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a b s t r a c t

The proliferation of rich information available for real world entities and their relationships
gives rise to a general type of graph, namely multi-valued attributed graph, where graph ver-
tices are associated with a number of attributes and a vertex may have multiple values on
an attribute. It would be useful if we can cluster such graphs into densely connected com-
ponents with homogeneous attribute values. Recent work has studied graph clustering in
attributed graphs considering the full attribute space. However, full space clustering often
leads to poor results due to irrelevant attributes.

In this paper, we study subspace clustering in multi-valued attributed graph and propose
an algorithm SCMAG for community detection. Our algorithm uses a cell-based subspace
clustering approach and identifies cells with dense connectivity in the subspaces.
Random walk with restart is used to measure the structural connectivity and attribute
similarity. An indexing scheme is designed to support efficiently calculating cell connectiv-
ity from random walk scores. We also propose a new cell combining strategy on dimen-
sions of categorical attributes and a novel mechanism to handle multi-valued attributes.
Experimental results on IMDB data and bibliographic data demonstrate that SCMAG signifi-
cantly outperforms the state-of-the-art subspace clustering algorithm and attributed graph
clustering algorithm. Case studies show SCMAG can find dense communities with homoge-
neous properties under different subspaces.

� 2015 Published by Elsevier Inc.
44
1. Introduction

Graph clustering has attracted a lot of attention recently in the literature. The goal of graph clustering is to group densely
connected vertices into a cluster. Graph clustering has found broad applications in community detection, image seg-
mentation, identification of functional modules in large protein–protein interaction networks, etc. Nowadays with rich infor-
mation available for real world entities and their relationships, graphs can be built in which vertices are associated with a set
of attributes describing the properties of the vertices. Such attributes can be numerical or categorical. For some attribute, an
entity can have more than one value on that attribute. For example, the genre of a movie can be both ‘‘drama’’ and ‘‘crime’’;
the research topics of a researcher can be ‘‘database’’, ‘‘data mining’’ and ‘‘bioinformatics’’. Multi-valued attributes are very
common in many real world data. This gives rise to a new and more general type of graph, called multi-valued attributed
graph.
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Traditional graph clustering methods [29,21,34,26,27] mainly focus on the connections in a graph and try to achieve a
dense subgraph within a cluster. But these methods do not consider attribute information associated with graph vertices.
On the other hand, a graph summarization method [31] partitions a graph according to attribute values, but does not enforce
dense connections within a partition.

There have been some recent studies [6,37] on clustering attributed graph, i.e., SA-Cluster and its fast version Inc-Cluster,
which partition the graph into several densely connected components with similar attribute values. SA-Cluster finds non-
overlapping clusters in the full attribute space. Although SA-Cluster differentiates the importance of attributes with an attri-
bute weighting strategy, it cannot get rid of irrelevant attributes completely. As graph vertices may have many attributes, the
high-dimensional clusters are hard to interpret, or there is even no significant cluster with homogeneous attribute values in
the full attribute space. If an attributed graph is projected to different attribute subspaces, various interesting clusters
embedded in subspaces can be discovered which, however, may not exhibit in the full attribute space. In this paper, we study
subspace clustering on multi-valued attributed graph, and discover clusters embedded in subspaces. Such subspace clusters
should not only have homogeneous attribute values but also have dense connections, i.e., correspond to communities with
homogeneous properties. The detected clusters in multi-valued attributed graphs can overlap, as the nodes may belong to
multiple clusters in different subspaces. In contrast, non-overlapping community detection partitions the network into sev-
eral disjoint clusters. Thus, overlapping communities are more common and natural than non-overlapping communities in
attributed graphs. For example, an individual in a social network belongs to many social circles corresponding to different
relationships, such as friends, schoolmates, family, research community and so on. Let us look at an example to illustrate the
motivation for this subspace clustering problem.

Fig. 1(a) shows a coauthor network with three attributes {Topic, Affiliation, Country}. A vertex represents an author and an
edge represents the coauthor relationship between two authors. The attributes and their possible values are listed in Table 1.
Topic is a multi-valued attribute and an author can have one or more topics, e.g., author v4. The problem is how to partition
the coauthor network into clusters with close collaborations and homogeneous attribute values.

If we apply SA-Cluster [6], the coauthor network is partitioned into 4 clusters, as shown in Fig. 1(b). But this clustering
result is not satisfactory, because (1) the attribute values in the same cluster are still quite different, if considering the full
attribute space; and (2) v9 is disconnected from his coauthors and forms a single-node cluster. This is not reasonable. In a
high-dimensional attributed graph this problem may become even worse, as it is hard to find clusters with dense connec-
tivity and homogeneous attribute values in the full space.

If we consider subspace clustering, then we can find two clusters under the subspace {Affiliation, Country} in Fig. 2(a), and
another two clusters under the subspace {Topic, Affiliation} in Fig. 2(b). These subspace clusters make much more sense
because they not only have homogeneous attribute values in the respective subspace, but also have a cohesive structure
within a cluster. Note that, if traditional subspace clustering methods, e.g., CLIQUE [2] and ENCLUS [5] are applied, under
the subspace {Affiliation, Country} we will have two more clusters fv1;v4;v6g; fv2;v3;v5;v7g respectively with attribute val-
ues [Univ., AU] and [Univ., CN]. However, we can easily find these two clusters have very sparse connections, thus not closely
collaborating groups.

This example shows neither the recent attributed graph clustering algorithms [6,37] which consider the full attribute
space, nor the traditional subspace clustering algorithms [2,5] which completely ignore the structural connectivity are suit-
able to solve the problem of multi-valued attributed graph clustering. The unique challenges in this problem include the
following:

1. how to discover subspaces under which densely connected clusters with homogeneous attribute values are embedded?
For example, there are meaningful clusters under the two subspaces shown in Fig. 2(a) and (b), but there is no cluster
with dense structural connectivity under the subspace {Topic, Country};

2. how to properly handle categorical attributes and multi-valued attributes. Traditional subspace clustering algorithms,
e.g., CLIQUE [2] and ENCLUS [5], only handle numerical attributes. But in real data categorical and multi-valued attributes
are very common, for example, v4 has two topics as DB and DM. Which cluster should v4 belong to in Fig. 2(b)?

3. how to enforce both structural connectivity and attribute similarity requirements, like in the clusters in Fig. 2 (a) and (b)?

There have been some recent studies which combine attribute subspace clustering and dense subgraph mining on a graph
with feature vectors, e.g., CoPaM [19], GAMer [12,13], DB-CSC [11]. CoPaM and GAMer follow a cell-based subspace clustering
approach to find clusters that show high similarity in a feature subspace and are densely connected in the given graph, while
DB-CSC takes a density-based approach to find subspace clusters. They have the different limitations: (1) CoPaM and GAMer

do not have a cell merging strategy for adjacent cells, and the formation of a cell depends on the initial vertex to start with;
(2) CoPaM strictly requires all nodes in a cluster have the same value on each attribute in the subspace. GAMer and DB-CSC

use a single parameter maximal width w to control the value difference on all the attributes in the concerned subspace within
a cell. But for different attributes, which can be categorical or numerical ones, it is hard to set a uniform threshold to control
the attribute value differences; (3) The time complexity of GAMer and DB-CSC increases exponentially with the number of
vertices in the input graph, which can hardly scale with large graphs. Even though adjusting by various parameter settings,
GAMer is proven to be too slow to generate results in our experiments; and (4) According to the experimental results
reported in [12,13,11], only clusters with small size are found by GAMer and DB-CSC on real datasets, i.e., the average size
of the found clusters is only around 10 in a graph with 10k vertices. Similarly, according to [19], the largest found subgraph
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
http://dx.doi.org/10.1016/j.ins.2015.03.075
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Fig. 1. Running example.

Table 1
Attributes and domains.

Attribute Domain

Topic DB, DM, ML, IR
Affiliation University, Industry
Country Australia, China, India, United States

Fig. 2. Subspace clustering on the coauthor network.
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by CoPaM has 18 vertices in a graph with 1942 vertices. Overall, the efficiency challenge of detecting large communities by
CoPaM, GAMer and DB-CSC have not been verified yet. Large communities naturally exist in many real-world networks, e.g.
in terms of research areas, the research community of data mining in the coauthor network would contain far more than
1000 individuals.

