
 

Abstract 

Using network topology and semantic contents to 
find topic-related communities is a new trend in the 
field of community detection. By analyzing texts in 
social networks, we find that topics in networked 
contents are often hierarchical. In most cases, they 
have a two-level semantic structure with general 
and specialized topics, to respectively denote 
common and specific interests of communities. 
However, the existing community detection meth-
ods ignore such a hierarchy and take all words used 
to describe node semantics from an identical per-
spective. This indiscriminate use of words leads to 
natural defects in depicting networked content in 
which the deep semantics is not fully utilized. To 
address this problem, we propose a novel probabil-
istic generative model. By distinguishing the gen-
eral and specialized topics of words, our model not 
only can find community structures more accurately, 
but also provide two-level semantic interpretation 
for each community. We train the model by deriving 
an efficient inference method under the framework 
of variational expectation-maximization. We pro-
vide a case study to show the ability of our algo-
rithm in deep semantic interpretability of commu-
nities. The superiority of our algorithm for com-
munity detection is further demonstrated in com-
parison with eight state-of-the-art algorithms on 
eight real-world networks. 

1 Introduction 
As a fundamental tool for network analysis, community 
detection has gained more and more attention in the scientific 
field. Its primary task of community detection is to identify 
community structures in networks. Community structures 
correspond to functional modules composed of nodes. The 
identification of these modules provides a perspective for 
understanding and analyzing networks. Community detec-
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tion can be used in many areas such as targeted advertising, 
protein network analysis, recommendation system, etc. 

In the early stages of community detection, a large number 
of algorithms emerged, only using topology, such as hierar-
chical clustering [Girvan and Newman, 2002], metric-based 
algorithms [Yang and Leskovec, 2015], generative models 
[Wang et al., 2011; Yang and Leskovec, 2013] and statistical 
inference [Karrer and Newman, 2011; Zhang et al., 2018]. 
However, when there is noise in network topology, the re-
sults of these methods could be improved. In recent years, 
researchers started integrating network topology and content, 
since content is beneficial to compensate for noisy topolog-
ical information. Furthermore, the integration of content 
information provides the possibility of finding semantic 
communities, i.e. to offer semantic interpretation for each 
community. Semantic interpretation usually refers to finding 
the topics that embody the interests or functions of commu-
nities. Several algorithms [Pei et al., 2015; Wang et al., 2016; 
He et al., 2017] have been proposed to find communities with 
semantic interpretation by using both topology and contents. 

However, most existing community detection algorithms 
that attempt to use contents to find topic words to explain 
communities have overlooked an important problem, that is, 
topics in the generation of contents in real life often do not 
come from a unique level. By analyzing a large number of 
texts in social networks, we found that topics contained in 
each document are hierarchical, and in most cases, with a 
two-level semantic structure. Here we call the first level the 
general topic, reflecting a high-level area of this document, 
which often covers several specialized topics. We call the 
second level the specialized topic, i.e. the core thought of this 
document. That way, a document can be summed up with 
general topic as well as specialized topic. Take a citation 
network as an example, in which each paper represents a 
node and the citation relationships between papers represent 
links. We select a node in this network, for example a clas-
sical network community detection article, i.e. [Girvan and 
Newman, 2002] and analyze its content. Through the statis-
tics of topic words of this paper, we find that there is an 
obvious two-level topic structure, as shown in Figure 1. To 
reflect the difference between these two levels of topic words  
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Figure 1: The statistics of two-level topic words in [Girvan and 
Newman, 2002]. The upper words cloud shows general topic words 
and the lower shows specialized topic words. Word size represents 
the frequency of this word in the paper. 

 
more clearly, we divide the partial topic words into two word 
clouds, to denote general and specialized topic, respectively. 
As we can see, the general topic words refer to the large area 
of network analysis. While, the core thought of [Girvan and 
Newman, 2002] is to provide a new perspective of network 
analysis, i.e. community detection, which is reflected by the 
specialized topic words. So, the general and specialized 
topics work together to form the complete semantics of this 
paper. Also, a general topic can derive a number of special-
ized topics though they share different levels of representa-
tive words, e.g., “network” is only from the general topic 
while “community” is only from a specialized topic under 
this general topic, and they cannot switch. 

