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ABSTRACT
Given a directed graph 𝐺 and integers 𝑘 and 𝑙 , a D-core is the max-

imal subgraph 𝐻 ⊆ 𝐺 such that for every vertex of 𝐻 , its in-degree

and out-degree are no smaller than 𝑘 and 𝑙 , respectively. For a

directed graph 𝐺 , the problem of D-core decomposition aims to

compute the non-empty D-cores for all possible values of 𝑘 and 𝑙 .

In the literature, several peeling-based algorithms have been pro-

posed to handle D-core decomposition. However, the peeling-based

algorithms that work in a sequential fashion and require global

graph information during processing are mainly designed for cen-
tralized settings, which cannot handle large-scale graphs efficiently

in distributed settings. Motivated by this, we study the distributed
D-core decomposition problem in this paper. We start by defining a

concept called anchored coreness, based on which we propose a new

H-index-based algorithm for distributed D-core decomposition. Fur-

thermore, we devise a novel concept, namely skyline coreness, and
show that the D-core decomposition problem is equivalent to the

computation of skyline corenesses for all vertices. We design an ef-

ficient D-index to compute the skyline corenesses distributedly. We

implement the proposed algorithms under both vertex-centric and

block-centric distributed graph processing frameworks. Moreover,

we theoretically analyze the algorithm and message complexities.

Extensive experiments on large real-world graphs with billions of

edges demonstrate the efficiency of the proposed algorithms in

terms of both the running time and communication overhead.
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1 INTRODUCTION
Graph is a widely used data structure to depict entities and their

relationships. In a directed graph, edges have directions to repre-

sent links from one vertex to another, which has many real-life

applications, e.g., the following relationship in online social net-

works such as Twitter, the money flow in financial networks, the

traffic route in road networks, and the message forwarding path in

∗
These authors have contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.

doi:10.14778/3529337.3529340

v1 v2

v3v4

v7

v5
v6

v8
(a) A directed graph𝐺

v1v2v3v4
kl
v5v6v7v8

0 1 2 3
0

3
2
1 v1v2v3v4v5v6v7v8

v1v2v3v4v5v6v7v8

v1v2v3v4v5v6v7v8
v1v2v3v4v5v6v7v8
v1v2v3v4v5v6v7v8

v1v2v3v4v5v6v7v8
v1v2v3v4v5v6v7v8
v1v2v3v4v5v6v7v8

v2v3v5v6v7v8
v2v3v5v6v7v8
v3v5v6v8

v3v5v6v8v3v5v6v8v3v5v6v8v3v5v6v8

(b) All non-empty D-cores

Figure 1: An example of D-core decomposition on 𝐺

communication networks [26]. Among many graph analysis algo-

rithms, cohesive subgraph analysis is to discover densely connected

subgraphs under a cohesive subgraph model. A well-known model

used for undirected graphs is 𝑘-core, which requires every vertex

in the subgraph to have at least 𝑘 neighbors [39]. As a directed

version of 𝑘-core, 𝐷-core, a.k.a. (𝑘, 𝑙)-core, is the maximal directed

subgraph such that every vertex has at least 𝑘 in-neighbors and 𝑙

out-neighbors within this subgraph [17]. For example, in Figure 1(a),

the whole directed graph 𝐺 is a (2, 2)-core since every vertex has

an in-degree of at least 2 and an out-degree of at least 2.

As a foundation of D-core discovery, the problem of D-core de-

composition aims to compute the non-empty D-cores of a directed

graph for all possible values of 𝑘 and 𝑙 . D-core decomposition has

a number of applications. It has been used to build coreness-based
indexes for speeding up community search [7, 13], to measure in-
fluence in social networks [16], to evaluate graph collaboration fea-
tures of communities [17], to visualize and characterize complex
networks [33], and to discover hubs and authorities of directed net-

works [40]. For example, based on the D-core decomposition re-

sults, we can index a graph’s vertices by their corenesses using a

table [13] or D-Forest [7]; then, D-core-based community search

can be accelerated by looking up the table or D-Forest directly,

instead of performing the search from scratch [19, 20]. In the lit-

erature, peeling-based algorithms have been proposed for D-core

decomposition in centralized settings [13, 17]. They work in a se-

quential fashion to remove disqualified vertices one by one from a

graph. That is, they first determine all possible values of 𝑘 (i.e., from

0 to the maximum in-degree of the graph). Next, for each value 𝑘 ,

they compute (𝑘, 𝑙)-cores for all possible values of 𝑙 by iteratively

deleting the vertices with the smallest out-degree. Figure 1(b) shows

the D-core decomposition results of 𝐺 for different 𝑘 and 𝑙 values.

In this paper, we study the problem of D-core decomposition in

distributed settings, where the input graph 𝐺 is stored on a collec-

tion of machines and each machine holds only a partial subgraph

of 𝐺 . The motivation is two-folded. First, due to the large size of

graph data, D-core decomposition necessitates huge memory space,
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which may exceed the capacity of a single machine. For example,

the existing algorithms could not work for billion-scale graphs

due to excessive memory space costs [13]. Second, in practical

applications, many large graphs are inherently distributed over a

collection of machines, making distributed processing a natural

solution [3, 24, 31, 33].

However, the existing peeling-based algorithms are not efficient

when extended to distributed settings. In particular, when com-

puting the (𝑘, 𝑙)-cores for a given 𝑘 , the algorithms need to itera-

tively find the vertices with the smallest out-degree to delete and

then update the out-degrees for the remaining vertices, until the

graph becomes empty. This process (i) is not parallelizable since

the update of out-degrees in each iteration depends on the vertices

deletion in the previous iteration and (ii) entails expensive network

communications since it needs global graph information.

To address these issues, we design new distributed D-core de-

composition algorithms by exploiting the relationships between a

vertex and its neighbors. First, inspired by the notion of k-list [13],
we propose an anchored coreness-based algorithm. Specifically, for

a vertex 𝑣 , if we fix the value of 𝑘𝑣 , we can compute the maximum

value of 𝑙𝑣 such that 𝑣 is contained in the (𝑘𝑣, 𝑙𝑣)-core. We call this

pair (𝑘𝑣, 𝑙𝑣) an anchored coreness of 𝑣 . For example, for vertex 𝑣2
in Figure 1, when 𝑘𝑣2 = 0, the maximum value of 𝑙𝑣2 is 2 since

𝑣2 ∈ (0, 2)-core but 𝑣2 ∉ (0, 3)-core. Hence, (0, 2) is an anchored

coreness of 𝑣2. The other anchored corenesses of 𝑣2 are (1, 2), (2, 2),
and (3, 1). Once we have computed the anchored corenesses for

every vertex, we can easily derive the D-cores from these anchored

corenesses. Specifically, given integers 𝑘 and 𝑙 , the (𝑘, 𝑙)-core con-
sists of the vertices whose anchored coreness (𝑘𝑣, 𝑙𝑣) satisfies𝑘𝑣 = 𝑘

and 𝑙𝑣 ≥ 𝑙 . Thus, the problem of distributed D-core decomposition

is equivalent to computing the anchored corenesses in a distributed

way. To do so, we first exploit the in-degree relationship between

a vertex and its in-neighbors and define an in-H-index, based on

which we compute the maximum value of 𝑘 for each vertex. Then,

we study the property of (𝑘, 0)-core and define an out-H-index. On
the basis of that, for each possible value of 𝑘 with respect to a vertex,

we iteratively compute the corresponding upper bound of 𝑙 simul-

taneously. Finally, we utilize the definition of D-core to iteratively

refine all the upper bounds to obtain the anchored corenesses of all

vertices.

Note that the anchored coreness-based algorithm first fixes one

dimension and then computes the anchored corenesses for the

other dimension, which may lead to suboptimal performance. To

improve performance, we further propose a novel concept, called

skyline coreness, and develop a skyline coreness-based algorithm.

Specifically, we say the pair (𝑘𝑣, 𝑙𝑣) is a skyline coreness of a vertex
𝑣 , if there is no other pair (𝑘′𝑣, 𝑙 ′𝑣) such that 𝑘′𝑣 ≥ 𝑘𝑣 , 𝑙

′
𝑣 ≥ 𝑙𝑣 , and 𝑣 ∈

(𝑘′𝑣, 𝑙 ′𝑣)-core. For example, in Figure 1, the skyline corenesses of 𝑣2
are {(2, 2), (3, 1)}. Compared with anchored corenesses, a vertex’s

skyline corenesses contain fewer pairs of (𝑘𝑣, 𝑙𝑣). Nevertheless,
based on the skyline corenesses, we can still easily find all the D-

cores containing the corresponding vertex. To be specific, if (𝑘𝑣, 𝑙𝑣)
is a skyline coreness of 𝑣 , then 𝑣 is also in the (𝑘, 𝑙)-cores with
𝑘 ≤ 𝑘𝑣 and 𝑙 ≤ 𝑙𝑣 . The basic idea of the skyline coreness-based

algorithm is to use neighbors’ skyline corenesses to iteratively

estimate the skyline corenesses of each vertex. To this end, we

define a new index, called D-index, for each vertex based on the

following unique property of skyline corenesses. If (𝑘𝑣, 𝑙𝑣) is one
of the skyline corenesses of a vertex 𝑣 , we have (i) 𝑣 has at least 𝑘𝑣
in-neighbors such that each of these in-neighbors, 𝑣𝑖 , has a skyline

coreness (𝑘′𝑣𝑖 , 𝑙
′
𝑣𝑖
) satisfying 𝑘′𝑣𝑖 ≥ 𝑘𝑣 and 𝑙 ′𝑣𝑖 ≥ 𝑙𝑣 ; and (ii) 𝑣 has

at least 𝑙𝑣 out-neighbors such that each of these out-neighbors, 𝑣 𝑗 ,

has a skyline coreness (𝑘′′𝑣𝑗 , 𝑙
′′
𝑣𝑗
) satisfying 𝑘′′𝑣𝑗 ≥ 𝑘𝑣 and 𝑙 ′′𝑣𝑗 ≥ 𝑙𝑣 .

With this property, we design a distributed algorithm to iteratively

compute the D-index for each vertex with its neighbors’ D-indexes.

To deal with the combinatorial blow-ups in the computation of D-

indexes, we further develop three optimization strategies to improve

efficiency.

We implement our algorithms under two well-known distributed

graph processing frameworks, i.e., vertex-centric [1, 28, 30, 35]

and block-centric [12, 41, 45]. Empirical results on small graphs

demonstrate that our algorithms run faster than the peeling-based

algorithm by up to 3 orders of magnitude. For larger graphs with

more than 50 million edges, the peeling-based algorithm cannot

finish within 5 days, while our algorithms can finish within 1 hour

for most datasets. Moreover, our proposed algorithms require less

than 100 rounds to converge for most datasets, and more than 90%

vertices can converge within 10 rounds.

This paper’s main contributions are summarized as follows:

• For the first time in the literature, we study the problem

of distributed D-core decomposition over large directed

graphs.

• We develop an anchored coreness-based distributed algo-

rithm using well-defined in-H-index and out-H-index. To

efficiently compute the anchored corenesses, we propose

tight upper bounds that can be iteratively refined to exact

anchored corenesses with reduced network communica-

tions.

• We further propose a novel concept of skyline coreness and

show that the problem is equivalent to the computation of

skyline corenesses for all vertices. A new two-dimensional

D-index that unifies the in- and out-neighbor relationships,

together with three optimization strategies, is designed to

compute the skyline corenesses distributedly.

• Both theoretical analysis and empirical evaluation validate

the efficiency of our algorithms for distributed D-core de-

composition.

The rest of the paper is organized as follows. Section 2 reviews

related work. Section 3 formally defines the problem. Sections 4

and 5 propose two distributed algorithms for computing anchored

coreness and skyline coreness, respectively. Experimental results

are reported in Section 6. Finally, Section 7 concludes the paper.

