRODUCTION

Graph is a fundamental model to represent various entities

and their complex relationships in many real applications.

For example, a social network can be modeled as a graph,

where the nodes represent users and the edges are their

diverse relationships, e.g., friendships, followers/followees,

posting/replying comments, and so on. Other real graph appli-

cations include the traffic networks, communication networks,

financial networks, and biological networks. In the graph

theory, k-truss denotes a dense subgraph where every edge
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Fig. 1. An example of graph G with the truss number k = 4 and the budget
b = 2. The edges in grey areas are 4-truss edges. Two components C1 and C2

are shown in dashed box in Fig. 1(a). Moreover, Fig. 1(b) and Fig. 1(c) show
two plans of complete conversion and partial conversion in C1, respectively.
The updated graph in Fig. 1(d) is inserted by two new edges {(h, c), (a, i)},
which achieves 8 new 4-truss edges [1]. Our solution inserts {(h, c), (d, j)}
to achieve a better answer of 10 new 4-truss edges as shown in Fig. 1(e).

is contained in at least k−2 triangles in this subgraph. The k-
truss structure enjoys several nice properties, such as the high

density, strong (k−1)-edge connectivity, and polynomial-time
computations. The k-truss is widely used to model closely
connected community in social networks [2]–[8].

Motivations and applications. In this paper, we revisit and
study the problem of k-truss maximization, which aims to en-
large the k-truss of the graph by adding no more than b edges.
As a similar concept of k-truss, k-core requires that each
vertex has at least k neighbors within this subgraph. A k-truss
is also a (k−1)-core. As shown in recent studies [1], [9]–[13],
[44], truss/core maximizations focus on strengthening the size

of k-truss/k-core for connectivity improvement by inserting
new edges, which have many real applications including the

identification of missing defense links in military networks [1],

improving transportation network connectivity [9], boosting

the stability of P2P networks [10], [11], and enhancing social

group engagement [12], [13]. For instance, the k-truss of flight
networks has (k− 1)-edge connectivity, reflecting even if any
less than (k − 1) edges are disconnected, the whole k-truss
component keeps connected. Thus, a large k-truss of flight
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networks ensures the strong connectivity of airline routes. Note

that different from the existing truss maximization [1], our

work investigates a wide range of budget b for insertion cases,
where b ranges from a tinny small one to an extremely large

one. Our study provides a comprehensive solution set for real

application scenarios, especially when there exists a limited

number of budget on edge insertions, e.g., in the economic

consideration of coupon promotions by inviting friends to

participate in activities on social networks, and also adding

new routes for improving connectivity in flight networks.

Challenges. Compared with k-core, k-truss is conceptually
more rigorous by requiring the minimum constraint on 3-

cliques as triangles, instead of simple node degrees. The

task of k-truss maximization is more technically challenging
than the k-core maximization [9], which lies on three-fold
aspects. First, an incremental number of targeted candidate

edges. The truss maximization enlarges k-truss to convert

candidate edges by providing more feasible triangles by in-
serting edges. However, the newly inserted edges may still

has no enough support of triangles to be retained in k-truss,
thus they also become those target candidates to be new k-
truss edge. This leads to an incremental number of targeted

candidates in search space. Second, the constraint of k-truss
is more restrictive than k-core. The inserted edges need to
be kept in k-truss for providing feasible support, otherwise
they are removed during truss decomposition. Thus, an edge

may not be converted into k-truss by adding 2(k − 2) edges,
because newly added edges may not be in k-truss. On the
contrary, the solution of core maximization [9] adds a new

edge between two candidate (k − 1)-shell nodes to certainly
increase their degrees. Third, the verification of new k-truss
edges by invoking truss decomposition is more time costly

than that of new k-core nodes by the core decomposition.

The truss maximization problem has been shown to be NP-

hard [1]. A recent work of CBTM [1] partitions the (k − 1)-
truss into many smaller components, where each component

is a connected subgraph and does not intersect with others. It

then calculates the score (the increased size of new k-truss) and

the cost (budget consumed) of converting each component into

k-truss, respectively. Next, it uses dynamic programming (DP)

to find the optimal combination of insertion plans in different

components, according to the total budget. This solution has

been shown to be effective with a full conversion strategy,

but still suffers from two drawbacks as follows. First of all,

some components may be too large to be converted within the

budget b. Or some edges of a component may need lots of
budgets, lowering the average conversion rate. Secondly, the

(k − 1)-truss may be a small part of the graph, leading to a
bad performance when the budget b or parameter k is large.
This means that it may not find more insertion plans when the

(k − 1)-truss has been fully converted to k-truss.

To address the above challenges and limitations, we propose

a novel framework PCFR with several new techniques for truss

maximization. Specifically, our PCFR framework consists of

three new parts. First, we develop the truss-based partial

conversion to explore more insertion plans. Second, we design

a new dynamic programming to consider multiple insertion

choices, but not binary one any more. Third, we propose a

new strategy to convert (k − h)-truss into k-truss to handle
a large budget b. We illustrate the advantage of our proposed
PCFR method against the competitor CBTM [1].

Example 1. Fig. 1 shows an example of truss maximization
in graph G. The whole graph G is the 3-truss, because
every edge is contained in at least one triangle. The target
is to have more edges become 4-truss, with the budget no
more than 2. There are two symmetrical components in G,
C1 (edges {(a, h), (f, h), (a, f), (c, f), (c, i), (f, i)}) and C2

(edges {(b, j), (g, j), (b, g), (d, g), (d, k), (g, k)}). Take C1 as
an example. It can be completely converted to 4-truss by
inserting edges {(h, c), (a, i)} and gets 8 new 4-truss edges, as
shown in Fig. 1 (b). Alternatively, it can be partially converted
to 4-truss by inserting one edge (c, h) and gets 5 new 4-truss
edges, as shown in Fig. 1 (c). [1] only adopts the complete
conversion strategy and gets the result of Fig. 1 (d), where the
budget used and the number of new 4-truss edges are (2, 8).
Our solution considers both complete conversion and partial
conversion and gets the result of (2, 10), as shown in Fig. 1
(e), which is better than that of [1].

We first introduce the partial conversion. We intend to

address the challenge of how to partially convert a component

to k-truss. An immediate idea is to randomly insert edges and
record edges that are in k-truss. It is effective on (k−1)-truss
but not effective on (k − h)-truss when h > 1. Therefore,
we convert a component to a directed acyclic graph (DAG)

that can show the hierarchical structure of the component.

We then convert the DAG to a flow graph and find the

minimum cut to get a conversion plan. There is a parameter

that can change the structure of the flow graph, so there are

many different minimum cuts and many conversion plans with

different budgets by adjusting the parameter.

Next, we present new dynamic programming algorithms,

which find the best combination of multiple partial conversion

choices. We build a table with size of |C| × b, where |C| is
the number of components. The value of position (i, j) means
the highest score of previous i components within budget j,
which is obtained by comparing at most b conversion plans of
the ith component, so the time complexity of this algorithm is

O(|C|b2). We also propose an approximate method that sorts
all conversion plans first in a decreasing order, whose time

complexity can be O(|C|b) when |C| � b.
Third, we develop advanced techniques of (k − h)-truss

conversion. We extend techniques mentioned above to handle

(k − h)-truss, so we can get the structure of (k − h)-truss
and find potential areas for conversion. However, converting

edges in (k − h)-truss is more difficult than converting edges
in (k−1)-truss. So our idea is to convert them into a k-clique
(k nodes connected to each other), because a k-clique is also a
k-truss, which can ensure the successful conversion. The cost
for converting (k−h)-truss is larger, as h increases. Therefore,
we first convert the (k − 1)-truss, and the superfluous budget
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is used to convert (k−h)-truss, as h increases. To summarize,
we make the following contributions in this paper.

• We propose new methods to partially convert a compo-

nent to k-truss. The idea is to peel a component into
different subgraphs and convert them to many flow graphs

with edge weights. For all generated flow graphs, we

conduct the minimum cut to find the optimal answers,

corresponding to the insertion plans with small budgets.

(Section IV)

• We propose a new dynamic programming framework to

handle a component with multiple insertion plans for

partial conversions. We further optimize the algorithm

complexity of our dynamic programming methods by

distinguishing important parameters. (Section V)

• We extend the above approaches to handle (k − h)-
truss conversion for h ≥ 2, ensuring that our solution
can find insertion plans for an extremely large budget b.
(Section VI)

• Extensive experiments on nine real-world datasets vali-

date the effectiveness and efficiency of our algorithms.

(Section VII)

We discuss related work in Section II and conclude the

paper in Section VIII.

II. RELATED WORK

We study related work including the truss mining, dense
subgraph maintenance, and network structure enhancement.

