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Abstract—The semantic intimacy of relations in many real-
world networks (e.g., social, biological, and communication net-
works) can be modeled by weighted edges in which the more
semantically intimate relations between the nodes translate to
smaller edge weights. Recently, the problem of community search
that aims to find the cohesive groups containing a given set of
query nodes has attracted a great deal of attention. However,
the bulk of literature on community search problem assumes
a simple unweighted input graph, ignoring how semantically
intimate the nodes have in retrieved communities. The discovered
communities may have a highly cohesive structure, while they
perform poorly in the semantic of intimate connections.

In this paper, we investigate a novel problem of Querying
Intimate-Core Groups (QICG): given a weighted undirected graph
G, a set of query nodes Q and a positive integer k, to find
a connected subgraph of G in which each node has at least
k neighbors, and the sum of weights on its edges is minimum
among all such subgraphs. We show that the QICG problem
is NP-hard. We develop efficient algorithms based on several
practical heuristic strategies to enhance the retrieval efficiency.
Extensive experiments are conducted on real-world datasets to
evaluate efficiency and effectiveness of proposed algorithms. The
results confirm that our intimate-core group model outperforms
state-of-the-art models in weighted graphs.

I. INTRODUCTION

Community detection, the task of identifying all com-
munities in a given network, is a fundamental and well-
studied problem [1], [2], [3], [4], [5], [6], [7]. Recently, a
query-dependent variant of community detection problems,
community search [8], has also attracted substantial interest.
Given an input graph and a set of query nodes, community
search problem aims to find a densely connected subgraph
that contains given query nodes. Several papers have proposed
various community search models based on different notions
of dense subgraph structures, including quasi-clique [9], the
densest subgraph [10], k-core [8], [11], [12], [13], and k-
truss [14], [15].

The community search problem has many important real-
world applications in broad areas such as content recommen-
dation, finding groups in collaboration or protein-interaction
networks, infectious disease control, and marketing [8]. Some
typical applications include:

• Tag recommendation. A tag graph relates similar tags
in a social-media platform: two tags are connected in
the tag graph if they co-occur together. When a user
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Fig. 1. An example intimate-core group query. (a) a given weighted graph
G. (b) a k-core community retrieved by a general k-core algorithm without
considering the weights in G. (c) a smaller community that has the minimum
total weight retrieved by our approach. It can be confirmed that the community
in (c) is semantically more intimate than the community in (b).

uploads a photo to a photo-sharing portal with initial tag
assignments, the system can recommend additional tags
to the user based on the initial tags provided.

• Finding groups. A collaboration network encodes the
co-authorship information between the scientists: two
scientists are connected in the graph if they have co-
authored at least one paper. Consider the scenario in
which a group of scientists plan to apply for funding to
explore new research directions. The chances of success
of the application will be higher if they invite a set of
colleagues such that each scientists is well-acquainted
in this group, and even they have frequently worked
together.

• Infectious disease control. If a person has come into con-
tact with an infectious disease, her community of close
contacts should be monitored, especially the individuals
whom she frequently interacts.

In the aforementioned applications, the standard community
search models focus on the binary nature of the relationship
between the nodes that is encoded via the (non-)existence of
the edges in a graph. However, these relations can often be
further quantified by the assignment of edge weights that better
integrate and enhance the semantics of connections, hence, the
communities. Thus, such graphs can instead be modeled with
edge weights that capture the semantic intimacy of the nodes
in which the more semantically intimate relations between the
nodes translate to smaller edge weights. For instance, a good
tag recommendation contains the tags that frequently co-occur
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with the initial tags provided by the user, where the interval
of co-occurance of tags can be modeled as the edge weights
in the tag graph. Similarly, the collaboration network can be
modeled as a weighted graph in which the edge weights denote
the time interval of collaborations: if two scientists collaborate
frequently, the time interval of collaborations will be short,
which translate to smaller edge weights. Thus, to improve the
cohesive accuracy of the retrieved communities, one would
want to ensure that the edges in the discovered communities
have more semantic intimacy hence smaller edge weights as
possible.