Different from these methods, in this paper we propose a novel subspace clustering algorithm on attributed graphs. Our
clustering framework is similar to that in ENCLUS [5]. We first find interesting subspaces with good clustering using an
entropy-based method. Then we identify cells with dense structural connectivity in the grid under the subspaces.
Clusters are formed by merging adjacent cells. Random walk with restart on an attribute augmented graph is used to mea-
sure the structural connectivity between vertices as well as the attribute similarity. Our main contributions include:

� We study the problem of graph subspace clustering on attributed graphs. We give a cell-based subspace clustering def-
inition, and propose a novel algorithm, called SCMAG (Subspace Clustering on Multi-valued Attributed Graph). With our
formulation, we can discover more meaningful clusters which are closely connected and exhibit high attribute similarity
under some subspaces. Subspace clusters may overlap and they provide multiple angles to exhibit cluster patterns under
different subspaces.
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
http://dx.doi.org/10.1016/j.ins.2015.03.075
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� We use random walk with restart to unify the structural closeness and attribute similarity into a single measure. Based on
the random walk score, we design a novel cell combining strategy on dimensions of categorical attributes and an effective
mechanism to handle multi-valued attributes.
� We consider both structural connectivity and attribute similarity in the subspace clustering process. We design an index

scheme to speedup calculating the connectivity of a cluster. An upper bound is also derived for efficiently pruning clusters
with low connectivity.
� We conducted extensive experiments on real datasets to evaluate the performance of our method in terms of structural

density and attribute value similarity, and demonstrate its superiority over existing methods. We also show some inter-
esting clusters we discovered in the case study.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 introduces the prelimi-
nary concepts and describes our random walk based closeness measure. Our subspace clustering algorithm SCMAG is
described in Section 4. We present extensive experimental results in Section 5. Finally Section 6 concludes our
paper.
2. Related work

Subspace clustering [2,22,18,23] has been studied extensively since late 1990s. CLIQUE [2] was one of the first subspace
clustering algorithms which uses an APRIORI search framework to find dense subspace clusters. ENCLUS [5] is an extension
of CLIQUE which proposes to use entropy to find subspaces with good clustering. DOC [25] is a density-based projective clus-
tering algorithm which uses a Monte Carlo procedure to approximate with high probability an optimal projective cluster.
PROCLUS [1] focuses on the clustering results to find appropriate subspace such that the inner-cluster points are close.
These subspace clustering algorithms only consider numerical attributes but completely ignore the relationships between
objects. Thus they are not suitable to cluster attributed graphs. A comprehensive survey of subspace clustering algorithms
proposed in recent years can be found in [30].

Traditional graph clustering methods [28] aim to have a dense subgraph within a cluster. Many graph clustering
algorithms have been proposed based on various criteria including normalized cuts [29], modularity [21], structural
density [34], weighted kernel k-means [10] or stochastic flows [26]. Satuluri et al. [27] study how to sparsify a graph
for scalable clustering without sacrificing quality. Recently, several new community model based different types of
dense subgraph are proposed for community search, such as quasi-clique community model [8] and k-truss commu-
nity model [14]. But these methods do not consider attribute information associated with graph vertices. Some
recent studies consider summarizing or clustering attributed graphs in the full attribute space. Tian et al. [31] pro-
posed OLAP-style aggregation approaches to summarize large graphs by grouping nodes based on user-selected attri-
butes. This method achieves homogeneous attribute values within clusters, but ignores the structure connectivity.
Recently, Zhou et al. have proposed a graph clustering algorithm, SA-Cluster [6] and its fast version Inc-Cluster

[37], based on both structural and attribute similarities. [4] proposed a spectral method for clustering on attributed
graphs. A parameter-free method [15] is proposed to identify dense clusters and outliers in attributed graphs. Long
et al. [17] proposed a collective factorization model for multi-type relational data clustering. Yang et al. [35] studied
the problem of detecting overlapping communities in networks with node attributes. However, these algorithms
consider clustering in the full attribute space, thus it may be hard to find good clusters in high-dimensional attrib-
uted graphs.

Random walk with restart (RWR) [33] provides a good relevance measure between two nodes in weighted graphs, and it
has wide applications in many domains, such as automatic captioning of images, generalizations to the connection sub-
graphs, personalized PageRank. Jeh and Widom [16] defined a measure called SimRank, which measures the similarity
between two vertices in a graph by their neighborhood similarity. Pons and Latapy [24] proposed a method to use short ran-
dom walks of length l to calculate the similarity between two vertices for community detection in a graph. Desikan et al. [9]
proposed an incremental algorithm to effciently compute PageRank for the dynamic graph by partitioning the graph into a
changed part and an unchanged part. [36] studied a new problem of reverse top-k proximity search in graphs based on ran-
dom walk with restart.

There have been some recent studies which mine cohesive subgraph patterns from a graph with feature vectors, and
combine the concepts of dense subgraph mining and subspace clustering. These methods include CoPaM [19], GAMer

[12,13], and DB-CSC [11]. Following a cell-based subspace clustering approach, CoPaM and GAMer mine clusters contain-
ing all objects falling within a cell, i.e., the attribute values differ by at most a given threshold, with some density con-
straint. However, neither methods have a cell merging strategy to merge adjacent cells, which is different from our work.
The formation of a cell also depends on the initial vertex to start with and its feature vector. DB-CSC takes a density-
based approach for finding subspace clusters. Similar to GAMer, DB-CSC uses a single parameter maximal width w to con-
trol the value difference on all the attributes in the concerned subspace within a cell. But for different attributes, which
can be categorical or numerical ones, it is hard to set a uniform threshold to control the attribute value differences.
Another issue is that the time complexity of GAMer and DB-CSC increases exponentially with the number of vertices
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
http://dx.doi.org/10.1016/j.ins.2015.03.075
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in the graph, which can hardly scale with large graphs. In addition, according to the experimental results in [12,13,11],
only clusters with small size are found and shown by GAMer and DB-CSC on real datasets, i.e., the average size of the
found clusters is only around 10 in a graph with 10k nodes.

3. Preliminary concepts

In this section, we firstly give our problem definition and a brief introduction of ENCLUS, a subspace clustering method for
numerical data, on which our graph clustering method is built. Then we describe how to measure the structural connectivity
and attribute similarity of graph vertices. We also propose a novel strategy to handle the categorical and multi-valued attri-
butes in graph subspace clustering.

3.1. Problem definition

Definition 3.1 (Multi-valued Attributed Graph). A multi-valued attributed graph is denoted as G ¼ ðV ; E;A;wÞ, where V is the
vertex set, E is the edge set, A ¼ fA1; . . . ;Adg is a set of categorial or totally ordered numerical attributes. Each vertex v 2 V is
associated with an attribute vector AðvÞ ¼ ½A1ðvÞ; . . . ;AdðvÞ�, where AiðvÞ is the attribute value that vertex v has on attribute
Ai. The domain of a categorical attribute Ai 2 A contains a finite set of values, denoted as DomðAiÞ ¼ fai1; . . . ; aini

g; jDomðAiÞj ¼
ni. If Ai is a multi-valued categorical attribute, AiðvÞ contains a set of attribute values from DomðAiÞ, i.e., AiðvÞ# DomðAiÞ. The
domain of a numerical attribute Aj 2 A is R. w : E # Rþ is an edge weight function. For each ðu;vÞ 2 E, the edge weight is
denoted as wðu;vÞ. We denote the size of vertex set as jV j ¼ N.

Many real-world networks can be represented as multi-valued attributed graphs with weighted edges, such as co-author
network and IMDB network. Continue with our example in Fig. 1(a), the weight of edge ðu;vÞ in co-author networks can be
assigned with the number of co-authored papers pubished by authors u and v, which represents the collaboration strength.
The larger weight of wðu;vÞ is, the stronger relationship between u and v is.

Remark 3.1. In the paper, our proposed subspace clustering method can also handle graphs with multi-valued edge labels,
in which the edges can be associated with multiples values in attributes. To handle such a graph, denoted as G, with multi-
valued edge labels, we need to construct a new attributed graph G0 as follows. For each edge ðu;vÞ in G, a new vertex euv is
inserted into G0. We assign euv with the same attribute vector of edge ðu;vÞ. For two edges ðu;vÞ and ðu;wÞ adjacent to u in G,
a new edge ðeuv ; euwÞ is added between two vertices euv ; euw in G0. Then, G0 is a multi-valued attributed graph by Definition
3.1, our subspace clustering methods can be applied on G0.

If an attribute set S#A, we say S is a subspace of A. The problem of subspace clustering on a multi-valued attrib-
uted graph is to find a set of subspaces fS1; . . . ;Smg with good clustering, where Si #A;1 6 i 6 m. Under each sub-
space Si, discover embedded clusters which have both high structural connectivity and high attribute similarity in
the concerned subspace. We will define the formal requirements of ‘‘good subspace’’ and ‘‘embedded clusters’’ in
Section 4.1.

3.2. ENCLUS: a brief introduction

Our proposed graph subspace clustering algorithm is built based on ENCLUS [5], an entropy-based subspace clustering
method on data objects with numerical features. We briefly describe ENCLUS here. It first divides each numerical attribute
into intervals like ½l;uÞ, where l and u denote the interval lower bound and upper bound, respectively. Then the space is par-
titioned to form a grid. A cell has the form fc1; c2; . . . ; cdgwhere ci ¼ ½li;uiÞ is an interval of attribute Ai. The subspace entropy
is defined as follows.

Definition 3.2 (Subspace Entropy). Given a set of attributes S ¼ fA1; . . . ;Akg # A, the subspace entropy of S is defined as
Please
http:/
HðA1; . . . ;AkÞ ¼ �
X

a12DomðA1Þ
� � �

X
ak2DomðAkÞ

pða1; . . . ; akÞ log pða1; . . . ; akÞ ð1Þ
where pða1; . . . ; akÞ is the percentage of graph vertices whose attribute value vector is ½a1; . . . ; ak�.
The framework of ENCLUS consists of the following three steps.

1. Find interesting subspaces with good clustering by an entropy-based method;
2. Find clusters in the identified subspace by merging adjacent dense cells;
3. Output the clusters.
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
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The term ‘‘good clustering’’ means that a subspace contains a good set of clusters. Formally the goodness of a sub-
space is measured by entropy. Given an entropy threshold, a subspace whose entropy is below the threshold is consid-
ered to have good clustering. ENCLUS uses a bottom-up approach similar to APRIORI to find good subspaces. It starts
with finding one-dimensional subspaces with good clustering. Then it generates the candidate two-dimensional sub-
spaces from the one-dimensional ones and checks the candidates against the raw data to identify those that actually
have good clustering. This process is repeated with increasing dimensionalities until no more subspaces with good clus-
tering are found. The correctness of this bottom-up approach is based on the downward closure property of entropy, as
proved in [5].