Truss mining. We summarize the studies of k-truss mining
in terms of two categories. The first one is accelerating the

computation of k-truss under various settings; and the second
one is generalizing the concept of k-truss on complex graphs.
Specifically, many works speed up the computation of k-
truss with parallel computing [14], cloud computing [15],

GPU [16], FPGA [17]. The concept of k-truss has also been
generalized on various graphs, including directed graphs [7],

uncertain graphs [18]–[22], signed graphs [23], [24], attribute

graphs [25]–[27], dynamic graphs [3], [28]–[31], geo-social

graphs [32], [33], bipartite graphs [34], weighted graphs [35],

multilayer graphs [36], and simplicial complexes [37].

Dense subgraph maintenance. The task of dense subgraph
maintenance aims to update a particular subgraph pattern

in dynamic graphs, including k-core maintenance [38]–[42]
and k-truss maintenance [3], [29]–[31]. These works con-
sider maintaining dense subgraph structures when the graph

changes, such as edges insertion or deletion. However, the

graph change is not known in advance and cannot be controlled

by their maintenance algorithms. Different from these, our

problem of truss maximization can select new edges to be

inserted for truss maintenance, which aims at enlarging the

k-truss most.

Network structure enhancement. In the literature, there

exist several studies on network structure enhancement, such

as reachability enhancement, core maximization, and truss

maximization by inserting edges or anchoring nodes. The

reachability can be enhanced by inserting new edges [43].

[10], [11] enlarge k-core by adding edges to those nodes

with low degree. The problem of k-core/k-truss anchoring
[12], [44] enlarges the k-core/k-truss by anchoring a few

nodes that will not be peeled in the core/truss decomposition.

Although the goal of [44] and ours is maximizing k-truss,
[44] uses a greedy algorithm to anchor nodes but we adopt

DP-based strategies for selecting new edge insertions. The

most related works to ours are [1] and [9], which partition

(k− 1)-truss/(k− h)-core into small components and convert
these components to k-truss/k-core by adding edges. Then,
both work [1] [9] use different dynamic programming to find

the optimal combination. Our solution follows their frame-

work. However, we proposes two methods that can partially

convert a component to k-truss, while [1] only considers the
complete conversion. Therefore, we can use small budgets to

get a better answer of feasible conversions. In addition, our

new dynamic programming framework can support multiple

conversion plans for a component. What’s more, we propose

a new algorithm that can convert (k−h)-truss to k-truss when
h > 1, which is more challenging than converting (k − h)-
core to k-core [9]. Therefore, we can convert more edges into

k-truss when the given budget b is large.

III. PRELIMINARIES

Given a graph G = (V,E) where V is the node set and E
is the edge set, we represent H = (VH , EH) as a subgraph of
G with VH ⊆ V and EH ⊆ E. For a node u ∈ VH , NH(u)
is the node set containing all neighbors of node u in H , i.e.,
NH(u) = {v ∈ VH |(u, v) ∈ EH}. The support number of
an edge (u, v) ∈ EH is the number of triangles containing

this edge in the subgraph H , i.e., supH((u, v)) = |NH(u) ∩
NH(v)|. Based on these concepts, the formal definition of k-
truss is given as follows.

Definition 1 (K-Truss [45]). A subgraph H = (VH , EH) is
the k-truss if H is the largest subgraph of G such that all
edges have support numbers no less than k − 2 in H , i.e.,
∀(u, v) ∈ EH , supH((u, v)) ≥ k − 2.

Next, we give a useful definition of trussness, which can be

stored into an index to enable fast query of the k-truss.

Definition 2 (Trussness). The trussness τ(e) of an edge e in
the graph G is defined as the largest number k such that there
exists a non-empty k-truss containing e.

The k-truss has a hierarchical structure, i.e., k-truss ⊆ (k−
1)-truss. For instance, the edge e must be in τ(e)-truss and
(τ(e)− 1)-truss. In addition, we use Tk to represent the edge

set of k-truss. We denote all edges with the same trussness k as
the k-class Ek, i.e., Ek = {e ∈ E|τ(e) = k}. In other words,
the edge set of k-truss can be represented as Tk =

⋃kmax

i=k Ei,

where kmax is the largest number k that there exists a non-

empty k-truss in G.

Problem (Truss Maximization). Given a graph G, a budget
b ∈ Z

+, and the truss number k ≥ 2, the truss maximization
problem is to insert at most b new edges into G such that the
edge size of k-truss in the new graph is the largest.
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Algorithm 1 Random
Input: graph G, component c, budget b, repeating times r.
Output: exp-revenue Sc and new edges map Pc.
1: Initialization: Sc, Pc, Pool← ∅;
2: for all (x, y) ∈ Ec, (x, z) ∈ E, (y, z) /∈ E do
3: Add (y, z) to Pool;
4: for all i ∈ [1, r] do
5: Take an integer br at random from [1, b];
6: Take br edges Cr at random from Pool;
7: Try to insert Cr into G and get the exp-revenue pair (Pr, vr),

where Pr ⊆ Cr is the edges that converted to k-truss and vr
the number of edges in Ec and Pr that converted to k-truss;

8: if vr > Sc[|Pr|] then
9: Sc[|Pr|]← vr , Pc[|Pr|]← Pr;
10: Remove useless values in Sc to keep Sc strictly increasing;
11: return Sc, Pc;

IV. INTERPOLATION

We first introduce our two-phase framework for solving the

truss maximization problem. We introduce Phase-I techniques

in this section and Phase-II techniques in the next section.

A. Overview

Our framework includes Phase-I of converting each com-

ponent to k-truss separately and Phase-II of finding the best
budget allocation plan for each component.

Phase-I: Component Interpolation. For each component, we
find as many insertion plans as possible, with different budgets

used. We use the function Sc to represent the relationship

between the budget and the score for the component c, which
is strictly increasing. Therefore, this phase can be seen as

interpolating Sc as much as possible and with high scores.

We propose two algorithms to interpolate Sc. The first one

is to randomly insert edges and calculate edges that become

k-truss edges (Section IV-B). The second one is to convert a
component to a flow graph and conduct minimum cut to find

exp-revenue pairs with small budgets (Section IV-C).

Phase-II: Dynamic Programming. According to Sc of all

components, we can use DP to find the optimal combination to

allocate the budget to each component and obtain the highest

total score. We propose two algorithms with different time

complexity. Section V-B introduces a dynamic programming

algorithm to solve our problem. Section V-D introduces an-

other algorithm that compresses Sc to accelerate the computa-

tion. This algorithm has a significant time improvement when

there are a large number of components.

B. Random Interpolation

First of all, we give some useful definitions.

Definition 3 (Truss Connectivity). For two connected edges
e1 = (a, b) and e2 = (b, c), if they have the same truss-
ness k and the triangle they form exists in the k-truss, i.e.,
k = τ((a, b)) = τ((b, c)) ≤ τ((a, c)), e1 and e2 are truss
connected, donated as e1 ↔

k
e2. Moreover, for two arbitrary

edges e1 and e2, if there exits an edge e such that e ↔
k
e1 and

e ↔
k
e2, e1 and e2 are also truss connected.

Motivated by the idea of CBTM [1], we take a component c
as a subgraph of the (k−1)-class in this work. We require that
every edge of c is truss connected to each other. In addition,
all edges that are truss connected to edges in c are also in
c. Thus, the components do not intersect with each other and
the conversion of one component does not affect others. All

conversions adopted in [1] are complete conversion.

In the following, we propose a novel definition of exp-

revenue insertion candidates, which is very useful for our de-

signed partial conversions. The exp-revenue pair of component

c is (P, v), corresponding to a pair of an edge set P and a

score v, where P is newly inserted edges and v is the revenue
of new k-truss edges. In other words, the edges in P are not in

the graph. And v is the number of edges in Ec∪P that newly

become k-truss edges after inserting edges in P . Obviously,
1 ≤ |P | ≤ b, indicating a possible plan of partial conversions.
Since edges not in the k-truss are peeled in the computation of
k-truss, they do not contribute to our solution. As a result, we
assume all edges in P can successfully become k-truss edges.

Definition 4 (Exp-revenue Insertion Candidates S). For a
component c, Sc represents the relationship between edge size
of exp-revenue pairs and the maximum revenue, i.e., Sc[x] =
max{vi||Pi| = x}, for all (Pi, vi), where Pi ⊆ V × V − E,
0 < |Pi| ≤ b. S is the set including Sc of all components,
i.e., S = [S1, S2, · · · , S|C|], where |C| is the number of
components.

In practice, if two exp-revenue pairs have the same revenue

of new k-truss score v, we prefer to choose a set of smaller
edge insertions. Therefore, we can remove some values in

Sc to keep a discontinuous but strictly increasing order. Note

that throughout the following paper, we call the exp-revenue
insertion candidates S as the exp-revenue for short.