2 RELATEDWORK
In this section, we review the related work in two aspects, i.e., core
decomposition and distributed graph computation.

Core Decomposition. As a well-known dense subgraph model, a

𝑘-core is the maximal subgraph of an undirected graph such that

every vertex has at least 𝑘 neighbors within this subgraph [39]. The

core decomposition task aims at finding the 𝑘-cores for all possible

values of 𝑘 in a graph. Many efficient algorithms have been pro-

posed to handle core decomposition over an undirected graph, such

as peeling-based algorithms [4, 8, 22], disk-based algorithm [8, 22],
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semi-external algorithm [43], streaming algorithms [36, 37], parallel

algorithms [9, 11], and distributed algorithms [3, 31, 33]. It is worth

mentioning that the distributed algorithms for 𝑘-core decomposi-

tion [3, 31, 33] cannot be used for distributed D-core decomposition.

Specifically, the distributed 𝑘-core decomposition algorithms use

the neighbors’ corenesses to estimate a vertex’s coreness, where all

neighbors are of the same type. For D-core, a vertex’s neighbors

include in-neighbors and out-neighbors, which affect each other

and should be considered simultaneously. If we consider only one

type of neighbors, we cannot get the correct answer. Inspired by

the H-index-based computation for core decomposition [29] and

nucleus decomposition [38], we apply a similar idea in the design

of distributed algorithms. Nevertheless, our technical novelty lies

in the non-trivial extension of H-index from one-dimensional undi-
rected coreness to two-dimensional anchored/skyline coreness, which
needs to consider the computations of in-degrees and out-degrees

simultaneously in a unified way.

In addition, core decomposition has been studied for different

types of networks, such as weighted graphs [10, 46], uncertain

graphs [5, 34], bipartite graphs [25], temporal graphs [15, 44], and

heterogeneous information networks [14]. Recently, a new prob-

lem of distance-generalized core decomposition has been studied

by considering vertices’ ℎ-hop connectivity [6, 27]. Note that a di-

rected graph can be viewed as a bipartite graph. After transforming

a directed graph to a bipartite graph, the (𝑘, 𝑙)-core in the directed

graph has a corresponding (𝛼, 𝛽)-core in the bipartite graph [25],

but not vice versa. Therefore, the problems of (𝑘, 𝑙)-core decom-

position and (𝛼, 𝛽)-core decomposition are not equivalent, and

(𝛼, 𝛽)-core decomposition algorithms cannot be used in our work.

Distributed Graph Computation. In the literature, there exist

various distributed graph computing models and systems to sup-

port big graph analytics. Among them, the vertex-centric frame-

work [28, 30, 32] and the block-centric framework [41, 45] are two

most popular frameworks.

The vertex-centric framework assumes that each vertex is associ-

ated with one computing node and communication occurs through

edges. The workflow of the vertex-centric framework consists of a

set of synchronous supersteps. Within each superstep, the vertices

execute a user-defined function asynchronously after receiving

messages from their neighbors. If a vertex does not receive any

message, it will be marked as inactive. The framework stops once

all vertices become inactive. Typical vertex-centric systems include

Pregel [30], Giraph [1], GPS [35], and GraphLab [28]. For the block-

centric framework, one computing node stores the vertices within a

block together and communication occurs between blocks after the

computation within a block reaches convergence. Compared with

the vertex-centric framework, the block-centric framework can

reduce the network traffic and better balance the workload among

nodes. Distributed graph processing systems such as Giraph++ [41],

Blogel [45], and GRAPE [12] belong to the block-centric framework.

Note that in this paper we mainly focus on algorithm designs for

distributed D-core decomposition. To demonstrate the flexibility

of our proposed algorithms, we implement them for performance

evaluation in both vertex-centric and block-centric frameworks.
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Figure 2: D-core

3 PROBLEM FORMULATION
In this paper, we consider a directed, unweighted simple graph

𝐺 = (𝑉𝐺 , 𝐸𝐺 ), where 𝑉𝐺 and 𝐸𝐺 are the set of vertices and edges,

respectively. Each edge 𝑒 ∈ 𝐸𝐺 has a direction. For an edge 𝑒 =

⟨𝑢, 𝑣⟩ ∈ 𝐸𝐺 , we say𝑢 is an in-neighbor of 𝑣 and 𝑣 is an out-neighbor

of𝑢. Correspondingly,𝑁 𝑖𝑛
𝐺
(𝑣) and𝑁𝑜𝑢𝑡

𝐺
(𝑣) are respectively denoted

as the in-neighbor set and out-neighbor set of a vertex 𝑣 in 𝐺 . We

define three kinds of degrees for a vertex 𝑣 as follows: (1) the in-

degree is the number of 𝑣 ’s in-neighbors in 𝐺 , i.e., 𝑑𝑒𝑔𝑖𝑛
𝐺
(𝑣) =

|𝑁 𝑖𝑛
𝐺
(𝑣) |; (2) the out-degree is the number of 𝑣 ’s out-neighbors in𝐺 ,

i.e., 𝑑𝑒𝑔𝑜𝑢𝑡
𝐺
(𝑣) = |𝑁𝑜𝑢𝑡

𝐺
(𝑣) |; (3) the degree is the sum of its in-degree

and out-degree, i.e., 𝑑𝑒𝑔𝐺 (𝑣) = 𝑑𝑒𝑔𝑖𝑛
𝐺
(𝑣) + 𝑑𝑒𝑔𝑜𝑢𝑡

𝐺
(𝑣). Based on the

in-degree and out-degree, we give a definition of D-core as follows.

Definition 3.1. D-core [17].Given a directed graph𝐺 = (𝑉𝐺 , 𝐸𝐺 )
and two integers 𝑘 and 𝑙 , a D-core of 𝐺 , also denoted as (𝑘, 𝑙)-core,
is the maximal subgraph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) ⊆ 𝐺 such that ∀𝑣 ∈ 𝑉𝐻 ,
𝑑𝑒𝑔𝑖𝑛

𝐻
(𝑣) ≥ 𝑘 and 𝑑𝑒𝑔𝑜𝑢𝑡

𝐻
(𝑣) ≥ 𝑙 .

According to Definition 3.1, a D-core should satisfy both the

degree constraints and the size constraint. The degree constraints

ensure the cohesiveness of D-core in terms of in-degree and out-

degree. The size constraint guarantees the uniqueness of the D-core,

i.e., for a specific pair of (𝑘, 𝑙), there exists at most one D-core in𝐺 .

Moreover, D-core has a partial nesting property as follows.

Property 3.1. Partial Nesting. Given two D-cores, (𝑘1, 𝑙1)-core
𝐷1 and (𝑘2, 𝑙2)-core 𝐷2, 𝐷1 is nested in 𝐷2 (i.e., 𝐷1 ⊆ 𝐷2) if 𝑘1 ≥ 𝑘2
and 𝑙1 ≥ 𝑙2. Note that if 𝑘1 ≥ 𝑘2 and 𝑙1 < 𝑙2, or 𝑘1 < 𝑘2 and 𝑙1 ≥ 𝑙2,
𝐷1 and 𝐷2 may be not nested in each other.

Example 3.1. In Figure 2, the directed subgraph𝐻1 induced by the
vertices 𝑣1, 𝑣4, 𝑣5, and 𝑣6 is a (2, 2)-core since ∀𝑣 ∈ 𝑉𝐻1

, 𝑑𝑒𝑔𝑖𝑛
𝐻1

(𝑣) =
𝑑𝑒𝑔𝑜𝑢𝑡

𝐻1

(𝑣) = 2. Moreover, 𝐻1 ⊆ 𝐻2 = (2, 0)-core, 𝐻1 ⊆ 𝐻3 = (1, 1)-
core. On the other hand, 𝐻2 ⊈ 𝐻3 and 𝐻3 ⊈ 𝐻2, due to the non-
overlapping vertices 𝑣2, 𝑣3, and 𝑣7.

In this paper, we study the problem of D-core decomposition

to find all D-cores of a directed graph 𝐺 in distributed settings.

In-memory algorithms of D-core decomposition have been studied

in [13, 17], assuming that the entire graph and associated structures

can fit into the memory of a single machine. To our best knowl-

edge, the problem of distributed D-core decomposition, considering

a large graph distributed over a collection of machines, has not

been investigated in the literature. We formulate a new problem of

distributed D-core decomposition as follows.

Problem 1. (Distributed D-core Decomposition). Given a
directed graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) that is distributed in a collection of
machines {𝑀𝑖 : a machine 𝑀𝑖 holds a partial subgraph 𝐺𝑖 ⊆ 𝐺 ,
1 ≤ 𝑖 ≤ 𝑛} where 𝑛 ≥ 2 and ∪𝑛

𝑖=1
𝐺𝑖 = 𝐺 , the problem of distributed

D-core decomposition is to find all D-cores of𝐺 using 𝑛 machines, i.e.,
identifying the (𝑘, 𝑙)-cores with all possible (𝑘, 𝑙) pairs.
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Consider applying D-core decomposition on 𝐺 in Figure 2. We

can obtain a total of 9 different D-cores: (0, 0)-core = (1, 0)-core
= 𝐺 ; (0, 1)-core = (1, 1)-core = 𝐻3; (0, 2)-core = the subgraph of 𝐺

induced by the vertices in 𝑉𝐻1
∪ {𝑣7}; (1, 2)-core = (2, 1)-core =

(2, 2)-core = 𝐻1; (2, 0)-core = 𝐻2.

In the following two sections, we propose two new distributed

algorithms for D-core decomposition. Without loss of generality,

we mainly present the algorithms under the vertex-centric frame-

work. At the end of Sections 4 and 5, we discuss how to extend our

proposed algorithms to the block-centric framework.

4 DISTRIBUTED ANCHORED
CORENESS-BASED ALGORITHM

In this section, we first give a definition of anchored coreness, which

is useful for D-core decomposition. Then, we present a vertex-

centric distributed algorithm for anchored coreness computation.

Finally, we analyze the correctness and complexity of our proposed

algorithm, and discuss its block-centric extension.

4.1 Anchored Coreness
Recall that, in the undirected 𝑘-core model [39], every vertex 𝑣 has

a unique value called coreness, i.e., the maximum value 𝑘 ∈ N0
such that 𝑣 is contained in a non-empty 𝑘-core. Similarly, we give

a definition of anchored coreness for directed graphs as follows.

Definition 4.1. (Anchored Coreness). Given a directed graph
𝐺 and an integer 𝑘 , the anchored coreness of a vertex 𝑣 ∈ 𝑉𝐺 is a
pair (𝑘, 𝑙𝑚𝑎𝑥 (𝑣, 𝑘)), where 𝑙𝑚𝑎𝑥 (𝑣, 𝑘) = max

𝑙∈N0

{𝑙 | ∃(𝑘, 𝑙)-core 𝐻 ⊆

𝐺 ∧ 𝑣 ∈ 𝑉𝐻 }. The entire anchored corenesses of the vertex 𝑣 are
defined as Φ(𝑣) = {(𝑘′, 𝑙𝑚𝑎𝑥 (𝑣, 𝑘′)) | 0 ≤ 𝑘′ ≤ 𝑘𝑚𝑎𝑥 (𝑣)}, where
𝑘𝑚𝑎𝑥 (𝑣) = max

𝑘 ′′∈N0

{𝑘′′ | ∃(𝑘′′, 0)-core 𝐻 ∧ 𝑣 ∈ 𝑉𝐻 }.

Different from the undirected coreness, the anchored coreness is

a two-dimensional feature of in-degree and out-degree in directed

graphs. For example, consider the graph 𝐺 in Figure 1 and 𝑘 = 3,

the anchored coreness of vertex 𝑣2 is (3, 1), as 𝑙𝑚𝑎𝑥 (𝑣2, 3) = 1.

