
Efficient Core Propagation based Hierarchical
Graph Clustering

Jinbin Huang
Hong Kong Baptist University
jbhuang@comp.hkbu.edu.hk

Zihan Jia
Hong Kong Baptist University
cszhjia@comp.hkbu.edu.hk

Xin Huang
Hong Kong Baptist University
xinhuang@comp.hkbu.edu.hk

Abstract—Communities, formed by a subset of vertices that
are densely connected to each other and loosely connected to
outside community members, widely exist to represent functional
modules in real-world complex systems. Most existing community
detection and search methods aim at finding communities at one
single level, neglecting the natural properties of overlapping and
hierarchy in communities. Therefore, the discovery of hierar-
chical graph clustering (HGC) to find communities at different
levels, which is particularly useful in many applications. However,
existing HGC studies suffer from two significant limitations:
1) inefficiency over large-scale networks, and 2) generating too
many levels of community hierarchy without distinguishing the
hierarchy differences.

To address the above limitations, we revisit the problem of
hierarchical graph clustering and formulate the problem based
on our proposed three important properties. To tackle it,
we propose theoretical-guaranteed fast solutions, in terms of
algorithm complexity and hierarchy levels. We first formulate
our HGC problem to admit three key properties of hierarchical
communities. Based on the natural hierarchical structure of k-
core, we develop a simple and importantly useful technique of
core propagation. The key idea of core propagation is to take each
k-core as one seed of hierarchical communities and find disjoint
communities within k-core using a linear-time algorithm of
label propagation. We propose two core propagation approaches
of top-down and bottom-up algorithms, in terms of different
search directions of k-cores by increment and decrement on
k, respectively. The top-down method can find a given level of
hierarchical communities in O(tm) time, where t is an input
of hierarchy levels and m is the graph size. To dismiss the
hardness of users’ input hierarchy parameter t, the bottom-
up algorithm is equipped with a well-designed strategy of auto-
adjusting hierarchical levels based on the graph structure itself.
We also develop the coreness weight-based label propagation to
ensure the accurate label voting of compressed communities at
low levels. The bottom-up method runs fast in O(m ˙logδ(G)),
where log δ(G) is a small value of the maximum coreness in
graph G. Extensive experiments conducted on real-world graphs
with ground-truth HGCs validate the effectiveness and efficiency
of our proposed core propagation methods against state-of-the-
art methods. Two case studies on the world-wide flight network
and the Hong Kong road network demonstrate the particular
usage of our HGC methods.

I. INTRODUCTION

Graph is one of the fundamental data types used for rep-
resenting relationships between different entities. It’s of vital
importance to perform analysis and understand the topology of
graphs. Community structures are one of the most commonly-
seen topological structures in real-world graph datasets such as
social networks, citation networks, etc. It’s a natural property

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒
𝒗𝟓

𝒗𝟏𝟑𝒗𝟏𝟒

𝒗𝟏𝟏 𝒗𝟏𝟐

𝒗𝟏𝟎 𝒗𝟗

𝒗𝟔

𝒗𝟕
𝒗𝟖

𝒗𝟏𝟓 𝒗𝟏𝟔

𝒗𝟏𝟕 𝒗𝟏𝟖

𝒗𝟏𝟗

𝒗𝟐𝟎

𝑪𝟏

𝑪𝟐

𝑪𝟑𝑪𝟓
𝑪𝟒

𝑪𝟔

NLP

A citation network

CV
DL

DB

AI

(a) A citation network G in AI field and the
hierarchical communites on G

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒

𝑪𝟓 𝑪𝟒

𝑪𝟔

Level:

𝑳𝟏

𝑳𝟐

𝑳𝟑

NLP CV DL DB

AI DB

The citation
network

(b) HGC dendrogram

Fig. 1. A citation network G and the hierarchical communites on G. Fig. (a)
highlights the communities C1, C2, C3, C4, C5, C6 using dash circles, where
the community C1 = {v1, v2, v3, v4, v5}. Fig. (b) shows the dendrogram
of three-level community hierarchy, where L1 = {C1, C2, C3, C4}, L2 =
{C4, C5}, and L3 = {C6}.

that vertices in the same community have denser connections
while vertices in different communities have sparser connec-
tions. Community detection methods [20], [34]–[36] provide
an effective way to identify all communities in a graph, which
enables us to analyze the topological structures in the graph in
a more intuitive way. It has very broad applications on market
segmentation, friend recommendation, product promotion, etc.

Community detection methods aim to divide a graph into
several disjoint sets of vertices based on measuring some
properties of the resulting communities. Typical methods
include dense subgraph mining based on cohesive subgraph
models, modularity maximization, statistical inference, etc.
These methods can discover communities only in the same
level.

However, communities often exhibit hierarchical structures,
e.g. small communities are included in a large community
in different level. Discovering such hierarchical structures is
beneficial to a better understanding of the network composition
and has many real-world applications. For instance, consider
a citation network G as shown in Fig. 1(a). Each vertex
represents a publication in specific fields, while each edge
represents a citation connection. The publications form com-
munities of different scales if we inspect them from different
levels. In Fig. 1 (a), the communities in G are highlighted
using dashed circles, including subgraphs C1, C2, C3, C4, C5,
and C6, where each community stands for a particular research
field, e.g. C1 contains the publications from natural language

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒
𝒗𝟓

𝒗𝟏𝟑𝒗𝟏𝟒

𝒗𝟏𝟏 𝒗𝟏𝟐

𝒗𝟏𝟎 𝒗𝟗

𝒗𝟔

𝒗𝟕
𝒗𝟖

𝒗𝟏𝟓 𝒗𝟏𝟔

𝒗𝟏𝟕 𝒗𝟏𝟖

𝒗𝟏𝟗

𝒗𝟐𝟎

3-core

2-core

1-core

Fig. 2. An example of graph G. The result of core decomposition has three
k-cores, i.e., 1-core, 2-core, and 3-core. The maximum coreness δ(G) = 3.

processing (NLP), C2 contains the publications from computer
vision (CV), etc. The research communities form a natural
hierarchical structure in terms of research fields at different
scale. For example, the entire citation network G contains
two main research communities of AI and database as C5 and
C4, i.e., C6 = C4 ∪ C5. Furthermore, the AI community C5

contains three sub-field communities: the NLP community C1,
the CV community C2, and the deep learning (DL) community
C3, i.e. C5 = C1∪C2∪C3. Based on these fact, a community
hierarchy of graph G can be built as shown in Fig. 1 (b).
The self-contained community hierarchy offers a clear view
of not only the connections between small research fields,
but also the composition of research fields of different scales.
Consider a scenario that a researcher is conducting a survey
on a particular research field, a clear community hierarchy
of research fields can provide efficient ways and important
information for him/her to explore different scales of research
fields. The core propagation based hierarchical graph cluster-
ing framework proposed in this paper focuses on producing
effective and elegant community hierarchies, which has wide
application to similar scenarios, such as web graphs, social
networks, road networks, supply chain networks, and so on.
Compared to hierarchical clustering, a significant limitation
of traditional community detection methods is ignoring the
natural composition of communities, and failing to offer users
the opportunity of inspecting communities in different scales.
Thus, an efficient and accurate hierarchical graph clustering
solution is needed.

To address this issue, hierarchical community detection
methods are proposed by some previous studies. According to
the exploring direction, the hierarchical community detection
methods can be divided into two approaches: 1) Agglomerative
(bottom-up) approach; and 2) Divisive (top-down) approach.
Agglomerative approaches start with regarding each vertices
as an individual communities. It continuously merges the most
‘similar’ communities to build up the community hierarchies.
On the contrary, divisive approaches start by regarding the
entire graph as the root hierarchy of communities. And it
continuously divides the communities in higher levels into
sub-communities to build up hierarchies in a top-down manner.
Both of the approaches will produce a dendrogram as a compu-
tational result. However, traditional methods of both agglomer-
ative or divisive approaches are all based on some optimization
objectives such as modularity-based optimization [10], [34],

[42], similarity-based optimization [1], [18], [40], [43], matrix
factorization [9], [13], flow-based optimization [38], etc. A
recent work Paris [4] builds up the community hierarchies by
edge-sampling, which produces massive number of hierarchies
and encounters high computational complexity. To obtain com-
munity hierarchies with more condensed structure, hLP [39]
directly applies the simple label propagation technique to
agglomeratively group communities, which produces hierar-
chical clustering results based on random order of propagation.
In summary, the above existing approaches suffer from two
limitations:

1)High computational complexity: Since most of the ap-
proaches apply exhaustive policies for searching two commu-
nities to merge or divide, they often result in high time com-
plexity and weak scalability, e.g. modularity-based methods,
similarity-based method, etc. 2)Too many levels of hierar-
chies: As we have mentioned above, most of the agglomerative
approaches merge only two communities in one hierarchy,
which may output a dendrogram with complex structure and
a large depth. Such kind of structures have no benefits for our
analysis of hierarchical communities, since in practical cases,
a large community may contain several small sub-communities
(often more than two).