The bulk of literature on community search problem assume
that the input graph is unweighted and focus only finding
a cohesive structure without considering how semantically
intimate the nodes in the retrieved community are. Moreover,
the standard community search models admit several optimal
solutions, some of which can be quite large, possibly due
to the several irrelevant nodes they contain. To address this
issue Sozio et al. [8] proposed a constrained version of the
community search problem in which the size of the retrieved
communities are subject to an upper bound. Similarly, Bar-
bieri et al. [13] proposed an alternative formulation of the
community search problem which aims to find the smallest-
size solution among all the optimal solutions in an unweighted
input graph so that the retrieved community is as cohesive as
possible.

In this paper we drop the assumption that the input graph
is unweighted and formulate the community search problem
by taking into account the edge weights that denote the
semantic intimacy between the nodes. We then study the
problem of finding the intimate-core group of a given set Q
of query nodes where we define the intimate-core group as
the most semantically intimate community that contains Q.
Our problem formulation takes as input a weighted undirected
graph G, a set Q of query nodes, and a positive integer k, and
aims to find a densely connected subgraph H ⊆ G such that
(i) H contains the query nodes, (ii) each node in H has at
least k neighbors, and (iii) the sum of edge weights in H is
the minimum among all the subgraphs that satisfy (i) and (ii).

Example 1. Consider the collaboration network in Fig. 1(a).
The weight of an edge between Alice and Bob is 1, indicating
that Alice and Bob have co-authored every one year. Suppose
we want to find an intimate-core group that contains the query
nodes Alice and Carol. For k = 2, our solution will find the
densely connected subgraph depicted in Fig. 1(c), in which
every node co-authors with two other nodes and the sum of
edge weights is equal to 5.

On the other hand, the standard core decomposition ap-
proach that ignores the edge weights returns the k-core of
G, depicted in Fig. 1(b): in this solution, several nodes have
no co-authorship relation with the query nodes, e.g., Greg and
Frank. Although Eric have co-authored with Carol, the interval
of collaboration spans very long, every 12 years. The sum
of edge weights of this subgraph is equal to 21. Clearly, the
retrieved community in Fig. 1(b) is semantically more intimate

and cohesive than the community in Fig. 1(c).

In our problem formulation, a good community should
have a densely connected structure and small group weight
where we define the weight of a group as the sum of its
edge weights. In order to find densely connected groups that
contain the query nodes, we use the minimum degree of nodes
in the extracted groups to circumvent the free-rider issue.
Since the standard definition of k-core does not necessarily
induce a connected subgraph [16], we introduce “connected
k-core”, a dense and connected substructure in which each
node has at least k neighbors. We then formulate intimate-
core group model, a novel community search model, based
on the definition of connected k-cores.

Contributions and roadmap. In this paper, we make the
following contributions:
• We motivate the problem of Querying Intimate-Core

Groups (QICG) in weighted graphs, in which the edge
weights represent the semantic intimacy between nodes.
We define a dense subgraph of connected k-core, and
design an weight score function to measure intimate
strength in groups. Based on this, we propose a novel
group model called intimate-core group (ICG), and for-
mulate the problem of QICG as finding ICGs (Section
III)

• We formally demonstrate that QICG problem is NP-
complete (Section IV).

• We devise an algorithmic framework that finds the
intimate-core group for a given set of query nodes and
a positive integer k. Our greedy algorithm ICG-S first
identifies a maximal connected k-core as a candidate,
then removes the node with the largest total weight on its
incident edges at each iteration. To improve the efficiency
of ICG-S, we also devise ICG-M, a variant of ICG-S that
heuristically removes a batch of nodes at each iteration,
reducing the total number of iterations required by ICG-S
(Section V).

• We conduct extensive experiments on real-world
weighted graphs and show the significant efficiency and
effectiveness of our intimate-core group model and algo-
rithms (Section VI).

We review the related work in Section II and conclude the
paper in Section VII with a discussion of the future work.