Unfortunately, the existing methods that integrate network 
topology and contents ignore the two-level structure of topics. 
As a consequence, ignoring the hierarchy structure will lead 
to the inaccurate fitting to the semantic contents. Besides, the 
topology with noise may not be fully compensated by con-
tents, which affects the ability of algorithms to find com-
munities, as well as the richness of semantic interpretation. 
Therefore, a deep analysis of the hierarchical structure of 
content semantics can help not only to better find communi-
ties but also get richer explanations of communities. 

In order to solve the above problem, we propose a novel 
probabilistic generative model for jointly identifying com-
munities and their two-level semantics at the same time. Our 
algorithm can automatically identify that words used to de-
scribe attributes are derived from either a general topic or a 
specialized topic. Due to the full utilization of the hierarchy 
structure of semantic topics in semantic contents, our model 
not only can accurately find community structures, but also 
describe communities using both specialized topics (to de-
note their particular interests) and general topics (to denote 
their shared features with similar communities). We finally 
derive an efficient inference method, based on variational 
expectation maximization, to train the model.  

Also of note, if more information is considered, we may 
have more than two topic levels contained in texts. However, 
considering too many topic levels will often lead to poor 
matching between topology and contents. This mismatching 
issue often occurs in community detection when integrating 
topology and contents [He et al., 2017; Jin et al., 2018]. 
Fortunately, two-level topics are often sufficient to express 
the rich semantic of documents [Xie and Xing, 2013], and 
also provide a good matching between topology and contents. 

So, in this paper, to simplify the model’s complexity, we only 
consider two-level topics which is a special case of mul-
ti-level cases. The contributions of this work are as follows. 

1) We find that topics in the generation of contents in real 
life are often not from a unique level. We design a novel 
model, which can fit semantic contents more accurately by 
distinguishing the general and specialized topic words. The 
hierarchical use of content enables our model to not only find 
communities with similar interests but also provide two-level 
semantic interpretation for each community in the network. 

2) We propose a Bayesian treatment on the model, and 
design an effective inference algorithm based on variational 
expectation maximization to train the model. 

3) The superiority of our algorithm in finding community 
structures is evaluated on eight real-world networks by 
comparing with eight state-of-the-art algorithms. We also 
present a case study to show its superiority in two-level se-
mantic interpretability over the existing methods. 

2 The Model 
We develop a novel probabilistic generative model, 
Two-Level Semantic Community (TLSC). This model works 
on undirected and unweighted attributed networks. 

An attributed network G is represented by n nodes and m 
attributes. The relation among n nodes can be represented by 
an adjacency matrix A = (aij)n×n. If there is an edge between 
nodes vi and vj, aij = 1, and 0 otherwise. W = (wik)n×m denotes 
the attributes matrix, if node vi has the kth attribute, wik = 1, 
and 0 otherwise. We assume that the numbers of communi-
ties, general and specialized topics are c, E and D, respec-
tively. Each community has a specialized topic to denote the 
interest itself, while some related communities, which belong 
to a large area, share a general topic. TLSC aims at fitting 
observed quantities by adjusting latent quantities and model 
parameters. Table 1 shows the notations of important pa-
rameters and Figure 2 the graphical representation of model. 