Motivated by the example above and to address the above
limitations, we propose two core propagation approaches for
the hierarchical graph clustering problem. The core idea is
to leverage the advantages of the k-core decomposition and
the label propagation algorithm to obtain clustering results
with elegant hierarchical structures and near linear efficiency.
Specifically, k-core decomposition [7] can decompose the
input graph into different hierarchies with self-containment na-
ture. Fig. 2 also shows the core decomposition result of G. k-
core subgraph with respective different values of k is depicted
in different dark regions. However, only adapting the k-core
decomposition can produce inaccurate hierarchical clustering
results, because it lacks of the ability to break loosely con-
nected ties. For example, the 2-core subgraph in Fig. 2, it
fails to correctly separate two densely connected structures
formed by {v11, v12, v13, v14} and {v16, v17, v18, v19, v20},
which needs special technique such as label propagation to
achieve the goal. Moreover, it’s hard to assign community
labels to vertices excluded from the current k-core subgraph.
For example, int the 2-core subgraph in Fig. 2, community
formed by v1, v2, v3, v4, v5 can not be accurately identified,
which also needs help from some clustering algorithm such
as LPA. In our top-down core propagation approach, for core
subgraph of each k, we first apply label propagation to separate
the k-core subgraph into distinct candidate communities. Sec-
ondly, for vertices not belong to the current k-core subgraph,
we propose a breath-first search based label propagation to
attach them to the closest community. Thirdly, we propose
an information gain based strategy to select t key layers of
core graph as candidate community hierarchies, where t is an
user input integer. Since users may have limited knowledge to
new datasets, its hard for users to choose a proper value of
t in this case. Therefore, we further propose a parameter-free

bottom-up core propagation approach to automatically obtain
all hierarchical communities. Equipped with a community
refinement strategy, the number of hierarchies can be bounded
by log δ(G), where δ(G) is the degeneracy of the input graph.
To summarize, our contributions can be listed as follows.

• We define an important property of community hierarchy
and formulate the problem of hierarchical graph cluster-
ing. (Section III)

• We leverage the concept of k-core and the label propa-
gation technique to design a top-down core propagation
approach with an user input parameter t, which can
obtain high quality hierarchical clustering results with t
hierarchies with time complexity near linear to the graph
size. (Section V)

• We further propose a parameter-free bottom-up core prop-
agation approach equipped with a weighted label prop-
agation to produce hierarchical clustering results with
log δ(G) levels and O(m log δ(G)) time. (Section VI)

• We validate the efficiency of our proposed method and
propose two new evaluation metrics to compare the effec-
tiveness of all methods. Moreover, we conduct two case
studies on real-world ground-truth datasets to demon-
strate the applications of our methods. (Section VII)

The rest of this paper is organized as follows. We discuss
the related works in Section II. We give an overview of the
entire core propagation framework in Section IV. Finally, we
conclude the contributions of this paper in Section VIII.

II. RELATED WORK

This work is mostly related to k-core mining, communuity
detection, and hierarchical community detection.
K-Core mining. There exist lots of studies on k-core mining
in the literature. k-core is a definition of cohesive subgraph,
in which each vertex has degree at least k [6]. The task
of core decomposition is finding all non-empty k-cores for
all possible k’s. Batagelj et al. [3] proposed an in-memory
algorithm of core decomposition. Core decomposition has also
been widely studied in different computing environment such
as external-memory algorithms [7], streaming algorithms [41],
distributed algorithms [32], and I/O efficient algorithms [44].
The study of core decomposition is also extended to different
types of graphs such as dynamic graphs [2], [22], uncertain
graphs [5], directed graphs [16], [26], temporal graphs [45],
and multi-layer networks [19]. Recently, core maintenance
in dynamic graphs has attracted significant interest in the
literature [2], [28], [47]. In addition, several k-core based
community models have been proposed for community search
[14], [15], [17], [29]. The k-core decomposition is also applied
to graph clustering problem. Inspired by the idea of spectral
clustering, Mei et al. [30] propose the k-core motif to produce
primary clusters, and assign the remaining vertices to the
closest clusters. Using the similar idea, Giatsidis et al. firstly
treat the k-core subgraph with the maximum coreness to be
primary clusters, and assign the vertices with lower coreness
to the known cluster according to a probability function.
These works ignore a fact that vertices in the same k-core

subgraph may contain loosely connected edges, which can
be further divided into different partitions. Furthermore, the
above two works only focus on producing flat clusters in the
same level.In this paper, we leverage the LPA technique to
both separate vertices in the same core subgraph into distinct
clusters and propagate label information to the remaining
vertices. Moreover, we focus on producing hierarchical com-
munity result instead of graph clustering in a single level.
Community detection. The problem of community detection
aims to identify all dense communities in a graph. Traditional
community detection methods often focus on maximizing
some quality measures of the identified communities such as
modularity [34], betweenness centrality [20], etc. However,
these methods often exhibit high computational complexities,
which is not scalable for large graphs. For example, the mod-
ularity maximization based approach is an exhausted method
that compares the modularity over all possible divisions, which
is intractable. Other methods include spectral methods [35],
random walk based methods [36], etc. Besides finding disjoint
communities, some studies [23], [27], [33] focus on finding
overlapping communities. Recently, Guan et al. propose a non-
negative matrix factorization based approaches to take into
consideration the higher order network topological structures
for community detection. The above studies only focus on one
layer of the input graph. In this paper, we aim to discover a
hierarchy of communities.
Hierarchical community detection. The goal of the hierar-
chical community detection problem is to find a community
hierarchy for an input graph. Existing works are usually
based on different optimization objectives. Modularity-based
approaches like FN [34], Clauset [10] and Toujani [42]
keep merging clusters with greatest modularity increase. But
they suffer from a complexity of O(mdlog(n)). Similarity-
based approaches like SingleLink [1], Paris [4], hLP [39]
and MST [43] merges the clusters with highest common
neighbor based similarity in each hierarchy. But most of them
encounter high computation complexity such as O(n2). Matrix
factorization based approaches like Spec [9] and NMF [13]
perform matrix factorization on the Laplacian matrix of the
original graph. However, they are running in the highest time
complexity of O(n3). In recent years, several methods based
on game theory [48], random walk [46], min-cut [38] and
divisive similarity [18], [40] are proposed. But all the above
methods suffer from high computation overhead. Moreover,
most of them produce massive number of hierarchies, which
makes the clustering hard to understand by users. Recently,
a few studies [11], [12], [31] focus on producing flat hierar-
chy by dendrogram flattening with different problem setting.
Monath et al. [31] study the hierarchical clustering problem
on vector data. Another two solutions in [11], [12] study
the hierarchical graph clustering problem on graphs. But
they require weighted graph as input and mainly focus on
proposing distributed parallel algorithms. Different from the
above works, in this paper, we aim at proposing sequential
algorithms for finding high quality community hierarchies on
unweighted simple graph with at most δ(G) levels with nearly

linear time complexity with respect to the graph size.

III. PRELIMINARIES

In this section, we introduce useful preliminaries and our
problem formulation. We consider an undirected and simple
graph G(V,E) where V is the set of n vertices and E is the set
of m edges, i.e. |V | = n and |E| = m. For a vertex v ∈ V , the
set of v’s neighbors is denoted as N(v) = {u ∈ V : (v, u) ∈
E}. The degree of v is denoted as deg(v) = |N(v)|, and the
maximum degree in graph G is degmax = maxv∈V deg(v).
For a subset S of vertices, the induced subgraph H of G
by vertices S is represented as H = (V (H), E(H)), where
V (H) = S and E(H) = {(v, u) ∈ E : v, u ∈ S}. The degree
of v in subgraph H is degH(v). Based on the minimum degree
in a subgraph H , we introduce two useful definitions of k-core
and coreness as follows.

Definition 1: (k-core) [8] For an integer k ∈ Z≥0, a k-core
H is a subgraph of G such that each vertex has at least k
neighbors within H , i.e. degH(v) ≥ k.