II. RELATED WORK

A. Community Search

Sozio et al. [8] are the first to define the combinatorial
optimization formulation of the community search problem.
They formulated the problem as the task of finding a connected
subgraph that contains all the query nodes and maximizes
the minimum degree. As noted by Sozio et al., one of the
drawbacks of their formulation is that the retrieved commu-
nities can be arbitrarily large with several irrelevant nodes.
In order to address this issue and improve the accuracy
of the retrieved solutions, they also studied the integration
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of the distance and community size constraints. Following
their formulation, many community search models have been
studied in the literature based on different subgraph structures
such as quasi-clique [9], k-core [12], [13], k-truss [14], [15],
influential community [11], and query biased densest subgraph
[10]. To improve the accuracy of the discovered communities,
Barbieri et al. [13] proposed an alternative formulation of the
community search problem that aims to find the minimum
size community. They also proposed a precomputation based
approach that exploits the core decomposition of the input
graph to improve the efficiency of the computation. Cui et al.
[9] designed a novel α-adjacency γ-quasi-k-clique model for
finding overlapping communities. Cui et al. [12] also proposed
an efficient local search algorithm for the restricted single-
node query version of the problem. Huang et al. [14] propose
a k-truss community model based on triangle adjacency for
finding all the communities of a given query node. Li et al. [11]
studied influential community model which reports the top-r
communities with the highest influence scores over the entire
graph. Wu et al. [10] and Huang et. al [15] independently
proposed different models to address the free rider effect
and avoid irrelevant nodes included in the communities. All
the core-based community models discussed consider simple
unweighted graphs which is a significant difference from our
work.

B. Community Detection

Community detection aims to find all the communities in
a graph. A typical approach for finding communities is to
optimize the modularity measure [17]. In terms of commu-
nity memberships, community detection falls into two major
categories: non-overlapping community detection [1], [2], [3]
and overlapping community detection [4], [5], [6], [7]. All
these papers focus on static communities where the graphs are
partitioned a priori. Community detection in dynamic graphs is
instead addressed in [18]. An in-depth survey and performance
comparison of the community detection algorithms can be
found in [19].

C. Cohesive Subgraph Mining

Considerable work has been done on mining cohesive
subgraph patterns, including clique [20], [21], [22], [23],
quasi-clique [24], dense neighborhood graph [25], k-core [26],
[16], and k-truss [27], [28], [29], [30]. Clique and quasi-
clique enumeration methods include the classical algorithm
[22], redundancy-aware clique enumeration [20], the external-
memory H∗-graph algorithm [23], maximum clique computa-
tion using MapReduce [21], and optimal quasi-clique mining
[24]. Various papers study core and truss decomposition in
different settings, including in-memory algorithms [26], [27],
[29], external-memory algorithms [16], [28], MapReduce [31]
and probabilistic graphs [30]. Zhang et al. [29] and Huang et
al. [14] design incremental algorithms for the efficient update
of a k-truss with edge insertions / deletions. Wang et al.
[25] studied a dense neighborhood graph based on common
neighbors.

Notation Description
G = (V,E,w) Undirected weighted graph G

w(e) The weight of edge e ∈ E
n;m The number of nodes / edges of G
N(v) The set of neighbors of v

degH(v) The degree of node v in subgraph H ⊆ G
dmax The maximum node degree in G
δ(H) Coreness of subgraph H ⊆ G
δ(v) Coreness of node v
fH(v) Node weight of v in subgraph H ⊆ G
f(H) Group weight of graph H

TABLE I
NOTATIONS USED IN THIS PAPER.
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Fig. 2. An example 2-core graph G. Dashed region corresponds to the 3-core
subgraph of G

III. PROBLEM STATEMENT

In this paper, we focus on a weighted undirected simple
graph G = (V,E,w), where V is the set of nodes, E ⊆ V ×V
is the set of edges, and w : E → R≥0 is a weight function.
Note that, for each edge e = (u, v) ∈ E, the weight w(e) ≥ 0
denotes the semantic distance between the nodes u and v.
Let N(v) = {u ∈ V : (v, u) ∈ E} and d(v) = |N(v)|
respectively denote the set of neighbors and the degree of a
node v ∈ V . Let dmax = maxv∈V d(v) denote the maximum
node degree in G. A summary of the frequently used notations
are depicted in Table I. Next we introduce the preliminary
concepts required to formally define our problem.

k-core. A k-core is the maximal subgraph of G, in which each
node has at least k neighbors in the subgraph.

Notice that, the basic definition of k-core does not necessar-
ily induce a connected subgraph [16]. For instance, consider
the weighted graph G in Fig. 2. The whole graph G is 2-core,
since each node has degree of at least 2 while the 3-core sub-
graph of G depicted in the dashed region is disconnected with
two components. This suggests that the basic k-core definition
is not sufficient to define a densely-connected group. Thus,
we first introduce connected k-core, a dense and connected
substructure which we define by combining ideas from the
k-core and connectivity concepts.