Under each good subspace, adjacent dense cells are combined to form a cluster. Two k-dimensional cells are called ‘‘adja-
cent’’ if they have the same attribute value intervals on k� 1 dimensions, and on the remaining dimension, the interval upper
bound of a cell is equal to the interval lower bound of the other cell. Finally the clusters are returned to users.

3.3. A unified closeness measure

ENCLUS only considers the attribute values of data objects, but ignores the connections between them. In our
graph subspace clustering problem, to calculate the structural connectivity of vertices, we propose to use random
walk with restart to measure the closeness between two vertices. According to the properties of small-world net-
works, the average shortest distance between two nodes would be significantly small. For example, in the Facebook
social network, the average shortest distance was 4.74 in 2011 [3]. This follows from the fact that two ‘‘distant’’
can have a short path flow through hubs. In this case, the number of paths between two nodes would be more effec-
tive for measuring their connectivity than the accurate shortest distance. As a result, it is better to use random walk
with restart to measure the connectivity of vertices, than simple distance measures, e.g., short distance and nearest
neighbors.

Definition 3.3 (Neighborhood Random Walk). Let P be the N � N transition probability matrix of a graph. Given L as the
maximum length a random walk can go, c 2 ð0;1Þ as the restart probability, the neighborhood random walk matrix is
Please
http:/
R ¼
XL

l¼1

cð1� cÞlPl ð2Þ
The random walk score of two vertices v i;v j 2 V is Rðv i;v jÞ, measuring the probability that v i can reach v j within L
steps.

For the attributes on graph vertices, we do the following preprocessing. If Ai is a numerical attribute, it is discretized into
ni intervals first. There are some studies, e.g., MAFIA [20], which consider adaptive interval partitioning of numerical attri-
butes in subspace clustering. But this is not the focus of our work. In our more general problem setting, we also consider
categorical and multi-valued attributes. We have to address two problems: (1) how to measure the similarity between
two categorical values and determine which categorical values are ‘‘adjacent’’ for merging cells with categorical attributes?
and (2) if a vertex has multiple values on one attribute, which cell should the vertex be assigned to in the formed grid? To
solve these problems, we consider the neighborhood of a vertex to exploit the connections with its neighbors as well as the
attribute similarities with its neighbors. We construct the attribute augmented graph similarly as in [6] [32]. The definition is
as follows.

Definition 3.4 (Attribute Augmented Graph). Given a multi-valued attributed graph denoted as G ¼ ðV ; E;A;wÞ where
A ¼ fA1; . . . ;Adg. The domain of an attribute Ai is denoted as DomðAiÞ ¼ fai1; . . . ; aini

g; jDomðAiÞj ¼ ni. An attribute augmented
graph is denoted as Ga ¼ ðV [ Va; E [ EaÞ, where Va ¼ fv ijj1 6 i 6 d;1 6 j 6 nig is the set of attribute vertices. An attribute
vertex v jk 2 Va represents the value ajk on attribute Aj. An edge ðv i;v jkÞ 2 Ea iff ajk 2 Ajðv iÞ, i.e., vertex v i has value ajk on
attribute Aj. An edge ðv i;v jÞ 2 E is called a structure edge and an edge ðv i;v jkÞ 2 Ea is called an attribute edge.

For instance, we construct an attribute augmented graph shown in Fig. 3(b) for the co-author network in Fig. 3(a). In this
attribute augmented graph, we add a set of dummy vertices Vafv8;v9;v10;v11; v12g, e.g. v8, which represents the attribute
value ‘‘DB’’ in ‘‘Topic’’. Authors with corresponding attribute values are connected to the two vertices respectively in dashed
lines, e.g. the edge between v1 and v8, indicating that author v1 has the value ‘‘DB’’ in the attribute of ‘‘Topic’’. With the
newly inserted attribute edges, authors who are originally connected become more densely conncetted if they share com-
mon attribute values, e.g., v5 and v7.

With such a graph augmentation, we express the attribute similarity as vertex closeness in the graph: two vertices which
share an attribute value are connected by a common attribute vertex. In the attribute augmented graph, two structure ver-
tices v i and v j are close either if they are connected through many other structure vertices, or if they share many common
attribute vertices as neighbors, or both. We simulate a length-L neighborhood random walk on the attribute augmented
graph, which goes through both structure edges and attribute edges. The random walk score effectively combines structural
closeness and attribute similarity into a unified closeness measure between graph vertices. The transition matrix PA of the
attribute augmented graph is a jV [ Vaj � jV [ Vaj matrix. We denote jVaj ¼ NA.
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
/dx.doi.org/10.1016/j.ins.2015.03.075
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We use Nðv iÞ to denote the set of structure vertices in v i’s neighborhood, i.e., Nðv iÞ ¼ fv jjv j 2 V ; ðv i;v jÞ 2 Eg, and use
NAðv iÞ to denote the set of attribute vertices in v i’s neighborhood, i.e., NAðv iÞ ¼ fv jkjv jk 2 Va; ðv i;v jkÞ 2 Eag. For any v i 2 V ,
we assume

P
v j2Nðv iÞPAðv i;v jÞ ¼

P
v jk2NAðv iÞPAðv i;v jkÞ ¼ 0:5, i.e., structure edges take 0.5 transition probability and attribute

edges take 0.5 transition probability. Thus the transition matrix PA is defined as follows. The transition probability from ver-
tex v i to v j is
Please
http:/
pv i ;v j
¼

wðv i ;v jÞ
2
P

ðv i ;vk Þ2E
wðv i ;vkÞ

; if ðv i;v jÞ 2 E

0; otherwise

8<: ð3Þ
Similarly, we define the transition probability from vertex v i to attribute vertex v jk as
pv i ;v jk
¼

1
2jAjjAjðv iÞj

; if ðv i;v jkÞ 2 Ea

0; otherwise

(
ð4Þ
The transition probability from vertex v jk to vertex v i is
pv jk ;v i
¼

1
jNðv jkÞj

; if ðv jk; v iÞ 2 Ea

0; otherwise

(
ð5Þ
where Nðv jkÞ denotes the set of vertices in v jk’s neighborhood. The transition probability between two attribute vertices v ik

and v jl is 0 since there is no edge between them.
pv ik ;v jl
¼ 0;8v ik; v jl 2 Va ð6Þ
Integrating Eqs. (3)–(6) together, we can get the transition probability matrix PA on the attribute augmented graph.
Following Eq. (2) we can compute the random walk matrix RA from PA. RAðv i; v jÞ is the closeness between vertices v i and
v j in the attribute augmented graph.

We denote RA as four submatrices
RA ¼
QVV QVA

QAV QAA

� �

where QVV is an N � N matrix representing the random walk scores between structure vertices, QVA is an N � NA matrix
representing the random walk scores from structure vertices to attribute vertices, QAV is an NA � N matrix representing
the random walk scores from attribute vertices to structure vertices, and Q AA is an NA � NA matrix representing the random
walk scores between attribute vertices.
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
/dx.doi.org/10.1016/j.ins.2015.03.075
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We further perform a row normalization of Q VV as
Please
http:/
eQ VV ðv i; v jÞ ¼
Q VV ðv i; v jÞP

vk2V Q VV ðv i; vkÞ
ð7Þ
With the normalized scores, it is easier for users to determine the cluster connectivity threshold, i.e., not depending on the
absolute scores which may vary from graph to graph.
3.4. Combining cells with categorical attributes

Let us get back to the first problem: how to measure the similarity between two categorical values and determine which cate-
gorical values are ‘‘adjacent’’ for merging cells with categorical attributes? As an example, consider attribute Conference in a
bibliographic data, with its domain {VLDB, SIGMOD, ICDE, ICCV, CVPR, . . .}. How can we tell which conferences are more simi-
lar and which are less similar? Intuitively, if many authors publish in both VLDB and SIGMOD, then VLDB and SIGMOD are
similar. Consider the random walk submatrix QAA. For two different values ail; air of the same categorical attribute Ai, the
entry Q AAðv il;v irÞ measures the random walk closeness between these two values. The rationale is, if ail and air of attribute
Ai are shared by many vertices, they will have a high random walk score, indicating their closeness in the attribute aug-
mented graph. Thus we define the categorical value adjacency based on random walk score. For an attribute value ail, the
adjacent values are defined as
AdjðailÞ ¼ fairjTopKni
r¼1;r–lðQAAðv il; v irÞÞg ð8Þ
The adjacent values of a categorical attribute value ail is the set fairg with the top-K largest random walk score QAAðv il;v irÞ.
Then in the cell-based subspace clustering approach, we can combine two k-dimensional cells, if they share common values
in ðk� 1Þ dimensions, and on the remaining dimension they have either adjacent numerical values or adjacent categorical
values as defined above.
3.5. Handling multi-valued attributes

Let us consider the second problem we listed: if a vertex has multiple values on one attribute, which cell should the vertex be
assigned to in the formed grid? Consider vertex v4 in Fig. 1(a), which has values DB and DM on attribute Topic. Should v4 be
assigned to the ‘‘DB’’ cluster or the ‘‘DM’’ cluster? If we consider v4’s neighborhood, we can find v4 only has one collaborator
v3 working on DB, but has three collaborators v5; v6;v7 working on DM. This indicates DM is more important to v4 than DB
(in this example we assume v4 has the same collaboration strength with each of his collaborators, as concrete edge weights
are not given in Fig. 1(a). In our algorithm, we actually consider the edge weights). To distinguish the multi-values, we con-
sider the random walk submatrix QVA. An entry Q VAðv i;v jkÞ measures the closeness between vertex v i and attribute vertex
v jk. The rationale is, besides vertex v i itself has attribute value ajk, if many of v i’s neighbors also have attribute value ajk;v i

and v jk will have a high random walk score, indicating their closeness in the attribute augmented graph. Thus we will reas-
sign the attribute value ajk to v i which has the maximum closeness to v i, i.e.,
Ajðv iÞ ¼ ajk; k ¼ arg max
nj

r¼1
Q VAðv i; v jrÞ ð9Þ
Finally, each vertex is associated with an attribute vector containing a single value in each attribute.