The core decomposition process follows a peeling strategy
that keeps removing the vertex with the smallest degree to
ensure the remaining subgraph to be a k-core. The process
start from 1 to the largest value of k, which computes the
k-core subgraph for all possible values of k. Consider a
graph G shown in Fig. 2. It depicts the core decomposi-
tion result of k-cores for all possible values k in graph
G. The entire graph is a 1-core, which is highlighted by
the largest gray area. The 2-core is highlighted by a darker
gray area, including vertices v11, v12, v13, ..., v20. The 3-core
is highlighted by two darkest gray area, including vertices
v11, v12, v13, v14, v16, v17, v18, v19. As we can see, the organi-
zation of all k-cores is represented in a hierarchical structure.
That is, 3-core is contained in the 2-core, and moreover in
turns to be contained in a large region of 1-core. To be more
specific, the coreness of a subgraph H ⊆ G and a vertex
v ∈ V can be defined as follows.

Definition 2: (Coreness) The coreness of a given subgraph
H ⊆ G is defined as the minimum degree of vertices in H , i.e.,
ϕ(H) = minv∈H{degH(v)}. The coreness of a given vertex
v ∈ V is defined as ϕ(v) = maxH∈G,v∈H ϕ(H).

We use δ(G) to denote the degeneracy of G, which is the
maximum coreness among all vertices. And we use Hk to
denote the largest k-core or the core subgraph with coreness
k in G. In graph G in Fig. 2, the coreness of G is 1, i.e.ϕ(G) =
1. The degeneracy of G is δ(G) = 3.

In a graph G, the community C is usually a dense subgraph
such that vertices are densely connected to others within C but
have few connections to others outside of C. For simplicity,
we use C represented by the set of vertices in V , i.e., Ci ⊆
V . Based on the communities, we give a definition of graph
partition.

Definition 3: (Graph Partition) A partition L of a graph
G is a set of r ∈ Z+ disjoint communities, and the union
of r communities is the whole vertex set V , e.g., L =
{C1, C2, . . . , Cr} s.t.

⋃r
i=1 Ci = V and ∀i, j ∈ {1, 2, ..., r} ∧

i ̸= j, Ci ∩ Cj = ∅.

For example, in graph G in Fig. 1 (a), C1, C2, C3, C4 can
be consider as disjoint communities. A partition L1 can be
formed by C1, C2, ..., C4, i.e.,L0 = {C1, C2, C3, C4}. Another
partition L1 can be found by L2 = {C4, C5}. Communities in
a graph often exhibit hierarchical structures. Consider Fig. 1
(b) as an example, a large community C5 consists of three
small communities C1, C2 and C3 in the higher level. Label
propagation algorithm (LPA) is a popular method for graph
partitioning. In each iteration, each vertex uses the most
frequent label of its neighbor as its own label. The LPA process
terminates until no further changes of vertex label. Next, we
define the hierarchy of communities as follows.

Definition 4: (Community Hierarchy) A community hier-
archy L is defined as a set of graph partitions from k levels,
i.e., L = {L1, L2, . . . , Lk}, where Li is the partition on i-th
level.

Based on the definition of community hierarchy, we use
Cq

p to denote the p-th community in Lq partition. To give a
non-trivial structural guarantee to the community hierarchy,
we propose an important hierarchical property as follows.

Property 1: (Hierarchical Inheritance) A community hier-
archy is hierarchically inherited if and only if the structure of
hierarchical communities fulfills the following requirements:
1. Hierarchical Structure. For 1 ≤ i ≤ j ≤ k, a community at
the i-th level Li should be contained in a large community at
the j-th level Lj . Specifically, for each community Ci

x ∈ Li,
there exists a unique community Cj

y ∈ Lj such that Ci
x ⊆ Cj

y

for all i < j.
2. Inheritance. For all 1 < i < k, each community Ci

x in level
i is an union set of at least one community in level i− 1.
3. Monotonicity. The number of communities should be
monotonically increasing from root level to bottom level, i.e.
|Li| < |Li−1| for all 1 < i < k.

The first two requirements ensure the large communities
in higher level should consist of several small communities
in the lower level, which is the natural way that multi-scale
communities form. Moreover, the third requirement ensures
that partitions in different hierarchies can not be identical,
which filters meaningless hierarchies.

In this paper, we study a new problem of hierarchical
graph clustering (HGC-problem). Different from previous
studies [4], [39], the aim of our HGC problem is to identify
a small number of hierarchies to naturally represent all com-
munities in the organization of same-level disjoint and cross-
level self-contained. Community results at different leveled
hierarchies significantly distinguish from others. Therefore, we
formulate the problem in detail as follows.

Problem 1: (Hierarchical Graph Clustering) Given a
graph G = (V,E), the goal of hierarchical community detec-
tion is to find a community hierarchy L satisfying Property 1
of hierarchical inheritance property.

Example 3.1: Given graph G in Fig. 2 as input, a feasible
hierarchical graph clustering result L is shown in Fig. 1 (a)
and (b). L contains three hierarchies L1, L2 and L3, where
L1 = {C1, C2, C3, C4}, L2 = {C4, C5} and L3 = {C6}.
We can observe that L strictly fulfills Property 1. For the first

3-core

2-core

1-core

Phase 1: Core decomposition for
candidate subgraph selection.

Phase 2: Label propagation
on k-core.

Phase 3: Community assignment and hierarchy optimization.

Top-down
Core

Propagation

Bottom-up
Core

Propagation

k-core

propagate labels

(k+1)-core

k-core

(k-1)-core

Community Hierarchy

Hierarchy
Selection

Fig. 3. The framework of our core propagation based hierarchical graph clustering with three key phases in terms of top-down and bottom-up manners.

requirement, all communities in L have unique parent commu-
nities in its higher level, e.g. C1 ⊆ C5 ⊆ C6. For the second
requirement, each community in higher level is a unique union
of communities in its next level, e.g. C6 = C4 ∪ C5 and
C5 = C1∪C2∪C3∪C4. For the final requirement, the number
of communities is monotonically increasing from root level to
bottom level, e.g. |L3| < |L2| < |L1|.

IV. AN OVERVIEW OF CORE PROPAGATION FRAMEWORK

To solve the hierarchical graph clustering problem, we first
propose a top-down core propagation approach that utilizes an
user input parameter t to produce hierarchical communities
with t hierarchies. Furthermore, we then provide a parameter-
free bottom-up propagation approach to automatically ob-
tain hierarchical communities with log δ(G) hierarchies. They
share the similar key idea of core propagation. A general
framework is shown in Fig. 3 and can be summarized into
three phases as follows:

• Phase 1: Core decomposition for the seed community
selection. In this phase, the core decomposition algorithm
is applied to incrementally obtain k-core subgraph for all
k values. The k-core subgraphs are treated as candidate
communities in each hierarchy.

• Phase 2: Label propagation on candidate k-cores. In this
phase, label propagation process is applied from different
directions to split or group communities. For the top-
down core propagation approach, it retrieves the k-core
subgraph for a particular k as candidate subgraph in each
level. Label propagation process is then conducted to
separate the candidate subgraph into distinct initial com-
munities. For the bottom-up core propagation approach,
a weighted label propagation process is conducted on all
vertices considering the coreness weights of each vertex
during the label counting to group closely connected
communities.

• Phase 3: Community assignment for unlabeled vertices
and hierarchy optimization. In this phase, community
labels will be assigned to all unlabeled vertices. For the
top-down approach, vertices without labels in the same
layer will be attached to the closest communities using a
breadth-first search scheme. For the bottom-up approach,
vertices with the same label will be grouped into super

nodes, and super edges are added to form a super graph
in the next level. To optimize the number of hierarchy,
an information gain based technique is proposed to select
proper hierarchies for label propagation, while a in-layer
community refinement strategy is designed to ensure the
number of the hierarchies for the bottom-up approach.

V. TOP-DOWN CORE PROPAGATION

In this section, we develop a top-down core propagation
approach to solve the hierarchical graph clustering problem
and analyze its computational complexity.

A. Exhausted Top-down Core Propagation

The top-down core propagation approach first leverages the
k-core subgraph for all possible values of k as candidate
community in each layer, where each layer corresponds to a
particular value of k. In each layer, label propagation process
is conducted on the candidate k-core subgraph to split them
into different communities. For vertices with coreness smaller
than the current k, their community labels are assigned by
the nearest community in a breadth-first search manner. This
strategy starts from the entire graph and iteratively treats the
k-core subgraphs with descendant coreness as candidate sub-
graph to create new clusters in the lower levels. Moreover, to
condense the community hierarchy, we introduce a parameter
t and develop a top-t candidate hierarchy selection scheme
based on information gain. In the following, we introduce each
technique in detail.
Candidate core subgraph identification. The core decompo-
sition algorithm is applied to identify the k-core subgraph for
all possible values of k. Each core subgraph with a particular
coreness of k is regarded as the candidate community structure
in each layer. This is because each k-core itself is a cohesive
subgraph, which exhibits initial community feature in each
layer. Moreover, the k-core subgraph has a self-containment
nature for different values of k, which exhibits hierarchical
community feature.
Community identification and label assignment. The top-
down core propagation approach starts at the subgraphs with
the largest coreness δ(G). Label propagation is performed
among the k-core subgraph to split them into different commu-
nities first, and then attach the vertices with smaller coreness to

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

(a) Label propagation on 3-core.