Definition 1 (Connected k-core). Given a subgraph H ⊆ G,
H is a connected k-core iff every node has at least k neighbors
in H , and there exists a path between any pair of nodes in H .

Intuitively, a connected k-core of r nodes is a relaxed
definition of r-clique, which allows a portion of edges to
be missing from a complete graph of r nodes. Notice that,
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Fig. 3. Querying intimate-core group for Q = {v7, v9} and k = 3: the
weight of H1 and H2 are respectively f(H1) = 23 and f(H2) = 7, thus,
H2 is the intimate-core group for the given query.

a (k+1)-clique is a connected k-core, but a connected k-core
may not be a (k + 1)-clique. In addition, a (k + 1)-clique is
the smallest connected k-core in terms of node and edge size.

Definition 2 (Coreness). The coreness of a subgraph H ⊆
G is the minimum degree of a node in H , i.e., δ(H) =
minv∈V (H){deg(v)}. The coreness of a node v ∈ V (G) is
δ(v) = maxH⊆G∧v∈V (H) {δ(H)}.

Example 2. Consider the graph G in Fig. 2. The coreness
of G is δ(G) = minv∈V (G){deg(v)} = deg(v5) = 2.
The subgraph of G in dashed region in Fig. 2 is 3-core.
In addition, for node v7, the coreness of v has δ(v7) =
maxH⊆G∧v3∈V (H) {δ(H)} = 3. There exists no 4-core in
graph G, and the dashed region of 3-core is the subgraph of
G with the maximum coreness.

Definition 3 (Group Weight). Given a subgraph H ⊆ G, the
group weight of H is defined as the sum of weights of all
edges in H , denoted by f(H) =

∑
e∈E(H) w(e).

Example 3. Consider the subgraph H2 ⊆ G depicted in
Fig. 3(b). The group weight of H2 is obtained by summing the
weights of all the edges in H2, i.e., f(H2) =

∑
e∈E(H) w(e) =

1 + 1 + 1 + 1 + 2 + 1 = 7.

Next we formally define the intimate-core group for a given
weighted graph G, a set of query nodes Q, and a positive
integer k.

Definition 4 (intimate-core group). Given a weighted graph
G, a set of query nodes Q and a positive integer k, a subgraph
H ⊆ G is an intimate-core group, if H satisfies the following
three conditions:
• (1) Query Participation. H contains all query nodes Q,

i.e., Q ⊆ V (H);
• (2) Connected k-Core. H is a connected k-core, ∀v ∈
V (H), δ(v) ≥ k;

• (3) Smallest Weight. H is the subgraph with the smallest
group weight among all subgraphs that satisfy conditions
(1) and (2). That is, @H ′ ⊆ G, such that f(H ′) < f(H)
and H ′ satisfies conditions (1) and (2).

Example 4. Consider again the weighted input graph G
(Fig. 2). For a given set Q = {v6, v7} of query nodes and
k = 3, both H1 and H2, depicted in Fig. 3(a) and (b), are con-
nected 3-cores containing Q. f(H1) =

∑
e∈E(H1)

w(e) = 23
and f(H2) =

∑
e∈E(H1)

w(e) = 7. However H2 has the

smallest group weight thus is the intimate-core group for the
given values of Q and k.

The problem of Querying Intimate-Core Groups studied in
this paper is formulated as follows.

Problem 1 (Querying Intimate-Core Groups (QICG)). Given
a weighted undirected graph G(V,E), a set of query nodes
Q = {v1, ..., v|Q|} ⊆ V and a number k, find the intimate-
core group of Q.

IV. THEORETICAL ANALYISIS

In this section, we analyze the property of group weight
function and the hardness of QICG problem.

Lemma 1. Given a subgraph H ⊆ G, if H is a connected
k-core, then f(H) ≥ k(k+1)λ

2 where λ is the minimum edge
weight, i.e., mine∈E(H) w(e) = λ.

Proof: Since H is a connected k-core, each node v ∈
V (H) has at least k neighbors in H , i.e., degH(v) ≥ k,∀v ∈
V (H) and |V (H)| ≥ k + 1. Thus, the number of edges in H
is |E(H)| =

∑
v∈V (H) deg(v)

2 ≥ k(k+1)
2 . As a result, f(H) =∑

e∈E(H) w(e) ≥ |E(H)| ×mine∈E(H) w(e) =
k(k+1)λ

2 .