Correspondingly, Φ(𝑣2) = {(0, 2), (1, 2), (2, 2), (3, 1)}. The anchored
corenesses can facilitate the distributed D-core decomposition as

follows. According to Property 3.1, for a vertex 𝑣 with the anchored

coreness of (𝑘, 𝑙), 𝑣 belongs to any (𝑘, 𝑙 ′)-core with 𝑙 ′ ≤ 𝑙 . Hence, as

long as we compute the anchored corenesses of 𝑣 for each possible𝑘 ,

we can get all D-cores containing 𝑣 . As a result, for a given directed

graph 𝐺 , the problem of D-core decomposition is equivalent to

computing the entire anchored corenesses for every vertex 𝑣 ∈ 𝑉𝐺 ,
i.e., {Φ(𝑣) |𝑣 ∈ 𝑉𝐺 }.

4.2 Distributed Anchored Coreness Computing
In this section, we present a distributed algorithm for computing

the entire anchored corenesses for every vertex in 𝐺 .

Overview. To handle the anchored coreness computation simulta-

neously in a distributed setting, we propose a distributed vertex-

centric algorithm to compute all feasible anchored corenesses (𝑘, 𝑙)’s
for a vertex 𝑣 . The general idea is to first identify the feasible range

of 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] by exploring (𝑘, 0)-cores and then refine an

estimated upper bound of 𝑙𝑚𝑎𝑥 (𝑣, 𝑘) to be exact for all possible

values of 𝑘 . The framework is outlined in Algorithm 1, which

Algorithm 1: Distributed Anchored Coreness Computa-

tion: routine executed by a vertex 𝑣

Input: directed graph 𝐺 , vertex 𝑣
Output: anchored corenesses of vertex 𝑣

1 Compute 𝑘𝑚𝑎𝑥 (𝑣) for vertex 𝑣 using Algorithm 2;

2 Compute the upper bounds 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) where 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 ],
by invoking Algorithm 3;

3 Refine the upper bounds 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) to anchored corenesses

𝑙𝑚𝑎𝑥 (𝑘, 𝑣) using Algorithm 4;

4 return the entire anchored corenesses of 𝑣 as Φ(𝑣);

gives an overview of the anchored coreness updating procedure in

three phases: 1) deriving 𝑘𝑚𝑎𝑥 (𝑣); 2) computing the upper bound of

𝑙𝑚𝑎𝑥 (𝑣, 𝑘) for each 𝑘 ; and 3) refining the upper bound to the exact

anchored coreness 𝑙𝑚𝑎𝑥 (𝑣, 𝑘). Note that in the second and third

phases, the upper bound of 𝑙𝑚𝑎𝑥 (𝑣, 𝑘) can be computed and refined

in batch, instead of one by one sequentially, for different values of

𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)].
Phase I: Computing the in-degree limit 𝑘𝑚𝑎𝑥 (𝑣). To compute

𝑘𝑚𝑎𝑥 (𝑣), first, we introduce a concept of H-index [18]. Specifically,
given a collection of integers 𝑆 , the H-index of 𝑆 is a maximum inte-

gerℎ such that 𝑆 has at least ℎ integer elements whose values are no

less than ℎ, denoted asH(𝑆). For example, given 𝑆 = {1, 2, 3, 3, 4, 6},
H-indexH(𝑆) = 3, as 𝑆 has at least 3 elements whose values are no

less than 3. Based on H-index, we give a new definition of 𝑛-order
in-H-index for directed graph.

Definition 4.2. (𝑛-order in-H-index). Given a vertex 𝑣 in 𝐺 ,
the 𝑛-order in-H-index of 𝑣 , denoted by iH

(𝑛)
𝐺
(𝑣), is defined as

iH
(𝑛)
𝐺
(𝑣) =

{
𝑑𝑒𝑔𝑖𝑛

𝐺
(𝑣), 𝑛 = 0

H(𝐼 ), 𝑛 > 0

(1)

where the integer set 𝐼 = {iH(𝑛−1)
𝐺

(𝑢) |𝑢 ∈ 𝑁 𝑖𝑛
𝐺
(𝑣)}.

Theorem 4.1 (Convergence).

𝑘𝑚𝑎𝑥 (𝑣) = lim

𝑛→∞
iH
(𝑛)
𝐺
(𝑣) (2)

Proof. Due to space limitation, we give a proof sketch here. The

detailed proof can be found in [23]. First, we prove that iH
(𝑛)
𝐺
(𝑣) is

non-increasing with the increase of order 𝑛. Thus, iH
(𝑛)
𝐺
(𝑣) finally

converges to an integer when 𝑛 is big enough. Then, we prove

𝑘𝑚𝑎𝑥 (𝑣) ≤ iH
(∞)
𝐺 ′ (𝑣) ≤ iH

(∞)
𝐺
(𝑣), where 𝐺 ′ ⊆ 𝐺 is a subgraph

induced by the vertices 𝑣 ′ with𝑘𝑚𝑎𝑥 (𝑣 ′) ≥ 𝑘𝑚𝑎𝑥 (𝑣). Also, we know
𝑘𝑚𝑎𝑥 (𝑣) ≥ iH

(∞)
𝐺
(𝑣) by definition. Hence, 𝑘𝑚𝑎𝑥 (𝑣) = iH

(∞)
𝐺
(𝑣).
□

According to Theorem 4.1, iH
(𝑛)
𝐺
(𝑣) finally converges to𝑘𝑚𝑎𝑥 (𝑣),

based on which we present a distributed algorithm as shown in

Algorithm 2 to compute 𝑘𝑚𝑎𝑥 (𝑣). Algorithm 2 has an initialization

step (lines 1-4), and two update procedures after receiving one

message (lines 5-7) and all messages (lines 8-11). It first uses 0 to

initialize the set 𝐼 , which keeps the latest 𝑛-order in-H-indexes of

𝑣 ’s in-neighbors (lines 1-2). Then, the algorithm sets the 𝑛-order

in-H-index of 𝑣 to its in-degree (line 3) and sends the message <𝑣 ,

iH(𝑣)> to all its out-neighbors (line 4). When 𝑣 receives a message
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Table 1: An illustration of distributed D-core decomposition using Algorithm 1 on graph 𝐺 in Figure 2.
Vertices

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

Phase I

iH
(0) (𝑣) 3 2 2 2 2 3 1 2

iH
(1) (𝑣) 2 2 2 2 2 2 1 2

iH
(2) (𝑣) = 𝑘𝑚𝑎𝑥 (𝑣) 2 2 2 2 2 2 1 2

Phase II

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], oH(0)𝐺 [𝑘 ] (𝑣) 3; 3; 3 0; 0; 0 0; 0; 0 5; 5; 5 3; 3; 3 2; 2; 2 2; 2 2; 2; 2

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], oH(1)𝐺 [𝑘 ] (𝑣) 2; 2; 2 0; 0; 0 0; 0; 0 2; 2; 2 2; 2; 2 2; 2; 2 2; 2 1; 1; 0

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], oH(2)𝐺 [𝑘 ] (𝑣) 2; 2; 2 0; 0; 0 0; 0; 0 2; 2; 2 2; 2; 2 2; 2; 2 2; 2 1; 1; 0

Phase III

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) 2; 2; 2 0; 0; 0 0; 0; 0 2; 2; 2 2; 2; 2 2; 2; 2 2; 2 1; 1; 0

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], 𝑙 ′𝑢𝑝𝑝 (𝑘, 𝑣) 2; 2; 2 0; 0; 0 0; 0; 0 2; 2; 2 2; 2; 2 2; 2; 2 2; 1 1; 1; 0

∀𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣) ], 𝑙𝑚𝑎𝑥 (𝑘, 𝑣) 2; 2; 2 0; 0; 0 0; 0; 0 2; 2; 2 2; 2; 2 2; 2; 2 2; 1 1; 1; 0

Algorithm 2: Computing 𝑘𝑚𝑎𝑥 (𝑣)
Input: directed graph 𝐺 , vertex 𝑣
Output: 𝑘𝑚𝑎𝑥 (𝑣)
Initializations

1 for each 𝑣 ′ ∈ 𝑁 𝑖𝑛
𝐺
(𝑣) do

2 𝐼 [𝑣 ′] ← 0;

3 iH(𝑣) ← 𝑑𝑒𝑔𝑖𝑛
𝐺
(𝑣);

4 Send message ⟨𝑣 , iH(𝑣)⟩ to all out-neighbors of 𝑣 ;

On receiving message ⟨𝑣 ′, iH(𝑣 ′)⟩ from 𝑣 ’s in-neighbor 𝑣 ′
5 𝐼 [𝑣 ′] ← iH(𝑣 ′);
6 if iH(𝑣 ′) < iH(𝑣) then
7 𝑓 𝑙𝑎𝑔← True

After receiving all messages
8 if 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 then
9 if H(𝐼 ) < iH(𝑣) then
10 iH(𝑣) ← H(𝐼 );𝑓 𝑙𝑎𝑔← False;

11 Send message ⟨𝑣 , iH(𝑣)⟩ to all out-neighbors of 𝑣

When no vertex broadcasts messages
12 return 𝑘𝑚𝑎𝑥 (𝑣) ← iH(𝑣);

<𝑣 ′, iH(𝑣 ′)> from its in-neighbor 𝑣 ′, the algorithm updates the

𝑛-order in-H-index of 𝑣 ′ (line 5). If iH(𝑣 ′) < iH(𝑣), it means the

𝑛-order in-H-index of 𝑣 may decrease. Thus, flag is set to True to
indicate the re-computation of 𝑣 ’s 𝑛-order in-H-index (line 7). After

receiving all massages, if flag is True, Algorithm 2 updates 𝑣 ’s 𝑛-

order in-H-index iH(𝑣) and inform all its out-neighbors if iH(𝑣)
decreases (lines 9-11). Algorithm 2 completes and returns iH(𝑣) as
𝑘𝑚𝑎𝑥 (𝑣) when there is no vertex broadcasting messages (line 12).

Example 4.1. We use the directed graph𝐺 in Figure 2 to illustrate
Algorithm 2, whose calculation process is shown in Table 1. We take
vertex 𝑣1 as an example. First, 𝑣1’s 0-order in-H-index is initialized
with its in-degree, i.e., iH(0)

𝐺
(𝑣1) = 3. Then, Algorithm 2 iteratively

computes iH(𝑛)
𝐺
(𝑣1). After one iteration, the 1-order in-H-index of 𝑣1

has converged to S(iH(0)
𝐺
(𝑣4), iH(0)𝐺

(𝑣6), iH(0)𝐺
(𝑣7)) = S(2, 3, 1) = 2.

Thus, 𝑘𝑚𝑎𝑥 (𝑣1) = iH
(2)
𝐺
(𝑣1) = iH

(1)
𝐺
(𝑣1) = 2.

Phase II: Computing the upper bounds of 𝒍𝒎𝒂𝒙 (𝒌, 𝒗). In a

distributed setting, the computation of 𝑙𝑚𝑎𝑥 (𝑘, 𝑣) faces technical
challenges. It is difficult to compute 𝑙𝑚𝑎𝑥 (𝑘, 𝑣) by making use of

only the “intermediate” neighborhood information. Because some

vertices 𝑢 ∈ 𝑁𝐺 (𝑣) may become disqualified and thus be removed

from the candidate set of (𝑘, 𝑙𝑚𝑎𝑥 (𝑘, 𝑣))-core during the iteration
process. Even worse, verifying the candidacy of 𝑢 requires a large

number of message exchanges between vertices. To address these

issues, we design a novel upper bound for 𝑙𝑚𝑎𝑥 (𝑘, 𝑣), denoted by

𝑙𝑢𝑝𝑝 (𝑘, 𝑣), which can be iteratively computed with “intermediate”

corenesses to reduce communication costs. To start with, we give a

new definition of 𝑛-order out-H-index, similar to Definition 4.2.