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

C5 C4

(b) BFS core propagation.

Fig. 4. The core propagation process on 3-core in the top down approach.

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

(a) Label propagation on 2-core.

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

C5 C4

(b) BFS core propagation.

Fig. 5. The core propagation process on 2-core in the top down approach.

the closest classified communities using a breadth-first search
manner. In the next hierarchy, the (δ(G) − 1)-core subgraph
is considered. Vertices appear in both (δ(G) − 1) and δ(G)
subgraphs will inherit labels from the last hierarchy. Then the
same label propagation and BFS process are conducted again
to obtain a new clustering result. This procedure is repeated
until the k-core subgraph with smallest coreness is processed.
Finally, the hierarchical graph clustering result is obtained after
all iterations are completed.
Algorithm. The details of the top-down core propagation
approach is shown in Algorithm 1. It first applies core decom-
position on G to obtain core subgraphs Hk with all possible
coreness values k (lines 2-3). In the next step, it utilizes the
LPA to detect hierarchical communities for each hierarchy
(lines 8-18). In each iteration, it retrieves an candidate core
subgraph Hi (line 8). For the vertices that has appeared
and classified in Hi−1 in the last iteration, it inherits the
community labels in Li−1 (lines 9-10). For the other vertices
in Hi, it assigns new labels to them (lines 11-12). Next, it
applies label propagation process on Hi to split the Hi into
different communities (line 13). For the remaining vertices in
the input graph G excluding Hi, it just assigns them with
the labels of the nearest communities (lines 14-15). Next,
it retrieves the communities in the i-th hierarchy according
to the community labels of vertices (line 16). To ensure the
monotonicity property, it first checks whether the clustering
results in Li is the same with its parent layer Li−1. If yes,
the result of Li will be stored in L (line 17). To ensure the
hierarchical inheritance property in Property 1, it needs to
remove the edges between the identified communities (line
18). Finally, it returns the community hierarchy L as output.

Example 5.1: Taking graph G in Fig. 2 as an example, it
starts with the k-core subgraph with maximum coreness 3. As
shown in Fig. 4 (a), the vertices in 3-core are initialized with
different labels first. Second, the label propagation process
is conducted to separate the 3-core into two communities
which are highlighted by red and blue colors. Thirdly, in

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

(a) Label initialization on 1-core.

v3

v14

v8 v9

v11
v15v6 v12

v5

v13
v4

v1v2

v10
v7

v20

v19

v18

v16

v17

C3

C2

C1

C4

(b) Label propagation on 1-core.

Fig. 6. The core propagation process on 1-core in the top down approach.

Fig. 4 (b), a breadth-first search process will start from the
classified vertices (vertices in red and blue colors) to search
the unlabeled vertices (vertices in white color) to assign their
community labels to them. This process will be repeated
until all the vertices are labeled.. In this result, C4 and C5

is identifies as two distinct communities, which is the same
clustering result in the second level of community hierarchies
in Fig. 1 (b). Next, in Fig. 5, it continues to process the 2-
core subgraph. The vertices belong to both 3-core and 2-core
are assigned the same labels in the last hierarchy. For the
other vertices in 2-core, they are assigned with new labels.
Fig. 5 (a) shows the label propagation result among the 2-
core. In Fig. 5 (b), BFS is conducted to obtain the graph
clustering result of the current hierarchy. Core propagation
in this level produces same result as the last level, e.g. Fig. 4
(b). This result can be condensed by the hierarchy condensing
optimization strategy introduced in next subsection. Finally,
it continues to process the 1-core subgraph. In Fig. 6(a), all
vertices belongs to 2-core are assigned the historical labels
from Fig. 5 (b). Other vertices with coreness 1 are assigned
new labels. After label propagation, three new communities
C1, C2 and C3 are obtained and highlighted in orange, purple
and red colors in Fig. 6(b), which is the same result as the
first level of community hierarchies in Fig. 1 (b).

B. Hierarchy Condensing Optimization

In practical cases, δ(G) is still a large number for exploring
the community hierarchy. Moreover, the largest k-core and the
largest (k − 1)-core may remain the same, i.e., Hk = Hk−1,
or just incur small difference because of the self containment
property of k-core, i.e., Hk ⊆ Hk−1. For example, the 2-
core subgraph in Fig. 2 has only two extra vertices compared
to the 3-core subgraph. Performing splitting process among
them will not be beneficial from the perspective of information
theory. The clustering results in Fig. 4 (b) and Fig. 5 (b) are
the same, which confirms this analysis. To reduce the height
of community hierarchy, we introduce a user input parameter
1 ≤ t ≤ δ(G) to condense the hierarchy number to t.

Based on the input parameter t, we are interested to find t
community hierarchies with greatest difference. As mentioned
before, the difference between two largest cores with different
k values can provide a simple yet useful intuition to the dif-
ference between two hierarchies. We quantify such difference
between two adjacent largest core with coreness k and k − 1
as information gain. The definition of the information gain for
a particular core subgraph with respect to coreness k is given
as follows.

Algorithm 1 Top-down Core Propagation
Input: A graph G = (V,E), and a hierarchy parameter t.
Output: Community Hierarchy L.

1: L ← ∅, the candidate core subgraph H ← ∅;
2: H ← Compute k-core subgraphs by core decomposition;
3: δ(G)← maxv∈V ϕ(v);
4: for k from δ(G) to 1 do
5: IG(k) =

|Hk|−|Hk+1|
Hk

;
6: H ← top-t core subgraphs with the highest IG;
7: Sort H w.r.t. coreness;
8: for each Hi = (VHi , EHi) ∈ H do
9: for each vertex v ∈ VHi−1 do

10: labeli(v)← labeli−1(v);
11: for each vertex u ∈ VHi/VHi−1 do
12: labeli(u)← New label;
13: Hi ← Label propagation on Hi;
14: R← G−Hi;
15: for each w ∈ R do labeli(w)← Label assignment by BFS;
16: Li = {Ci

1, ..., C
i
r} ← Obtain the i-th level of communities;

17: if |Li| > |Li−1| then L = L ∪ Li;
18: Remove the edges between different communities;
19: return L;

Definition 5: (Information Gain) The information gain of
the largest core subgraph with coreness k is defined as

IG(k) =
|Hk| − |Hk+1|

Hk

Hence, the idea of the hierarchy condensing optimization
is to select t largest core with greatest information gain as
candidate hierarchies. In this manner, the candidate hierarchies
with the same or similar core sugraph structures will be
filtered out because their information gain will approaches
0. Afterwards, The top-down core propagation is performed
on the candidate hierarchies to obtain the final hierarchical
clustering result.

The details of hierarchy condensing optimization are shown
in lines 4-7 in Algorithm 1. After core decomposition, it
continues to compute the information gain for all core sub-
graphs Hk according to Definition 5 (lines 4-5). Next, it stores
t number of core subgraphs with highest information gain
into H as candidates for label propagation, and sorts them
in descending order according to their coreness (lines 6-7).

Example 5.2: Consider graph G in Fig. 2, the number of
vertices in its 3-core subgraph is 8, hence |H3| = 8. Similarly,
we have |H2| = 10, |H1| = 20. By Definition 5, since
|H4| = 0, IG(3) = |H3|−|H4|

|H3| = 8−0
8 = 1. In the same way,

we have IG(2) = |H2|−|H3|
|H2| = 0.2, and IG(1) = |H1|−|H2|

|H1| =
0.5. Assuming that the hierarchy parameter t is 2, the top-
2 core subgraphs with highest information gain is H3 and
H1. Therefore, H3 and H1 are selected as candidate core
subgraph. After performing core propagation on H3 and H1,
the clustering result in Fig. 4 (b) and Fig. 6 (b) will be the final
community hierarchies, which is the same as the community
hierarchies shown in Fig. 2. The result in Fig. 5 (b) is ignored,
which produces a more condensed hierarchical structure.

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒
𝒗𝟓

𝒗𝟏𝟑𝒗𝟏𝟒

𝒗𝟏𝟏 𝒗𝟏𝟐

𝒗𝟏𝟎 𝒗𝟗

𝒗𝟔

𝒗𝟕
𝒗𝟖

𝒗𝟏𝟓 𝒗𝟏𝟔

𝒗𝟏𝟕 𝒗𝟏𝟖

𝒗𝟏𝟗

𝒗𝟐𝟎

1
1

1

1

1

1

1
1

1
1

3

3

3

3

2

3

3 3

3

2

(a) Weighted label propagation.