Example 2. Given graph G in Fig. 1 (a), there are two compo-
nents C1 and C2 in 3-class. An exp-revenue pair (P, v) of C1

can be ({(c, h)}, 5), which means 5 edges becoming 4-truss
edges when inserting (c, h) into G. There are two exp-revenue
pairs that can be considered, such as ({(c, h), (a, i)}, 8) and
({(c, h)}, 5). Thus, SC1 becomes {1 : 5, 2 : 8}. There are two
symmetrical components in 3-class. Therefore, the exp-revenue
S = [SC1 , SC2 ] = [{1 : 5, 2 : 8}, {1 : 5, 2 : 8}].
Next, we introduce our random algorithm to find insertion

plans for a component. Our general idea is randomly inserting

at most b edges into the component c and obtaining score
Sc[x], where x is the number of inserted edges successfully

in the k-truss, 0 < x ≤ b.
Algorithm 1 shows the process of random algorithm. We use

r to represent the number of random times in each component.

First of all, we find edges that can form triangles with edges

in the component and save them as the candidature edge set

Pool (lines 2-3), and new edges are chosen from it. Then,

we repeat r times (line 4) and in each time, we randomly
choose a budget br ∈ [1, b] (line 5). We randomly choose br
edges from Pool and form new edge set Cr (line 6). We try to

insert these edges into G and get the result vr and Pr (line 7).
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The number vr is the number of edges in the component c
that successfully become k-truss edges. Pr is the edge set in

Cr that successfully become k-truss edges. Note that the real
budget used is |Pr|, rather than br, where |Pr| ≤ br. Not all
edges in Cr can be successfully transformed into k-truss edges.
Edges cannot be in k-truss are peeled in the computation of
k-truss, thus not inserting them do not affect the result. The

result is saved into Sc and Pc (line 9). Finally, we remove

some budgets in Sc and Pc, such that Sc is strictly increasing

(line 10). Because we prefer to choose an exp-revenue pair

that has the same or higher score with a smaller budget.

This method is extremely effective when converting (k−1)-
truss to k-truss and b is small. However, this method involves
lots of insertions, which may have an expensive cost when the

graph is large. What’s more, this method can hardly find exp-

revenue pairs when converting (k−h)-truss to k-truss, where
h > 1. Therefore, we propose another method based on the
analysis of graph structure.

C. Interpolation by Minimum Cut

For each component, we want to get as many scores as

possible with small budgets. In the process of truss decom-

position, due to the collapse of some key edges, many edges

may be peeled and cannot become a k-truss. If we can anchor
these edges, there would be lots of edges becoming the k-truss
and the budget used is much smaller than that of the complete

conversion of components.

Therefore, our method has the following steps: 1. transform

the component to a directed acyclic graph (DAG), which can

show its structure; 2. construct a flow graph according to the

DAG; 3. conduct the minimum cut to find the most valuable

part of the component; and 4. convert these edges to k-truss.
We have a parameter that can change the structure of the flow

graph in step 2, hence the steps 2-4 can be repeated many

times and different exp-revenue pairs are obtained.

Step 1: DAG Construction. First of all, let’s introduce the
concept of onion layer.

Definition 5 (Onion Layer L). The onion layer of an edge
e is defined as the rounds in which the edge was removed,
i.e., L(e) = max{0, l ∈ N : supH(e) + 2 > k} + 1, where
k = τ(e), H is a subgraph that EH = Tk − {e′|τ(e′) =
k, L(e′) < l}. Given edges e1 and e2, e1 � e2 means either
τ(e1) > τ(e2) or τ(e1) = τ(e2), L(e1) > L(e2). And e1 � e2
means either e1 � e2 or τ(e1) = τ(e2), L(e1) = L(e2).

The onion layer shows the peeling order of edges in the

graph. For two edges e1, e2, if e1 � e2, it means that e1 is
peeled later than e2. If we anchor e2 by inserting some edges,
e1 may also become the k-truss.
In order to further utilize the properties of onion layer,

we propose the definition of onion layer connectivity and

Block B. Given a triangle xyz , edges (x, y) and (y, z)
are onion layer connected if k = τ((x, y)) = τ((y, z)),
l = L((x, y)) = L((y, z)) and (x, z) � (x, y), donated as
(x, y) ↔

k,l
(y, z). Moreover, if e1 e2 are onion layer connected

and e2 e3 are also onion layer connected, we define e1 e3 to
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Fig. 2. The graph G and the DAG constructed by the component C1 of
3-class in G. Green numbers shows the onion layers of edges in 3-class.

be onion layer connected. We divide a component into many

Blocks B and edges in each B are onion layer connected and

B is the maximum. Here we use L(B) to represent the onion
layer of B. Since we merge edges with the same onion layer
into B, two connected Blocks are in different onion layers.
If we treat each Block as a vertex and add one directed link

between two connected Blocks (from high-level onion layer

to low-level onion layer), we can convert a component into a

DAG. For two Blocks B1 and B2, L(B1) > L(B2), 〈B1, B2〉
represents the directed link from B1 to B2 in the DAG. We

use W (B1, B2) to represent the weight of link 〈B1, B2〉 in
the DAG. Let Q ⊆ B1 be the edge set that edges in Q are

connected to B2. For example, if e1 ∈ B1, e2 ∈ B2, e1, e2
and e3 are in the same triangle, e3 � e2, we say e1 ∈ Q.
We define the weight of the link 〈B1, B2〉 as the size of
Q, i.e., W (B1, B2) = |Q|. The weight of link 〈B1, B2〉 is
also the capacity of the link, which represents the difficulty of

converting B1 into the k-truss without converting B2. We add

a new sink vertex t into the DAG and add a new link between

Bi and t if Bi has no out-degree (di =
∑|B|

j=1 W (Bi, Bj) = 0,
|B| is the number of Blocks), and W (Bi, t) is the size of Bi.

By constructing the DAG, we transform the truss maximization

problem to a cut problem, i.e., divide the Blocks into two parts.

Blocks in the part containing the sink vertex t are discarded
and other blocks are converted to k-truss. The real cost (the
number of inserted edges) may differ from estimates (the cut),

but this method can suggest the part that is easy to convert.

Example 3. Fig. 2 (b) shows an example of a DAG constructed
from the component C1 of 3-class in Fig. 2 (a). The onion
layers of edges in 3-class in Fig. 2 (a) are labeled in green
numbers. Each vertex in Fig. 2 (b) represents a Block and
the white number in it represents the number of edges in this
Block. For example, Block A = {(a, f), (c, f)} contains two
edges (a, f) and (c, f), because they are onion layer con-
nected, and Blocks B = {(a, h), (f, h)}, C = {(c, i), (f, i)}.
The blue numbers are the weight of links between blocks,
which shows the cost of converting a Block. For instance,
there is one edge (a, f) in A being connected to edges in B in
triangle, thus W (A,B) = 1. W (B, t) = 2 because Block B
has no out-degree and we connect it to the sink vertex t and
the weight is the number of edges in B. If we want to convert
edges in all blocks to k-truss edges, we can simply cut 〈B, t〉
and 〈C, t〉, which needs the cost of 4 and can convert 6 edges.
We can find the minimum cut of the DAG, but it only has

one exp-revenue pair. Our framework can find higher score

with more exp-revenue pairs. We need an algorithm to find

more valid cut plans from the DAG. Next, we construct many

flow graphs, according to the DAG, and then find the minimum
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cut to get more exp-revenue pairs.

Step 2: Construction of Flow Graphs. Inspired by [46] that
employs a parameter g to generate subgraphs with varying

densities, we propose a novel graph construction technique

that incorporates multiple min-cuts controlled by the parameter

g. First, we introduce a new source vertex s to the DAG

in Step 1 and connect it to all Blocks Bi by adding links

〈s,Bi〉. The weight of each 〈s,Bi〉 is set as the sum of

all link weights in the DAG, denoted as q. Next, we add
links 〈Bi, t〉 from each Block Bi to the target vertex t.
The weight W (Bi, t) of each 〈Bi, t〉 is determined by the
expression max{0, g − w1L(Bi) − w2|Bi| − di}, where g,
w1, and w2 are three parameters. Importantly, we ensure

that W (Bi, t) remains non-negative. With these steps, we

successfully construct the flow graph. The parameters w1 and

w2 are positive values that play a crucial role in adjusting

the weight of the onion layer and the size of the Blocks,

respectively. Generally, Blocks with a higher onion layer or

larger size are more likely to be selected rather than to be

discarded. On the other hand, the parameter g is a non-

negative number that acts as a gate in our graph construction.