Definition 4.3. (𝑛-order out-H-index). Given a vertex 𝑣 in 𝐺 ,
the 𝑛-order out-H-index of 𝑣 , denoted as oH(𝑛)

𝐺
(𝑣), is defined as

oH
(𝑛)
𝐺
(𝑣) =

{
𝑑𝑒𝑔𝑜𝑢𝑡

𝐺
(𝑣), 𝑛 = 0

H(𝑂), 𝑛 > 0

(3)

where 𝑂 = {oH(𝑛−1)
𝐺

(𝑢) |𝑢 ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣)}.

Based on oH
(𝑛)
𝐺
(𝑣), we have the following theorem.

Theorem 4.2. Given a vertex 𝑣 in𝐺 and an integer𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)],
let𝐺 [𝑘] be the subgraph of𝐺 induced by the vertices in𝑉𝑘 = {𝑢 | 𝑢 ∈
𝑉𝐺 ∧ 𝑘𝑚𝑎𝑥 (𝑢) ≥ 𝑘}. Then, it holds that

𝑙𝑚𝑎𝑥 (𝑘, 𝑣) ≤ lim

𝑛→∞
oH
(𝑛)
𝐺 [𝑘 ] (𝑣) . (4)

Proof. Similar to Theorem 4.1, we can prove lim

𝑛→∞
oH
(𝑛)
𝐺 [𝑘 ] (𝑣)

= 𝑙 ′ such that 𝑣 ∈ (0, 𝑙 ′)-core of𝐺 [𝑘] but 𝑣 ∉ (0, 𝑙 ′+1)-core of𝐺 [𝑘].
Then, we have the following relationship for the D-cores of 𝐺 [𝑘]:
(𝑘, 𝑙𝑚𝑎𝑥 (𝑘, 𝑣))-core ⊆ (0, 𝑙𝑚𝑎𝑥 (𝑘, 𝑣))-core ⊆ (0, 𝑙 ′)-core. According
to the partial nesting property of D-core, 𝑙 ′ ≥ 𝑙𝑚𝑎𝑥 (𝑘, 𝑣) holds. □

Theorem 4.2 indicates that lim

𝑛→∞
oH
(𝑛)
𝐺 [𝑘 ] (𝑣) can be served as an

upper bound of 𝑙𝑚𝑎𝑥 (𝑘, 𝑣), i.e., 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) = lim

𝑛→∞
oH
(𝑛)
𝐺 [𝑘 ] (𝑣). Thus,

we can compute 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) by iteratively calculating the𝑛-order out-
H-index of 𝑣 in the directed subgraph𝐺 [𝑘]. Moreover, to efficiently

compute 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) for all values 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] in parallel, our

distributed algorithm should send updating messages in batch and

compute 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) simultaneously.

Based on the above discussion, we propose a distributed algo-

rithm for computing the upper bounds 𝑙𝑢𝑝𝑝 (𝑘, 𝑣). Algorithm 3

presents the detailed procedure. First, it initializes the 𝑛-order

out-H-index of 𝑣 for each possible value of 𝑘 and sends them to

𝑣 ’s in-neighbors (lines 1-5). When 𝑣 receives a message from its

out-neighbor 𝑣 ′, 𝑣 updates the 𝑛-order out-H-index of 𝑣 ′ for sub-
sequent calculation (lines 6-10). After receiving all messages, 𝑣

updates its own 𝑛-order out-H-index for each possible value of 𝑘
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Algorithm 3: Computing Upper Bounds 𝑙𝑢𝑝𝑝 (𝑘, 𝑣)
Input: directed graph 𝐺 , vertex 𝑣 , 𝑘𝑚𝑎𝑥 (𝑣)
Output: the upper bounds 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) for 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)]
Initializations

1 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
2 for each 𝑣 ′ ∈ 𝑁𝑜𝑢𝑡

𝐺 [𝑘 ] (𝑣) do
3 𝐼 [𝑘] [𝑣 ′] ← 0;

4 oH𝑣 [𝑘] ← 𝑑𝑒𝑔𝑜𝑢𝑡
𝐺 [𝑘 ] (𝑣); 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] ← True;

5 Send message ⟨𝑣 , oH𝑣 [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ to all in-neighbors of 𝑣 ;

On receiving message ⟨𝑣 ′, oH𝑣′ [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ from 𝑣 ’s
out-neighbor 𝑣 ′

6 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
7 if 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] = 𝑇𝑟𝑢𝑒 then
8 𝐼 [𝑘] [𝑣 ′] ← oH[𝑘];
9 if oH𝑣′ [𝑘] < oH𝑣 [𝑘] then
10 𝑓 𝑙𝑎𝑔[𝑘] ← True

After receiving all messages
11 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
12 if 𝑓 𝑙𝑎𝑔[𝑘] = 𝑇𝑟𝑢𝑒 then
13 if H(𝐼 [𝑘]) < oH𝑣 [𝑘] then
14 oH𝑣 [𝑘] ← H(𝐼 [𝑘]); 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] ← False;

15 if ∃𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)], 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] = 𝑇𝑟𝑢𝑒 then
16 Send message ⟨𝑣 , oH𝑣 [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ to all in-neighbors

of 𝑣 ;

When no vertex broadcasts messages
17 𝑙𝑢𝑝𝑝 [·] ← oH𝑣 [·];

(lines 11-14). If any 𝑛-order out-H-indexes of 𝑣 decreases, 𝑣 informs

all its in-neighbors (lines 15-16). Finally, when there is no vertex

broadcasting messages, we get the upper bound 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) for each
𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] (line 17).

Example 4.2. We illustrate Algorithm 3 by continuing Example 4.1.
As shown in Table 1, since 𝑘𝑚𝑎𝑥 (𝑣1) = 2, we first initialize the 0-order
out-H-indexes of 𝑣1 as oH

(0)
𝐺 [𝑘 ] (𝑣1) = 3 for each 𝑘 ∈ {0, 1, 2}. After

one iteration of computing the 𝑛-order out-H-indexes, all 1-order out-
H-indexes of 𝑣1 have converged to 2. Thus, we have oH

(1)
𝐺 [0] (𝑣1) = 2,

oH
(1)
𝐺 [1] (𝑣1) = 2, oH(1)

𝐺 [2] (𝑣1) = 2.

Phase III: Refining 𝒍𝒖𝒑𝒑 (𝒌, 𝒗) to 𝒍𝒎𝒂𝒙 (𝒌, 𝒗). Finally, we present
the third phase of refining the upper bound 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) to get the

exact anchored coreness 𝑙𝑚𝑎𝑥 (𝑘, 𝑣). To this end, we first present

the following theorem.

Theorem 4.3. Given a vertex 𝑣 in𝐺 and an integer𝑘 , if (𝑘, 𝑙𝑢𝑝𝑝 (𝑘, 𝑣))
is an anchored coreness of 𝑣 , it should satisfy two constraints on in-
neighbors and out-neighbors: (i) 𝑣 has at least 𝑘 in-neighbors 𝑣 ′ such
that 𝑙𝑢𝑝𝑝 (𝑘, 𝑣 ′) ≥ 𝑙𝑢𝑝𝑝 (𝑘, 𝑣); and (ii) 𝑣 has at least 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) out-
neighbors 𝑣 ′′ such that 𝑙𝑢𝑝𝑝 (𝑘, 𝑣 ′′) ≥ 𝑙𝑢𝑝𝑝 (𝑘, 𝑣).

Theorem 4.3 obviously holds, according to Def. 3.1 of D-core and

the upper bound 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) ≥ 𝑙𝑚𝑎𝑥 (𝑘, 𝑣). Based on Theorem 4.3, we

can refine 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) decrementally by checking the upper bounds

𝑙𝑢𝑝𝑝 (𝑘, 𝑣 ′)’s of 𝑣 ’s in- and out-neighbors. If 𝑣 satisfies the above two
constraints in Theorem 4.3, 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) keeps unchanged; otherwise,

Algorithm 4: Anchored Coreness Refinement

Input: graph 𝐺 , vertex 𝑣 , 𝑘𝑚𝑎𝑥 (𝑣), upper bounds 𝑙𝑢𝑝𝑝 [·]
Output: the entire anchored corenesses of 𝑣 as Φ(𝑣)
Initializations

1 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
2 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] ← True; 𝑙 [𝑘] [𝑣] ← 0;

3 Send message ⟨𝑣 , 𝑙𝑢𝑝𝑝 [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ to all neighbors of 𝑣 ;

On receiving message ⟨𝑣 ′, 𝑙𝑢𝑝𝑝 [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ from 𝑣 ’s
neighbor 𝑣 ′

4 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
5 if 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] = 𝑇𝑟𝑢𝑒 then
6 𝑙 [𝑘] [𝑣 ′] ← 𝑙𝑢𝑝𝑝 [𝑘];
7 𝑓 𝑙𝑎𝑔[𝑘] ← True

After receiving all messages
8 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
9 if 𝑓 𝑙𝑎𝑔[𝑘] = 𝑇𝑟𝑢𝑒 then
10 𝑉 ′ ← {𝑣 ′ |𝑣 ′ ∈ 𝑁 𝑖𝑛

𝐺
(𝑣) ∧ 𝑙 [𝑘] [𝑣 ′] ≥ 𝑙𝑢𝑝𝑝 [𝑘]};

11 𝑉 ′′ ← {𝑣 ′′ |𝑣 ′′ ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣) ∧ 𝑙 [𝑘] [𝑣 ′′] ≥ 𝑙𝑢𝑝𝑝 [𝑘]};

12 if |𝑉 ′ | < 𝑘 or |𝑉 ′′ | < 𝑙𝑢𝑝𝑝 [𝑘] then
13 𝑙𝑢𝑝𝑝 [𝑘] ← 𝑙𝑢𝑝𝑝 [𝑘] − 1; 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] ← True;

14 if ∃𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] such that 𝑐ℎ𝑎𝑛𝑔𝑒 [𝑘] = 𝑇𝑟𝑢𝑒 then
15 Send message ⟨𝑣 , 𝑙𝑢𝑝𝑝 [·], 𝑐ℎ𝑎𝑛𝑔𝑒 [·]⟩ to all neighbors of

𝑣 ;

When no vertex broadcasts messages
16 for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] do
17 Add (𝑘, 𝑙𝑢𝑝𝑝 [𝑘]) to the anchored corenesses Φ(𝑣);

𝑙𝑢𝑝𝑝 (𝑘, 𝑣) decreases by 1 as the current (𝑘, 𝑙𝑢𝑝𝑝 (𝑘, 𝑣)) is not an
anchored coreness of 𝑣 . The above process needs to repeat for all

vertices and all possible values of 𝑘 , until none of (𝑘, 𝑙𝑢𝑝𝑝 (𝑘, 𝑣))
changes. Finally, we obtain all anchored corenesses {Φ(𝑣) |𝑣 ∈ 𝑉𝐺 }.

Algorithm 4 outlines the procedure of the distributed refine-

ment phase. First, the algorithm initializes some auxiliary struc-

tures and broadcast 𝑣 ’s upper bound 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) for each possible

𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] (lines 1-3). When it receives a message from 𝑣 ’s

neighbor 𝑣 ′, the algorithm updates the upper bound set for 𝑣 ′ (lines
4-7). After receiving all messages, the algorithm refines 𝑙𝑢𝑝𝑝 (𝑘, 𝑣)
for each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣)] based on Theorem 4.3 (lines 8-13). If

there exists such a (𝑘, 𝑙𝑢𝑝𝑝 (𝑘, 𝑣)) whose 𝑙𝑢𝑝𝑝 (𝑘, 𝑣) is decreased, the
algorithm broadcasts the new upper bound set to 𝑣 ’s neighbors

(lines 14-15). As soon as there are no vertex broadcasting messages,

Algorithm 4 terminates and we get all anchored corenesses of 𝑣

(lines 16-17).