 
Sets Sign Description 

X: Set of 
observed 
quantities 

A Adjacency matrix 

W Attribute matrix 

c Number of communities 

E, D Number of general and specialized topics 

 : Set  
of latent 
quantities 
 

iz Community assignment of node iv   

ik  1) δik = 0: wik is generated from general topic;  

2) δik = 1: wik is generated from specialized topic 

ikg General topic assignment of attribute ikw   

iks Specialized topic assignment of attribute ikw   

 : Set  
of model  
parameters 
having prior 
 

i Parameter responsible for generating ik   

r Probability that a node belongs to community r 

re  Probability that vi is in eth general topic given it 

belongs to rth community 

edf  Probability that vi is in dth specialized topic given 

it belongs to eth generalized topic     

  : Set of 
parameters 
with no prior

rl Probability that rth and lth communities connected
g

ek Probability that eth general topic generates wik 
s
dk Probability that dth specialized topic generates wik     

Table 1: Notations used in the paper 
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 Figure 2: Graphical representation of TLSC 
 

2.1 Generative Process 
We first introduce how to generate model parameters (having 
prior distribution), and then introduce how we use model 
parameters to generate the latent and observed quantities. 

Generating Model Parameters in Set Π  having Prior 
We propose a Bayesian treatment for the model generation 
process. Instead of assuming a fixed value for each parameter 
in set  , we treat ω , π , H and F as random variables and 
place a prior distribution over them. We then introduce how 
to generate these parameters in   based on some hy-
per-parameters. Hyper-parameters set   include ξ , α , ο and 
γ, which are assumed to be given first. 
1. We use a Dirichlet distribution to generate model param-

eter 1 2π ( , ,..., )c   , where r  denotes the proportion 
of nodes belonging to community r, and satisfies the 
constraint [0,1]r   and 

1
1

c

rr



 . The density func-

tion of Dirichlet distribution is defined as: 
1

1 1 1
(π | ξ) [ ( ) / ( )] ,r

c cc

r r rr r r
p    

  
      

     where ( )   is a Gamma function. The distribution is 
parameterized by a positive real c-dimensional vector 

1 2ξ ( , ,..., )c    . We refer to ξ as hyper-parameter. 
2.  We use a Dirichlet distribution to generate parameter       

matrix H ( )re c E  , in which each row ηr is the general 
topics distribution over community r. H can be also 
viewed as the matrix of probabilistic transition from 
communities to general topics, and satisfies [0,1]re   and 

1
1

e E

ree



 . The density function is defined as: 

1

11 1 1 1

(H | α) (η | ) [ ( ) / ( )] .e

c c E EE

r e e re
er r e e

p p     

   

        

The hyper-parameter is an E-dimensional vector 
1 2α = ( , ,..., )E   . All communities share the same α . 

3.  Similar to H, we use a Dirichlet distribution to generate 
matrix F ( )ed E Df  . F is a matrix of probabilistic transi-
tion from general topics to specialized topics, in which 
each row fe is the specialized topics distribution over 
general topic e, subject to [0,1]edf   and 

1
1

d D

edd
f




 . 

The hyper-parameter used to generate edf  is a 
D-dimensional vector 1 2ο = ( , ..., )D   , defined as: 

1

11 1 1 1

(F | ο) (f | ο) [ ( ) / ( )] .d

E E D DD

e d d ed
de e d d

p p f   

   

        

     Vector ο is shared by all general topics. 

4. We use Beta distribution to generate model parameter 
1 2ω ( , ,..., )n   , in which i is the parameter of Ber-

noulli distribution. Through the Bernoulli distribution, we 
can get the value of ik , 0 or 1. There are two hy-
per-parameters in the Beta distribution, i.e. 0  and 1 .  

      0 11 10 1
0, 1

1 1 0 1

( )
(ω | γ) ( | ) (1 ) .

( ) ( )

n n

i i i
i i

p p       
 

 

 

 
  

     

     These two hyper-parameters are shared by all nodes. 

Generating Observed and Latent Quantities in sets X & Ι  
After the model parameters (having prior) have been gener-
ated, we then use model parameters to generate observed and 
latent quantities. The part is critical in the generation process. 
1.  We first sample the community label iz  of each node iv  

from a multinomial distribution independently. The mul-
tinomial distribution is defined as:   

 ( | π) , 1, 2,..., .i rp z r r c    
2. Given the community labels zi  and zj  of nodes vi  and vj, 

respectively, we sample indicator ija  from a Bernoulli 
distribution, defined as: 

    1(A | ,z) ( | ) ( ) (1 ) .ij ij

i j i j i j

a a

ij i j z z i j z z i j z z
i j i j

p p a d d d d d d   

 

      

     This describes the fitting of the model to network topol- 
ogy from the degree-corrected stochastic block model 
[Karrer and Newman, 2011], where ( )rl c c    is the      
block matrix, and di is the degree of vi. This model per-
forms well in fitting network topology. 