Specifically, we add an link 〈s,Bi〉 from the source vertex s
to each Block Bi, and a link 〈Bi, t〉 from each Block Bi to

the target vertex t. While the capacity from s to Bi is fixed

at q, the capacity from Bi to t is controlled by the parameter
g, taking into account the values of w1 and w2. By adjusting

the parameter g, we can effectively control the maximum flow

to the sink vertex t, which is also referred to as the minimum
cut. This provides us with a mechanism to regulate the flow

and optimize graph construction.

Step 3: The Minimum Cut of Flow Graphs. A partition

of the flow graph into two sets, S and T , such that s ∈ S
and t ∈ T , determines a s-t cut. The capacity of the cut

c(S, T ) is the sum of weights of links between S and T .
We anchor Blocks in S, i.e., we choose this part of the

component and convert them to the k-truss. A minimum

capacity cut can provide a conversion exp-revenue pair with a

small budget. We use hw1,w2(g) to represent the score obtained
by a minimum cut with parameter g, i.e., set the value of
g and construct a flow graph, then conduct a s-t cut and

hw1,w2(g) =
∑

Bi∈S |Bi|.
Lemma 1. hw1,w2(g) is non-negative and decreases with g.

Proof. hw1,w2
(g) is the sum of Block size in S. Therefore, it

is non-negative. When g increases, for each Block, the inflow
capacity remains the same, and the outflow capacity becomes

larger, thus the inflow is more likely to be saturated, and the

Block is more likely to be partitioned to T . Consequently, the
number of blocks in S decreases and hw1,w2(g) decreases.

The maximum value of hw1,w2(g) is the number of edges
in the component, i.e., all Blocks locate in S, which can be
achieved by setting g = 0 (no flow to t). The minimum
value of hw1,w2

(g) is 0, i.e., all Blocks are in T , which
can be achieved by setting g = 2q + w1Lmax + w2Bmax

(W (Bi, t) > W (s,Bi)), where Lmax is the largest onion

layer in the component and Bmax is the largest Block size.

Since hw1,w2(g) decreases with g according to Lemma 1, we
can binary search g in [0, 2q + w1Lmax + w2Bmax] to obtain
different cut plans. For each cut plan, we only convert Blocks

in S to k-truss. Therefore, a component can have multiple
conversion exp-revenue pairs.

Finally, we study how to completely convert edges in S to

be in the k-truss.
Step 4: Complete Conversion of a Subgraph. The conver-
sion strategy in [1] has the following drawbacks:

1) If unstable edges (support less than k − 2) cannot be
converted to stable edges (support no less than k − 2), they
are removed and the algorithm need to restart, which may

cause loss of scores and long running time.

2) Even unstable edges has been converted to stable edges,

they may still cannot be in the k-truss. Because new inserted

edges may be connected to other components and when other

components cannot be converted to k-truss, this component
are also affected.

For the drawback 1, we propose an improved method. For

an unstable edge e, we first try to find a new edge that can

increase the support number of e, such that e can become
a stable edge. If e cannot become the stable edge by just

inserting one edge, we use Clique Strategy, i.e., find other

(k − 2) nodes and convert these k nodes to the k-clique. K-
clique is a subgraph composed of k nodes where each two

nodes are connected. A k-clique is the smallest k-truss. Thus
if we want to convert an edge to be the k-truss, we can find
k nodes that contains two endpoints of this unstable edge and
add edges between any two nodes. The number of inserted

edges may be O(k2), which is a large number when k is not
small. Therefore, we also adopt Greedy Strategy, i.e., insert

edges one by one to cover the most edges that are unstable.

Finally, we choose an exp-revenue pair with lower budget

between these two strategies. The method may cost lots of

budget, but it is acceptable because we need to make sure that

the edges can be successfully converted to k-truss edges.
To address drawback 2, we propose component-based sup-

port number.

Definition 6 (CSup). Given a graph G, a component c and
an integer k, the component based support number of an edge
ê ∈ Ec is defined as the support number in the subgraph of k-
truss and c, i.e., CSup(ê) = supH(ê), where EH = {e|τ(e) ≥
k or e ∈ Ec}.
CSup requires the edges involved in the calculation of

support number to be in the same component. Otherwise, if

other components are not chosen, these edges are still peeled.

Algorithm 2 shows how to convert edges S to k-truss edges.
We first compute CSup for edges in S in the subgraph H ,
where H consists of the k-truss of the graph and S (line 2).

If an edge e has CSup(e) < k− 2, we mark it as an unstable
edge (line 3). In line 4, we find all edges that are not in the

graph and can form a triangle with edges in S. Some of these
edges may increase the CSup of more than one edge in S.
Therefore, we greedily select an edge that covers the most
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Algorithm 2 Complete Conversion
Input: graph G, the number k, the target edge set S.
Output: the candidate edge set P .
1: Get subgraph H that includes edges in k-truss and S;
2: Compute CSup for edges in S;
3: Label e ∈ S whose CSup(e) < k − 2 as unstable edges;
4: Greedily find new edges to make unstable edges stable
(CSup(e) ≥ k − 2) and put into P ;

5: while ∃e ∈ S with CSup(e) < k − 2 do
6: Use Clique Strategy and Greedy Strategy to make e stable.

Choose one with the lowest budget and save it to P ;
7: return P ;

edges that are unstable each time. The selected edges also

need to be stable edges and are put into P . However, some
edges in S may still be unstable (line 5). For this case, we

have two strategies, as mentioned above. We choose the one

of the two strategies with the fewest number of inserted edges

and save the result in P (line 6).

Example 4. Fig. 3(a) shows an example of DAG. Fig. 3(b)-
(f) show 5 different flow graphs constructed from the DAG in
Fig. 3(a), with different parameters. The sum of link weights
in Fig. 3(a) is q = 60, thus we add a source vertex s and
links 〈s,Bi〉 to all Blocks with the capacity 60, as shown in
Fig. 3(b)-(f) red links. The label on each link is the current
flow and the capacity of this link. We also add links 〈Bi, t〉
from each Block to the sink vertex t (black links in Fig. 3(b)-
(f)). For Fig. 3(b)-(e), w1 = 1, w2 = 1, thus gmax = 2q +
w1Lmax + w2Bmax = 2 × 60 + 1 × 2 + 1 × 2 = 124 and
g ∈ [0, 124]. We set different g for Fig. 3(b)-(e), i.e., 0, 124,
62, 55, and get different scores, i.e., 5, 0, 2, 3, respectively.
Specifically, in Fig. 3(e) with g = 55, for Block d, its onion
layer is 1 and its size is 1, thus W1(d, t) = g − w1L(Bi) −
w2|Bi| − di = 55 − 1 − 1 − 0 = 53. The original weight in
Fig. 3(a) is W2(d, t) = 5. Therefore, we sum them up and
W (d, t) = 58 in Fig. 3(e). We can find the minimum cut, as
the red dash line shown in Fig. 3(e), which costs a budget of
20 and achieves the score of 3 in Fig. 3(a). Similarly, we can
find the minimum cut in Fig. 3(f), which costs a budget of 25
and achieves the score of 4 in Fig. 3(a). Combining results in
Fig. 3(b)-(f)), we have pairs of cost and score in Fig. 3(a) as
{(0, 0), (15, 2), (20, 3), (25, 4), (30, 5)}.

V. MULTIPLE BUDGET ASSIGNMENTS FRAMEWORK

In previous section, we compute many exp-revenue pairs of

a component with different budgets. However, it is difficult

to determine the best budget for the component. Therefore,

our idea is to take all exp-revenue pairs into consider and let

dynamic programming process decide which exp-revenue pair

to use. It is worth mentioning that our new strategy provides

a framework for solving this problem. For each component,

we can use various algorithms to obtain different exp-revenue

pairs and apply them to our framework.

Next, we introduce our new problem of multiple budgets

assignment.

Algorithm 3 Sequential DP
Input: exp-revenue S = [S1, S2, · · · , S|C|], budget b.
Output: the dynamic programming table DP .
1: Initialization: DPi,j ← 0 for i ∈ [0, |C|] and j ∈ [0, b];
2: for all i ∈ [1, |C|] do
3: for all j ∈ [1, b] do
4: for all u ∈ [0, j] do
5: if DPi−1,u + Si[j − u] > DPi,j then
6: DPi,j ← DPi−1,u + Si[j − u];
7: return DP ;

A. The problem of multiple budgets assignment

Assume that there are components C, labeled as 1, · · · , |C|.
For each component c ∈ [1, |C|], we have the exp-revenue
Sc[:], and if the budget used in this component is x and Sc[x]
is the score obtained. The total budget for all components is

b and we wants to get the highest total score. We assume
that all Sc[:], c ∈ [1, |C|] are known. We also assume that
the budget allocation of one component does not affect that

of other components. Here is the multiple budgets assignment

problem.