Example 4.3. Continue Example 4.2 to illustrate Algorithm 4 in
Phase III, which refines the upper bound 𝑙𝑢𝑝𝑝 (𝑘, 𝑣1) to the exact
𝑙𝑚𝑎𝑥 (𝑘, 𝑣1). For 𝑘𝑚𝑎𝑥 (𝑣1) = 3 and each 𝑘 ∈ [0, 𝑘𝑚𝑎𝑥 (𝑣1)], Table 1
reports the final results 𝑙𝑢𝑝𝑝 (𝑘, 𝑣1) = 𝑙𝑚𝑎𝑥 (𝑘, 𝑣1) = 2. Therefore, the
entire anchored corenesses of 𝑣1 are Φ(𝑣1) = {(0, 2), (1, 2), (2, 2)}.
4.3 Algorithm Analysis and Extension

Complexity analysis. We first analyze the time, space, message

complexities of Algorithm 1. Let the edge size |𝐸𝐺 | = 𝑚, the

maximum in-degree Δ𝑖𝑛 = max𝑣∈𝑉𝐺 𝑑𝑒𝑔𝑖𝑛
𝐺
(𝑣), the maximum out-

degree Δ𝑜𝑢𝑡 = max𝑣∈𝑉𝐺 𝑑𝑒𝑔𝑜𝑢𝑡
𝐺
(𝑣), and the maximum degree Δ =

max𝑣∈𝑉𝐺 𝑑𝑒𝑔𝐺 (𝑣). In addition, let 𝑅𝐴𝐶−𝐼 , 𝑅𝐴𝐶−𝐼 𝐼 , and 𝑅𝐴𝐶−𝐼 𝐼 𝐼 be
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the number of convergence rounds required by the three phases

in Algorithm 1, respectively. Let be the total number of converge

rounds in Algorithm 1 as 𝑅𝐴𝐶 = 𝑅𝐴𝐶−𝐼 + 𝑅𝐴𝐶−𝐼 𝐼 + 𝑅𝐴𝐶−𝐼 𝐼 𝐼 and
𝑅𝐴𝐶 ∈ 𝑂 (Δ). We have the following theorems (their detailed proofs

can be found in [23]):

Theorem 4.4. (Time and Space Complexities) Algorithm 1
takes𝑂 (𝑅𝐴𝐶 · Δ𝑖𝑛 · Δ) time and𝑂 (Δ𝑖𝑛 · Δ) space. The total time and
space complexities for computing all vertices’ corenesses are 𝑂 (𝑅𝐴𝐶 ·
Δ𝑖𝑛 ·𝑚) and 𝑂 (Δ𝑖𝑛 ·𝑚), respectively.

Theorem 4.5. (Message Complexity) The message complexity
(i.e., the total number of times that a vertex send messages) of Al-
gorithm 1 is 𝑂 (Δ𝑖𝑛 · Δ𝑜𝑢𝑡 · Δ). The total message complexity for
computing all vertices’ corenesses is 𝑂 (Δ𝑖𝑛 · Δ𝑜𝑢𝑡 ·𝑚).
Block-centric extension of Algorithm 1. We further discuss to

extend the vertex-centric D-core decomposition in Algorithm 1 to

the block-centric framework. The extension can be easily achieved

by changing the update operation after receiving all messages. That

is, instead of having Algorithms 2, 3 and 4 perform the update op-

eration only once after receiving all messages, in the block-centric

framework, the algorithms should update the H-indexes multiple

times until the local block converges. For example, Algorithm 2

computes the 𝑛-order in-H-index of 𝑣 only once in each round

(lines 10-13). In contrast, the block-centric version should compute

𝑣 ’s 𝑛-order in-H-index iteratively with 𝑣 ’s in-neighbors, that are

located in the same block as 𝑣 , before broadcasting messages to

other blocks to enter the next round. Note that in the worst case, for

block-centric algorithms, every vertex converges within the block

after computing the in-H-index/out-H-index only once, which is

the same as vertex-centric algorithms. Therefore, the worse-case

cost of block-centric algorithms is the same as that of vertex-centric

algorithms.

5 DISTRIBUTED SKYLINE CORENESS-BASED
ALGORITHM

In this section, we propose a novel concept of skyline coreness,

which is more elegant than the anchored coreness. Then, we give a

new definition of𝑛-order D-index for computing skyline corenesses.

Based on the D-index, we propose a distributed algorithm for sky-

line coreness computation to accomplish D-core decomposition.

5.1 Skyline Coreness

Motivation. The motivation for proposing another skyline core-

ness lies in an important observation that the anchored corenesses

(𝑘, 𝑙)’s may have redundancy. For example, in Figure 1, the vertex 𝑣2
has four anchored corenesses, i.e.,Φ(𝑣2) = {(0, 2), (1, 2), (2, 2), (3, 1)}.
According to D-core’s partial nesting property, if 𝑣2 ∈ (2, 2)-core, 𝑣2
must also belong to (0, 2)-core and (1, 2)-core. Thus, it is sufficient

and more efficient to keep the coreness of 𝑣2 as {(2, 2), (3, 1)}, which
uses (2, 2)-core to represent other two D-cores (0, 2)-core and (1,

2)-core. This elegant representation is termed as skyline coreness,
which can facilitate space saving and fast computation of D-core

decomposition. Based on the above observation, we formally define

the dominance operation and skyline coreness as follows.

Definition 5.1. (Dominance Operations). Given two core-
ness pairs (𝑘, 𝑙) and (𝑘′, 𝑙 ′), we define two operations ‘≺’ and ‘⪯’

to compare them: (i) (𝑘′, 𝑙 ′) ≺ (𝑘, 𝑙) indicates that (𝑘, 𝑙) dominates
(𝑘′, 𝑙 ′), i.e., either 𝑘′ < 𝑘 , 𝑙 ′ ≤ 𝑙 hold or 𝑘′ ≤ 𝑘 , 𝑙 ′ < 𝑙 hold; and (ii)
(𝑘′, 𝑙 ′) ⪯ (𝑘, 𝑙) represents that 𝑘′ ≤ 𝑘 , 𝑙 ′ ≤ 𝑙 hold.

Definition 5.2. (Skyline Coreness). Given a vertex 𝑣 in a di-
rected graph𝐺 and a coreness pair (𝑘, 𝑙), we say that (𝑘, 𝑙) is a skyline
coreness of 𝑣 iff it satisfies that (i) 𝑣 ∈ (𝑘, 𝑙)-core; and (ii) there exist
no other pair (𝑘′, 𝑙 ′) such that (𝑘, 𝑙) ≺ (𝑘′, 𝑙 ′) and 𝑣 ∈ (𝑘′, 𝑙 ′)-core.
We use SC(𝑣) to denote the entire skyline corenesses of the vertex 𝑣 ,
i.e., SC(𝑣) = {(𝑘, 𝑙) | (𝑘, 𝑙) is a skyline coreness of 𝑣}.

In other words, the skyline coreness of a vertex 𝑣 is a non-

dominated pair (𝑘, 𝑙) whose corresponding (𝑘, 𝑙)-core contains

𝑣 . For instance, vertex 𝑣2 has the skyline corenesses SC(𝑣2) =

{(2, 2), (3, 1)} in Figure 1, reflecting that no other coreness (𝑘, 𝑙) can
dominate any skyline coreness in SC(𝑣2). According to D-core’s

partial nesting property, for a skyline coreness (𝑘, 𝑙) of 𝑣 , 𝑣 is con-
tained in the (𝑘′, 𝑙 ′)-core with (𝑘′, 𝑙 ′) ≺ (𝑘, 𝑙). Therefore, if we
compute all skyline corenesses SC(𝑣) for a vertex 𝑣 , we can find

all D-cores the vertex 𝑣 belonging to. As a result, the problem of

D-core decomposition is equivalent to computing the entire skyline

corenesses for every vertex in 𝐺 , i.e., {SC(𝑣) |𝑣 ∈ 𝑉𝐺 }.
Structural properties of skyline coreness. We analyze the struc-

tural properties of skyline coreness.

Property 5.1. Let (𝑘𝑣, 𝑙𝑣) be a skyline coreness of 𝑣 , the following
properties hold:

(I) There exist 𝑘𝑣 in-neighbors 𝑣 ′ ∈ 𝑁 𝑖𝑛
𝐺
(𝑣) such that (𝑘𝑣, 𝑙𝑣) ⪯

(𝑘𝑣′ , 𝑙𝑣′ ), and also 𝑙𝑣 out-neighbors 𝑣 ′′ ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣) such that

(𝑘𝑣, 𝑙𝑣) ⪯ (𝑘𝑣′′ , 𝑙𝑣′′ ).
(II) Two cases cannot hold in either way: there exist 𝑘𝑣 + 1 in-

neighbors 𝑣 ′∈ 𝑁 𝑖𝑛
𝐺
(𝑣) such that (𝑘𝑣+1, 𝑙𝑣) ⪯ (𝑘𝑣′ , 𝑙𝑣′ ), or 𝑙𝑣

out-neighbors 𝑣 ′′∈𝑁𝑜𝑢𝑡
𝐺
(𝑣) such that (𝑘𝑣 +1, 𝑙𝑣) ⪯ (𝑘𝑣′′ , 𝑙𝑣′′ ).

(III) Two cases cannot hold in either way: there exist𝑘𝑣 in-neighbors
𝑣 ′ ∈ 𝑁 𝑖𝑛

𝐺
(𝑣) such that (𝑘𝑣, 𝑙𝑣 + 1) ⪯ (𝑘𝑣′ , 𝑙𝑣′ ), or 𝑙𝑣 + 1 out-

neighbors 𝑣 ′′ ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣) such that (𝑘𝑣, 𝑙𝑣 + 1) ⪯ (𝑘𝑣′′ , 𝑙𝑣′′ ).

Proof. First, we prove Property 5.1(I). Let 𝐷1 be the (𝑘𝑣, 𝑙𝑣)-
core of 𝐺 , we have 𝑑𝑒𝑔𝑖𝑛

𝐷1

(𝑣) ≥ 𝑘𝑣 and 𝑑𝑒𝑔
𝑜𝑢𝑡
𝐷1

(𝑣) ≥ 𝑙𝑣 . For ∀𝑣 ′ ∈
(𝑁 𝑖𝑛

𝐷1

(𝑣) ∪ 𝑁𝑜𝑢𝑡
𝐷1

(𝑣)), 𝑣 ′ may be in the (𝑘′, 𝑙 ′)-core with 𝑘𝑣 ≤ 𝑘′ ≤
𝑘𝑣′ and 𝑙𝑣 ≤ 𝑙 ′ ≤ 𝑙𝑣′ . Therefore, (I) of Property 5.1 holds.

Next, we prove Property 5.1(II). Assume that 𝑣 has 𝑘𝑣 + 1 in-

neighbors 𝑉 ′ and 𝑙𝑣 out-neighbors 𝑉 ′′ satisfying the constraints

of (II). Then, 𝑉 ′ and 𝑉 ′′ must be in the (𝑘𝑣 + 1, 𝑙𝑣)-core. Moreover,

𝑣 ∪ (𝑘𝑣 + 1, 𝑙𝑣)-core is also a (𝑘𝑣 + 1, 𝑙𝑣)-core. Hence, (𝑘𝑣 + 1, 𝑙𝑣)
rather than (𝑘𝑣, 𝑙𝑣) is a skyline coreness of 𝑣 , which contradicts to

the condition of Property 5.1. Therefore, the assumption does not

hold.

Finally, Property 5.1(III) can be proved in the same way of Prop-

erty 5.1(II). It is omitted due to space limitation. □

For example, (2, 2) is a skyline coreness of 𝑣2 in Figure 1. The

in-neighbors of 𝑣2 are 𝑣3, 𝑣4, 𝑣5, and 𝑣7, whose skyline corenesses

are {(3, 3)}, {(2, 2)}, {(3, 3)}, and {(2, 2), (3, 1)}, respectively. These
four vertices all have skyline corenesses that dominate or are iden-

tical to 𝑣2’s skyline coreness (2, 2). But only two vertices 𝑣3 and 𝑣5
have skyline corenesses that dominate (𝑘𝑣2 + 1, 𝑙𝑣2 ) = (3, 2). Hence,
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(3, 2) is not a skyline coreness of 𝑣2. Property 5.1 reveals the rela-

tionships among vertices’ skyline corenesses, based on which we

propose an algorithm for skyline coreness computation in the next

subsection.