Remark 3.2. Assume that for a co-author network in Fig. 1(a), one author v4 has the same number of collaborators
respectively working on DB and DM in its neighborhood. But, for v4, its closeness value to attributes ‘‘DB’’ and ‘‘DM’’ could
still be different. This is because even with the same number of ‘‘DB’’ and ‘‘DM’’ authors, the neighborhood structure of ‘‘DB’’
and ‘‘DM’’ clusters can still differ. Then, in Eq. (1), the closeness values are calculated based on the graph structure and
attributes vectors of v4’s neighbors, which would be different. Actually, in real applications, the tie closeness will seldomly
happen, which helps to choose a unqiue attribute value with the highest closeness score.
4. Our algorithm SCMAG

Our graph subspace clustering framework is similar to that of ENCLUS described in Section 3.2. In the following, we will
first define the criteria for interesting subspace with good clustering tendency and find such subspaces. As each attribute Ai

has ni values, for a subspace fA1; . . . ;Akg, the k-dimensional space is partitioned to form a grid. We will identify cells in the
grid with high coverage and high connectivity. Adjacent qualified cells will be merged to form a maximal cluster in the
subspace.
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
/dx.doi.org/10.1016/j.ins.2015.03.075
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4.1. Criteria of subspace clustering

We follow the entropy-based subspace clustering method ENCLUS [5] to find interesting subspaces. The subspace entropy
is defined in the Definition 3.2.

Remark 4.1. Note that the definition of subspace entropy assumes that each attribute of an object only has one value. Thus,
ENCLUS cannot be directly applied to compute the subspace entropy due to the multi-values in a single attribute. On the
other hand, our method SCMAG can handle such graphs. The variant methods of ENCLUS for multi-valued attribute graphs
will be discussed in Section 5.1.

In addition, we want the attributes of a subspace to be correlated. If the attributes are independent of each other, the sub-
space does not give more information than looking at each attribute independently. We measure the correlation of a sub-
space S using mutual information between all individual dimensions of the subspace as below.
Please
http:/
IðfA1; . . . ;AkgÞ ¼
Xk

i¼1

HðAiÞ � HðA1; . . . ;AkÞ
We consider a subspace S ¼ fA1; . . . ;Akg as an interesting subspace, if S is more strongly correlated than any of its subsets
S0 #S. To measure the increase in correlation of a subspace, we define the interest of a subspace.

Definition 4.1 (Subspace Interest). Given a set of attributes S ¼ fA1; . . . ;Akg # A, the subspace interest of S is defined as the
minimum increase in correlation of S over its ðk� 1Þ-dimensional subsets.
interestðA1; . . . ;AkÞ ¼ IðfA1; . . . ;AkgÞ �max
i

IðfA1; . . . ;Akg � fAigÞ
Given a maximum entropy threshold emax and a minimum interest threshold imin, we want to find all subspaces S#A such
that HðSÞ 6 emax and interestðSÞP imin. emax guarantees the low entropy of generated subspaces, and imin contributes to throw
out subspaces with low increased correlation.

Under a subspace S ¼ fA1; . . . ;Akg, the space is partitioned to form a grid. We identify cells with high coverage and con-
nectivity, according to the following definition.

Definition 4.2 (Coverage and Connectivity). Given a cell u in a subspace, the coverage of u is measured by the number of
vertices in u, i.e., VðuÞ ¼ juj. The connectivity of u is measured by the sum of random walk scores of all pairs of vertices,
divided by the cell size
DðuÞ ¼
P

v i ;v j2u
eQ VV ðv i;v jÞ
juj ð10Þ
Given a minimum coverage threshold vmin and a minimum connectivity threshold dmin, we only consider cells such that
VðuÞP vmin and DðuÞP dmin. We will discuss the parameter setting in Section 4.5.
4.2. Properties

From the above definitions of subspace clustering criteria, we can derive two lemmas as below.

Lemma 4.1. If a k-dimensional subspace fA1; . . . ;Akg has entropy below the threshold emax and there exists at least one high
coverage cluster C, then the property is established in any ðk� 1Þ-dimensional projections of this space.

This property has been proved in [2,5]. From Lemma 4.1, we can use the bottom-up search strategy to find interesting
subspaces level by level.

Lemma 4.2. Suppose two cells u1;u2 both satisfy the dmin and vmin thresholds. When merging u1 and u2 to form a cluster
C ¼ u1 [ u2;C also satisfies VðCÞP vmin and DðCÞP dmin.
Proof 4.1. VðCÞ ¼ Vðu1Þ þ Vðu2ÞP vmin,
DðCÞ ¼
P

v i ;v j2u1
eQ VV ðv i; v jÞ þ

P
v i ;v j2u2

eQ VV ðv i; v jÞ
ju1j þ ju2j

þ
P

v i2u1 ;v j2u2
eQ VV ðv i; v jÞ þ

P
v i2u2 ;v j2u1

eQ VV ðv i;v jÞ
ju1j þ ju2j

P

P
v i ;v j2u1

eQ VV ðv i;v jÞ þ
P

v i ;v j2u2
eQ VV ðv i;v jÞ

ju1j þ ju2j
P
ju1j � dmin þ ju2j � dmin

ju1j þ ju2j
¼ dmin �
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
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4.3. Mining subspace clusters

Algorithm 1. SCMAG

Input: G; emax; imin;vmin, and dmin.
Output: all clusters satisfying coverage and connectivity requirements in interesting subspaces.
P
h

lease cite this a
ttp://dx.doi.org/
1:
 Calculate the unified random walk matrix RA
2:
 Row normalize the submatrix QVV of RA as eQ VV
3:
 Assign each vertex v i with new attribute value in multi-valued attributes according to Eq. (9)

4:
 Let k ¼ 1 and Sk be all one-dimensional subspaces

5:
 for each subspace s 2 Sk do

6:
 if HðsÞ 6 emax, and exists a cell u in s s.t. VðuÞP vmin then

7:
 CSk ¼ CSk [ fsg

8:
 if interestðsÞP imin, and exists a cell u in s s.t. DðuÞP dmin then

9:
 Result ¼ Result [ Find� ClustersðsÞ
10:
 Skþ1 ¼ Generate� CandidateðCSkÞ

11:
 if Skþ1 ¼ ;, then go to step 13

12:
 k ¼ kþ 1, go to step 5

13:
 Output clusters in Result
According to Lemma 4.1, we will use a bottom-up search strategy, similar to the APRIORI style approach, to find subspaces
satisfying emax and imin thresholds. We will start with 1-dimensional subspaces and join two k-dimensional subspaces which
share a common prior ðk� 1Þ-dimensional subspace to form a ðkþ 1Þ-dimensional subspace candidate by a procedure
Generate� Candidate. If a subspace violates emax requirement, we do not need to further grow it. Once interesting subspaces
are found, a procedure Find� Clusters is invoked to find subspace clusters. Algorithm 1 shows the subspace clustering algo-
rithm SCMAG.

Algorithm 2 lists the procedure Find� Clusters for finding subspace clusters. We first identify cells with high coverage and
connectivity in a subspace s. Then we perform a depth-first search to merge adjacent cells to form a maximal cluster.
DFS� Find� Clusters is a recursive algorithm which considers each attribute value ajrj

of a cell u in the k-dimensional space
and tries to combine u with other cells having adjacent values to ajrj

on attribute Aj and identical values on the remaining
attributes. Finally all cells with the same label cluster num forms a maximal cluster in the subspace.

Algorithm 2. Find-Clusters

Input: All cells in subspace s ¼ fA1; . . . ;Akg; vmin, and dmin.
Output: all clusters in s.
1:
 Initialize cluster num ¼ 1

2:
 for each cell u in s do

3:
 if VðuÞ < vmin or DðuÞ < dmin then

4:
 Remove u from s

5:
 for each cell u in s do

6:
 if u:clu id is undefined then

7:
 DFS� Find� Clustersðu; cluster numÞ

8:
 cluster num = cluster numþ 1

9:
 Procedure DFS� Find� Clusters
Input: starting cell u ¼ ½a1r1 ; . . . ; akrk
�; cluter num.
Output: a maximal cluster.

10:
 Set u:clu id ¼ cluter num

11:
 for j ¼ 1 : k do

12:
 for each ajt 2 Adjðajrj

Þ do

13:
 ut ¼ ½a1r1 ; . . . ; ajt ; . . . ; akrk

�

14:
 if ut:clu id is undefined then

15:
 DFS� Find� Clustersðut ; cluster numÞ
rticle in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
10.1016/j.ins.2015.03.075
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4.4. Computing cell connectivity efficiently

We impose a connectivity requirement on a cell u, i.e., DðuÞ ¼
P

vi ;vj2u
eQ VV ðv i ;v jÞ

juj Pdmin. It takes Oðjuj2Þ to calculate DðuÞ for a

cell u. To speed up the connectivity calculation, we design an index and a connectivity upper bound to prune cells with low
connectivity.