3. Given the community label iz  of node vi, we need to 
sample the general topic label gik of attribute wik of node vi 
from a multinomial distribution, defined as: 

,
1 1 1 1

(G | H,z) ( | η ) ( ) .ik ik

i i ik

n m n m
w w

ik z z g
i k i k

p p g 
   

    

The meaning of H has been explained in last subsection. 
4. Then, in order to determine whether each attribute wik of 

node vi is generated from a general topic or a specialized 
topic, we utilize a binary variable ik from a Bernoulli 
distribution parameterized by i , defined as: 

1

1 1 1 1

( | ω) ( | ) (1 ) .ik ik

n m n m

ik i i i
i k i k

p p      

   

      

     The value of δik determines the generative process in the 
next step. That is:  

1)  If 0ik  , wik will be generated by the general topic. Re-
call that, in step 3 of this subsection we have identified 
this general topic. So here we need to generate the attrib-
ute wik of node vi. To be specific, we sample each attribute 
from a multinomial distribution, defined as: 

    
,

(1 ) (1 )g

1 1 1 1

(W | B ,G) ( | β ) ( ) .ik ik ik ik

ik ik

n m n m
w wg g

ik g g k
i k i k

p p w   

   

    

In gB ( )g
ek E m  , ( 1 | )g

ek ik ikp w g e    denotes the 
probability that the eth general topic generates the kth at-
tribute, which is independent of node vi subject to 

,1
1

ik

m g
g kk




  and , [0,1]
ik

g
g k  . 

 
2) If 1ik   , wik will be generated by a specialized topic, 

given the general topic label gik  of the attribute wik. So 
first we need to sample the specialized topic label from a 
multinomial distribution, which is defined as: 

(1) 

(2) 

(3) 

(6) 

(5) 

(4)  

(7) 

(8) 

(9) 
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,
1 1 1 1

(S | F,G) ( | f ) ( ) .ik ik ik ik

ik ik ik

n m n m
w w

ik g g s
i k i k

p p s f 

   

    

The specific meaning of F has been explained in step 3 of 
the last subsection.  We then generate the attribute wik   of 
node vi from a multinomial distribution, defined as: 

,

s

1 1 1 1

(W | B ,S) ( | β ) ( ) .ik ik ik ik

ik ik

n m n m
w ws s

ik s s k
i k i k

p p w  
   

     

In sB ( )s
dk D m  , ( 1 | )s

dk ik ikp w s d     denotes the 
probability that the dth specialized topic generates the kth 
attribute of node vi, subject to ,1

1
ik

m s
s kk




 and 
, [0,1]

ik

s
s k  .  

    Here the choice of Dirichlet and Beta distribution as priors 
for π , H, F and ω  are not arbitrary. The Dirichlet and Beta 
distribution are conjugate priors of multinomial and Ber-
noulli distribution, respectively. It will give a closed-form 
expression for the posterior and provide mathematical con-
venience when we derive inference. 

2.2 Model Formulation  
We note that the generative process implicitly makes a 
number of conditional independence assumptions among all 
parameters. In Figure 2, each rectangle denotes the repetition 
of the enclosed structure, where the number of repetitions is 
indicated by the subscript. The set of conditional independ-
ence assumptions can be readily read off the graph. A node is 
independent of all its non-descendants given its parent nodes. 

Given the hyper-parameters and the model parameters 
without prior, we decompose the joint distribution over other 
parameters using the probability chain rule and apply the 
conditional independence assumptions, as follows: 

(A, W, z, ,G,S, π, H,F,ω | ,B ,B ,ξ,α,ο, γ)

(π | ξ) (H | α) (F | ο) (ω | γ) (z | π) (A | , z)
.