5.2 Distributed Skyline Corenesses Computing
We begin with a novel concept of D-index.

Definition 5.3. (D-index). Given two sets of pairs of integers
𝑅𝑖𝑛 , 𝑅𝑜𝑢𝑡 ⊆ N0 × N0, the D-index of 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 is denoted by
D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ) ⊆ N0 × N0, where each element (𝑘, 𝑙) ∈ D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 )
satisfies: (i) there exist at least 𝑘 pairs (𝑘𝑖 , 𝑙𝑖 ) ∈ 𝑅𝑖𝑛 such that (𝑘, 𝑙) ⪯
(𝑘𝑖 , 𝑙𝑖 ) for 1 ≤ 𝑖 ≤ 𝑘 ; (ii) there exist at least 𝑙 pairs (𝑘 𝑗 , 𝑙 𝑗 ) ∈ 𝑅𝑜𝑢𝑡
such that (𝑘, 𝑙) ⪯ (𝑘 𝑗 , 𝑙 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑙 ; (iii) there does not exist
another (𝑘′, 𝑙 ′) ∈ N0 ×N0 satisfying the above conditions (1) and (2),
and (𝑘, 𝑙) ≺ (𝑘′, 𝑙 ′).

The idea of D-index is very similar to H-index. Actually, the

D-index is an extension of H-index to handle two-dimensional

integer pairs. For D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ), it finds a series of (𝑘, 𝑙) skyline
pairs such that each has at least 𝑘 dominated pairs in 𝑅𝑖𝑛 and at

least 𝑙 dominated pairs in 𝑅𝑜𝑢𝑡 , using a joint indexing way. For

example, let 𝑅𝑖𝑛 = {(1, 1), (2, 2)} and 𝑅𝑜𝑢𝑡 = {(3, 3), (4, 4)}, then
D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ) = {(1, 2)}. Note that D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ) ≠ D(𝑅𝑜𝑢𝑡 , 𝑅𝑖𝑛)
may hold for the D-index, as D(𝑅𝑜𝑢𝑡 , 𝑅𝑖𝑛) = {(2, 1)} ≠ {(1, 2)} =
D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ) in this example. Next, we introduce another concept

of 𝑛-order D-index for distributed D-core decomposition.

Definition 5.4. (𝑛-order D-index). Given a vertex 𝑣 in 𝐺 , the
𝑛-order D-index of 𝑣 , denoted by 𝐷 (𝑛) (𝑣) ⊆ N0 × N0, is defined as

𝐷 (𝑛) (𝑣) =
{
{(𝑑𝑒𝑔𝑖𝑛

𝐺
(𝑣), 𝑑𝑒𝑔𝑜𝑢𝑡

𝐺
(𝑣))}, 𝑛 = 0

D(𝑅 (𝑛−1)
𝑖𝑛

(𝑣), 𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣)), 𝑛 > 0

(5)

Here,𝑅 (𝑛−1)
𝑖𝑛

(𝑣) = {(𝑘𝑢 , 𝑙𝑢 ) ∈ 𝐷 (𝑛−1) (𝑢) |𝑢 ∈ 𝑁 𝑖𝑛
𝐺
(𝑣)} and𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣)

= {(𝑘𝑢 , 𝑙𝑢 ) ∈ 𝐷 (𝑛−1) (𝑢) | 𝑢 ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣)}. Note that 𝐷 (𝑛) (𝑣) is

the largest non-dominated D-index such that it dominates or at
least is identical to D(𝑅 (𝑛−1)

𝑖𝑛
(𝑣), 𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣)), for each 𝑅

(𝑛−1)
𝑖𝑛

(𝑣)
∈ 𝐷 (𝑛−1) (𝑢1) × . . . × 𝐷 (𝑛−1) (𝑢𝑖 ) when 𝑁 𝑖𝑛

𝐺
(𝑣) = {𝑢1, . . . , 𝑢𝑖 } and

each 𝑅
(𝑛−1)
𝑜𝑢𝑡 (𝑣) ∈ 𝐷 (𝑛−1) (𝑢1) × . . . × 𝐷 (𝑛−1) (𝑢 𝑗 ) when 𝑁𝑜𝑢𝑡

𝐺
(𝑣) =

{𝑢1, . . . , 𝑢 𝑗 }.

The 𝑛-order D-index 𝐷 (𝑛) (𝑣) may contain more than one pair

(𝑘, 𝑙), i.e., |𝐷 (𝑛) (𝑣) | ≥ 1. Note that 𝑅
(𝑛−1)
𝑖𝑛

(𝑣) and 𝑅
(𝑛−1)
𝑜𝑢𝑡 (𝑣) con-

sist of one pair (𝑘𝑢 , 𝑙𝑢 ) for each in-neighbor 𝑢 ∈ 𝑁 𝑖𝑛
𝐺
(𝑣) and each

out-neighbor 𝑢 ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣), respectively. Therefore, there exist mul-

tiple combinations of 𝑅
(𝑛−1)
𝑜𝑢𝑡 (𝑣) and 𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣). Moreover, 𝐷 (𝑛) (𝑣)

should consider all combinations of 𝑅
(𝑛−1)
𝑜𝑢𝑡 (𝑣) and 𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣), and

finally select the “best” choice as the largest non-dominated set of

D-index D(𝑅 (𝑛−1)
𝑖𝑛

(𝑣), 𝑅 (𝑛−1)𝑜𝑢𝑡 (𝑣)).
For two pair sets 𝑅1, 𝑅2 ⊆ N0 ×N0, we say 𝑅2 ⪯ 𝑅1 if and only if

∀(𝑘, 𝑙) ∈ 𝑅2, ∃(𝑘′, 𝑙 ′) ∈ 𝑅1 such that (𝑘, 𝑙) ⪯ (𝑘′, 𝑙 ′). Then, we have
the following theorem of 𝑛-order D-index convergence.

Theorem 5.1 (𝑛-order D-index Convergence). For a vertex 𝑣
in 𝐺 , it holds that

SC(𝑣) = lim

𝑛→∞
𝐷 (𝑛) (𝑣) (6)

Proof. The proof can be similarly done as Theorem 4.1. □

By Theorem 5.1, we can compute vertices’ skyline corenesses via

iteratively computing their 𝑛-order D-indexes until convergence.

5.3 Algorithms and Optimizations
A naive implementation of the distributed algorithm to compute

𝐷 (𝑛) (𝑣) may suffer from serious performance problems, due to the

combinatorial blow-ups in a large number of choices of 𝑅
(𝑛−1)
𝑖𝑛

(𝑣)
and 𝑅

(𝑛−1)
𝑜𝑢𝑡 (𝑣). Thus, we first tackle three critical issues for fast

distributed computation of 𝑛-order D-index.

Optimization-1: Fast computation of D-index D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ).
The first issue is, given 𝑅𝑖𝑛 and 𝑅𝑜𝑢𝑡 , how to compute D-index

D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ). A straightforward way is to list all candidate pairs

and return the pairs satisfying Def. 5.3. According to conditions

(1)&(2) in Def. 5.3, if (𝑘, 𝑙) belongs to D-index, there exists at least

𝑘 pairs of 𝑅𝑖𝑛 satisfying the dominance relationship. Therefore,

0 ≤ 𝑘 ≤ |𝑅𝑖𝑛 |. Similarly, 0 ≤ 𝑙 ≤ |𝑅𝑜𝑢𝑡 |. Thus, there are a total of
( |𝑅1 | + 1) · ( |𝑅2 | + 1) candidate pairs to be checked, which is costly

for large |𝑅1 | and |𝑅2 |. In addition, the basic operation of D-index

computation is frequently invoked in the process of computing

𝐷 (𝑛) (𝑣). Hence, it is necessary to develop faster algorithms. To this

end, we try to reduce the pairs for examination as many as possible

through the following two optimizations.

• Reducing the ranges of 𝑘 and 𝑙 . For conditions (1)&(2) in

Def. 5.3, if (𝑘, 𝑙) belongs to D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ), there exist at

least 𝑘 pairs (𝑘𝑖 , 𝑙𝑖 ) in 𝑅𝑖𝑛 such that (𝑘, 𝑙) ⪯ (𝑘𝑖 , 𝑙𝑖 ). In
other words, at least 𝑘 pairs (𝑘𝑖 , 𝑙𝑖 ) in 𝑅𝑖𝑛 have 𝑘𝑖 ≥ 𝑘 .

Thus, the maximum 𝑘 is denoted by 𝑘𝑚𝑎𝑥 =H(𝐼𝑘 ), where
𝐼𝑘 = {𝑘𝑖 | (𝑘𝑖 , 𝑙𝑖 ) ∈ 𝑅𝑖𝑛}. Similarly, we can also obtain

the maximum 𝑙 , denoted by 𝑙𝑚𝑎𝑥 , as 𝑙𝑚𝑎𝑥 =H(𝑂𝑙 ), where
𝑂𝑙 = {𝑙 𝑗 | (𝑘 𝑗 , 𝑙 𝑗 ) ∈ 𝑅𝑜𝑢𝑡 }. Since H(𝐼𝑘 ) ≤ |𝑅𝑖𝑛 | and
H(𝑂𝑙 ) ≤ |𝑅𝑜𝑢𝑡 |, the total number of candidate pairs de-

creases.

• Pruning disqualified candidate pairs. Let (𝑘, 𝑙) ∈ D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ).
According to condition (3) in Def. 5.3, if (𝑘′, 𝑙 ′) ∈ D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 )
with 𝑘′ < 𝑘 , 𝑙 ′ must satisfy 𝑙 ′ > 𝑙 . Otherwise, (𝑘′, 𝑙 ′) ≺
(𝑘, 𝑙) and (𝑘′, 𝑙 ′) ∉ D(𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡 ). This rule can be used to

prune disqualified pairs based on the found skyline core-

nesses.

Optimization-2: Fast computation of n-order D-index𝐷 (𝑛) (𝑣).
The second issue is the computation of 𝐷 (𝑛) (𝑣). By Def. 5.4, both

𝑅
(𝑛−1)
𝑖𝑛

(𝑣) and 𝑅
(𝑛−1)
𝑜𝑢𝑡 (𝑣) may have multiple instances. Hence, a

straightforward way is to compute the D-index for every instance

and finally integrate them together. In total, we need to compute the

D-index 𝑂 (∏𝑣′∈𝑁 𝑖𝑛
𝐺
(𝑣) |𝐷 (𝑛−1) (𝑣 ′) | ·

∏
𝑣′′∈𝑁𝑜𝑢𝑡

𝐺
(𝑣) |𝐷 (𝑛−1) (𝑣 ′′) |)

times, which is very inefficient. Actually, several redundant compu-

tations occur due to many independent instances in the D-index

computation. For example, in one instance, we have verified that

(𝑘, 𝑙) belongs to the 𝑛-order D-index. Then, there is no need to

verify (𝑘, 𝑙) in other instances. This motivates us to devise a more

efficient method to compute 𝐷 (𝑛) (𝑣), which requires D-index com-

putation only once. Specifically, we first compute 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 .