The index is based on the following observation: for a vertex v 2 V , there are only a small number of vertices with high
closeness to v, but a majority of vertices have very low closeness to v. Fig. 4 shows the random walk scores of a vertex to all
other vertices in a graph based on a bibliographic data we used in experiments. We can observe that most of the vertices
have a very low random walk score close to 0. Therefore, we maintain two vertex sets for each vertex – one set of vertices
with high closeness, denoted as HC, and the other set of vertices with low closeness, denoted as LC. We will start computing
DðuÞ from the HC sets of vertices in u and see if we can stop early and tell whether DðuÞP dmin or not.

We build the HC and LC sets for each vertex in V as follows. Consider the random walk submatrix eQ VV . For a vertex v i 2 V ,

we sort all entries eQ VV ðv i;v jÞ;8v j 2 V in the decreasing order. We insert the sorted entries eQ VVðv i;v jÞ into v i:HC one by one

until
P

v j2v i :HC
eQ VV ðv i;v jÞP d, where d 2 ½0;1Þ is a fixed threshold for all vertices. The remaining entries are inserted into

v i:LC. Table 2 shows the HC and LC sets for vertices in a graph under the setting d ¼ 0:75. As we can see, the HC set usually
contains a small number of vertices with high closeness, and LC contains a large number of vertices with low closeness.

For a cell u, we calculate DðuÞ in two stages. In the first stage we calculate the closeness entries in the HC sets only, as an
estimation of the true DðuÞ value:
Please
http:/
DHCðuÞ ¼
P

v i2u

P
v j2u;v j2v i :HC

eQ VV ðv i;v jÞ
juj ð11Þ
If DHCðuÞP dmin, we can stop early and conclude DðuÞP dmin. If DHCðuÞ < dmin, we move to the second stage to compute DLCðuÞ as
DLCðuÞ ¼
P

v i2u

P
v j2u;v j2v i :LC

eQ VV ðv i;v jÞ
juj ð12Þ
Finally we have DðuÞ ¼ DHCðuÞ þ DLCðuÞ. In addition, we can also derive an upper bound of DðuÞ to prune those cells with
DðuÞ < dmin.

Lemma 4.3. Consider a cell u ¼ fv1; . . . ;vkg. We compute the cell connectivity DðuÞ in two stages. In the first stage, we calculate
DHCðuÞ according to Eq. (11) by iterating over each vertex in u. During this stage, if DHCðuÞP dmin, we can stop and conclude
DðuÞP DHCðuÞP dmin. In the second stage, we calculate DLCðuÞ according to Eq. (12) by iterating over each vertex in u.

In the first stage, assume we have iterated over vertices fv1; . . . ;v lg. Let w ¼
Pl

i¼1
P

v j2u;v j2v i :HC
eQ VV ðv i;v jÞ, then we can have

an upper bound as bD1ðuÞ ¼ wþk�dl
juj .

In the second stage, assume we have iterated over vertices fv1; . . . ;v lg. Let w0 ¼
Pk

i¼1
P

v j2u;v j2v i :HC
eQ VV ðv i;v jÞþPl

i¼1
P

v j2u;v j2v i :LC
eQ VV ðv i;v jÞ, then we can have an upper bound as bD2ðuÞ ¼ w0þð1�dÞðk�lÞ

juj .

If either bD1ðuÞ < dmin or bD2ðuÞ < dmin, then we can immediately stop and conclude DðuÞ < dmin.

Proof 4.2. The foundation to derive the upper bounds is that, eQ VV is a row normalized matrix. That is, 8v i 2 V , the following
holds:
 X

v j2v i :HC

eQ VV ðv i; v jÞ þ
X

v j0 2v i :LC

eQ VV ðv i;v j0 Þ ¼ 1 ð13Þ
cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
/dx.doi.org/10.1016/j.ins.2015.03.075
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Vertex HC set LC set

v1 ðv5;0:5Þ; ðv2;0:28Þ ðv3;0:01Þ; . . . ; ðvn;0:001Þ
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. . . . . . . . .

vn ðv10 ;0:5Þ; ðv8;0:35Þ ðv7;0:01Þ; . . . ; ðv1;0:002Þ
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According to the definitions of HC and LC sets, we have:
Please
http:/
X
v j2v i :HC

eQ VV ðv i;v jÞP d ð14Þ

X
v j2v i :LC

eQ VV ðv i; v jÞ 6 1� d ð15Þ
Based on these properties we can derive:
DðuÞ ¼
Pk

i¼1

Pk
j¼1
eQ VV ðv i; v jÞ
juj ¼

Pl
i¼1

P
v j2u;v j2v i :HC

eQ VV ðv i;v jÞ
juj þ

Pl
i¼1

P
v j2u;v j2v i :LC

eQ VV ðv i;v jÞ
juj þ

Pk
i¼lþ1

Pk
j¼1
eQ VV ðv i; v jÞ
juj

6
wþ ð1� dÞlþ ðk� lÞ

juj ¼ wþ k� dl
juj ¼ bD1ðuÞ
The inequality holds because
Pl

i¼1

P
v j2u;v j2v i :LC

eQ VV ðv i;v jÞ 6 ð1� dÞl according to Eq. (15), and
Pk

i¼lþ1

Pk
j¼1
eQ VV ðv i;v jÞ 6 k� l

according to Eq. (13). Thus we can derive the upper bound bD1ðuÞ.
Similarly, to prove bD2ðuÞ we have
DðuÞ ¼
Pk

i¼1

Pk
j¼1
eQ VV ðv i; v jÞ
juj ¼

Pl
i¼1

Pk
j¼1
eQ VV ðv i;v jÞ
juj þ

Pk
i¼lþ1

P
v j2u;v j2v i :HC

eQ VV ðv i;v jÞ
juj þ

Pk
i¼lþ1

P
v j2u;v j2v i :LC

eQ VV ðv i;v jÞ
juj

6
w0 þ ð1� dÞðk� lÞ

juj ¼ bD2ðuÞ
The inequality holds as
Pk

i¼lþ1

P
v j2u;v j2v i :LC

eQ VV ðv i;v jÞ 6 ð1� dÞðk� lÞ according to Eq. (15). Thus we can derive the upper

bound bD2ðuÞ. h
Algorithm 3. Calculate-Connectivity
Input: A cell u ¼ fv1; . . . ;vkg which contains k vertices, minimum cell connectivity dmin, a fixed threshold d.
Output: DðuÞP dmin or not.
c
/d
1:
 initialize w ¼ 0

/⁄ first stage �/
2:
 for l ¼ 1 : k do

3:
 for v j 2 u;v j 2 v l:HC do

4:
 w ¼ wþ eQ VV ðv l;v jÞ

5:
 if w=jujP dmin then

6:
 return DðuÞP dmin
7:
 if ðwþ k� dlÞ=juj < dmin then

8:
 return DðuÞ < dmin
/⁄ second stage �/

9:
 for l ¼ 1 : k do
10:
 for v j 2 u;v j 2 v l:LC do

11:
 w ¼ wþ eQ VV ðv l;v jÞ

12:
 if w=jujP dmin then

13:
 return DðuÞP dmin
14:
 if ðwþ ð1� dÞðk� lÞÞ=juj < dmin then

15:
 return DðuÞ < dmin
We design an efficient algorithm Calculate-Connectivity in Algorithm 3 for calculating connectivity based on Lemma 4.3.
ite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
x.doi.org/10.1016/j.ins.2015.03.075
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4.5. Parameters setting

SCMAG has four parameters emax; imin;vmin and dmin. For a k-dimensional subspace S ¼ fA1; . . . ;Akg#A, the subspace
entropy HðA1; . . . ;AkÞ 2 ½0; klog2p� holds, if we assume jDomðAiÞj ¼ p for each attribute Ai 2 S. klog2p is reached when the
k attributes are independent of each other. Thus the maximum entropy threshold emax can be determined within the range
½0; klog2p�. In practice, for detecting good clusters in kð2 6 k � 6Þ-dimensional subspace with p ¼ 20, we find that emax ¼ 10
always yields a good performance. Similarly, for a k-dimensional subspace S ¼ fA1; . . . ;Akg#A, we can derive
interestðA1; . . . ;AkÞ 2 ½0; log2p�. Thus the minimum interest threshold imin can be determined within ½0; log2p�. imin 6 1 is a good
choice, which can avoid producing too few clusters.

The minimum cell coverage threshold vmin should not be set too large, since only gigantic clusters will be generated in
that case. vmin depends on the graph size and user interests. In our experiments, for a graph with jV jP 10;000, we usually
choose vmin no less than 100. For a cell u;DðuÞ 2 ½0;1� holds. Thus dmin can be determined within ½0;1�. dmin should not be set
too low, and dmin 2 ½0:2; 0:6� is highly recommended to find densely connected clusters.