Theorem 1. The QICG problem is NP-hard.

Proof: We reduce the well-known NP-complete CLIQUE
decision problem to the QICG problem. Given a graph G =
(V,E) and an integer k, the CLIQUE problem asks whether
there exists a k-clique in G. Given an instance of CLIQUE
problem with G(V,E), we construct an instance of a weighted
graph G′ = (V,E,w) for QICG as follows. For each edge
e ∈ E, we assign the weight of 1 to e, i.e., w(e) = 1. Note
that, for any subgraph H ⊆ G′, the graph weight of H is
f(H) =

∑
e∈E(H) w(e) = |E(H)|.

Next, we show that an instance of CLIQUE is a YES-
instance iff for the corresponding instance of QICG has a
connected k′-core H ′ containing Q with the graph weight
f(H ′) <= k(k−1)

2 , where k′ = k−1 and Q = ∅. The hardness
follows from this.
(⇐) : Suppose a subgraph H = (V (H), E(H)) ⊆ G is a
YES-instance of CLIQUE problem, i.e., H is a k-clique. For
each node v ∈ V (H), deg(v) = k− 1 holds. H is also a con-
nected (k − 1)-core. In addition, f(H ′) = |E(H)| = k(k−1)

2 .
Thus, as Q = ∅ ⊆ V (H ′), H ′ is also a YES-instance of our
problem.
(⇒) : Suppose a subgraph H ′ = (V (H), E(H), w) is a YES-
instance of QICG problem. First, f(H ′) <= k(k−1)

2 . Second,
by Lemma 1, we have f(H ′) ≥ k(k−1)×mine∈E(H)

2 = k(k−1)
2 .

f(H ′) = |E(H)| = k(k−1)
2 . In addition, since H has at least

k nodes as a connected k-core, H is a complete graph of k
vertices. Thus, H is also a YES-instance of CLIQUE problem.

V. ALGORITHMS

In this section, we describe our algorithms for solving
the QICG problem. We first describe an exact solution that
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straightforwardly enumerates all the possible subgraphs and
returns the solution that has the minimum group weight. As
the exact solution incurs a prohibitively high computation
cost, we propose an efficient greedy algorithm that returns
an approximate solution to the QICG problem.

A. An Exact Approach

A straightforward approach to solve the QICG problem
is to compute the set of subgraphs that satisfy the query
participation and connected k-core constraints and returning
the one with the minimum weight as the intimate-core group
solution. Obviously, this method is practically inefficient as
the number of possible subgraphs that satisfy both the query
participation and the connected k-core constraints can be
exponentially large. Moreover, for each candidate subgraph,
we also need to compute their group weights by scanning all
the edges. Next we introduce our algorithm that operates by
initially finding a maximal subgraph that satisfies the query
participation and the connected k-core constraints followed
by the iterative removal of the nodes that are incident to edges
with larger weights to obtain the final approximate solution.

B. ICG-S: A Greedy Method

In this section, we introduce our greedy algorithm that
finds an approximate solution by employing a greedy removal
strategy.

Definition 5 (Node weight). Given a subgraph H ⊆ G and a
node v ∈ V (H), the node weight of v in graph H is defined
as the sum of weights of its incident edges in H , denoted by
fH(v) =

∑
u∈V (H)∩N(v) w((v, u)).

Based on the notion of node weight, we propose a greedy
algorithm, called ICG-S, to find a intimate-core group. ICG-
S algorithm first identifies a maximal connected k-core as a
candidate. Then, the algorithm iteratively deletes the nodes
with the largest node weights from the candidate graph. To
maintain the remaining graph as a connected k-core, the
nodes having degree less than k are also deleted until the
remaining graph does not have a connected k-core containing
Q. The algorithm terminates by returning the connected k-core
that has the minimum group weight among all the possible
candidate groups.