Then, we enumerate candidate pairs for dominance checking. Here,
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Algorithm 5:Distributed Skyline Corenesses Computation

Algorithm: routine executed by vertex 𝑣

Input: directed graph 𝐺 , vertex 𝑣
Output: the skyline corenesses SC(𝑣)
Initializations

1 Compute iH
(∞)
𝐺
(𝑣) and oH

(∞)
𝐺
(𝑣) using Algorithm 2;

2 𝐷𝑣 = {(iH(∞)𝐺
(𝑣), oH(∞)

𝐺
(𝑣))};

3 Send message ⟨𝑣 , 𝐷𝑣⟩ to all neighbors of 𝑣 ;

On receiving message⟨𝑣 ′, 𝐷𝑣′ ⟩ from 𝑣 ’s neighbor 𝑣 ′
4 𝐷𝑘 [𝑣 ′] ← 0; 𝐷𝑙 [𝑣 ′] ← 0;

5 𝐷 [𝑣 ′] ← 𝐷𝑣′ ;

6 for each (𝑘, 𝑙) ∈ 𝐷𝑣′ do
7 𝐷𝑘 [𝑣 ′] ← max(𝐷𝑘 [𝑣 ′], 𝑘); 𝐷𝑙 [𝑣 ′] ← max(𝐷𝑙 [𝑣 ′], 𝑙);
8 𝑓 𝑙𝑎𝑔← True;

After receiving all messages
9 if 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒 then
10 Apply Algorithm 6 on 𝑛-order D-index computation;

11 if 𝐷 [𝑣] ≠ 𝐷 then
12 𝐷 [𝑣] ← 𝐷 ; 𝐷𝑣 ← 𝐷 ;

13 Send message ⟨𝑣 , 𝐷𝑣⟩ to all neighbors of 𝑣 ;

When no vertex broadcasts messages
14 return SC(𝑣) ← 𝐷 [𝑣];

we highlight two differences from the original D-index computation

method.

• The difference of 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 computations. For 𝑘𝑚𝑎𝑥 and

𝑙𝑚𝑎𝑥 in D-index computation, 𝐼𝑘 (resp.𝑂𝑙 ) is formed by just

adding 𝑘𝑖 (resp. 𝑙𝑖 ) from each pair in 𝑅𝑖𝑛 . For 𝑛-order D-

index computation, the vertex’s (𝑛 − 1)-order D-index may

have more than one pairs. We should select the maximum

𝑘𝑖 and 𝑙𝑖 among these pairs. Specifically, for 𝑣 ’s 𝑛-order

D-index computation, to compute 𝑘𝑚𝑎𝑥 , 𝐼𝑘 (𝑣) = {𝑘𝑖 | 𝑣 ′ ∈
𝑁 𝑖𝑛
𝐺
(𝑣), 𝑘𝑖 = max(𝑘 ′

𝑖
,𝑙 ′
𝑖
) ∈𝐷 (𝑛−1) (𝑣′ ) (𝑘′𝑖 )}. In the same way,

𝐼𝑙 (𝑣) = {𝑙 𝑗 | 𝑣 ′ ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣), 𝑙 𝑗 = max(𝑘 ′

𝑗
,𝑙 ′
𝑗
) ∈𝐷 (𝑛−1) (𝑣′ ) (𝑙 ′𝑗 )}.

• The difference of dominance checking. For a candidate pair
(𝑘, 𝑙), the D-index computation should find the pairs in 𝑅𝑖𝑛
and 𝑅𝑜𝑢𝑡 that dominate or are identical to (𝑘, 𝑙). To compute

𝐷 (𝑛) (𝑣), we should find all 𝑣 ’s neighbors 𝑣 ′ whose (𝑛 − 1)-
order D-index has a pair dominating or identical to (𝑘, 𝑙).
If 𝐷 (𝑛−1) (𝑣 ′) has multiple pairs, we need to examine the

dominance relationship for each of these pairs with (𝑘, 𝑙).
Once one pair dominates or is identical to (𝑘, 𝑙), such 𝑣 ′ is
identified.

Optimization-3: Tight initialization. Finally, we present an op-

timization for 𝐷 (𝑛) (𝑣) computation using a tight initialization. In

Def. 5.4, the 0-order D-index is initialized with the vertex’s in-

degree and out-degree. The optimization idea is that if we tightly

initialize the vertex’s 0-order D-index with smaller values (denoted

by 𝐷 (0) (𝑣) = (𝑘0 (𝑣), 𝑙0 (𝑣))), the 𝑛-order D-index can converge

faster to the exact skyline coreness. Here, we highlight two princi-

ples to find such (𝑘0 (𝑣), 𝑙0 (𝑣)): (i) 𝑘0 (𝑣) ≤ max(𝑘𝑖 ,𝑙𝑖 ) ∈SC(𝑣) 𝑘𝑖 and
𝑙0 (𝑣) ≤ max(𝑘𝑖 ,𝑙𝑖 ) ∈SC(𝑣) 𝑙𝑖 , otherwise the 𝐷

(𝑛) (𝑣) cannot converge
to SC(𝑣); (ii) (𝑘0 (𝑣), 𝑙0 (𝑣)) should be easy to compute in distributed

settings. As a result, we present the following theorem.

Algorithm 6: 𝑛-order D-index Computation

Output: 𝑣 ’s 𝑛-order D-index
1 𝐷 ← ∅; 𝑙𝑚𝑖𝑛 ← 0;

2 𝐼𝑘 = {𝐷𝑘 [𝑣 ′] |𝑣 ′ ∈ 𝑁 𝑖𝑛
𝐺
(𝑣)}; 𝑘𝑚𝑎𝑥 ←H(𝐼𝑘 );

3 𝑂𝑙 = {𝐷𝑙 [𝑣 ′] |𝑣 ′ ∈ 𝑁𝑜𝑢𝑡
𝐺
(𝑣)}; 𝑙𝑚𝑎𝑥 ←H(𝑂𝑙 );

4 for 𝑘 ← 𝑘𝑚𝑎𝑥 to 0 do
5 𝑙 ← 𝑙𝑚𝑎𝑥 ;

6 while 𝑙 > 𝑙𝑚𝑖𝑛 do
7 𝑉1 = {𝑣 ′ |𝑣 ′ ∈ 𝑁 𝑖𝑛

𝐺
(𝑣), and ∃(𝑘′, 𝑙 ′) ∈ 𝐷 [𝑣 ′],

(𝑘, 𝑙) ⪯ (𝑘′, 𝑙 ′)};
8 𝑉2 = {𝑣 ′ |𝑣 ′ ∈ 𝑁𝑜𝑢𝑡

𝐺
(𝑣), and ∃(𝑘′, 𝑙 ′) ∈ 𝐷 [𝑣 ′],

(𝑘, 𝑙) ⪯ (𝑘′, 𝑙 ′)};
9 if |𝑉1 | ≥ 𝑘 ∧ |𝑉2 | ≥ 𝑙 then
10 𝑙𝑚𝑖𝑛 ← 𝑙 ; 𝐷 ← 𝐷 ∪ (𝑘, 𝑙);
11 𝑙 ← 𝑙 − 1 ;

Theorem 5.2. For any vertex 𝑣 in 𝐺 , it holds that 𝑘𝑚𝑎𝑥 (𝑣) ≥
max{𝑘𝑖 | (𝑘𝑖 , 𝑙𝑖 ) ∈ SC(𝑣)} and 𝑙𝑚𝑎𝑥 (𝑣) ≥ max{𝑙𝑖 | (𝑘𝑖 , 𝑙𝑖 ) ∈ SC(𝑣)},
where 𝑙𝑚𝑎𝑥 (𝑣) = max{𝑙 | 𝑣 ∈ (0, 𝑙)-core ∧ 𝑣 ∉ (0, 𝑙 + 1)-core}.

Theorem 5.2 offers two tight upper bounds for 𝑘0 and 𝑙0, i.e.,

𝑘𝑚𝑎𝑥 (𝑣) and 𝑙𝑚𝑎𝑥 (𝑣), respectively. In addition, according to Theo-

rems 4.1 and 4.2, 𝑘𝑚𝑎𝑥 (𝑣) and 𝑙𝑚𝑎𝑥 (𝑣) can be computed by itera-

tively computing 𝑣 ’s 𝑛-order in-H-index and out-H-index, respec-

tively. Therefore, we initialize 𝐷 (0) (𝑣) = (𝑘𝑚𝑎𝑥 (𝑣), 𝑙𝑚𝑎𝑥 (𝑣)).
Algorithms. Based on the above theoretical analytics and optimiza-

tions, we present the distributed skyline corenesses computation

algorithm in Algorithm 5. At the initialization phase, the algorithm

computes iH
(∞)
𝐺
(𝑣) and oH(∞)

𝐺
(𝑣) using Algorithm 2 and uses them

to initialize the 0-order D-index of 𝑣 , which is broadcast to all neigh-

bors of 𝑣 (lines 1-3). When 𝑣 receives a message from its neighbor

𝑣 ′, Algorithm 5 updates the 𝑛-order D-index of 𝑣 ′ that is stored
in 𝑣 ’s node, and finds the maximum values in each pair of 𝑘 and 𝑙

(lines 4-8). After 𝑣 receives all messages, Algorithm 5 computes the

𝑛-order D-index for 𝑣 , which is described in Algorithm 6. Then, it

broadcasts to all neighbors of 𝑣 if the𝑛-order D-index changes (lines

9-13). When there is no vertex broadcasting messages, Algorithm 5

returns the latest 𝑛-order D-index as skyline corenesses (line 14).

Next, we present the procedure of Algorithm 6 for 𝑛-order D-

index computation. It first computes 𝑘𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 as shown in

Optimization-1 and Optimization-2 (lines 2-3), which help to deter-

mine the range of candidate pairs. Then, the algorithm enumerates

all candidate pairs (𝑘, 𝑙) and examines whether (𝑘, 𝑙) belongs to the
𝑛-order D-index of 𝑣 (lines 6-11). Note that 𝑙𝑚𝑖𝑛 keeps the minimal

value of 𝑙 for the remaining candidate pairs, which is used to prune

disqualified pairs.

Example 5.1. We use the graph 𝐺 in Figure 2 to illustrate Al-
gorithm 5. Table 2 reports the process of computing skyline core-
nesses. Take vertex 𝑣7 as an example. First, the 0-order D-index of
𝑣7 is initialized with {(1, 2)}, i.e., 𝐷 (0) (𝑣7) = {(1, 2)}. Then, we it-
eratively compute the 𝑛-order D-index for 𝑣7. We can observe that
after one iteration only, the 1-order D-index of 𝑣7 has converged as
𝐷 (2) (𝑣7) = 𝐷 (1) (𝑣7) = {(0, 2), (1, 1)}. Thus, the entire skyline core-
nesses of 𝑣7 are SC(𝑣7) = {(0, 2), (1, 1)}.
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Table 2: An illustration of distributed skyline coreness computation using Algorithm 5 on graph 𝐺 in Figure 2.

Vertices
𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝐷 (0) (𝑣) { (2, 2) } { (2, 0) } { (2, 0) } { (2, 2) } { (2, 2) } { (2, 2) } { (1, 2) } { (2, 1) }
𝐷 (1) (𝑣) { (2, 2) } { (2, 0) } { (2, 0) } { (2, 2) } { (2, 2) } { (2, 2) } { (0, 2), (1, 1) } { (1, 1), (2, 0) }
𝐷 (2) (𝑣) { (2, 2) } { (2, 0) } { (2, 0) } { (2, 2) } { (2, 2) } { (2, 2) } { (0, 2), (1, 1) } { (1, 1), (2, 0) }

5.4 Algorithm Analysis and Extension

Complexity analysis. Let 𝑅𝑆𝐶 be the number of convergence

rounds taken by Algorithm 5. In practice, our algorithms achieve

𝑅𝑆𝐶 ≤ 𝑅𝐴𝐶 ≪ Δ on real datasets. We show the time, space, and

message complexities of Algorithm 5 below.

Theorem 5.3. (Time and Space Complexities) Algorithm 5
takes𝑂 (𝑅𝑆𝐶 ·Δ𝑖𝑛 ·Δ𝑜𝑢𝑡 ) time and𝑂 (Δ ·min{Δ𝑖𝑛,Δ𝑜𝑢𝑡 }) space. The
total time and space complexities for computing all vertices’ corenesses
are 𝑂 (𝑅𝑆𝐶 · Δ𝑖𝑛 ·𝑚) and 𝑂 (min{Δ𝑖𝑛,Δ𝑜𝑢𝑡 } ·𝑚), respectively.