4.6. Time complexity analysis

Our algorithm has two major components: random walk and subspace clustering. The time complexity of calculating ran-
dom walk is OðLðjV j þ jVajÞxÞ, where x < 2:376 is the fast matrix product exponent [7], and jV j is the number of structure

vertices and jVaj ¼
Pd

i¼1ni is the number of attribute vertices. Under an attribute subspace, the time complexity of calculating
subspace entropy is OðjV jdÞ, where d is the attribute number, and the time complexity of calculating cell connectivity is

OðjV j2Þ. The total number of qualified subspaces in worst would be 2d, then the time complexity of subspace clustering is

OððjV jdþ jV j2Þ2dÞ. As a result, the total time complexity of our algorithm is OðLðjV j þ jVajÞ2:376 þ ðjV jdþ jV j2Þ2dÞ. In real appli-
cation, the number of qualified interesting subspaces can be controlled by our parameters e.g. emax and dmin, and would be far
less than the worst case. We would test the number of qualified subspaces in our experiments.

5. Experimental study

In this section, we conducted extensive experiments to evaluate the performance of our algorithm on the IMDB movie
dataset and a bibliographic dataset. Moreover, we presented some interesting case studies. Our experiments were run on
a Dell PowerEdge R900 server with 2.67 GHz six-core CPU and 128 GB main memory running Windows Server 2008. All algo-
rithms were implemented in C++, except that random walk was implemented in MATLAB.

5.1. Comparison methods

We evaluate the clustering quality and efficiency of our method. We compare with ENCLUS [5], which does not consider
structural connectivity between instances in clustering. We develop two variations of ENCLUS, which only differ in handling
multi-valued attributes as described below.

� Single-ENCLUS For instances having multi-values in an attribute, Single-ENCLUS randomly selects one of the values and
ignores the rest.
� Multi-ENCLUS For instances having multi-values in an attribute, Multi-ENCLUS creates multiple single-valued instances

for each of the multi-values.

We also compare with a closely related method GAMer [12,13] which combines subspace clustering with dense subgraph
mining. Since GAMer outperforms CoPaM [19] in terms of cluster quality and efficiency, we do not compare with CoPaM in
the experiment. The GAMer program is publicly available at http://dme.rwth-aachen.de/en/gamer. We first transform multi-
valued attributed data to binary vectors. GAMer has several parameters and we follow the recommended parameter settings
in its program. nmin is the minimum cluster size (the same as our parameter vmin), and cmin is the minimum density of a clus-
ter, which is similar as our parameter dmin but different in definition. A non-empty cluster C fulfills the density requirement if
minv2Cfjfðv ;uÞjðv ;uÞ2E;u2Cgjg

jCj�1 P cmin. smin is the minimum subspace dimension, which should be at least 2. Another parameter maxi-

mal width w should be set to 0 to handle categorical attributes, i.e., only vertices with the same categorical values will fall
into the same cell. The ranges of parameters nmin and cmin are listed in Table 3, and other parameters are set to the default
values in Table 4. We test different parameter value combinations in the experiments.
Table 3
Parameter ranges of nmin and cmin in GAMer.

Parameter Range

nmin 10, 20, 50, 100, 200, 300, 400, 500, 600, 700
cmin 0.10, 0.20, 0.30, 0.40, 0.50, 0.60

Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
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Default parameter settings in GAMer.

Parameter smin w a b c robj rdim

Default value 2 0 0 1 0 0.5 0.5
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We also compare our method with the full space attributed graph clustering SA-Cluster [6] in Section 5.7.
5.2. Evaluation measures

We use density and entropy defined below to evaluate the quality of clusters. Density measures the intra-cluster edge
weights normalized by cluster size, thus the larger the better. Entropy measures the attribute value distribution within a
subspace cluster, thus the lower the better.
1 http

Please
http:/
densityðfCigR
i¼1Þ ¼

1
R

XR

i¼1

P
u;v2Ci

wðu; vÞ
jfv jv 2 Cigj

ð16Þ

entropyðfCigR
i¼1Þ ¼

1
R

XR

i¼1

1
jAij

X
A2Ai

entropyðA;CiÞ ð17Þ
where entropyðA;CiÞ ¼ �
PjDomðAÞj

j¼1 pijlog2pij, and pij ¼
P

v2Ci ;aj2AðvÞ
1
jAðvÞj

jfv jv2Cigj
, i.e., the percentage of vertices in cluster Ci having value aj

on attribute A. In the above definitions, density only depends on edge connectivity in clusters, which is not relevant with
attribute space. Entory is defined in subspace. For a cluster Ci;Ai is the attribute subspace of Ci, where Ai 	 A.
5.3. IMDB

5.3.1. Dataset description
We use IMDB data1 to build a multi-valued attributed graph, where a vertex represents a movie and an edge exists between

two movies if they share one or more actors. The edge weight is the number of common actors. The multi-valued attributed
graph contains 17,506 movies and 609,996 edges. A vertex is associated with 8 attributes which are described in Table 5.
The numerical attributes Actor Number and Voter Number are discretized using equal-frequency binning, and Average Rating
and Variance of Rating are discretized using equal-width binning. The release year of all movies is between 1990 and 2000.
The other three attributes are categorical. A movie may have multi-values in Genres, e.g., the genres of movie ‘‘The
Shawshank Redemption’’ are crime and drama.

Unless otherwise specified, we use the default parameter values shown in Table 6, and set the indexing threshold d ¼ 0:8.
We test three different dmin values of 0.30, 0.15, and 0.0.
5.3.2. Cluster quality comparison
In the first experiment, we compare the cluster quality of our method SCMAG and ENCLUS based methods by varying the

parameter emax – maximum allowed subspace entropy.
Fig. 5(a) shows the entropy. The entropy by our method SCMAG with dmin ¼ 0:30 and 0:15 consistently outperforms the

other methods. This shows when a connectivity requirement is enforced, high-quality clusters are discovered from sub-
spaces which have not only a dense structure but also similar attribute values. This phenomenon can be interpreted as fol-
lows: if a set of movies share many actors, i.e., dense connectivity, they also have similar attribute values. In contrast, the
entropy of Single-ENCLUS and Multi-ENCLUS is much higher. When dmin ¼ 0:0, the entropy of SCMAG increases and is close
to that of Single-ENCLUS. Moveover, a general trend we observe is that entropy decreases for all methods when the parame-
ter emax increases.

Fig. 5(b) shows the density. SCMAG with dmin ¼ 0:30 achieves the highest density and outperforms the other methods by a
large margin. This is natural as we enforce a stricter connectivity requirement with a larger dmin value, the resultant clusters
have a larger density. In addition, our method with dmin ¼ 0:30 and 0:15 shows a stable density when emax increases. In con-
trast, the other three methods have a decreasingly small density when emax increases.

In the second experiment, we compare the cluster quality of different methods by varying the parameter vmin – minimum
cell coverage. As we can see from Fig. 6(a), SCMAG with dmin ¼ 0:30 has the smallest entropy around 0.5–0.7. It also shows a
decreasing trend when vmin increases. The other baseline methods have a much larger entropy. In Fig. 6(b), SCMAG with
dmin ¼ 0:30 achieves the largest density and outperforms the other methods by a large margin.

From these two experiments, we can conclude SCMAG with dmin ¼ 0:30 performs the best on both entropy and density.
Multi-ENCLUS performs the worst on both criteria.
://www.imdb.com.
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Table 5
IMDB attributes.

ID Name Type Domain

1 Actor number Numerical 10
2 Voter number Numerical 20
3 Average rating Numerical 20
4 Variance of rating Numerical 20
5 Year Numerical 11
6 Genres Categorical, multi-value 29
7 Language Categorical, single-value 135
8 Sound-mix Categorical, single-value 33

Table 6
Default parameter values: IMDB.

Parameter emax imin vmin dmin

Default value 10 0.10 150 0.30

Fig. 5. Cluster quality varying emax: IMDB.
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5.3.3. GAMer results
Under the default parameter settings in Table 4, we test GAMer on IMDB data by varying different value combinations of

nmin and cmin in Table 3. However, GAMer fails to return any meaningful results. The outcomes of all the runs can be summar-
ized as two cases: ‘‘timeout’’ and ‘‘no cluster found’’. ‘‘timeout’’ means GAMer cannot finish in 5 h, and ‘‘no cluster found’’
means GAMer finishes with no cluster found. Fig. 7(a) shows the results under different nmin and cmin values, where white
cells represent ‘‘no cluster found’’ and gray cells represent ‘‘timeout’’.

We can observe, for example, when cmin ¼ 0:6 and nmin P 200, no cluster can be found, as there is no cluster satisfying the
cmin and nmin requirements. When cmin ¼ 0:1 and 10 6 nmin 6 700, GAMer becomes timeout. This is because the search space is
exponential in terms of the number of vertices in a graph, GAMer takes extremely long run time and a lot of memory, espe-
cially when the pruning is not effective.

5.3.4. Case study
We present some interesting subspace clusters found by SCMAG with dmin ¼ 0:30 on IMDB.
We first study a two-dimensional subspace {Actor Number, Genres}, under which we only found two clusters shown in

Table 7. Cluster 1 contains 2380 drama movies with actor number in ½25;4185�, and cluster 2 contains 167 adult movies with
actor number in ½5;6�. These clusters quite make sense as drama movies usually have a big cast, while adult movies usually
have a smaller cast.

We study another subspace {Genres, Language}, under which we found a total of 14 clusters. Table 8 shows the cluster list.
We have the following interesting observations.