( | ω) (G | H, ) (S | F,G) (W | B ,G, B ,S, )

g s

g s

p

p p p p p p

p p z p p

 

 
  

   

 

The sub functions in (12) have all been defined in (1) - (11). 
We abbreviate (12) to (X, , | , )p      in the following. 

3 Learning the Model  
We give an efficient variational expectation-maximization 
(EM) algorithm to train the model. We first introduce our 
variational inference process, and then our algorithm. 

3.1 Variational Inference 
The Bayesian model proposed in the previous section defines 
a joint distribution (X, , | , )p     . Based on this model, 
the problem of clustering observed quantities X = (A, W) can 
be transformed into a standard probabilistic inference prob-
lem, i.e. finding the maximum a posteriori (MAP) configu-
ration of the latent quantities conditioning on A and W, the 
posterior function is then defined as: 

( ,G,S, , π, H, F,ω | A, W, , , ,α,ο, γ,ξ).g sp z      
For brevity, we abbreviate this to ( , | , , )p      , where 

(X, , | , )
( , | X, , ) .

(X, , | , )

p
p

p d


   
    

        
 

Since the calculation of (13) is intractable, our basic idea is to 
approximate the posterior by a novel variational distribution 
function q. According to the theory of variational optimiza-
tion, the variational distribution q can be defined as: 

( , | ')= (z, ,G,S,π,H,F,ω | ,T,P, ,ξ,A,O, )

(z | ) ( | T) (G | P) (S | ) (π | ξ) (H | A) (F | O) (ω | )

q q

q q q q q q q q

      

    

     
     

  

Here   is a set of variational parameters. The sub distri-
butions in (14) take exactly the similar parametric forms as 
the sub functions in (1) - (11). The variational parameters in 
set   are free to vary, while the hyper-parameters in   are 
fixed throughout the generative process. Three variational 
parameters need to be emphasized. The first is ( )ir n c    , 
where ( )ir ip z r   is the posterior of node vi belonging to 
community r. The second is ,P ( )ik e n m E    , which denotes 
the probability of wik belonging to general topic e. The third 
is ,=( )ik d n m D    , which denotes the probability that wik be-
longs to specialized topic d on the premise that 1ik  .  
 Our goal is now to find the variational function ( , ')q   |  

closest to the real posterior ( , | X, , )p     . We adopt the 
Kullback-Leibler (KL) divergence to measure the distance b-  
etween the variational function and real posterior, defined as 

( , | ')
( || ) ( , | ') log .

( , | X, , )

q
KL q p q d

p

  
    

        

Note that the KL divergence is a function of the variational 
parameters { T,P, , ,A O, }         , ξ ,  and model parameters 

{ ,B , B }g s   . Our problem is to find the optimal state of 
these parameters that minimizes this KL divergence. How-
ever, since the calculation of the KL divergence involves the 
real posterior ( , | X, , )p     , this cannot be solved directly. 
So instead of directly minimizing the KL divergence, we 
solve an equivalent maximization problem. The objective 
function of this maximization problem is defined as: 

( , , X | , )
( ) ( , | ') log .

( , | ')

p
L q q d

q

   
    

        

Since the sum of these two functions is a constant, that is: 

( || ) ( ) log ( ).KL q p L q p    
In order to maximize the objective function ( )L q , we need 

to take the derivatives of ( )L q with respect to the variational 
parameters { T,P, , ,A O, }         , ξ ,  and model parameters 

{ ,B , B }g s   , and set these derivatives to zeros. 

( ) ( ,, , , , , , , , , , ) 0.
φ ρ σ α ο τ θ β βξ g s

L L L L L L L L L L L
L q


          

  
         

          
     

 

We get the expressions of parameters needing to be updated. 