𝑪𝟏

𝑪𝟐

𝑪𝟑 𝑪𝟒

𝒘 𝑪𝟏 = 𝟏
{𝒗𝟏, 𝒗𝟐, 𝒗𝟑, 𝒗𝟒, 𝒗𝟓}

𝒘 𝑪𝟐 = 𝟏
{𝒗𝟔, 𝒗𝟕, 𝒗𝟖, 𝒗𝟗, 𝒗𝟏𝟎}

𝒘 𝑪𝟑 = 𝟑
{𝒗𝟏𝟏, 𝒗𝟏𝟐, 𝒗𝟏𝟑, 𝒗𝟏𝟒, 𝒗𝟏𝟓}

𝒘 𝑪𝟒 = 𝟑
{𝒗𝟏𝟔, 𝒗𝟏𝟕, 𝒗𝟏𝟖, 𝒗𝟏𝟗, 𝒗𝟐𝟎}

(b) Super graph construction.

Fig. 7. The core propagation process on the bottom up approach.

Complexity analysis. We consider a grpah G(V,E) for
|V | = n and |E| = m. Without loss of generality, we assume
that m ≤ n− 1 for simplifying complexity analysis [24]. We
analyze the time and space complexity of Algorithm 1 in the
following theorem.

Theorem 1: The top-down approach in Algorithm 1 takes
O(tm) time and O(tn+m) space.
Proof: We first analyze the time complexity of Algorithm 1.
The core decomposition to obtain all k-core subgraphs takes
O(m) time (line 2). Since the number of k-core subgraphs
is δ(G), computing the top-t core subgraphs with the largest
information gains can be done in O(δ(G) log t) time, using
a t-sized minimum heap (lines 4-6). Sorting candidate core
subgraphs in the top-t results cost O(t) time using a bin sort
mechanism. In each level, the label propagation process run
on a core subgraph takes O(m) time [37], and the breadth-first
search based label assignment for unlabeled vertices takes also
O(m) time. Since the number of hierarchy is t, the same pro-
cess should be executed for t times, which costs O(tm) time in
total to process all hierarchies. Therefore, the time complexity
of Algorithm 1 is O(m + δ(G) log t + tm) ⊆ O(tm), as the
input parameter is usually t ≤ n and δ(G) ≤ n − 1 ≤ m in
the setting.

Next, we continue to analyze the space complexity. First, the
core decomposition and information gain based core subgraph
selection can be done in O(m) space. Secondly, the entire
label propagation process in all levels takes O(m) space. In
each level, the community result is stored in O(n) space. Since
it has t levels of hierarchies, it takes O(tn) space to store the
entire community hierarchy. Overall, the space complexity of
Algorithm 1 is O(tn+m).

VI. BOTTOM-UP CORE PROPAGATION

The advantage of the top-down core propagation approach
is that it includes an input parameter of t to control the number
of the resulting community hierarchies. However, it’s difficult
for users to choose a proper value of t when dealing with
unknown data, which is inflexible. To address this, we propose
a bottom-up core propagation approach to automatically obtain
effective community hierarchies without any input parameters
in this section.

The bottom-up core propagation is an agglomerative method
starting from the bottom layer, which treats each vertex as an

Algorithm 2 Bottom-up Core Propagation
Input: G = (V,E)
Output: The community hierarchy L

1: i← 1;
2: Gi = (Vi, Ei)← G;
3: while |Vi| > 2 do
4: for each vertex v ∈ Vi do
5: weight(v)← maxu∈v,u∈V ϕ(u);
6: LB ← Apply Algorithm 3 on Gi;
7: Li ← Obtain communities w.r.t LB;
8: Gi+1 = (Vi+1, Ei+1)← Super graph construction w.r.t Li;
9: while (|Vi| − |Vi+1|) ≤ |Vi|−1

log δ(G)−i
do

10: Gi+1 = (Vi+1, Ei+1)← Community refinement;
11: i← i+ 1;
12: return L = {L1, L2, ..., Li};

Algorithm 3 Weighted Label Propagation
Input: G = (V,E), an iteration number L
Output: Labels of the vertices LB

1: LB ← ∅;
2: for each v ∈ V do
3: Label(v)← v;
4: LB ← Label(v);
5: for i from 1 to L do
6: Shuffle all the elements in V ;
7: for each v ∈ V do
8: Label(v)← Apply Procedure GetMaxLabel on v;
9: if LB remains unchanged then break;

10: return LB;

Procedure GetMaxLabel(v)

1: for each neighbor u of v do
2: Freq(Label(u))← Accumulate the weight of u weight(u);
3: label← argmaxLabel(u)∈{Label(u):u∈V } Freq(Label(u));
4: return label;

individual community. Label propagation process is applied
for clustering them into different communities in one hierar-
chy. In each iteration, super nodes will be used to represent
vertices in the same communities. And super edges are used
to represents the cross-community connection in the previous
iteration. The LPA will be repeated on the super graph induced
by the new super nodes and super edges until the entire graph
are merged into one super node. To reduce the height of the
resulting community hierarchy, we propose a weighted version
of LPA. And the weights are obtained by coreness information
from core decomposition.
Alogorithm. The detail steps of the bottom-up core propaga-
tion approach are listed in Algorithm 2. Firstly, it treats the
original graph G as a super graph G1 used in the first iteration
(lines 1-2). Secondly, in each iteration, for each super node v in
Vi, it assigns the maximum coreness of the vertices inside itself
as the weight of v, i.e., weight(v) = maxu∈v,u∈V ϕ(u) (lines
4-5). Next, it applies the weighted label propagation algorithm
to merge the super nodes into new communities, and obtain
community labels for all super nodes in Gi (line 6). The details
of weighted label propagation are shown in Algorithm 3.
The main process of this algorithm is very similar to the

unweighted version of LPA. The only different is the label
calculation for each vertex, which is shown in the getMaxLa-
bel procedure. Traditionally, a vertex will adopt the labels from
its neighbors with the highest frequency. Here, it counts the
frequency of a label from its neighbor using the weights of
this neighbor (line 2 in Procedure getMaxLabel). This small
change can attach looser structures to denser structures in a
faster way, which also to some extent avoids the sensitivity
caused by random seed selection. Algorithm 2 continues to
retrieve communities at the i-th hierarchy according to the
computed community labels (line 7). Then, it constructs super
graph Gi+1 according to the community structures identified
in Gi line 8). The entire process will repeat until all the nodes
are merged into one super node (line 3). Finally, it returns the
community hierarchy L as output.

Example 6.1: As shown in Fig. 7 (a), using the graph G
as an example, the coreness is assigned as weight of each
vertex. A weighted label propagation is conducted among the
weighted graph G, the clustering result is highlighted using
different colors in Fig. 7 (a). According to the result of the
first layer, vertices with same labels are grouped into super
nodes as shown in Fig. 7 (b), and new weights are assigned
to super nodes. As shown in Fig. 7 (b), label propagation is
run again on the super graph to obtain the final result.
Community refinement in same level. To ensure the brevity
of the hierarchy and the efficiency of the algorithm, we
propose to refine the community results in the same level.
Since the idea of the bottom up approach follows an automatic
strategy to group the communities in the same level to form
a new hierarchy, which can still produce deep community
hierarchies with unbounded number of levels. To provide a
theoretical guarantee on the number of levels, we combine
the communities with most inter-edges into a new one until
the decrease of community numbers between two levels are
bounded. As shown in lines 9-10 in Algorithm 2, we manually
combine the communities with most inter-edges to refine the
results in the same level. Specifically, given the decrease of
community number between the current level and the previous
level |vi| − |vi+1|, if this value is smaller than a dynamic
threshold denoted as |Vi|−1

log δ(G)−i , the communities in Li should
be refined. Under the community refinement strategy, the
monotinicity property can also be ensured.
Complexity analysis and discussions.