� Some typical clusters are from a combination of drama or comedy movies with one of the languages in English, German,
Spanish, and French (clusters 1–4, 6–9).
� Interestingly, cluster No. 5 for Hindi drama movies is discovered with a high density value of 0.652, showing that these

movies share many common actors. It is well known that India has the Bollywood just like America has the Hollywood,
which has produced many popular movies.
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
http://dx.doi.org/10.1016/j.ins.2015.03.075
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Fig. 6. Cluster quality varying vmin: IMDB.

Fig. 7. GAMer results. White cell: no cluster found, gray cell: timeout, black cell: out of memory.

Table 7
Clusters in subspace {Actor Number, Genres} on IMDB graph.

Cluster Actor number Genres Size Density

1 [25, 4185] Drama 2380 0.433
2 [5, 6] Adult 167 0.316

Table 8
Clusters in subspace {Genres, Language} on IMDB graph.

Cluster Genres Language Size Density

1 Drama English 4857 0.554
2 Drama German 300 0.276
3 Drama Spanish 387 0.523
4 Drama French 459 0.409
5 Drama Hindi 219 0.652
6 Comedy English 2292 0.377
7 Comedy German 298 0.303
8 Comedy Spanish 160 0.416
9 Comedy French 236 0.307

10 Comedy Cantonese 189 0.497
11 Action Cantonese 215 0.410
12 Music/documentary English 970 0.281
13 Adult English 525 0.940
14 Animation English 272 0.396
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� Cantonese is a dialect spoken in southern China, Hong Kong, etc. Interestingly, we found a cluster of 189 Cantonese com-
edy movies (No. 10) with a density of 0.497. Another cluster of 215 Cantonese action movies (No. 11) corresponds to the
world famous Chinese Kung Fu movies. These clusters reflect that the film industry of Hong Kong had brilliant achieve-
ments in 1990–2000, although Cantonese is only a local dialect.
� Cluster No. 12 is formed by combining music and documentary English movies. According to our mechanism to compute

the similarity between categorical values, we find ‘‘documentary’’ is close to ‘‘biography’’ and ‘‘music’’. Thus the cells of
[Music, English] and [Documentary, English] can be merged. This cluster could not be found by Single-ENCLUS and
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
http://dx.doi.org/10.1016/j.ins.2015.03.075
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Multi-ENCLUS. Five representative movies in this cluster include: The Beatles Anthology (1995), Metallica: S&M (2000), The
Wall: Live in Berlin (1990), The Filth and the Fury (2000), Metallica: Cunning Stunts (1998), all of which have genres of docu-
mentary and music.
� Interestingly, cluster No. 13 for adult English movies has a very high density value of 0.940, which reflects that most of

these adult movies are starred by a common set of actors.

5.4. Bibliographic data

5.4.1. Dataset description
We use a bibliographic dataset collected from Arnetminer2 to construct a multi-valued attributed graph, where a vertex

represents an author and an edge exists between two authors if they have co-authored one or more papers. The edge weight
is the number of co-authored papers by two authors. The multi-valued attributed graph contains 80,000 authors and
476,387 edges. A vertex is associated with 12 attributes which are described in Table 9. Topic is a categorical multi-valued attri-
bute describing the research topics of authors, and an author can have multiple topics. We partition all venues in this biblio-
graphic dataset into 45 groups according to area. Venue describes a list of venue groups an author has published in them.
For an author, we retain at most 3 values for attributes Topic and Venue respectively. The remaining attributes are numerical
and are discretized into 10 bins using equal-width binning. These attribute values are computed by Arnetminer algorithms.

Unless otherwise specified, we use the default parameter values in Table 10, and set the indexing threshold d ¼ 0:8. We
test three different dmin values of 0.40, 0.20, and 0.0.

5.4.2. Cluster quality comparison
In the first experiment, we compare the cluster quality of different methods by varying emax. Fig. 8(a) shows the entropy.

The entropy by SCMAG with dmin ¼ 0:40 and 0.20 is very low when emax ¼ 7;8;9, but the entropy increases given a larger emax.
In contrast, the entropy of the other three methods shows a decreasing trend with emax. Multi-ENCLUS has the largest entropy
in all cases.

Fig. 8(b) shows the density. Again, our method SCMAG with dmin ¼ 0:40 achieves the highest density and outperforms the
other methods by a large margin. This is due to the dmin constraint. In addition, SCMAG with dmin ¼ 0:40 and 0.20 has a stable
density despite the increase of emax, while the other three methods show a decreasing trend with the increase of emax. Single-
ENCLUS has the lowest density in all cases. These results demonstrate that our method can find dense clusters in subspaces
with low entropy.

In the second experiment, we compare the cluster quality of different methods by varying the parameter vmin. Fig. 9(a)
shows the entropy. We can observe that all methods have a lower entropy when vmin increases. This shows subspace clusters
with a larger size have more similar attribute values in the bibliographic data. Our method SCMAG with dmin ¼ 0:20 and 0.0
and Single-ENCLUS score closely and achieve the lowest entropy. Multi-ENCLUS has the largest entropy in all cases. Fig. 9(b)
shows the density. All methods have a stable density when vmin increases. SCMAG with dmin ¼ 0:40 achieves the largest den-
sity and outperforms the other methods by a large margin.

From these experiments, we can conclude SCMAG with dmin ¼ 0:20 achieves a good balance between entropy and density.
Multi-ENCLUS performs poorly on both criteria.

5.4.3. GAMer results
Under the default parameter settings in Table 4, we also test GAMer on the bibliographic data by varying different value

combinations of nmin and cmin in Table 3. Again GAMer fails to return any meaningful results. The outcomes of all the runs can
be summarized as three cases: ‘‘no cluster found’’, ‘‘timeout’’ and ‘‘out of memory’’ (GAMer throws a
java.lang.OutOfMemoryError exception). Fig. 7(b) shows the results under different nmin and cmin values, where dark cells
represent ‘‘out of memory’’, and white and gray cells are similarly defined as in Fig. 7(a).

We can observe, for example, when nmin ¼ 10 and cmin = 0.5 or 0.6, ‘‘out of memory’’ happens. When cmin ¼ 0:6 and
nmin P 100, no cluster can be found, because there is no cluster satisfying the requirements. When cmin ¼ 0:1 and
10 6 nmin 6 300, GAMer becomes timeout; while for 400 6 nmin 6 700, no cluster can be found. In summary, GAMer cannot
find any meaningful clusters on the bibliographic data within a reasonable time.

5.4.4. Case study
We present some interesting subspace clusters found by SCMAG with dmin ¼ 0:40 on the bibliographic data.
We first examine a two-dimensional subspace {Topic, Venue} under which we found 31 clusters. It is interesting to dis-

cover the combination of Topic and Venue, as research topics are closely correlated with published venues. This shows the
subspace interest criterion is useful in finding correlated subspaces. We pick four clusters as examples and present their
topics, representative venues, top 10 most cited authors in Table 11. In particular, cluster 3 combines several similar topics,
e.g., communication complexity, approximation algorithms, lower bounds, perfect graphs, etc., related to algorithms and theory
in the Topic dimension. Cluster 3 and cluster 4 could not be found by Single-ENCLUS and Multi-ENCLUS.
2 http://www.arnetminer.org.
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Table 9
Bibliographic data attributes.

ID Name Type Domain

1 Topic Categorical, multi-value 200
2 Venue Categorical, multi-value 45
3 Publication Numerical 10
4 Citation Numerical 10
5 H-index Numerical 10
6 G-index Numerical 10
7 Activity Numerical 10
8 Uptrend Numerical 10
9 Newstar score Numerical 10

10 Longevity Numerical 10
11 Diversity Numerical 10
12 Sociability Numerical 10

Table 10
Default parameter values: bibliographic.

Parameter emax imin vmin dmin

Default value 10 0.01 200 0.40

Fig. 8. Cluster quality vs. emax: bibliographic.

Fig. 9. Cluster quality vs. vmin: bibliographic.
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We study another subspace {Activity, Uptrend, Venue} under which we only found 1 cluster. The cluster has the highest
attribute value intervals [1.09, 32.27), [0.75, 23.36) in Activity and Uptrend respectively. The authors in this cluster are very
active, showing a strong uptrend in publication in the area of algorithms and theory (refer to venue information in cluster 3,
Table 11). We list 5 authors with the highest uptrend values: Pierre Fraigniaud, Flavio Chierichetti, David Woodruff, Devavrat
Shah, and Phillip B. Gibbons.
Please cite this article in press as: X. Huang et al., Dense community detection in multi-valued attributed networks, Inform. Sci. (2015),
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Table 11
Clusters in subspace {Topic, Venue} on bibliographic graph.

Cluster Topic Venue Authors (top-10 citations)

1. Data mining Data mining TKDE, KDD, SDM, ICDM, PAKDD,
KAIS

Jiawei Han, Sudhir Kumar, Philip S. Yu, Vipin
Kumar, George Karypis, Heikki Mannila,
Mohammed J. Zaki, Eamonn J. Keogh, Bing Liu,
Michael J. Pazzani

2. Database XML data SIGMOD, VLDB, ICDE, EDBT,
CIKM, Data Eng. Bulletin

Rakesh Agrawal, Jennifer Widom, Christos
Faloutsos, Ramakrishnan Srikant, Serge
Abiteboul, Miron Livny, Tomasz Imielinski,
Johannes Gehrke, Rajeev Rastogi, Dan Suciu

3. Algorithms, theory Communication complexity,
approximation algorithms, finite sets,
new designs, convex polygons, planar
arrangements, lower bounds, perfect
graphs

TCS, TIT, DAM, JCSS, SICOMP,
Algorithmica, STOC

Rajeev Motwani, Christos Papadimitriou,
Robert E. Tarjan, Prabhakar Raghavan, David R.
Karger, Richard M. Karp, Jon M. Kleinberg,
Leslie Valiant, Oded Goldreich, Moni Naor

4. Computer vision,
pattern recognition

Character recognition, object
recognition, two-view motion
estimation, face recognition, image
analysis

ICIP, ICPR, ICME, PR, CVPR,
TPAMI, PRL, ICDAR

Anil K. Jain, Takeo Kanade, Jitendra Malik, Alex
Pentland, Andrew Zisserman, Thomas Huang,
Andrew Blake, Cordelia Schmid, Guillermo
Sapiro, Azriel Rosenfeld

Table 12
Clusters in subspace {Citation, H-index, G-index, Venue} on bibliographic graph.

