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Abstract—In many online social networks (e.g., Facebook,
Google+, Twitter, and Instagram), users prefer to hide her/his
partial or all relationships, which makes such private relation-
ships not visible to public users or even friends. This leads to
a new graph model called public-private networks, where each
user has her/his own perspective of the network including the
private connections. Recently, public-private network analysis has
attracted significant research interest in the literature. A great
deal of important graph computing problems (e.g., shortest paths,
centrality, PageRank, and reachability tree) has been studied.
However, due to the limited data sources and privacy concerns,
proposed approaches are not tested on real-world datasets, but
on synthetic datasets by randomly selecting vertices as private
ones. Thereto, real-world datasets of public-private networks are
essential and urgently needed to such algorithms in the evaluation
of efficiency and effectiveness.

In this paper, we generate four public-private networks from
real-world DBLP records, called PP-DBLP. We take published
articles as public information and regard ongoing collaborations
as the hidden information, which are only known by the authors.
Our released datasets of PP-DBLP offer the prospects for veri-
fying various kinds of efficient public-private analysis algorithms
in a fair way. In addition, motivated by widely existing attributed
graphs, we propose an advanced model of attributed public-
private graphs where vertices have not only private edges but also
private attributes. We also discuss open problems on attributed
public-private graphs. Preliminary experimental results on our
generated real-world datasets verify the effectiveness and effi-
ciency of public-private models and state-of-the-art algorithms.

I. INTRODUCTION

Online social networks, such as Facebook, Twitter, Google+,
Weibo, and Instagram, have been important platforms for the
spread of information, ideas, and influence among a huge
number of socially connected users. Driven by applications
such as social media marketing and user behavior prediction,
social network analysis, a process of investigating social
structures using network and graph theories, has become a
focal point of research. However, privacy issues become a
major concern in the algorithmic analysis of social networks.
Privacy not only affects the views of a network structure,
but also controls the way information shared among social
network users. As reported in a recent study [1], 52.6% of
1.4 million New York City Facebook users hid their friend’s
list. Such privacy protection leads to a novel graph model,
called public-private graphs [2], [3], [4]. It contains a public
graph, in which each vertex is also associated with a private
graph. The public graph is visible to everyone, and each private

graph is visible only to the corresponding user. From each
users viewpoint, the social network is exactly the union of the
public graph and her/his own private graph. Several sketching
and sampling approaches [2] have been proposed to address
essential problems of graph processing, such as the size of
reachability tree [5], all-pair shortest paths [6], pairwise node
similarities [7], correlation clustering [8] and so on.

In social networks, vertices usually contain attributes, e.g.,
a person has information including name, interests, skills,
and so on. Recent study [2] focuses on one essential aspect
of topological structure of public-private graphs. However,
another important issue of vertex attributes has not been
investigated yet. In many real-world applications, both the
graph topological structure and the vertex properties are im-
portant [9]. In this paper, we model the public-private networks
with vertex attributes and give a formulation of attributed
public-private networks by considering the public and private
vertex attributes. More importantly, as far as we know, to
date there exist no publicly released datasets of real-world
public-private networks. Both [2] and [3] use public graphs to
simulate public-private graphs, by randomly selecting vertices
and regarding their incident edges as private edges. Therefore,
it is desirable to have real-world datasets of public-private
networks as benchmarks for fair experimental evaluations.
This work generates the real-world datasets of public-private
networks from real-life DBLP records, denoted by PP-DBLP.
We have also publicly released the PP-DBLP datasets to the
community.1 To summarize, this paper makes the following
contributions:
• We generate and release a series of real-world public-

private network datasets, according to the public and
private information on a DBLP network. The released
datasets offer the prospects to verify various kinds of
public-private graph algorithms in a fair way. We conduct
experiments on the PP-DBLP datasets to validate the
efficiency of state-of-the-art algorithms (Section II).

• We formally propose a new model of attributed public-
private networks, where vertices have private attributes.
We highlight two promising directions on the attributed
public-private networks and generate corresponding PP-
DBLP datasets with attributes.(Section III).

1https://github.com/samjjx/pp-data
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Figure 1. An example of an undirected and simple public-private graph. In Figure 1(a), public edges are depicted in solid black lines and private edges are
depicted in dashed edges. The red edges incident to vertex v9 are private to v9. The blue edges incident to vertex v3 and the edge (v1, v2) are private to v3.
Figure 1(b) shows the public graph G consisting of all the solid black edges. Figure 1(c) shows the structure of public-private graph in the view of v9.