Theorem 2: The levels of community hierarchies obtained
by Algorithm 2, i.e. |L|, is bounded by ⌈log δ(G) − 1⌉ + 1.
Thus, Algorithm 2 takes O(m log δ(G)) time and O(m +
n log δ(G)) space.
Proof: First, we prove that the main loop part of the algorithm
is executed at most ⌈log δ(G)− 1⌉ times. Assuming that it is
executed t = ⌈log δ(G) − 1⌉ times i.e. |Vt| > 2, we prove
that |Vt+1| ≤ 2. Consider that the loop termination condition
for the refinement part (lines 9-11) is (|Vi| − |Vi+1|) >

|Vi|−1
log δ(G)−i and 0 < log δ(G) − ⌈log δ(G) − 1⌉ ≤ 1, therefore

|Vt+1| ≤ |Vt| − |Vt|−1
log δ(G)−t = |Vt| − |Vt|−1

log δ(G)−⌈log δ(G)−1⌉ ≤
|Vt| − (|Vt| − 1) = 1 ≤ 2. So the main loop part will

TABLE I
NETWORK STATISTICS

Name |V | |E| degmax δ(G)
OpenFlight 3,096 18,193 237 31
Facebook 4,039 88,234 1,045 115
Amazon 334,863 925,872 549 6
DBLP 425,957 1,049,866 343 113
Twitter 81,306 1,768,149 3,383 96

road-HongKong 1,067,242 5,582,492 4,029 49
Google 916,428 4,322,051 6,332 44

LiveJournal 4,847,571 34,681,189 14,815 372
Orkut 3,072,441 117,185,083 33,313 252

be aborted at the end of round t = ⌈log δ(G) − 1⌉. Hence
The levels of the hierarchical clustering results obtained by
Algorithm 2 do not exceed ⌈log δ(G)−1⌉+1. And since each
execution of Weighted Label Propagation takes O(m) times in
O(n) space. Overall, Algorithm 2 takes O(m log δ(G)) time
in O(m+ n log δ(G)) space.
Remarks: Discussion on the selection of top-down and bottom-
up approaches. Since the top-down propagation approach
includes a parameter t to produce exactly t number of hi-
erarchies, it is more suitable for users with rich empirical
knowledge about the input graph data, e.g. the number of
the resulting hierarchy is known. However, for some new
graph datasets without empirical knowledge, the parameter-
free bottom-up core propagation approach is more preferable,
since it can obtain hierarchical graph clustering results auto-
matically. In addition, to further accelerate the efficiency, it
could explore the parallelization of our proposed algorithms,
as both the top-down and bottom-up approaches contain in-
dependent computation step. Specifically, for the top-down
approach, the label inheritance, the LPA in the same core
subgraph, and the BFS based label assignment can be executed
in parallel. For the bottom-up approach, the weighted LPA step
and the super graph generation can be parallelized.

VII. EXPERIMENTS

In this section, to evaluate the efficiency and effectiveness,
we compare our proposed algorithms with the existing com-
petitors on real-world datasets. The code of our algorithms is
implemented in C++ with -O3 optimization. All the experi-
ments are run on a machine with dual 6-core 2.66GHz Intel
Xeon CPU and 32G memory. The source codes have been pub-
licly available on https://github.com/vldb25code/HGC-Cluster.
Datasets: We run the experiments on nine real-world datasets
from web source. There are mainly four types of network data,
including flight network (OpenFlight1), collaboration network
(DBLP [25]), and social networks (Facebook, Twitter, Google,
LiveJournal, and Orkut [25]). Moreover, we extract the road
network of Hong Kong from the OpenStreetMap2 platform and
reconstruct a road network graph called road-HongKong from
it. The network statistics are shown in Table I. We report the
number of vertices |V |, the number of edges |E|, the maximum

1https://openflights.org
2https://www.openstreetmap.org/

degree of all vertices degmax, and the maximum coreness as
the degeneracy denoted by δ(G).
Compared methods: In our experiments, we compare the
efficiency and effectiveness of our proposed top-down and
bottom-up algorithms with four competitors of hierarchical
graph clustering methods as follows.

• HCP-t: is our method of top-down core propagation
based hierarchical graph clustering proposed in Algo-
rithm 1. For the method HCP-t @t, the input parameter
t is used to generate t different levels of graph clusters.
We set t = 3 by default.

• HCP-b: is our method of bottom-up core propagation
hierarchical graph clustering proposed in Algorithm 2.

• hLP [39]: is the hierarchical graph clustering method that
applies LPA only to build up community hierarchies.

• Paris [4]: is an agglomerative method to generate n −
1 levels of graph clusters, which utilizes the node pair
sampling to maximize the modularity-based score during
each cluster merging.

• Spec [9]: is a classical spectral method, which leverages
the node embedding space to iteratively obtain n−1 levels
of community hierarchies.

• TeraHac@Seq [12]: is a distributed parallel hierarchical
graph clustering algorithm. Here, we test the sequential
version of TeraHac@Seq provided by the authors. Since
the algorithm requires a weighted graph as input, we
only compare the number of cluster hierarchies and the
running time.

Evaluation metrics: To evaluate the efficiency, we report
the running time of all hierarchical graph clustering methods
above. To evaluate the effectiveness, we first compare the
number of levels of the resulting community hierarchy. We
further propose two evaluation metrics based on the concept
of least common ancestor.

• LCA cost: To evaluate the clustering effectiveness on the
datasets without ground-truth. We propose a new metric
based on Least Common Ancestor (LCA).

LCAcost =
∑

e=(u,v)∈E

LCA(u, v)

|E| ∗ |L|

, where LCA(u, v) is the minimum number of hierarchy
vertices u and v can form a community. The idea is based
on the assumption that if two vertices u, v are connected
by an edge e = (u, v), they will form a community
mostly near the leaf level. The smaller the LCAcost is,
the better the clustering effectiveness is. Noted that the
design of the LCA cost only focuses on the hierarchy and
the original graph structure. It does not contain any bias
on the clustering techniques.

• HSS score: To evaluate the quality of the hierarchical
graph clustering on ground-truth datasets, some tradi-
tional evaluation metrics such as NMI, ARI and purity are
based on the ground-truth communities in a single level,
which cannot applied to the hierarchal ground truth com-
munity. To address this and provide a fair evaluation, we

TABLE II
RUNNING TIMES (IN SECONDS) COMPARISON FOR ALL METHODS ON EIGHT DATASETS.

Graphs HCP-t @3 HCP-t @5 HCP-b hLP Paris Spec TeraHac@Seq
OpenFlight 0.046 0.078 0.048 0.05 1.44 0.50 0.83
Facebook 0.14 0.25 0.105 0.12 3.47 3.74 1.49

DBLP 4.02 6.4 6.57 6.8 260 504 6.8
Amazon 4.31 7.33 7.44 8.02 1037 1872 48.20
Google 13.1 19.7 20.56 21.7 3221 5202 142.75
Twitter 243.5 418.32 253.19 306.7 - - 1142.34

LiveJournal 75.89 129.77 103.43 180.64 - - 1382.24
Orkut 180.2 330.37 134.94 208.71 - - 4317.83

10-2

10-1

100

101

102

103

104

3 5 10 15 20

R
un

ni
ng

 T
im

e
(s

)

t

Openflight
Facebook

DBLP

Amazon
Google
Twitter

LiveJournal
Orkut

(a) Parameter sensitivity test for the
HCP-t method.

101

102

103

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(s

)

#n (106)

HCP-t HCP-b

(b) Scalability test for the HCP-t and
HCP-b methods.

Fig. 8. Parameter sensitivity test and scalability test for our methods.

propose a new evaluation metric based on the hierarchy
similarity. For each edge e = (u, v) ∈ E, let LCA(u, v)
and LCA′(u, v) be the number of hierarchy where the
earliest community contains u and v in the original
ground-truth and the clustering result respectively. The
hierarchy similarity score (HSS) is given by

HSS =
∑

e=(u,v)∈E

|LCA(u, v)− LCA′(u, v)|
|E| ∗ |L|

.

Parameter setting: For the top-down core propagation
approach HCP-t, we vary the hierarchy parameter t in
{3, 5, 10, 15, 20}, and t is set to 3 by default. For other
competitors, we follow the predefined parameter settings.

A. Efficiency Evaluation

Exp-1: Running time comparison of all methods. In this
experiment, we compare the efficiency of all methods on the
eight datasets. We report the running times of all methods in
Table II. For the HCP-t method, we report its two variant
by setting t = 3 and t = 5, which are denoted by HCP-
t @3 and HCP-t @5 respectively. We report the running
times of all methods in Table II. For the HCP-t method, we
vary its input parameter t in {3, 5, 10, 20}. The mark ‘-’ is

shown if an algorithm cannot finish in 2 hours. Observed by
Table II, Paris and Spec is not scalable for larger datasets,
since both of them cannot finish the computation in 2 hours
on the ‘twitter’, ‘LiveJournal’ and ‘Orkut’ datasets. Among all
the methods, our HCP-t method achieve the best performance
when the hierarchy L is set to 3. The performance drops a
little when L grows to 5. But it’s still comparative against
the existing method hLP. Moreover, our HCP-t method can
achieve 24X faster than the TeraHac@Seq method. The HCP-
b method achieves similar performance as the HCP-t method.
This experiment shows that our proposed HCP-t and HCP-b
method achieve best efficiency among all existing methods.
Exp-2: Parameter sensitivity test and scalability test for
our methods. For the top-down core propagation method, we
vary the hierarchy parameters t in {3, 5, 10, 15, 20}, and test
its efficiency sensitivity on all datasets. Fig. 8 (a) reports the
running time of the top-down method on different datasets.
The result shows that when the hierarchy parameter t increase
linearly, the running time of HCP-t is still growing in a slow
and steady rate, which demonstrates that the efficiency of
HCP-t is not sensitive to the setting of t. To evaluate the
scalability of our methods, we generate a series of power-law
graphs using the PythonWeb Graph Generator3. We vary |V |
from 1,000,000 to 10,000,000, and |E| = 5|V |. Fig. 8 (b)
shows the running time of our HCP-t and HCP-b methods
on synthetic graphs with ascending sizes. We can observe that
the running times of both methods are increasing in a stable
rate, which confirms the complexity analysis in Section V and
Section VI.