The detailed description of the algorithm ICG-S is depicted
in Algorithm 1. The algorithm takes as input a weighted undi-
rected graph G, a set of query nodes Q, and a positive integer
k. Initially the algorithm identifies the maximal connected k-
core of G: the nodes that have degree less than k and their
incident edges are iteratively deleted from G (lines 1-4). Then,
the algorithm checks whether the set Q of query nodes are
all contained in a connected component of G(lines 5-8). If
the query nodes in Q are not connected in G, the algorithm
terminates with an empty graph (line 6); otherwise finds the
maximal connected k-core denoted by G0 (line 8). Afterwards,
the algorithm starts iteratively shrinking the candidate Gl
where l = 0 into an answer with a small group weight (lines
10-14): the algorithm first computes all the node weights in Gl

Algorithm 1 ICG-S (G, Q, k)
Input: A weighted graph G = (V,E,w), a set of query
nodes Q , a positive integer k.
Output: An approximate intimate-core group of Q.

1: while ∃v ∈ V with degG(v) < k do
2: for u ∈ N(v) do
3: degG(u)← degG(u)− 1;
4: Delete node v and its incident edges from G;
5: if the set Q of query nodes is disconnected in the maximal
k-core, i.e., the current graph G then

6: return ∅;
7: else
8: G0 ← maximal connected k-core of G that contains
Q;

9: l← 0;
10: while Q is connected in Gl do
11: Select a non-query node u∗ with the largest weight

fGl(u
∗), i.e., u∗ ← argmaxu∈V (Gl)−Vq fGl(u);

12: Delete the node u∗ and its incident edges from Gl;
13: Iteratively delete a node u with degGl(u) < k and its

incident edges from Gl;
14: l← l + 1;
15: return Gl−1;

then selects a non-query node u∗ with the largest node weight,
i.e., u∗ ← argmaxu∈V (Gl)−Vq fGl(u) (line 11). Then, node
u∗ and all its incident edges are deleted from graph Gl (line
12). After the deletion of u∗, the neighbors of u∗ may have
degree less than k. Thus, to maintain the remaining graph Gl
as a connected k-core, we iteratively remove the nodes that
have degree less than k from Gl (line 13). This procedure
is repeated until Gl is not a connected k-core containing Q.
Finally, the candidate solution Gl−1 that has the minimum
group weight is returned (line 15).

Example 5. We apply Algorithm 1 on the weighted graph G
in Figure 2 with query Q = {v7, v9} and k = 3. First, the
algorithm detects the connected 3-core of G0 as the subgraph
H1 shown in Figure 3(a). Next, we compute the node weights
and detect node v11 as the node with the maximum weight
fH1(v11) = 5 + 5 + 2 = 12. Then, we delete v11 from G0.
Meanwhile, other two nodes v10 and v12 are also deleted from
G0, since they have degree less than 3. Finally, the algorithm
finds the intimate-core group H2 with the minimum group
weight in Figure 3(b), which is the optimal solution in G.

In the following, we analyze the time and space complexity
of Algorithm 1.

Theorem 2. The method ICG-S in Algorithm 1 takes O(tm)
time and O(m) space, where t ≤ n.

Proof: The time cost of Algorithm 1 is mainly consisted
of two parts: node weight computation and connected k-core
maintenance. First, consider the node weight computation:
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computing the node weights of all the nodes takes O(m) time.
Finding the node with the maximum node weight takes O(n)
time. Since the algorithm runs in t iterations, this step takes
O(tm). Now, consider the identification and the maintenance
of connected k-core. Identifying and maintaining a series of k-
core candidate graph {G0, ..., Gl−1} takes O(m) time in each
iteration. However, checking whether each candidate graph is
connected takes O(m) time in each iteration. Thus, the total
time cost of this step is O(tm). As a result, the overall time
complexity of Algorithm 1 is O(tm).

Now, we analyze the space complexity. For each node
v ∈ Gi, we keep the degree degGi(v) and node weight
fGi(v) which takes O(n) space. Note that, for all candidate
graphs {G0, ..., Gl}, we do not store their nodes and edges.
Instead, we keep the sequence of removed nodes from G0

by assigning remarks of candidate graphs, which takes O(m)
space in all. Therefore, the space complexity is O(m), due to
the assumption n ≤ m.

C. ICG-M: A Fast Greedy Method

Although ICG-S (Algorithm 1) is much more efficient than
the brute-force exact algorithm, it takes O(tm) time for each
query, which is still inefficient for large graphs. Moreover,
since Algorithm 1 deletes only one node from the graph at each
iteration, the number of iterations can render quite large. Thus,
to speed up Algorithm 1, we invoke the technique of bulk
deletion [32] which deletes multiple nodes from the current
candidate graph in each iteration.