II. PUBLIC-PRIVATE NETWORKS

In this section, we first introduce a public-private graph
model for online social networks. Then, we generate real-
world datasets of public-private DBLP networks (PP-DBLP),
and compare state-of-the-art of public-private graph processing
algorithm in efficiency on PP-DBLP datasets.

A. Public-Private Graph Model

We present the model of a public-private graph G [2] as
follows. Given a public graph G = (V,E), the vertex set V
represents users, and the edge set E represents connections
between users. For each vertex u in the public graph G, u has
an associated private graph Gu = (Vu, Eu), where Vu ⊆ V
are the users from public graph and the edge set Eu satisfying
Eu ∩ E = ∅. The public graph G is visible to everyone, and
the private graph Gu is only visible to user u. Thus, in the
view of user u, the user u can see the structure of graph
is the union of public graph and its own private graph as
G ∪ Gu = (V,E ∪ Eu). Let Vprivate = {u ∈ V : Eu 6= ∅}
and Eprivate = {(v, w) ∈ Eu : u ∈ Vprivate}. Note that
Eprivate∩E = ∅, and each edge presented in different private
graphs only counts once in the private edge set Eprivate of G.

Example 1: Consider a pubic-private graph with 11 vertices
in Figure 1(a). The pubic-private graph consists of two kinds
of relationships: public edges and private edges. The public
edges are depicted in solid lines, e.g., (v3, v6), indicating that
the public relationship (v3, v6) can be viewed by every vertex
in graph G. The private edges are depicted in dash lines, e.g.,
(v6, v9). The private relationship between v6 and v9 can be
only viewed by vertices v6 and v9 that are involved in the
private relationship. Thus, Figure 1(b) shows the public graph
G that consists of all public edges. In the view of vertex v5,
the structure of public-private graph is indeed as G in Figure
1(b), since the private graph Gv5 is empty. Figure 1(c) shows
the structure of public-private graph in the view of v9, which is
richer than the public graph G in Figure 1(b). Because vertex
v9 can access all private relationships in private graph Gv9 .

B. Real-world Public-Private DBLP Networks

To date, there exists no publicly released datasets of real-
world public-private networks, in light of privacy concerns.
All previous algorithms for public-private social networks [2],
used public social networks to simulate public-private graphs,

Table I
NETWORK STATISTICS

Network |V | |E| |Vprivate| |Eprivate| τ(G)
PP-DBLP-2013 1,791,688 5,187,025 825,170 2,636,570 0.086
PP-DBLP-2014 1,791,688 5,893,083 686,292 1,930,512 0.087
PP-DBLP-2015 1,791,688 6,605,428 515,549 1,218,167 0.087
PP-DBLP-2016 1,791,688 7,378,090 263,937 445,505 0.083

by randomly selecting some vertices and hiding their incident
edges as private edges from the public graph [2], [3]. To
verify competitive algorithms in a fair way, we propose one
following approach to generate real-world datasets of public-
private DBLP collaboration networks (PP-DBLP), according
to the public and private information on DBLP records [10].

The intuition is the information of one accepted paper gets
known in public is usually later than the co-author collabo-
ration happened in private. In addition, such collaborations
are always only known for authors themselves in person,
and can’t be aware by others. Thus, we take collaboration
relationships in the published papers as public edges, and
regard collaboration relationships in the ongoing works as
private edges that are only known by their authors. Note that,
if two authors have a collaboration relationship in public, then
their private ongoing collaboration is not accounted as a private
edge.

The public-private DBLP network is constructed as follows.
We first obtain the DBLP raw data published in 2017 [10].
Next, we select one particular timestamp Y to distinguish the
published yet papers and on-going papers. For example, taking
the cut-off timestamp Y as 2013/01/01, all collaborations
happened before timestamp Y are regarded as public edges
and the collaborations happened on and after timestamp Y are
taken as private edges. Then, we construct the public graph.
We sort all papers in the increasing order of published dates
in DBLP. For each paper p published before timestamp Y , we
consider each author of this paper as a vertex, and add public
edges between any pair of authors in this paper. Similarly, we
construct all private graphs in the following. For each paper
p published on and after timestamp Y , if the authors u, v
do not have a public edge, we add a private edge between
vertices u and v. We generate 4 PP-DBLP datasets using
four timestamps of Y in {2013-01-01, 2014-01-01 2015-01-
01, 2016-01-01}. The network statistics are shown in Table I.