Problem 1. Given the total budget b and a series of exp-
revenue Sc[xc] ≥ 0, xc ∈ N, 1 ≤ c ≤ |C|, the problem is to
find the best allocation plan x = [x1, · · · , x|C|] to maximize
total score, i.e.,

x = argmax
x

|C|∑

c=1

Sc[xc]

subject to
|C|∑

c=1

xc ≤ b.

(1)

The dynamic programming solution mentioned in [1] is to

solve the 0-1 backpack problem, which is no longer applica-

ble to this problem. Therefore, we propose a new dynamic

programming solution.

B. Dynamic programming framework of sequential access

First of all, we introduce a table DP with size of (|C| +
1)×(b+1) , where the first row and the first column are set to

be 0, i.e., DP0,[1:b] = 0 and DP[1:|C|],0 = 0, and other values
are defined as follow.

DPi,j =max{DPi−1,u + Si[j − u]|u ∈ [0, j]},
where i ∈ [1, |C|], j ∈ [1, b]

(2)

As shown in Equation 2, DPi,j represents the maximum

total score only considering the previous i components, with
budget used no more than j. For 0 ≤ u ≤ j, Si[j − u]
represents the score of component i with the budget j − u.
Therefore, the value of DPi,j is the largest item by combining

the current component i and the results of previous (i − 1)
components.

Algorithm 3 presents the new dynamic programming pro-

cess. We need to compute |C| × b values of the DP table

(lines 2-6). For each value DPi,j , we iterate over all DPi−1,u,

u < j (line 4), and find the largest one (line 5). Finally, we
return the calculated DP table (line 7).
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Fig. 3. An example of DAG (a) and its flow graphs (b)-(f) obtained by changing parameters g, w1 and w2. For (b)-(e), w1 = 1 and w2 = 1. For (f), w1 = 1
and w2 = 10. The minimum cut is represented by a red dashed line.

C. Time complexity of Algorithm 3

The external two-layer loops are executed |C| × b times
(lines 2-6). The line 4 repeats at most b + 1 times. Thus, the
time complexity of Algorithm 3 is O(|C|b2).
However, O(|C|b2) may be a very large number when

|C| is large and b is not very small. In Algorithm 3, every

exp-revenue pair of a component is considered. In fact, if

an exp-revenue pair has a low conversion ratio, it can be

ignored. Therefore, we propose another dynamic programming

framework to solve the same problem, but has a different time

complexity.

D. Dynamic programming framework with sorted input

Next, we introduce another version of DP . We intend to
build a DP table with a size of (min{|C|, b}+ 1)× (b+ 1),
where the first row and the first column are set to be 0, i.e.,
DP0,[1:b] = 0 and DP[1:min{|C|,b}],0 = 0, and other values are
defined as follow.

DPi,j =max{DPi,j−1, DPi−1,j ,

{DPi−1,u + Sc[j − u]|
x = Soli−1,u,x[c] = 0, for u < j, c ≤ |C|},
{DPi,u − Sc[x[c]] + Sc[j − u + x[c]]|
x = Soli−1,u,x[c] > 0, for u < j, c ≤ |C|}},
where i ∈ [1,min{|C|, b}], j ∈ [1, b]

(3)

As shown in Equation 3, DPi,j is defined differently from

the one in Equation 2. It represents the maximum total score

that the number of chosen components and the used budget do

not exceed i and j, respectively. Its value is chosen from the

largest of the four terms. If there are more optional components

or more budget, the score should be higher, thus the value of

DPi,j should not be less than DPi,j−1 and DPi−1,j . We also

need Soli,j to save the best allocation plan for DPi,j . As

for the third term {DPi−1,u + Sc[j − u]}, ∀u < j, ∀c ≤ n,
Sc[j − u] represents the score got by choosing component c
with the budget j − u. If component c has not been chosen
by DPi−1,u (x[c] = 0), we can try to add it and compare the
score with other values. In the forth term {DPi,u−Sc[x[c]]+
Sc[j−u+x[c]]}, we increase the budget without the increase
of the number of components. If component c has been chosen
by DPi,u and the budget used is x[c], we can try to use a lager
budget j − u+ x[c] and compare the score with other values.
The advantage of this method is that we build amin{|C|, b}×b

Algorithm 4 Sorted DP
Input: exp-revenue S , budget b.
Output: the table DP and solutions Sol.
1: Initialization: DPi,j ← 0, Soli,j ← ∅, for i ∈ [0,min{|C|, b}],

j ∈ [0, b];
2: Building b maximum heaps M with S;
3: for all i ∈ [1,min{|C|, b}] do
4: for all j ∈ [1, b] do
5: if DPi,j−1 > DPi,j then
6: DPi,j ← DPi,j−1;
7: Soli,j ← Soli,j−1;
8: if DPi−1,j > DPi,j then
9: DPi,j ← DPi−1,j ;
10: Soli,j ← Soli−1,j ;
11: for all u ∈ [1, j − 1] do
12: Find a component c in M [j − u] with the largest score

and c /∈ Soli−1,u;
13: if DPi−1,u + Sc[j − u] > DPi,j then
14: DPi,j ← DPi−1,u + Sc[j − u];
15: Soli,j ← Soli−1,u;
16: Soli,j [c]← j − u;
17: for all c ∈ Soli,j , bt = Soli,j [c] > 0 do
18: for all all larger budget bu > bc that bu ∈ Sc do
19: if DPi,j − Sc[bc] + Sc[bu] > DPi,j+bu−bc then
20: DPi,j+bu−bc ← DPi,j − Sc[bc] + Sc[bu];
21: Soli,j+bu−bc ← Soli,j ;
22: Soli,j+bu−bc [c]← bu;
23: return DP , Sol;

table, rather than a |C| × b table. When b � |C|, this method
runs much faster than Algorithm 3.

Algorithm 4 presents the details of new dynamic program-

ming algorithm. We need to compute min{|C|, b}×b values of
the DP table (lines 3-22). First of all, we compress S into M
for an easy of usage (line 2).M is a vector of size of b, where
M [i] is a maximum heap that sorts components from large to

small, according to their scores, for i ∈ [1, b]. In other words,
we first group components by desired budget, and then sort

each group by their scores. As a result, we can quickly find

the best option for a fixed budget. For each value DPi,j , we

first directly compare it with previous values DPi,j−1 (line 5)

and DPi−1,j (line 8) and take the maximum value. Next, we

iterate over all DPi−1,u, u < j (line 11), and try a component
c that has the largest score when the budget is j − u and has
not been considered. For term 4 in Equation 3, for the sake of

efficiency, we do not calculate it through other tables, but use

the result of DPi,j to calculate other tables. We iterate over

all components c used in DPi,j (line 17), and try all budgets
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TABLE I
DP TABLE BUILD BY ALGORITHM 3

b 0 1 2 3 4 5

0 0 0 0 0 0
A 0 3 3 3 3 3
B 0 3 5 7 7 7
C 0 4 7 9 11 12

TABLE II
DP TABLE BUILD BY ALGORITHM 4

b 0 1 2 3 4 5

0 0 0 0 0 0

1 0 4 5 6 6 6
{C : 1} {C : 2} {C : 3} {C : 3} {C : 3}

2 0 4 7 8 9 10
{C : 1} {A : 1, {A : 1, {A : 1, {B : 2,

C : 1} C : 2} C : 3} C : 3}
3 0 4 7 9 11 12

{C : 1} {A : 1, {A : 1, {A : 1, {A : 1,
C : 1} B : 1, B : 2, B : 2,

C : 1} C : 1} C : 2}

bu that are larger than the current used budget bc, and update
the value of DPi,j+bu−bc . Finally, we return the calculated

DP table (line 23). Since we need to consider whether a

component has been used, we also need the set Sol to record
the selected components.

E. Time complexity of Algorithm 4

Building heaps M takes O(|C|b). The external two-layer
loops are executed min{|C|, b}×b times (lines 3-22). Terms 1
and 2 are executed once respectively. Line 11 repeats j times
and line 12 checks at most i + 1 times (the worst case is

that the first i components in the heap have been selected)
and the size of the heap is at most |C|, thus term 3 takes

O(bmin{|C|, b} log(|C|)). For each component c, we can just
save conversion exp-revenue pairs whose budgets are no larger

than b. Line 17 repeats i times and line 18 repeats at most
|Sc| ≤ b times, thus term 4 is executed b×min{|C|, b} times.
Therefore, the time complexity of Algorithm 4 is O(|C|b +
b2(min{b, |C|})2 log(|C|)).
This algorithm compresses Sc and builds a smaller DP table

to accelerate the computation, which has a significant time

improvement when there are a large number of components

|C|. When b � |C|, the time complexity of Algorithm 4 is

close to O(|C|b), much faster than that of Algorithm 3, which

is O(|C|b2). However, it performs bad when b is very large
and obtains suboptimal results in some cases. Fortunately, in

practical applications, b � |C|, and the result is very close
to the optimal solution. In addition, our solution requires a

compromise between efficiency and score. Therefore, we use

both frameworks together to achieve the best performance.