Specifically, assume that Gi is the current candidate graph
and let S denote the set of nodes that have the largest node
weight in Gi. Let |S| = γ|V (Gi)| for a γ ∈ (0, 1). In the
node removal step at each iteration, our goal is to remove a
set of nodes S as opposed to one v at a time (lines 11 and
12 in Algorithm 1). Our new approach follows the framework
of Algorithm 1 by simply replacing the single node removal
with this multiple nodes removal strategy. We denoted the new
method as ICG-M.

Now, let’s figure out how many iterations ICG-M takes.
Initially ICG-M finds a candidate graph of maximal connected
k-core as G0, which contains at most n vertices in total, i.e.,
|V (G0)| ≤ |V (G)| = n. Then, in the following process, we
iteratively shrink the candidate graph by removing a set of
nodes S. At the i-th iteration, for current candidate graph
Gi, |S| = γ|V (Gi)| nodes will be deleted from Gi. This
indicates that there remains at most (1− γ)|V (Gi)| nodes in
next candidate graph Gi+1, i.e., |V (Gi+1)| ≤ (1−γ)|V (Gi)|.
Suppose the algorithm needs t′ iterations to terminate, we have
1 ≤ |V (Gt′)| ≤ (1−γ)|V (Gt−1)| ≤ ... ≤ (1−γ)t′ |V (G0)| ≤
(1 − γ)t

′
n. As a result, t′ ≤ dlog 1

1−γ
ne holds. Thus, ICG-

M achieves the time complexity of O(m log 1
1−γ

n), where
γ ∈ (0, 1).

Theorem 3. The method ICG-M that uses the bulk deletion
strategy takes O(m log 1

1−γ
n) time and O(m) space, where

γ ∈ (0, 1).

TABLE II
NETWORK STATISTICS

Network |V | |E| dmax δmax Avg. Edge Weight
Fruit-Fly 3751 3,692 27 4 4.416
DBLP 996,674 3,966,007 16330 286 0.867

Proof: The proof is similar with Theorem 2, which is
omitted.

VI. PERFORMANCE STUDIES

In this section, we conduct extensive experiments over real-
world datasets to evaluate the efficiency and the effectiveness
of the proposed algorithms.

A. Datasets and Experimental Setup

Datasets. We use two real-world weighted networks in our
experiments: Fruity-Fly and DBLP. Fruit-Fly is a protein-
protein interaction (PPI) network, obtained by integrating data
from the BioGRID1 database and data from the STRING
database. The graph contains 3,751 nodes and 3,692 edges,
where the weight of an edge corresponds to the confidence
that the interaction may not exist: the smaller the weight of an
edge is, the larger probability of interaction. DBLP is a collab-
oration network constructed from the DBLP dataset2. A node
represents an author and an edge is added between two authors
if they have co-authored a paper at least once. The weight of
an edge (u, v) is defined as 1

freq(u,v) , where freq(u, v) is the
number of times that u and v have co-authored. The smaller
the weight of an edge is, the more frequent the incident nodes
have ever co-authored. The network contains 996,674 nodes
and 3,966,007 edges. The detailed statistics of datasets are
summarized in Table II, where dmax is the maximum degree
of a node in G and δmax is the maximum coreness of a node
in G.

Comparison Methods. To evaluate the efficiency and effec-
tiveness of finding intimate-core groups methods, we compare
the following algorithms:

1) ICG-S Algorithm 1 that deletes the node with the largest
node weight at each iteration,

2) ICG-M Variant of Algorithm 1 that uses a bulk deleting
strategy at each iteration,

3) k-core The standard core based method that returns the
maximal connected k-core which contains all the query
nodes.

All algorithms are implemented in Java, and all the exper-
iments are conducted on a Windows System with Intel Core
i5-2450M CPU (2.50GHZ) and 12GB main memory.

Queries. For each dataset, we randomly generate 100 sets of
queries. Unless otherwise specified, each query set contains
2 nodes. We set k = 2, and k = 5 for Fruit-Fly and DBLP
datasets respectively by default.

1http://thebiogrid.org/
2http://dblp.uni-trier.de/xml/
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Fig. 4. Running time comparison (in seconds) for varying query set sizes.
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Fig. 5. Effectiveness comparsion of k-core and ICG-M on Fruit-Fly and
DBLP graphs in terms of group weight.