C. Evaluations on PP-DBLP datasets

We use real-world datasets of PP-DBLP to evaluate two
pubic-private graph algorithms proposed by Chierichetti et al.
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Figure 2. Evaluation of shortest path approximation on PP-DBLP networks

[2]: shortest path approximation and personalized PageRank.
Sampling algorithms are developed to precompute the public
graph G offline, and then run the online update algorithm on
private graph Gu with samples of G. We use the publicly
available implementation of algorithms 2 and set all the same
parameters with [2] by default. We randomly select private
graphs and report the running time and accuracy of each task
averaged over 50 independent tests.

Shortest Path Approximation. Given a vertex u in public-
private graph G∪Gu, this task is to compute the shortest path
from u to another arbitrary vertex in G ∪ Gu. We evaluate
the performance of one sampling algorithm of shortest path
[2] with one baseline method of classical Dijkstra’s algorithm
[11]. Figure 2(a) and 2(b) respectively shows the results
of efficiency improvement and quality approximation varied
by multiplicative factor. [2] achieves the great improvement
of efficiency (more than 300 times faster than the baseline
method) and obtains a good balance of shortest path approx-
imations (no greater than 1.6 times of the optimal answer)
on all the multiplicative factors. Figure 2(b) shows that the
approximation improves with the decreasing multiplicative
factor, due to more samples used in the algorithm.

Personalized PageRank. Given a vertex u in public-private
graph G ∪Gu, the problem of personalized PageRank (PPR)
is to find node similarities to u for all vertices in G∪Gu. We
compare two methods. The first one is personalized PageRank
using heuristic [2]. The second one is a baseline method
to directly apply the algorithm of Andersen et al. [12] on
graph G ∪ Gu. The results obtained by the baseline are
used as the ground-truth PPR ranking of u. Table II reports
the performance of efficiency and accuracy of personalized
PageRank using heuristic [2] on PP-DBLP networks. In term
of efficiency comparison, the heuristic algorithm [2] is faster
by three orders of magnitude than the baseline [12], which are
shown in the column of speed-up ratio in Table II. Table II also
shows the accuracy of the ranking computed by the heuristic
algorithm w.r.t. the ground-truth PPR ranking, in terms of three
measured metrics: the Root Mean Square Error (RMSE), the
Cosine Similarity, and the Kendall-τ index. In terms of RMSE,
the heuristic algorithm produces ranking achieving the RMSE
close to 0 on all datasets; In terms of cosine similarity, it obtain
nearly 1; In terms of the Kendall-τ correlation of the first 50

2https://github.com/aepasto/public-private

Table II
EFFICIENCY AND ACCURACY OF PERSONALIZED PAGERANK USING

HEURISTIC [2] ON PP-DBLP NETWORKS.

Network Speed-up Ratio RMSE Cosine τ@50
PP-DBLP-2013 6646 0.0036 0.9907 0.6007
PP-DBLP-2014 5746 0.0034 0.9908 0.6067
PP-DBLP-2015 5462 0.0041 0.9906 0.5715
PP-DBLP-2016 6319 0.0041 0.9890 0.5370

positions of the rankings, the score of τ@50 is still quite high
falling in [0.5370, 0.6067]. Similar performance of efficiency
and accuracy are also reported on other datasets in [2].

III. ATTRIBUTED PUBLIC-PRIVATE NETWORKS

The proliferation of rich information available for DBLP
records, e.g., keywords of titles in papers. This gives rise to
an attributed graph where graph vertices are associated with
a number of attributes. In this section, we first define an
advanced graph model of attributed public-private networks.
Then, we extend the approach of generating PP-DBLP to pro-
duce real-world datasets of attributed public-private networks
using title keywords. Finally, we offer open problems and
promising directions on attributed public-private graphs.