1

n

r r iri
  


     

1 1

,
1 1 1 1

exp{ [ log (1 ) log(1 )]

[ ) ( )] [ ( ) ( )]}

n c

ir jl ij i j rl ij i j rl
j l
j i

c m E E

r r ik ik e re re
r k e e

a d d a d d

w

   

        

 


 
    

   

  



  

 

    + (

 

, ,
1 1

,
1 1

exp{ [ ( ) ( )] (1 ) log

[( ( ) ( )]}

c E
g

ik e ir re re ik e k
r e

D D

ik d ik ed ed
d d

       

     


 


 

   

 

 

 

    

  
   

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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, ,
1 1

exp{ [ ( ) ( )] log }
E D

s
ik d ik ik e ed ed ik dk

e d

        
 

             

,1 1

m m

re e ik ir ik ei k
w   

 
       

, ,1 1

n m

ed d ik ik ik e ik di k
w    

 
       

0 0
1

m

i ik ik
k

w  


   ,  1 1
1

(1 )
m

i ik ik
k

w  


      

1 0 , ,
1

1
, , , ,

1 1 1 1

{1 exp{ ( ) ( ) log

[ ( ) ( )] log }}

E
g

ik i i ik e e k
e

E D D D
s

ik e ik d ed ed ik d d k
e d d d

      

       





   

   

  



  

  

   
  

~rl ij ir jl
i j

a  

     

,
1

~ (1 )
n

g
ek ik ik ik e

i

w  


  , ,
1

~
n

s
dk ik ik ik d

i

w  

     

where ( )   is the Digamma function. 

3.2 Iterative Optimization Algorithm  
The process of TLSC is shown in Alg. 1. We can use: 1) 
matrix to derive the final community label of each node, 2) 
matrix H and F to find the general topic of each community 
and which specialized topics belong to the same general topic, 
3) the product of H and F (i.e. HF) to find the specialized 
topic of each community, and 4) gB  and sB  to find the key 
words generated by two-level topics, respectively. 

 
Alg. 1: Process of TLSC 
Input: A, W, c, E, D, a threshold  , countmax 

Output: g s,H,F,B ,B   
1. Initialize variational and model parameters randomly
2.  count ← 1 
3.  repeat: 
     (a) Update ,ξ, ,P, ,A,O,T, , ,B Bsg           via (16) - (25)
     (b) Compute ( )( )countL q   
     (c) count ← count+1 
    Until ( ) ( 1)( ) ( )count countL q L q     or count > countmax

3. Compute H and F using the derived ,P,     
 

4 Experiments  
We first use an online music system to assess the interpreta-
bilities of this model.  We then evaluate our approach on 8 
real networks in comparison with 8 state-of-the-art methods. 

4.1 A Case Study 
The dataset we use in this case study analysis is the British 
online music platform Last.fm [Cantador, 2016]. The dataset 
has 1,892 users and 11,946 attributes, the connections be-
tween them form a friendship network. Since no ground-truth 
is known regarding user communities in the network, we set 
the number of communities and specialized topics to 38 (c = 
38, D = 38) as done in [Wang et al., 2016]. We also per-
formed some experiments to vary the number of general 
topics, and found that highly overlapping general topics will 

appear when the number of general topics is greater than 4. 
So we set this number to 4 (E = 4). We found four groups of 
communities under different general topics. The two-level 
semantics of these four groups of communities are shown in 
Figures 3, 4, 5 and 6, respectively. Due to space limitation, 
we only show some of the communities in each group. 

Figure 3 shows a group of communities of electronic mu-
sic lovers. These words in general topic #1 can be used to 
describe all types of electronic music. The communities 
sharing this general topic are fans of different branches of 
electronic music. Community #16 is a group of “high techno” 
music lovers, and the highest probability word in this com-
munity is “techno”. Community #33 is a group of fans of 
“dubstep” music, and the origin of dubstep is related to 
“post-punk”. “New wave” is also a branch of electronic mu-
sic, shown as community #29. Community #27 gathers the 
“lounge” music fans, and this form of music is also called 
“chill-out”. “Trance” fans gather in community #19. 