B. Effectiveness Evaluation
In this subsection, we compare all methods with datasets

without ground-truth information under different non-ground-
truth based evaluation metrics.
Exp-3: Comparison of the number of hierarchies. To
evaluate the brevity of the community hierarchy structures,
this experiment compares the number of levels in the hi-
erarchical graph clustering results obtained by all methods
without hierarchy parameter t, the smaller the number is, the
better the hierarchical structure is. The experiment result is
presented in Table III. Noted that HCP-b − is the bottom-
up core propagation approach without community refinement.

3https://pywebgraph.sourceforge.net/

TABLE III
THE NUMBER OF HIERARCHIES OF THE HIERARCHICAL GRAPH CLUSTERING RESULTS OBTAINED BY ALL METHODS.

Graphs HCP-b HCP-b − hLP Paris Spec TeraHac@Seq
openflight 3 3 4 3,096 3,096 17
facebook 3 3 4 4,039 4,039 21

DBLP 4 5 5 31,7573 31,7573 30
google 5 6 7 875,713 875,713 87
twitter 4 5 5 81,306 81,306 218

LiveJournal 6 8 9 4,847,571 4,847,571 873
Orkut 8 9 9 3,072,441 3,072,441 1,027

 0

 0.2

 0.4

 0.6

 0.8

 1

Openflight Amazon Facebook DBLP Twitter LiveJournal Orkut

LC
A

C
os

t

Datasets

HCP-t HCP-b hLP Paris

Fig. 9. LCA cost comparison for HCP-t, HCP-b, hLP and Paris on non-ground-truth graph datasets.

Since Paris and Spec share the similar merging scheme,
their hierarchical graph clustering results possess number of
level linear to the vertex size of the input graph, which is
hard to understand and indistinguishable. Although the results
obtained by TeraHac@Seq has much smaller number of levels,
the hierarchies is still to much to peform analysis, (e.g., 1027
levels for the ‘Orkut’ dataset). hLP has similar performance to
HCP-b and HCP-b −, but HCP-b and HCP-b − perform better
in most of the datasets, and they have equal performance to
hLP on other datasets. Moreover,although HCP-b has similar
performance compared to HCP-b −, the HCP-b has always
smaller or equal number of hierarchies, which reveals the
effectiveness of the community refinement strategy proposed
in Section VI whose main goal is to provide theoretical
guarantee on hierarchies.

Exp-4: Least common ancestor cost evaluation. We conduct
an experiment on 7 datasets without ground-truth to compare
the least common ancestor cost for all methods, the smaller
LCA cost represents better hierarchical clustering effective-
ness. Fig. 9 shows the LCA cost for four different methods on
all non-ground-truth datasets. Paris has the worst performance
because there are only small difference between consecutive
layers in its result. Our HCP-t and HCP-b methods have very
similar performance. Compared to the hLP method, the HCP-
t method can win most of the cases, which demonstrates the
strong ability of our methods on guaranteeing the quality of
the hierarchical graph clustering results.

Exp-5: Effectiveness evaluation on ground-truth datasets.
We run an experiment on two ground-truth datasets ‘Open-
Flight’ and ‘road-HongKong’ to evaluate the hierarchical
similarity score of each method. As shown on Fig. 10 (a),
our methods HCP-t and HCP-b have much higher HSS score
than Paris, which means that the hierarchical clustering results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

OpenFilght road-HongKong

H
SS

 S
co

re

Datasets

HCP-t
HCP-b

hLP
Paris

(a) HSS scores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

OpenFilght road-HongKong

Av
er

ag
e

D
en

dr
og

ra
m

 P
ur

ity

Datasets

HCP-t
HCP-b

hLP
Paris

(b) Average dendrogram purity

Fig. 10. Effectiveness evaluation on ground-truth datasets.

obtained by our methods are more approaching to the ground-
truth. The hLP method has very similar performance to our
methods HCP-t and HCP-b. But our HCP-t method is a clear
winner in both datasets, which demonstrate the superiority of
our methods in terms of effectiveness. We continue to evaluate
a variant of the existing dengrogram purity measure [21] called
average dengrogram purity, since the traditional dendrogram
measure is only based on the ground truth community in a
single layer (flat layer). The average dendrogram purity uses
the ground truth in each layer in the ground truth community
hierarchy as input, and takes an average by dividing the num-
ber of ground truth community hierarchy layers. The larger
average dendgrogram purity is, the better the effectiveness is.
The result is shown in Fig. 10 (b). The result shows that our
HCP-t method is still the best among all comparing methods
on two ground truth datasets. HCP-b has similar performance
to hLP, while paris is relatively less effective.
Exp-6: Case study on results comparison between HCP-t
and hLP on the openflights dataset. The openflights datasets
contain the flight record all over the world in a period of
time. The flight records are much denser inside a particular
region. And between different regions, cross-region flights are
much denser for regions with closer geometric locations. The
entire dataset contains a ground truth community hierarchy

(a) Clustering result of the highest
layer of HCP-t.

(b) Clustering result of the second
highest layer of HCP-t.

Fig. 11. Visualization results of the two highest layers obtained by our HCP-t
method on the OpenFlights dataset.

(a) Clustering result of the highest
layer of hLP.

(b) Clustering result of the second
highest layer hLP.

Fig. 12. Visualization results of the two highest layers obtained by the hLP
method on the OpenFlights dataset.

with 2 layers, in which each vertex is associated with a country
code and a content code. Fig 11 and Fig 12 visualize the
clustering results of the two highest layers of our HCP-t
method and the hLP method respectively. HCP-t produces a
3-layer community hierarchy with average community number
difference of 84.1, while hLP produces a 4-layer result with
average community number difference of 35.9. According to
Fig 11 (a) and Fig 12 (a), both methods have similar clustering
results on the highest layer. This is because this layer is closer
to the root layer and often groups most of the communities.
However, the clustering results of the second highest layers of
the two methods exhibit totally different behaviors. Fig 11
(b) is the clustering result of the second highest layer of
our HCP-t method. Its clustering result divides the whole
world into different regions according to the location of each
continent, which also follows the nature of practical flight
records as mentioned before. But for the clustering result of the
second highest layer of hLP as shown in Fig 12, the center
part of the map is still grouped into an entire community,
which has only limited change against its first layer. From
the theoretical perspective, we provide the modularity values
of all the clustering result on the top right side of each
figure. Compared to the hLP method, the modularity of the
clustering result of the second highest layer of HCP-t is 6.8
times (0.5887 against 0.0862) larger, which demonstrates that
our hierarchical clustering methods is superior in terms of
effectiveness from both practical and theoretical perspectives.
Exp-7: Case Study on results comparison between HCP-
t and hLP on the Hong Kong road network dataset.
We visualize the results of our HCP-t methods and the hLP
method on the Hong Kong road network datasets. This dataset
contains a ground truth community hierarchy with 2-layers, in
which each vertex is associated with two community labels:
district code and region code. Fig. 13 (a) shows the ground-
truth administration partition of Hong Kong. Fig. 13 (b)-(e)

(a) Ground-truth par-
titions in Hong Kong.

(b) The highest hierar-
chy of hLP.

(c) The second highest
hierarchy of hLP.

(d) The highest hierarchy
of HCP-t.

(e) The second highest
hierarchy of HCP-t.

Fig. 13. Visualization results of the two highest layers obtained by HCP-t
and hLP on the Hong Kong road network.

visualize the two highest hierarchies of communities obtained
by the hLP method and the HCP-t method. HCP-t produces a
3-layer community hierarchy with average community number
difference of 15.7, while hLP produces a 5-layer result with
average community number difference of 11.9. According
to Fig. 13 (b) and (d), the two methods achieve similar
clustering results in the highest hierarchy. For the results of
the second highest layers in Fig. 13 (e), the entire Hong Kong
is decomposed into many smaller regions by HCP-t, which is
more approaching to the ground-truth in Fig. 13 (a). However,
as shown in Fig. 13 (c), hLP can only decompose a small
part from the center area of Hong Kong, which only makes
little difference from its previous layer. Compared to the hLP
method, 5 more new communities are decomposed in the sec-
ond highest layer of HCP-t, which reveals the effectiveness of
our information gain based hierarchy optimization technique
proposed in Section V-B. This case study also shows that our
HCP-t method achieve much better performance in terms of
effectiveness and application on the ground-truth dataset.