When b > |C|, we use Algorithm 3, otherwise we use

Algorithm 4.

Example 5. Assume there are three components {A,B,C}
and budget b = 5. The exp-revenues are SA = [3] (only
one budget), SB = [2, 4], SC = [4, 5, 6] (budget can be 1,
2, or 3). Table I and Table II show the DP table built by
Algorithm 3 and Algorithm 4, respectively. For example, in
Table I, DP [2][2] = 5, because DP [1][1] + SB [1] = 5 is the
maximum. As another example, in Table II, DP [2][3] = 8,
because it chooses SA[1] and SC [2]. The best allocation plan
is x = [1, 2, 2] and the total score is 12. If we use the method

TABLE III
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS
Component Conversion Budget Assignment

[1] Full conversion Binary DP

O(mcd
2
c) O(|C|b)

Ours

Random conversion Sequential DP
in Algorithm 1 in Algorithm 3

O(mc(dc + rρ)) O(|C|b2)
Min-cut conversion Sorted DP
in Section IV-C in Algorithm 4

O(tmc(n
2
c + d2

c) O(|C|b + b2(min{b, |C|})2 log(|C|))

in [1] to solve this problem, it assumes that for a component,
either do not choose it, or convert it totally, i.e., SA = [3],
SB = [4], SC = [6] and xA ∈ {0, 1}, xB ∈ {0, 2} and
xC ∈ {0, 3}. Therefore, the best solution using the method in
[1] is x = [0, 2, 3] and the total score is 10, which is smaller
than the result of our new method as 12.

F. The Summary of Complexity Comparison

Our methods and the existing method [1] both have two

key steps: component conversion and budget assignment. [1]

adopts full conversion strategy and uses binary DP to solve the

0-1 backpack problem for budget assignment. Let us consider

a candidate (k−1)-light component c. We denote the number
of nodes and edges as nc = |V (C)| and mc = |E(C)|,
respectively. The maximum node degree is dc in compo-

nent c. First, we analyze the time complexity of component
conversion on c. In the worst case, all edges in component
c need to be converted by the additional support of new

edges. For each candidate e = (u, v), it needs the number of
potential new edges that form triangles directly with e, which
is bounded by O(|N(v)| + |N(u)|) = O(dc). Thus, we have
a total of potential new edges O(mcdc). The time cost of
computing the support for all edges takes O(dc). Thus, the
time complexity of full conversion is O(mcdc

2). On the other
hand, our random-based partial conversion in Algorithm 1 first

finds all potential new edges in O(mcdc) time, then randomly
inserts no more than b edges, and checks the feasibility of
k-truss by truss maintenance algorithm in O(ρmc), where ρ
is the arboricity of component c with ρ ≤ min{dc,√mc}.
The above process needs to be repeated in r times for finding
good answers. Thus, the time complexity is O(mc(dc + rρ)).
In addition, our min-cut based partial conversion invokes the

minimum cut algorithm for finding candidates in O(mcn
2
c)

time and conducting the conversion in O(mcd
2
c) time. The

whole process repeating t times has a time complexity of

O(tmc(n
2
c + d2c)) Next, we analyze the DP-based techniques

for budget assignment. Assume that we have a total of |C|
different components C and a budget b. The binary 0-1 DP [1]
builds a |C|×b DP table, thus the time complexity is O(|C|b).
The time complexities of Sequential and Sorted DP algorithms

are presented in Section V, which cost more than binary DP

for achieving high-quality of combined answers.

VI. EXTENSION TO HANDLE (k − h)-TRUSS

Previous sections show how to convert (k − 1)-class to k-
truss. However, in some cases where (k−1)-class is empty or

3278



Algorithm 5 General Framework
Input: graph G = (V,E), the number k, the budget b.
Output: the edge set A to be inserted.
1: Compute trussness τ(e) for edges e ∈ E;
2: k′ ← k − 1, A← ∅;
3: while k′ > 2 do
4: Partition k′-truss to components;
5: Compute exp-revenue S for components by Algorithm 1 and

techniques in Section IV-C;
6: Using Algorithm 3 or Algorithm 4 to find at most b−|A| new

edges U ;
7: Insert U to G and update τ(e) for e ∈ E;
8: A← A ∪ U ;
9: if |A| ≥ b then
10: break;
11: k′ ← k′ − 1;
12: return A;

b is large, (k − 1)-class has been completely converted to k-
truss. This shows a budget surplus. Therefore, we also convert

(k− h)-truss to k-truss when h > 1 and b is enough. First of
all, we extend the definition of components of (k − 1)-truss
to (k − h)-truss.

Definition 7 (General Component). A general component c is
a connected subgraph where every edge e has k−h ≤ τ(e) <
k.

We also extend the concept of onion layer as follows.

Definition 8 (General Onion Layer LG). The general onion
layer of an edge e in a general component c, i.e., e ∈ Ec, is de-
fined as the number of rounds in which the edge was removed
in the computation of k-truss, i.e., LG(e) = max{0, l ∈ N :
supH(e)+2 ≥ k}+1, where H = Tk∪Ec−{e′|LG(e′) < l}.

The general onion layer shows the structure of edges in the

(k−h)-truss but not in the k-truss. Obviously, when we anchor
all edges in the first general onion layer, i.e., LG(e) = 1, the
whole component becomes the k-truss. Given the definitions of
general components and general onion layer, we can naturally

extend techniques in previous sections to (k − h)-truss.

Next, we present the general framework of converting (k−
h)-truss to k-truss. Algorithm 5 shows how to convert edges to

k-truss edges with budget b. We need three inputs: the graph
G, the number k and the budget b. First of all, we compute
the trussnesses of edges in the graph (line 1). We start from

(k−1)-truss (line 2) and if the budget is enough, we decrease
k′ to convert other trusses (line 11). For each k′-truss, we
first divide it to many general components (line 4) and build

exp-revenue using techniques in Section IV. Then, we use DP

in Section V to find the optimal combinations of components

and their budgets. The result is U and its size is no more than

b−|A|. We insert these edges U into G and update trussnesses

and save U to A. If all budgets are spent, the algorithm ends.

Otherwise, the algorithm continues to convert (k′ − 1)-truss
(line 11).

VII. EXPERIMENTS

In this section, we evaluate our algorithms with other base-

line algorithms. The experiments are conducted on a Linux

Server with AMD EPYC 7742 (2.25 GHz, 2S/64C) and 2T

main memory. All algorithms are implemented in C++.1

Datasets. We use nine real-world datasets as shown in Ta-
ble IV. The dataset Syracuse56 is from [48]. All other datasets

can be downloaded from SNAP [49]. Facebook, Syracuse56,

Brightkite, Gowalla and LiveJournal are friendship networks.

Enron is an email communication network. The dataset Twitter

is crawled from Twitter. The dataset Stanford is the Stanford

web graph. Wiki-Talk is a Wikipedia talk graph. All directed

graphs are converted to undirected graphs.

Competitors. We compare our algorithm PCFR with three

baseline algorithms, RD [1], GTM [1], and CBTM [1]. PCFR

contains all techniques proposed in this work. It uses random

method (Algorithm 1) to partially convert components in

(k − 1)-truss to k-truss and uses the flow method (Sec-

tion IV-C) to partially convert components in (k − h)-truss
to k-truss, where h is sequentially 1, 2, · · · , k − 2. Then it
uses dynamic programming (Algorithm 3 when b > |C|,
otherwise Algorithm 4) to find the optimal combination. For

each component, Algorithm 1 tests 10 times (r = 10). The
minimum-cut based method in Section IV-C sets w1 to 1, and
tests w2 twice (1 or 10). For each case, it tests the value of g
10 times (t = 10). CBTM completely converts components

in (k − 1)-truss to k-truss (each component has only one

exp-revenue pair) and uses binary dynamic programming to

find the optimal combination. RD and GTM both first find a

candidate edge set C where edges are not in the graph and

have support no less than k − 2, the insertion of which can
increase the support of edges in (k − 1)-truss. RD randomly

chooses b edges from C as the result and directly inserts them

into the graph. GTM is a per-edge insertion greedy method

and uses candidate pruning techniques in [1]. We also modify

PCFR to test the effectiveness of our techniques. Algorithm

PCF removes the random method, Algorithm PCR removes

the flow method, compared with PCFR.