 

 
 
Figure 3: The first group of communities corresponding to general 
topic #1. The word cloud in the top center shows key words of 
general topic #1. The surrounding five word clouds show special-
ized topic words of communities #16, #33, #29, #27 and #19, re-
spectively. Word sizes are proportional to the probability that they 
belong to a general topic or specialized topic.  

 
Communities in Figure 4 are all related to rock music. 

Words of general topic #2 reflect detailed keywords of rock 
music. Specially, community #1 gathers “heavy-metal” mu-
sic lovers. “Punk” fans gather in community #30. “Progres-
sive-rock” fans are in community #6. Community #12 is a 
group of “alternative-rock” fans.  

 

 
 
Figure 4: The second group of communities corresponding to gen-
eral topic #2. The word cloud in the center shows key words of 
general topic #2. The surrounding word clouds show the specialized 
topic of communities #1, #30, #6 and #12, respectively.  

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 
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According to the words of general topic #3 in Figure 5, we 
can realize that community #36 and #38 both belong to 
“jazz” music. The “acid-jazz” and “smooth-jazz” shown by 
the specialized topic words of community #36 both are fu-
sion jazz. Community #38 gathers lovers of “funk”.  

 

 
 
Figure 5: The third group of communities related to general topic #3. 
The word cloud in the center shows key words of general topic #3. 
The surrounding two word clouds denote specialized topic words of 
communities #36 and #38, respectively. 
 

Words of general topic #4 in Figure 6 show that this is a 
group of pop music enthusiasts. Specialized topic of com-
munity #28 is about Japanese pop, generally called “J-pop”. 
Community #8 gathers fans of “R&B” and “hip-pop”. 
“Soundtrack” and “Folk” lovers gather in community #14 
and #26, respectively. 

 

 
 
Figure 6: The fourth group of communities related to general topic 
#4. The word cloud in the center shows key words of general topic 
#4. The surrounding four word clouds are specialized topic words of 
communities #28, #8, #14 and #26, respectively. 
 

In summary, this case study validates that our model can 
find related communities with similar interests, describing 
their shared characteristics with general topic words and the 
distinct interest tendencies of each community with special-
ized topic. We can get more appropriate explanations for 
communities by differentiating these two-level topics clearly. 

4.2 Quality Evaluation on Real-World Networks 
Here we evaluate the performance of TLSC for detecting 
communities on eight real-world networks with ground truth 
of communities, as shown in Table 2. We consider three 
types of existing community detection methods for compar-
ison. The first type uses network topology alone, including 
DCSBM [Karrer and Newman, 2011] and BigCLAM [Yang 
and Leskovec, 2013]. The second, including SMR [Hu et al., 
2014], exploits only content information, i.e. node attributes. 
The last type uses information of network topology and node 
contents together, including PCL-DC [Yang et al., 2009], 

Block-LDA [Balasubramanyan and Cohen, 2011], CESNA 
[Yang et al., 2013], DCM [Pool et al., 2014] and SCI [Wang 
et al., 2016]. All the above methods require the number of 
communities to be pre-specified, as well as our method. We 
set it to the same value that in the ground truth. In our algo-
rithm, we set the number of specialized topics and general 
topics to 1 and 1/2 of the number of communities. 

We used 4 well-known metrics in community detection for 
evaluation. Accuracy (AC) and normalized mutual infor-
mation (NMI) [Liu et al., 2012] are the first group of evalu-
ation metrics. But some baselines aim at finding overlapping 
communities which cannot be evaluated using AC and NMI. 
We also adopt a new group of evaluation metrics, which 
includes F-score and Jaccard similarity [Yang et al., 2013]. 

 
Datasets n e m c Descriptions [Leskovec, 2016] 
Texas 187 328 1,703 5 The WebKB network consists of four subnetworks from four

American universities, which are Texas, Cornell, Washington 
and Wisconsin, respectively. 