Theorem 5.4. (Message Complexity) The message complexity
of Algorithm 5 is𝑂 (Δ2). The total message complexity for computing
all vertices’ corenesses is 𝑂 (Δ ·𝑚).

Through the above analysis, we can see that the skyline coreness-

based approach in Algorithm 5 takes less space and runs much faster
than the anchored coreness approach in Algorithm 1.

Block-centric extension. Algorithm 5 can be easily extended

to the block-centric framework. The only difference is that each

machine iteratively computes the 𝑛-order D-index locally until the

algorithm converges within the local block, before broadcasting to

other blocks (lines 9-13 of Algorithm 5).

6 PERFORMANCE EVALUATION
In this section, we empirically evaluate our proposed algorithms.

We conduct our experiments on a collection of Amazon EC2 r5.2x

large instances, each powered by 8 vCPUs and 64GB memory. The

network bandwidth is up to 10G Gb/s. All experiments are imple-

mented in C++ on the Ubuntu 18.04 operating system.

Datasets. We use 11 real-world graphs in our experiments. Table 3

shows the statistics of these graphs. Specifically, Wiki-vote1 is a
voting graph; Email-EuAll1 is a communication graph; Amazon1

is a product co-purchasing graph; Hollywood2 is an actors collab-

oration graph; Pokec1, Live Journal1, and Slashdot1 are social
graphs; Citation1 is a citation graph; UK-20022, IT-20042, and
UK-20052 are web graphs.

Algorithms. We compare five algorithms in our experiments.

• AC-V and AC-B: The distributed anchored coreness-based

D-core decomposition algorithms implemented in the vertex-

centric and block-centric frameworks, respectively.

• SC-V and SC-B: The distributed skyline coreness-based D-

core decomposition algorithms implemented in the vertex-

centric and block-centric frameworks, respectively.

• Peeling: The distributed version of the peeling algorithm

for D-core decomposition [13], in which one machine is

1
http://snap.stanford.edu/data/index.html

2
http://law.di.unimi.it/datasets.php

Table 3: Statistics of the datasets (𝒅𝒆𝒈𝒂𝒗𝒈 represents the aver-
age degree; K = 10

3, M = 10
6, and B = 10

9)

Dataset Abbr. |𝑽𝑮 | |𝑬𝑮 | 𝒅𝒆𝒈𝒂𝒗𝒈 𝒌𝒎𝒂𝒙 𝒍𝒎𝒂𝒙

Wiki-vote WV 7.1K 103.6K 14.57 19 15

Email-EuAll EE 265.2K 420K 1.58 28 28

Slashdot SL 82.1K 948.4K 11.54 54 9

Amazon AM 400.7K 3.2M 7.99 10 10

Citation CT 3.7M 16.5M 4.37 1 1

Pokec PO 1.6M 30.6M 18.75 32 31

Live Journal LJ 4.8M 69.0M 14.23 253 254

Hollywood HW 2.1M 228.9M 105.00 1,297 99

UK-2002 UK2 18.5M 298.1M 16.09 942 99

UK-2005 UK5 39.4M 936.3M 23.73 584 99

IT-2004 IT 41.2M 1.1B 27.87 3,198 990

assigned as the coordinator to collect global graph informa-

tion and dispatch decomposition tasks.

We employ GRAPE [12] as the block-centric framework and use

the hash partitioner for graph partitioning by default. For the sake

of fairness, we also employ GRAPE to simulate the vertex-centric

framework. In specific, at each round, all vertices within a block

execute computations only once and when all vertices complete

the computation, the messages will be broadcast to their neighbors.

Parameters and Metrics. The parameters tested in experiments

include # machines and graph size, whose default settings are 8

and 100% · |𝑉𝐺 |, respectively. The performance metrics evaluated

include # iterations required for convergence, convergence rate

(i.e., the percentage of vertices who have computed the coreness),

running time (in seconds), and communication overhead (i.e., the

total messages sent by all vertices).

6.1 Convergence Evaluation
The first set of experiments evaluates the convergence of our pro-

posed algorithms.

Exp-1: Evaluation on the number of iterations. We start by eval-

uating # iterations required for our algorithms to converge. Note

that an iteration here refers to a cycle of the algorithm receiving

messages, performing computations, and broadcasting messages.

Table 4 reports the results on datasets WV, EE, SL, AM, and CT. We

make several observations. First, for every graph, all of our pro-

posed algorithms have much less iterations than the upper bound

(i.e., the maximum degree of the graph), which demonstrates the

efficiency of our algorithms. Second, the iterations of SC-V and

SC-B are less than those of AC-V and AC-B. This is because the

computation of anchored corenesses is more cumbersome than

that of skyline corenesses. Hence, both AC-V and AC-B take more

iterations. Third, for the same type of algorithms, i.e., AC or SC, the
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Table 4: # Iterations required for the algorithms

Algorithms Datasets
WV EE SL AM CT

Upper Bound 1,167 7,636 5,064 2,757 793

AC-V

Phase I 19 17 40 16 32

Phase II 32 19 53 64 32

Phase III 33 22 61 61 2

Total 84 58 154 141 66

AC-B

Phase I 14 14 35 13 28

Phase II 15 7 43 30 28

Phase III 16 21 45 25 2

Total 45 42 123 68 58

SC-V 33 19 61 65 2
SC-B 17 6 46 25 2
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Figure 3: Convergence rates of our algorithms (AM)
algorithm implemented in the block-centric framework takes less

iterations than that in the vertex-centric framework. The reason is

that the block-centric framework allows algorithms to use vertices

located in the same block to converge locally within a single round,

which leads to faster convergence.

Exp-2: Evaluation on the convergence rate. Since different ver-
tices require different numbers of iterations to converge, in this

experiment, we evaluate the algorithms’ convergence rates. Fig-

ure 3 shows the results on Amazon. As expected, the algorithms

implemented in the block-centric framework converge faster. For

example, in Figure 3(d), after 8 iterations, the convergence rates

of SC-V and SC-B reach 89.9% and 98.6%, respectively. Moreover,

most vertices can converge within just a few iterations. Specifically,

for SC-B, more than 95% vertices converge within 5 iterations. In

addition, SC algorithms have faster convergence rates than AC algo-

rithms. For example, AC-B takes 68 iterations to reach convergence

while SC-B takes 25 iterations.

6.2 Efficiency Evaluation
Next, we evaluate the efficiency of our proposed algorithms against

the state-of-the-art peeling algorithm, denoted as Peeling. Note that

if an algorithm cannot finish within 5 days, we denote it by ’INF’.
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Figure 4: Performance comparisons

Exp-3: Our algorithms vs. Peeling. We first compare the per-

formance of our proposed algorithms with Peeling under the de-

fault experiment settings. Figures 4(a) and 4(b) report the results in

terms of the running time and communication overhead, respec-

tively. First, we can see that Peeling cannot finish within 5 days on

the large-scale graphs with more than 50 million edges, including

LJ, HW, UK2 UK5, and IT, while our algorithms can finish within 1

hour for most of these datasets and no more than 10 hours on the

largest billion-scale graph for our fastest algorithm. Moreover, for

the datasets where Peeling can finish, our algorithms outperform

Peeling by up to 3 orders of magnitude. This well demonstrates

the efficiency of our proposed algorithms. Second, SC-V and SC-B

perform better than AC-V and AC-B in terms of both the running

time and communication overhead. For example, on the biggest

graph IT with over a billion edges, the improvement is nearly 1

order of magnitude. This is because SC-V and SC-B compute less

corenesses than AC-V and AC-B. Third, AC-V (resp. SC-V) is better

than AV-B (resp. SC-B) in terms of the running time while it is op-

posite in terms of the communication overhead. This is due to the

effect of straggler [2]. Specifically, for the block-centric framework,

in each iteration, the algorithms use block information to converge

locally (i.e., within each block); they cannot start the next iteration

until all blocks have converged. There are machines where some

blocks may converge very slowly, which deteriorates the overall

performance of the block-centric algorithms.

Exp-4: Effect of the number of machines. Next, we vary the

number of machines from 2 to 16 and test its effect on performance.

Figure 5 reports the results for datasets UK2 and HW. As shown in

Figures 5(a) and 5(b), all of our algorithms take less running time

when the number of machines increases. This is because the more

the machines, the stronger the computing power our algorithms can

take advantage of, thanks to their distributed designs. In addition,

Figures 5(c) and 5(d) show that the communication overheads of

all algorithms do not change with the number of machines. This is

because the communication overhead is determined by the conver-

gence rate of the algorithms, which is not influenced by the number

of machines.

Exp-5: Effect of dataset cardinality. We evaluate the effect of

cardinality for our proposed algorithms on datasets PO and UK5. For
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Figure 5: Effect of # machines

this purpose, we extract a set of subgraphs from the original graphs

by randomly selecting different fractions of vertices, which varies

from 20% to 100%. As shown in Figure 6, both the running time and

communication overhead increase with the dataset cardinality. This

is expected because the larger the dataset, the more the corenesses

of the vertices to compute, resulting in to poorer performance.

Exp-6: Effect of partition strategies. We evaluate the effect

of different partition strategies in block-centric algorithms, i.e.,

AC-B and SC-B. Specifically, we compare four partition strategies,

including SEG [12], HASH [12], FENNEL [42], and METIS [21].

• SEG is a built-in partitioner of GRAPE. Let 𝐶 be the maxi-

mum cardinality of partitioned subgraphs. For a vertex 𝑣

with its ID 𝑣𝑖𝑑 ∈ [0, 𝑛−1], 𝑣 is allocated to the 𝑖-th subgraph,
where 𝑖 = 𝑣𝑖𝑑/𝐶 .
• HASH is also a built-in partitioner of GRAPE. Let 𝑁 be the

number of partitioned subgraphs. For a vertex 𝑣 with its ID

𝑣𝑖𝑑 ∈ [0, 𝑛 − 1], 𝑣 is allocated to the 𝑖-th subgraph, where

𝑖 = 𝑣𝑖𝑑%𝑁 .

• FENNEL subsumes two popular heuristics to partition the

graph: the folklore heuristic that places a vertex to the sub-

graph with the fewest non-neighbors, and the degree-based

heuristic that uses different heuristics to place a vertex

based on its degree.

• METIS is a popular edge-cut partitioner that partitions the

graph into subgraphs with minimum crossing edges.

Figure 7 shows the results. We can observe that HASH has the

best performance in terms of running time on most datasets, but it

has the worse performance in terms of communication cost. This

is because HASH has more balanced partitions (i.e., each partition

has almost an equal number of vertices) while METIS and FENNEL

have higher locality, which leads to more running time, due to the

effect of straggler, but less communication overhead. Considering

the importance of efficiency in practice, we employ HASH as the

default partition strategy in our experiments, as mentioned earlier.

7 CONCLUSION
In this paper, we study the problem of D-core decomposition in

distributed settings. To handle distributed D-core decomposition,
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Figure 7: Effect of partition strategies

we propose two efficient algorithms, i.e., the anchored-coreness-

based algorithm and skyline-coreness-based algorithm. Specifically,

the anchored-coreness-based algorithm employs in-H-index and

out-H-index to compute the anchored corenesses in a distributed

way; the skyline-coreness-based algorithm uses a newly designed

index, called D-index, for D-core decomposition through skyline

coreness computing. Both theoretical analysis and empirical eval-

uation show the efficiency of our proposed algorithms with fast

convergence rates.

As for future work, we are interested to study how to further

improve the performance of the skyline-coreness-based algorithm,

in particular how to accelerate the computation of D-index on

each single machine. We are also interested to investigate efficient

algorithms of distributed D-core maintenance for dynamic graphs.
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