A. Attributed Public-Private Graph Model

An attributed public-private graph of G is modeled as fol-
lows. Given an attributed public graph G = (V,E,A), where
the vertex set V representing users, the edge set E representing
connections between users, and the public attribute set A(u)
describes the public attributes of a user u ∈ V . For each
user u in the public graph, u has an attributed private graph
Gu = (Vu, Eu, Au), where Vu ⊆ V is a set of users from
the public graph, private edge set Eu ∩ E = ∅, and Au(v)
represents the private attributes of vertex v ∈ Vu that are
visible to u. The public attributed graph G is visible to
everyone, and the private attributed graph Gu is only visible to
user u. In terms of network structure, attributed public-private
graphs have no difference with the public-private graphs in
Section II. In terms of attributes, consider the attributed public-
private graphs G ∪Gu, each vertex u can access both public
and private attributes of vertex v, i.e., Av ∪Au(v).

Example 2: Figure 3 (a) shows an example of attributed
public-private graph, which has the same graph structure
of Figure 1 (a). Public attributes are in black, and private
attributes are in blue and red. Consider the vertex v3. The
public attributes of v3 is A(v3) = {‘SQL′}. Attributes in blue
(e.g., the attribute of ‘XML’ associated with vertices v1, v2
and v3) are private and visible to v3. Thus, Av3(v3) = Av3(v1)
= Av3(v2) = {′XML′}. Attributes in red (e.g., vertex v6’s
attribute of ‘Skyline’) are private and visible to v3. Figure 3(b)
shows the public attributed graph G consisting of all public
edges and public attributes that are visible to everyone. Figure
3(c) shows the attributed graph G∪Gv3 in the view of v3. The
attributes of v1 is {‘Skyline′, ‘XML′} as a result of the union
of public attributes and private attributes, i.e., A(v1)∪Av3(v1),
showing that v1 extends her/his research interests.

B. Attributed Public-Private DBLP Networks

To construct the attributed public-private DBLP networks,
we add attributes into vertices on PP-DBLP in Section II-B as
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Figure 3. An example of attributed public-private graph. In Figure 3(a), public attributes are in black. Private attributes are in blue and red, which respectively
are visible to v3 and v9. Figure 3(b) shows the attributed public graph G consisting of all public edges and public attributes. Figure 3(c) shows the attributed
graph G ∪Gv3 in the view of v3.

follows. For each author, we collect keywords in the title of all
published articles and extract the most frequent keywords as
the public attributes. For the private attributes, let’s consider
one author u and its attributed private graphs Gu. For each
author v in Gu, the private attributes of v as Au(v) are the
most frequent keywords from the title of all ongoing papers
involving authors v and u. To select representative keywords,
we set each number of public attributes and private attributes
is no greater than a maximum threshold of 5, i.e., |A(v)| ≤ 5
and |Au(v)| ≤ 5. The difference of public attributes Av and
private attributes Au(v) shows the changed research interests
of author v. Note that, Av ∩ Au(v) 6= ∅ may hold. We use
θu(v) to quantify the overlapping ratio of public attributes
and private attributes of vertex v in graph Gu, denoted by
θu(v) =

|Av∩Au(v)|
|Av∪Au(v)| . And, the τ(u) =

∑
v∈Vu

θu(v)

|Vu| represents
the average ratio of overlapping attributes among the authors in
Gu. For an attributed public-private graph G, we propose τ(G)
to measures the ratio of overlapping public-private attributes

for all private graphs, denoted by τ(G) =

∑
u∈Vprivate

τ(u)

|Vprivate| .
Table I reports the statistic τ(G) for all PP-DBLP datasets.

C. Open Problems

We offers two open problems of keyword search and com-
munity search in attributed public-private networks as follows.
• Keyword search in attributed public-private networks.

Keyword search finds users in the vicinity of a given user
with similar keywords [13], [14], [15]. Keyword search
queries in an attributed public-private network are gen-
erated from a vertex that looks for nearest vertices with
certain keywords, w.r.t., private structure and attributes.

• Community search in attributed public-private net-
works. Attributed community search aims at finding
the densely-connected subgraphs containing given query
nodes with similar attributes [16]. In an attributed public-
private graph, given a community search query, the query
asked by a user u needs to be considered in graph G∪Gu,
w.r.t., private structures and attributes.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we develop a new model of attributed public-
private networks w.r.t. the information of vertices in many
real-world networks. In addition, we provide real-world PP-
DBLP datasets for attributed public-private networks, which
are useful to further research of public-private graphs. Besides

PP-DBLP, our future plan is to build a real-world pubic-
private Facebook social network by conducting a survey of
Facebook users, who will be asked to manually identify all of
private relationships that they hid. The estimated number of
such interviewed users is around 100.
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