Exp-I: Efficiency evaluation. In this experiment, we compare
our algorithm PCFR with the baseline algorithms, RD, GTM

and CBTM. We set k = 20 for five small datasets, and

k = 40 for four large datasets (Twitter, Stanford, Wiki-Talk,
LiveJournal), respectively. This parameter setting follows the

configuration in [1]. We set the budget b = 200 and report

the score (the increased edge size of new k-truss). We also
report the running time of algorithms. “-” means the algorithm

cannot finish in 24 hours. As shown in Table IV, our algorithm
PCFR achieves the highest score than all baselines on all

datasets, because PCFR considers multiple exp-revenue pairs

for a component, which also include the complete conversion

plan by CBTM. On the other hand, for the same reason, PCFR

takes a longer time, but it is worth the extra time. Especially

on dataset Stanford, PCFR takes the same budget but achieves

1https://github.com/MaxTruss/MaxTruss
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TABLE IV
EFFICIENCY EVALUATION

Network |V | |E| dmax kmax |C| Score Running Time (in seconds)
RD GTM CBTM PCFR RD GTM CBTM PCFR

Facebook 4,039 88,234 1,045 97 100 873 1278 1821 3635 3.51 620.91 3.30 24.86
Enron 36,692 183,831 1,383 22 9 3204 2209 3858 5165 23.11 5037.56 27.26 382.90

Brightkite 58,228 214,078 1,134 43 55 852 611 989 1468 5.98 689.66 8.93 5.81
Syracuse56 13,654 543,982 1,340 59 354 1277 7234 7261 7482 131.62 79192 106.83 219.57

Gowalla 196,591 950,327 14,730 29 110 1519 3868 4439 4656 86.39 48295 113.84 193.84
Twitter 81,306 1,768,149 3,383 82 82 4843 4139 7017 13583 131.38 21841 185.96 1071.62

Stanford 281,903 2,312,497 38,625 62 655 3024 5007 4200 13111 112.90 2967.99 77.68 1023.20
Wiki-Talk 2,394,385 5,021,410 100,029 53 115 1459 - 5400 5464 760.01 - 826.19 6581.90

LiveJournal 3,997,962 34,681,189 14,815 352 433 1010 - 16412 20139 128.08 - 1041.07 227.07

Fig. 4. The score (left) and running time (right) of our algorithms and CBTM
by varying b on Syracuse56, k = 20.

more than 3 times of score than that of CBTM. For some

datasets, like Enron and Stanford, PCFR runs much slower

than CBTM, because PCFR also finds solutions in (k − h)-
truss, where h > 1, while CBTM only finds solutions in

(k−1)-truss. For dataset LiveJournal, PCFR runs much faster
than CBTM, which shows the efficiency of Algorithm 4. RD

runs fast on many datasets, but has very low score. GTM runs

the slowest, because it involves too many truss maintenance

operations.

Exp-II: Parameter evaluation. In this experiment, we test
the efficiency of our algorithms by varying the total budget b,
the target trussness k, and the repeating times r.

First of all, we test our algorithms by varying the budget

b. Fig. 4 reports the score and running time obtained by our
algorithms and the baseline algorithm CBTM, when k = 20
on dataset Syracuse56. The blue numbers represent the value

of h, reflecting the (k − h)-class our algorithms handled.
When b ≤ 3929, all algorithms convert edges in (k − 1)-
class and when b > 3929, our algorithms continue to convert
edges in (k − 2)-class. CBTM cannot handle the case when

b is extremely large (b = 2560 and 10240), thus we do
not plot these two points. If we only look at the results of

PCFR, we can find that the conversion rate (score/b) decreases

as the budget b increases. This is because we prefer to

prioritize edges with high conversion rate. Comparing PCFR

with CBTM, we can find that when b is very small or very
large, our algorithm can achieve better performance. This is

because when b is very small, our partial conversion plans
can get higher score. When b is very large, our algorithm
can find more candidate edges from (k − h)-truss. However,
when b is close to the number that can completely convert all
(k−1)-truss to k-truss, our algorithm and CBTM have similar

performance. In most cases, PCFR runs slower than other

algorithms. Because PCFR uses both techniques in PCF and

PCR. PCFR considers more cases than CBTM, but the running

time is much less than the complexities expected (O(|C|b2)
for PCFR and O(|C|b) for CBTM). PCR takes more time than

Fig. 5. The score (left) and running time (right) of our algorithms and CBTM
by varying k on dataset Syracuse56, b = 200.

(a) Repeating test (b) DAG size

Fig. 6. Performance of PCR by varying r, with k = 20 and b = 200 in
subfigure (a) and the size of the largest component |Ec|, the number of nodes
|B| and edges |EDAG| in the corresponding DAG by varying k in subfigure
(b) on dataset Syracuse56.

PCF in most cases, because PCR uses a randomized algorithm

that needs to maintain trussnesses in every attempt.

Next, we test our algorithms by varying k, when b = 200
on dataset Syracuse56, as shown in Fig. 5. The score has

no apparent relationship to k, because the structures of k-
class may differ from each other. But the size of the k-
truss decreases as k increases. As a result, the running time
roughly decreases with the increase of k. Our algorithms also
perform much better than CBTM when k is large. The reasons
are twofold. First, the size of (k − 1)-truss is small when
k is large and our algorithms continue to convert (k − h)-
truss. Second, there are many components that CBTM cannot

convert since it is difficult to find edges with sufficient supports

when k is large. PCF runs faster than PCR when k increases,
because PCR involves many truss maintenance operations,

which change more states of edges when k is larger. PCFR

runs faster than PCR when k = 40, because PCR conducts

random insertions on (k−h)-truss, while PCFR only conducts
random insertions on (k − 1)-truss. The scores of PCFR and

PCR are almost the same, but PCFR runs much faster than

PCR, which shows the limitation of random algorithms on

(k − h)-truss for h > 1.

We also test our randomization algorithm PCR with differ-

ent repeating times. As shown in Fig. 6 (a), as r increases, the
score increases slowly, but the running time increases quickly.
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TABLE V
THE SCORE OF BINARY (0-1) DP [1], SEQUENTIAL DP (ALGORITHM 3)
AND SORTED DP (ALGORITHM 4) BY VARYING b ON GOWALLA, k = 10

b Binary DP Sequential DP Sorted DP
10 495 650 650
40 1526 2009 2009
160 4217 5084 5084
640 11904 13065 13065
2560 28966 32638 32627
10240 43562 43565 43565

(a) Gowalla
Fig. 7. Running time of Binary DP, Sequential DP in Algorithm 3 and Sorted
DP in Algorithm 4 by varying b on Gowalla, k = 10, where |C| = 3727.

Consequently, in our experiments, we only set r = 10 for

efficiency.

Exp-III: DAG size evaluation. We report the size of a com-
ponent and the size of the transformed DAG in our algorithms,

as shown in Fig. 6 (b). We select the largest component of k-
class with different k on the dataset Syracuse56. |Ec| is the
number of edges in the component. |B| and |EDAG| represent
the number of vertices and links in the DAG, respectively.

In our algorithms, we merge connected edges in a component

with the same onion layers into a Block, which is the vertex of

the DAG, and two connected Blocks have a link in the DAG.

The result shows that the size of the DAG is much smaller

than that of the component. Accordingly, our algorithms can

efficiently handle large graphs. It also shows that the size of

DAG is smaller when k increases, because k-truss is more
cohesive and more edges are in the same onion layers.

Exp-IV: Efficiency and quality evaluation of three algo-
rithms: Binary DP, Sequential DP, and Sorted DP.
We compare two DP algorithms proposed in Section V,

as well as a binary version (Binary DP) modified from our

Sequential DP. For each component, Binary DP either chooses

it with the largest budget or does not choose it. We set

k = 10 and vary b on dataset Gowalla, where the number
of components |C| is 3727. Fig. 7 reports the running time
of three DP algorithms. When b ≤ 640 < |C|, Sorted DP
performs better than Sequential DP. When b = 10240 ≥ |C|,
Sequential DP runs faster. Thus, our algorithm PCFR uses

Sequential DP to find the best combination for b ≥ |C| and
then uses Sorted DP for b < |C|. Binary DP and Sequential DP
have similar performance when b is not very small (b > 10),
because in practice, there are very few budget options for each

component to choose from. In addition, we also report the

quality of three DP algorithms, as shown in Table V. Although

Sorted DP obtains suboptimal results, the score difference is

very small, i.e., 11 when b = 2560. Sequential DP and Sorted
DP outperform Binary DP in most case for a small b. When

20-truss
2123 stable 
edges

185 unstable 
edges

(a) Original graph

20-truss
2308  
converted 
edges

1917 new 
edges

(b) Full conversion

20-truss 754 
converted
edges

9 new 
edges

(c) Partial conversion by
our PCFR method

Fig. 8. Case study on social network Syracuse56. Here, k = 20. Black edges
represent the stable edges, red edges represent the unstable edges, green edges
represent the new inserted edges, and blue edges represent edges converted
to 20-truss edges.

the total budget is very large, i.e., b = 10240, three algorithms
achieve similar scores, because all components tend to be

completely converted.