Cluster 1 database Cluster 2 software engineering & scientific computing Cluster 3 hardware & architecture Cluster 4 algorithms & theory

Rakesh Agrawal C.A.R. Hoare A.L. Sangiovanni-Vincentelli Rajeev Motwani
Hector Garcia-Molina Leslie Lamport Sharad Malik Robert E. Tarjan
Jeffrey D. Ullman Thomas A. Henzinger Sartaj K. Sahni Christos Papadimitriou
Jennifer Widom Rajeev Alur Lothar Thiele Prabhakar Raghavan
Christos Faloutsos David Harel Sudhakar M. Reddy David R. Karger
Jim Gray Joseph Halpern Jason Cong Richard M. Karp
David J. DeWitt Amir Pnueli Robert Brayton Jon M. Kleinberg
Michael Stonebraker Moshe Vardi Miodrag Potkonjak Leslie Valiant
Ramakrishnan Srikant Edmund Clarke Massoud Pedram Oded Goldreich
Serge Abiteboul Robin Milner Janak H. Patel Moni Naor
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In the subspace {Citation, H-index, G-index, Venue}, SCMAG found four clusters of authors from different research fields.
Again the subspace combination of Citation, H-index and G-index is interesting, as these three attributes are positively cor-
related – H-index and G-index are computed from citations. Authors in these four clusters all have the highest values in
Citation, H-index and G-index as [696, 51258), [12, 102) and [6, 25) respectively. We list 10 representative authors in each
cluster in Table 12.
5.5. Subspace number, cluster number and size

We report the number of attribute subspaces (with valid clusters) found by different algorithms by varying emax in Fig. 10.
With the increase of emax, Single-ENCLUS, Multi-ENCLUS and SCMAG with dmin ¼ 0:0 output an increasingly large number of
subspaces. But with a minimum cell connectivity constraint dmin > 0, SCMAG does not output many subspaces when emax

increases, as those subspace clusters which do not meet the connectivity requirement are not output. This result shows
our method can better control the subspace cluster quality and output only those clusters with both dense connectivity
and high attribute similarity.

We plot the cluster size (x axis) versus cluster number (y axis) in Fig. 11. A point ðx; yÞ in a curve means there are
y clusters whose size is above x. On both IMDB and bibliographic graphs we can see the curves of Single-ENCLUS,
Multi-ENCLUS and SCMAG with dmin ¼ 0:0 largely overlap, as they do not have any structural connectivity require-
ment. We observe the following phenomena: (1) the size of clusters found by SCMAG with dmin > 0 is significantly
smaller than the size of clusters found by the baseline methods. For example, the baseline methods find 12 gigantic
clusters which contain more than 8753 (50%) movies on IMDB graph, and find 110 gigantic clusters which contain
more than 40,000 (50%) authors on bibliographic graph. Such gigantic clusters do not correspond to densely con-
nected communities and are of little significance. (2) The number of clusters found by SCMAG with dmin > 0 is orders
of magnitude smaller than that found by the baseline methods. Many clusters with a sparse connectivity are pruned
by our method. This result confirms that the connectivity consideration is necessary for subspace clustering on
attributed graphs.
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5.6. Clustering efficiency comparison

We compare the efficiency of different subspace clustering algorithms by varying the parameter emax. Fig. 12 shows the
running time on IMDB and bibliographic graphs. Since SCMAG has an extra cost of random walk computation, it is 12.5 times
slower on average than Single-ENCLUS on IMDB and 2.4 times slower on average on bibliographic graph.

5.7. Comparison with SA-cluster

In this experiment, we compare our method with SA-Cluster [6] on IMDB (Table 13) and bibliographic graph (Table 14).
Since Inc-Cluster [37] generates the same clustering results as SA-Cluster, we do not test Inc-Cluster. We set dmin ¼ 0:30 on
IMDB and dmin ¼ 0:40 on bibliographic graph. SA-Cluster considers the full attribute space for clustering. We set the
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Table 13
SA-Cluster vs. SCMAG: IMDB.

SA-Cluster SCMAG

Cluster number 39 39
Max cluster size 16,685(95%) 4857(28%)
Avg cluster size 22 732
(except max one)
Entropy 1.741 0.598
Density 0.205 0.452

Table 14
SA-Cluster vs. SCMAG: bibliographic.

SA-Cluster SCMAG

Cluster number 362 362
Max cluster size 73,595(92%) 9494(12%)
Avg cluster size 18 1893
(except max one)
Entropy 2.048 1.316
Density 0.357 0.461

Fig. 13. Scalability evaluation vs. vertex number jV j.
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parameter of cluster number K in SA-Cluster to be the same as the number of clusters found by SCMAG. From both tables we
can see SA-Cluster always outputs a gigantic cluster containing more than 90% nodes, which does not make much sense. The
remaining clusters are extremely small, i.e., the average size of clusters except the gigantic one is 22 on IMDB and 18 on
bibliographic graph. On the other hand, the clusters found by SCMAG are not extremely huge or small, as each cluster size
has to exceed the minimum coverage vmin. In terms of cluster quality, SCMAG significantly outperforms SA-Cluster on both
entropy and density. These results confirm that subspace clustering on attributed graphs generates high-quality clusters, i.e.,
with high structural connectivity and high attribute similarity.

5.8. Synthetic data

In this experiments, we use synthetic graph datasets to conduct scalability test and quality evaluation. Each graph has the
number of edges as jEj ¼ 4jV j, where jV j is the vertex number. A vertex is associated with 15 attributes, of which 10 attri-
butes are categorical and multi-valued. The domain of each attribute is 20.

5.8.1. Scalability test
To evaluate the scalability of SA-Cluster, we generate a series of synthetic graphs described above by increasing the num-

ber of vertices jV j from 10,000 to 100,000. We set the parameters emax ¼ 10; imin ¼ 0:01;vmin ¼ 50 and dmin ¼ 0:3. We report
the running time result in Fig. 13. As we can see, SA-Cluster scales very well with the increasing vertex number. The running
time on the graph with jV j ¼ 100;000 by SA-Cluster is only 22 times slower than the cost on the graph with jV j ¼ 10;000, due
to the effective pruning techniques.

5.8.2. Quality evaluation
To evaluate clustering quality by all methods, we generate a series of synthetic graphs with ground-truth clusters. Each

graph contains 5 clusters of 10 nodes by default. Each cluster has a density of 0.4, and 5 relevant dimensions out of 15
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Table 15
F1-score of clusters produced by different methods on ground-truth synthetic graphs.

Cluster size GAMer Single-ENCLUS Multi-ENCLUS SCMAG

10 0.97 0.60 0.60 0.98
15 0.86 0.53 0.52 0.98
20 – 0.45 0.45 0.97
25 – 0.41 0.40 0.97
30 – 0.36 0.36 0.98
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dimensions. We also add the noise nodes into graphs, which has the same total number of nodes in clusters. Noise nodes do
not belong to any clusters. We evaluate the quality of clusters on different graphs by increasing the number of clusters
size.The clustering quality is measured by F1-score criterion [13]. The results are reported in Table 15. For all graphs, the
parameters of each method are consistly set up. GAMer uses parameters nmin ¼ 8; cmin ¼ 0:3, and other parameters are set
to the default values in Table 4. SCMAG uses parameters emax ¼ 10; imin ¼ 0:01;vmin ¼ 8 and dmin ¼ 0:3. Single-ENCLUS and
Multi-ENCLUS both use the same parameters emax ¼ 10; imin ¼ 0:01 and vmin ¼ 8.

As we can see, our method SCMAG achieved the highest F1-scores among all methods on all graphs. For the graphs with
cluster size of 10 and 15, GAMer obtained higher scores than Single-ENCLUS and Multi-ENCLUS, due to the consideration of
structural density in clusters by GAMer. For the size of clusters exceeding 20 nodes, the program of GAMer failed to produce
results by throwing an exception ‘‘java.lang.OutOfMemoryError’’, which may be resulted from expensive search space.
6. Conclusions

We studied subspace clustering on multi-valued attributed graph for community detection. Different from existing attrib-
uted graph clustering algorithms which consider the full space, we find interesting subspaces with good clustering and dis-
cover clusters with dense connectivity, homogeneous attribute values and good coverage. We use random walk with restart
on an attribute augmented graph to measure the structural closeness and attribute similarity. An indexing scheme is
designed to efficiently calculate cell connectivity. Moreover, we propose a new cell merging strategy and a mechanism to
handle multi-valued attributes based on graph neighborhood information.

Experimental results show that SCMAG significantly outperforms existing methods ENCLUS, GAMer and SA-Cluster. Some
interesting discovered clusters are presented in case study to show the effectiveness of our method.
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