B. Efficiency Evaluation

We first evaluate the running time of ICG-S and ICG-M
for different values of |Q| and k on Friut-Fly and DBLP
networks. We define the running time of a query as infinite if
the algorithm can not terminate in 2 hours.

Varying |Q|. To evaluate the performance of the algorithms
for different query set sizes, we vary |Q| from 1 to 7. The
running time results are shown in Fig. 4. For Fruit-Fly dataset,
both algorithms achieve stable efficiency performance with the
increasing values of |Q|. On the other hand for DBLP, ICG-S
was not able to terminate within 2 hours thus is regarded as
infinite. Results on both datasets show that ICG-M significantly
outperforms ICG-S thanks to the bulk deletion strategy that
requires less number of iterations. These results verify our
time complexity analysis.

Varying k. To evaluate the performance of the algorithms for
different query set sizes, we vary k from 1 to 4 on the Fruit-Fly
dataset and from 3 to 7 on the DBLP dataset. As we can see,
in Fig. 6 (a), both methods take less time when k increases.
In general ICG-M always has better run time than ICG-S.

C. Effectiveness Evaluation

In this experiment, we evaluate the effectiveness of
intimate-core group model in weighted graphs. We compare
our method ICG-M with k-core method on Fruit-Fly and DBLP
datasets. We report the group weights of results generated by
two methods in Fig. 5. We first vary k from 1 to 4 on the small
Friut-Fly graph. In Fig. 5(a), ICG-M achieve much smaller
intimate-core group, which indicates our intimate-core group
model can find a cohesive group with the small group weight.
We also vary k from 3 to 7 on the large DBLP graph. The
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Fig. 6. Efficiency comparsion of ICG-M and k-core on Fruit-Fly and DBLP
graphs in terms of running time (in seconds). The default |Q| = 2.

results shown in Fig. 5 (b) also verify the superiority of our
intimate-core group model.

D. Case Study on DBLP Network

We test our ICG-M algorithm on the DBLP network to
find intimate-core groups. We use the query Q = {“Jiawei
Han”, “Jing Gao”} and set k = 3. Figure 7(a) depicts3 a
connected 3-core of G containing both query nodes. It has
20 nodes, 43 edges, and a group weight of 16.6. As we can
see, most of authors are loosely connected to query authors,
and most of edges are associated with large weights. Our
method ICG-M removes the nodes that are loosely connected
with query nodes, and finds an intimate-core group for Q
shown in Figure 7(b): this community has 5 nodes, 9 edges,
edge density of 0.9, and group weight of 3.2, which is far
less than the group weight of the graph in Figure 7(a). In
addition, we also consider a variant of k-core model to find
the community with the minimum size in unweighted graphs
[13]. We apply this method by assigning equal weights to all
edges in the DBLP network. Figure 7(c) shows one of the
minimum 3-core groups that contain Q. It contains 4 nodes,
4 edges and group weight of 3.4, which is semantically less
intimate than our intimate-core group in Figure 7(b). This is
due to the fact that their method does not consider the edge
weights that reflect the semantic intimacy, and focus solely
on minimizing the size of the community. Overall, the results
clearly shows the superiority of intimate-core group model,
which can detect densely connected and semantically intimate
groups in weighted graphs.

VII. CONCLUSION

In this paper, we study the problem of querying intimate-
core groups in weighted graph. We propose a novel model of
intimate-core group based on the concepts of connected k-
core and group weight. We show that the problem of finding
intimate-core groups is NP-hard and devise an algorithmic
framework that efficient finds the intimate-core groups. Our
greedy algorithm ICG-S, after initially identifying a maximal
connected k-core as a candidate, removes the node with the
largest total weight on its incident edges at each iteration. We
also devise a more efficient algorithm ICG-M that heuristically
removes a batch of nodes to reduce the total number of

3We do not display an entire graph of the maximal connected 3-core in
Figure 7(a), due to the large number of nodes it contains.
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iterations required by ICG-S. We conduct extensive exper-
iments on real-world weighted networks, and demonstrate
the effectiveness and efficiency of our proposed models and
algorithms. Our work opens several interesting avenues for
future work. Some examples include developing I/O-efficient
algorithms for finding intimate-core groups over massive
weighted graphs and investigating intimate-core groups on
location-based social networks.
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