VIII. CONCLUSION

In this paper, we define an important property for hierar-
chical communities, and study the problem of hierarchical
graph clustering. We propose two efficient core propagation
algorithms from different clustering directions to solve the
problem. We first propose an efficient top down core prop-
agation method with a hierarchical parameter t for users with
empirical knowledge in the input graph data. For new graph
data, we further propose a parameter-free bottom up core
propagation approach to obtain hierarchical graph clustering
results automatically. Experiments on both ground-truth and
non-ground-truth datasets demonstrate the efficiency and ef-
fectiveness of our proposed methods. Case studies on two
ground-truth datasets further shows the wide applications of
our methods.

IX. ACKNOWLEDGMENT

This work is supported by Hong Kong RGC Projects Nos.
12200424, 12201923, and C2003-23Y. Xin Huang is the
corresponding author.

REFERENCES

[1] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communi-
ties reveal multiscale complexity in networks. nature, 466(7307):761–
764, 2010.

[2] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Vele-
grakis. Distributed k-core decomposition and maintenance in large
dynamic graphs. In DEBS, pages 161–168. ACM, 2016.

[3] V. Batagelj and M. Zaversnik. An o (m) algorithm for cores decompo-
sition of networks. arXiv preprint cs/0310049, 2003.

[4] Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre
Hollocou. Hierarchical graph clustering using node pair sampling. arXiv
preprint arXiv:1806.01664, 2018.

[5] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana
Volkovich. Core decomposition of uncertain graphs. In KDD, pages
1316–1325. ACM, 2014.

[6] Lijun Chang and Lu Qin. Cohesive Subgraph Computation over
Large Sparse Graphs: Algorithms, Data Structures, and Programming
Techniques. Springer, 2018.

[7] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. Efficient
core decomposition in massive networks. In ICDE, pages 51–62, 2011.

[8] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. Efficient
core decomposition in massive networks. In ICDE, pages 51–62. IEEE
Computer Society, 2011.

[9] Fan RK Chung and Fan Chung Graham. Spectral graph theory.
Number 92. American Mathematical Soc., 1997.

[10] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding
community structure in very large networks. Physical review E,
70(6):066111, 2004.

[11] Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab S. Mirrokni,
and Jessica Shi. Hierarchical agglomerative graph clustering in nearly-
linear time. In ICML, volume 139, pages 2676–2686. PMLR, 2021.

[12] Laxman Dhulipala, Jakub Lacki, Jason Lee, and Vahab Mirrokni.
Terahac: Hierarchical agglomerative clustering of trillion-edge graphs.
PACMMOD, 1(3):221:1–221:27, 2023.

[13] Rundong Du, Da Kuang, Barry Drake, and Haesun Park. Hierarchical
community detection via rank-2 symmetric nonnegative matrix factor-
ization. Computational social networks, 4(1):1–26, 2017.

[14] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. Effective
community search for large attributed graphs. Proceedings of the VLDB
Endowment, 9(12):1233–1244, 2016.

[15] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold
Cheng, and Xuemin Lin. A survey of community search over big graphs.
The VLDB Journal, pages 1–40, 2019.

[16] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and
Jiafeng Hu. Effective and efficient community search over large directed
graphs. TKDE, 31(11):2093–2107, 2018.

[17] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin
Cao. Effective and efficient community search over large heterogeneous
information networks. Proceedings of the VLDB Endowment, 13(6).

[18] R Franke. Chimera: Top-down model for hierarchical, overlapping and
directed cluster structures in directed and weighted complex networks.
Physica A: Statistical Mechanics and its Applications, 461:384–408,
2016.

[19] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. Core
decomposition and densest subgraph in multilayer networks. In CIKM,
pages 1807–1816. ACM, 2017.

[20] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. PNAS, 99(12):7821–7826, 2002.

[21] Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical
clustering. In ICML, volume 119, pages 297–304. ACM, 2005.

[22] Paul Jakma, Marcin Orczyk, Colin S. Perkins, and Marwan Fayed.
Distributed k-core decomposition of dynamic graphs. In StudentWork-
shop@CoNEXT, pages 39–40. ACM, 2012.

[23] Jussi M Kumpula, Mikko Kivelä, Kimmo Kaski, and Jari Saramäki.
Sequential algorithm for fast clique percolation. Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 78(2):026109, 2008.

[24] Matthieu Latapy. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci., 407(1-3):458–473,
2008.

[25] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[26] Vincent Levorato. Core decomposition in directed networks: Kerneliza-
tion and strong connectivity. In CompleNet, volume 549, pages 129–140,
2014.

[27] Lin Li, Kefeng Fan, Zhiyong Zhang, and Zhengmin Xia. Community
detection algorithm based on local expansion k-means. Neural network
world, (6), 2016.

[28] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. Efficient core maintenance
in large dynamic graphs. TKDE, 26(10):2453–2465, 2014.

[29] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and
Yunjun Gao. Vac: Vertex-centric attributed community search. In ICDE,
pages 937–948, 2020.

[30] Gang Mei, Jingzhi Tu, Lei Xiao, and Francesco Piccialli. Kcoremotif:
An efficient graph clustering algorithm for large networks by exploiting
k-core decomposition and motifs. CoRR, abs/2008.10380, 2020.

[31] Nicholas Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Za-
heer, Amr Ahmed, Andrew McCallum, Gökhan Mergen, Marc Najork,
Mert Terzihan, Bryon Tjanaka, Yuan Wang, and Yuchen Wu. Scalable
hierarchical agglomerative clustering. In KDD, pages 1245–1255. ACM,
2021.

[32] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi.
Distributed k-core decomposition. TPDS, 24(2):288–300, 2013.

[33] Tamás Nepusz, Andrea Petróczi, László Négyessy, and Fülöp Bazsó.
Fuzzy communities and the concept of bridgeness in complex networks.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
77(1):016107, 2008.

[34] Mark EJ Newman. Fast algorithm for detecting community structure in
networks. Physical review E, 69(6):066133, 2004.

[35] Mark EJ Newman and Michelle Girvan. Finding and evaluating
community structure in networks. Physical review E, 69(2):026113,
2004.

[36] Pascal Pons and Matthieu Latapy. Computing communities in large
networks using random walks. In ISCIS, pages 284–293. Springer, 2005.

[37] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks.
Physical Review E, 76(3), 2007.

[38] Mojtaba Rezvani, Qing Wang, and Weifa Liang. Fach: Fast algorithm
for detecting cohesive hierarchies of communities in large networks. In
WSDM, pages 486–494, 2018.

[39] Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim. Fast
hierarchical graph clustering in linear-time. In Companion Proceedings
of the Web Conference 2020, pages 10–12, 2020.

[40] Bilal Saoud and Abdelouahab Moussaoui. A new hierarchical method to
find community structure in networks. Physica A: Statistical Mechanics
and its Applications, 495:418–426, 2018.

[41] Ahmet Erdem Sarıyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-
Lung Wu, and Ümit V. Çatalyürek. Streaming algorithms for k-core
decomposition. PVLDB, 6(6):433–444, 2013.

[42] Radhia Toujani and Jalel Akaichi. A model based metaheuristic for
hybrid hierarchical community structure in social networks. ISi, 1:1,
2017.

[43] Zhixiao Wang, Mengnan Hou, Guan Yuan, Jing He, Jingjing Cui, and
Mingjun Zhu. Hierarchical community detection in social networks
based on micro-community and minimum spanning tree. IEICE TRANS-
ACTIONS on Information and Systems, 102(9):1773–1783, 2019.

[44] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. I/O
efficient core graph decomposition: Application to degeneracy ordering.
TKDE, 31(1):75–90, 2019.

[45] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan,
and Hejun Wu. Core decomposition in large temporal graphs. In
BigData, pages 649–658, 2015.

[46] Wei Zhang, Feng Kong, Liming Yang, Yunfang Chen, and Mengyuan
Zhang. Hierarchical community detection based on partial matrix
convergence using random walks. Tsinghua Science and Technology,
23(1):35–46, 2018.

[47] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. A fast order-based
approach for core maintenance. In ICDE, pages 337–348, 2017.

[48] Lihua Zhou, Kevin Lü, Peizhong Yang, Lizheng Wang, and Bing Kong.
An approach for overlapping and hierarchical community detection in
social networks based on coalition formation game theory. Expert
Systems with Applications, 42(24):9634–9646, 2015.