Cornell 195 304 1,703 5
Washington 230 446 1,703 5
Wisconsin 265 530 1,703 5
Twitter 171 796 578 7 Largest subnetwork (id 629863) in Twitter data
Cite 3,312 4,732 3,703 6 A Citeseer citation network 
Cora 2,708 5,429 1,433 7 A Cora citation network 
Pubmed 19,729 44,338 500 3 Publications in PubMed on diabetes 

 
Table 2: Datasets used. n is the number of nodes, e the number of 
edges, m the number of attributes, and c the number of communities. 

  
Metrics Methods             Datasets 

(%) Type Name Texas Cornell Washington Wisconsin Twitter Cora Cite Pubmed

AC 

Topo DCSBM 48.09 37.95 31.80 32.82 60.49 26.57 38.48 53.64
Cont SMR 47.54 31.79 49.77 40.84 38.27 30.28 30.87 39.95
Both Block-LDA 54.10 46.15 39.17 49.62 35.80 24.35 25.52 49.01
Both PCL-DC 38.80 30.26 29.95 30.15 56.79 24.85 34.08 63.55
Both SCI 62.30 45.64 51.15 50.38 50.62 27.98 40.62 N/A

     Both       TLSC 65.02 47.69 51.61 49.23 62.87 47.62 35.74 61.38

NMI

Topo DCSBM 16.65 9.69 9.87 3.14 57.48 4.13 17.07 12.28
Cont SMR 3.55 8.45 7.3 7.21 3.26 1.18 13.28 0.0367
Both Block-LDA 4.21 6.81 3.69 10.09 0 2.42 1.41 6.58
Both PCL-DC 10.37 7.23 5.66 5.01 52.64 2.99 17.54 26.84
Both SCI 17.84 11.44 12.37 17.03 43.00 4.87 19.26 N/A

     Both       TLSC 23.92 13.61 17.63 16.65 49.14 33.20 23.16 19.63

 
Table 3: Comparison of algorithms with disjoint community struc-
tures in terms of AC and NMI. “Topo” and “Cont” denote methods 
using topology and contents, separately; “Both” denotes methods 
using topology and contents together. Best results are in bold. 

 
Metrics Methods             Datasets 

(%) Type Name Texas Cornell Washington Wisconsin Twitter Cora Cite Pubmed

F-score

Topo BigCLAM 20.64 13.23 13.35 12.84 39.79 9.30 18.89 7.72
Both CESNA 23.54 23.48 21.91 23.17 43.82 3.38 31.05 27.97
Both DCM 11.15 14.38 12.45 10.45 10.57 2.50 3.43 0.38
Both TLSC 46.92 38.47 38.67 49.23 49.85 45.74 31.08 38.85

Jaccard
Topo BigCLAM 12.18 7.18 7.25 7.01 26.13 5.01 10.89 4.04
Both CESNA 13.57 13.47 12.40 13.14 29.63 1.73 19.10 16.26
Both DCM 6.03 7.95 6.72 5.54 5.75 1.27 1.76 0.19

     Both       TLSC 34.38 25.14 26.10 28.75 36.65 31.14 18.80 29.15

 
Table 4: Comparison of algorithms with overlapping community 
structure in terms of F-score and Jaccard. 

 
The experimental results are shown in Tables 3 and 4 using 

different types of metrics. TLSC basically almost always 
surpasses state-of-the-art. We can conclude that the hierar-
chical use of contents indeed improves the accuracy of 
community detection. This may be because contents intrin-
sically have more than one level (we used two levels here) 
and we use more information in this new model. 
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5 Conclusion 
In this paper, we have proposed a probabilistic generative 
model on attributed networks, which aims at finding com-
munity structures as well as the two-level semantics de-
scription for communities. This novel Bayesian model is 
trained through the variational expectation-maximization 
framework. Our model can 1) automatically recognize that 
words describing the attributes are either from general or 
specialized topics; 2) find the general topic and specialized 
topic for each community, and find which communities re-
lated to the same area share a common general topic; and 3) if 
some topology information is missing or noisy, the full use of 
semantics can further help finding more accurate community 
structures. A case study shows the good performance of 
TLSC for semantic interpretation of communities; compar-
ison experiments on community detection demonstrate the 
superiority of TLSC in finding community structures. 
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