Exp-V: Case study on social network Syracuse56. In this
experiment, we investigate the effectiveness of our algorithm

PCFR on Syracuse56, where nodes represent users and edges

represent their friendships on a social network Facebook. We

focus on a large candidate component for k-truss conversion
where k = 20. Fig. 8(a) shows the candidate component with
2,308 edges, of which 185 edges are unstable. To fully convert

all 2,308 edges into 20-truss, the complete conversion method

needs to insert 1,917 new edges to provide sufficient supports

for these unstable edges as shown in Fig. 8(b). In this way,

it achieves the conversion ratio of 2308+1917
1917 = 2.2, which is

pretty small. On the other hand, our partial conversion algo-

rithm only inserts 9 new edges, which converts 754 candidate

edges to k-truss edges as shown in Fig. 8(c). Our method
achieves a significant conversion ratio of 754+9

9 = 84.8, which
is much larger than 2.2 achieved by the complete conversion.

This shows practical usefulness of our proposed method in real

applications of truss maximization under a limited number of

budgets, especially in the economic consideration of coupon

promotions by inviting friends to participate in activities on

social networks, and also adding new routes for connectivity

extension in flight networks.

VIII. CONCLUSION

In this study, we focus on the truss maximization problem,

which involves identifying no more than b new edges to

expand the existing k-truss. Our approach involves dividing
the (k − h)-truss into separate components that do not affect
each other. Then we propose a minimum-cut based approach

to partially convert each component to k-truss, providing our
algorithms with a wider range of edge insertion plans. To

handle multiple budget assignments, we propose a framework

that enables the identification of the optimal combination of

these conversion options. Our algorithm, PCFR, demonstrates

the ability to effectively enlarge the k-truss across various
budget variations. We validate the effectiveness and efficiency

of our algorithms through extensive experiments.

ACKNOWLEDGMENT

The work is supported by Hong Kong RGC Grant Nos.

22200320, 12200021, 12201923, C2004-21GF, and 12202221.

Xin Huang is the corresponding author.

3281



REFERENCES

[1] X. Sun, X. Huang, Z. Sun, and D. Jin, “Budget-constrained truss
maximization over large graphs: A component-based approach,” in
CIKM, pp. 1754–1763, 2021.

[2] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proc.
VLDB Endow., pp. 812–823, 2012.

[3] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in SIGMOD, pp. 1311–1322,
2014.

[4] C. Zong, P. Gong, X. Zhang, T. Qiu, A. Zhang, and M. Wang, “Efficient
size-constrained (k, d)-truss community search,” in ADMA, pp. 405–420,
2023.

[5] X. Liu and Z. Zou, “Common-truss-based community search on multi-
layer graphs,” in ADMA, pp. 277–291, 2023.

[6] W. M. A. Habib, H. M. O. Mokhtar, and M. E. El-Sharkawi, “Discov-
ering top-weighted k-truss communities in large graphs,” J. Big Data,
p. 36, 2022.

[7] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Truss-based community
search over large directed graphs,” in SIGMOD, pp. 2183–2197, 2020.

[8] E. Akbas and P. Zhao, “Truss-based community search: a truss-
equivalence based indexing approach,” Proc. VLDB Endow., pp. 1298–
1309, 2017.

[9] X. Sun, X. Huang, and D. Jin, “Fast algorithms for core maximization
on large graphs,” Proc. VLDB Endow., vol. 15, no. 7, pp. 1350–1362,
2022.

[10] R. Chitnis and N. Talmon, “Can we create large k-cores by adding
few edges?,” in Computer Science - Theory and Applications - 13th
International Computer Science Symposium, CSR, pp. 78–89, 2018.

[11] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen, “K-core maximiza-
tion: An edge addition approach,” in IJCAI, pp. 4867–4873, 2019.

[12] K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and
A. Sharma, “Preventing unraveling in social networks: The anchored
k-core problem,” SIAM J. Discret. Math., pp. 1452–1475, 2015.

[13] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Global
reinforcement of social networks: The anchored coreness problem,” in
SIGMOD, pp. 2211–2226, 2020.

[14] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,”
in HiPC, pp. 13–22, 2017.

[15] P. Chen, C. Chou, and M. Chen, “Distributed algorithms for k-truss
decomposition,” in International Conference on Big Data, pp. 471–480,
2014.

[16] R. Wang, L. Yu, Q. Wang, J. Xin, and L. Zheng, “Productive high-
performance k-truss decomposition on GPU using linear algebra,” in
HPEC, pp. 1–7, 2021.

[17] S. Huang, M. El-Hadedy, C. Hao, Q. Li, V. S. Mailthody, K. Date,
J. Xiong, D. Chen, R. Nagi, and W. Hwu, “Triangle counting and truss
decomposition using FPGA,” in HPEC, pp. 1–7, 2018.

[18] X. Huang, W. Lu, and L. V. S. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in SIGMOD, pp. 77–90,
2016.

[19] Z. Zou and R. Zhu, “Truss decomposition of uncertain graphs,” Knowl-
edge and Information Systems, vol. 50, no. 1, pp. 197–230, 2017.

[20] F. Esfahani, J. Wu, V. Srinivasan, A. Thomo, and K. Wu, “Fast truss
decomposition in large-scale probabilistic graphs,” in EDBT, pp. 722–
725, 2019.

[21] Z. Sun, X. Huang, J. Xu, and F. Bonchi, “Efficient probabilistic truss
indexing on uncertain graphs,” in WWW, pp. 354–366, 2021.

[22] F. Esfahani, M. Daneshmand, V. Srinivasan, A. Thomo, and K. Wu,
“Truss decomposition on large probabilistic networks using h-index,” in
SSDBM, pp. 145–156, 2021.

[23] Y. Wu, R. Sun, C. Chen, X. Wang, and Q. Zhu, “Maximum signed
(k, r)-truss identification in signed networks,” in CIKM, pp. 3337–3340,
2020.

[24] J. Zhao, R. Sun, Q. Zhu, X. Wang, and C. Chen, “Community identifi-
cation in signed networks: A k-truss based model,” in CIKM, pp. 2321–
2324, 2020.

[25] X. Huang and L. V. Lakshmanan, “Attribute-driven community search,”
Proc. VLDB Endow., vol. 10, no. 9, pp. 949–960, 2017.

[26] Q. Liu, Y. Zhu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “VAC: vertex-
centric attributed community search,” in ICDE, pp. 937–948, 2020.

[27] X. Xie, M. Song, C. Liu, J. Zhang, and J. Li, “Effective influential
community search on attributed graph,” Neurocomputing, pp. 111–125,
2021.

[28] S. Ebadian and X. Huang, “Fast algorithm for k-truss discovery on
public-private graphs,” in IJCAI, pp. 2258–2264, 2019.

[29] Q. Luo, D. Yu, X. Cheng, Z. Cai, J. Yu, and W. Lv, “Batch processing
for truss maintenance in large dynamic graphs,” IEEE Trans. Comput.,
pp. 1435–1446, 2020.

[30] Y. Zhang and J. X. Yu, “Unboundedness and efficiency of truss main-
tenance in evolving graphs,” in SIGMOD, pp. 1024–1041, 2019.

[31] Z. Sun, X. Huang, Q. Liu, and J. Xu, “Efficient star-based truss
maintenance on dynamic graphs,” Proc. ACM Manag. Data, pp. 133:1–
133:26, 2023.

[32] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum co-
located community search in large scale social networks,” Proc. VLDB
Endow., vol. 11, no. 10, pp. 1233–1246, 2018.

[33] R. Sun, Y. Wu, and X. Wang, “Diversified top-r community search in
geo-social network: A k-truss based model,” in EDBT, pp. 2:445–2:448,
2022.

[34] Y. Li, T. Kuboyama, and H. Sakamoto, “Truss decomposition for
extracting communities in bipartite graph,” in IMMM, pp. 76–80, 2013.

[35] Z. Zheng, F. Ye, R. Li, G. Ling, and T. Jin, “Finding weighted k-truss
communities in large networks,” Inf. Sci., vol. 417, pp. 344–360, 2017.

[36] H. Huang, Q. Linghu, F. Zhang, D. Ouyang, and S. Yang, “Truss
decomposition on multilayer graphs,” in Big Data, pp. 5912–5915, 2021.

[37] G. Preti, G. D. F. Morales, and F. Bonchi, “Strud: Truss decomposition of
simplicial complexes,” in WWW (J. Leskovec, M. Grobelnik, M. Najork,
J. Tang, and L. Zia, eds.), pp. 3408–3418, 2021.

[38] R. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., pp. 2453–2465, 2014.
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