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a novel local pattern structure called local weighted-edge-based

pattern summary and developed efficient algorithms to tackle the

problem of dynamic community detection in locally heterogeneous

weighted graph streams. Ding et al. [15] devised a pruning-based

graph stream community detection algorithm, which identifies

unimportant nodes based on their degree of centrality in graph

streams. Hollocou et al. [25] investigated an edge streaming setting

and proposed a method to construct communities by detecting local

changes at each edge arrival. Liakos et al. [41] employed seed-set

expansion approaches to identify communities over a graph stream,

which is designed to use space sublinear to the number of edges

and does not impose any restrictions on the order of the edges in

the stream. Note that community detection over streaming graphs

aims to identify all communities, whereas the objective of our work

is to return the community of query vertices over streaming graphs.

Community Search. The concept of community search was first

introduced in [48]. Subsequently, numerous efforts have been de-

voted to exploring community search based on various models [18,

30], including 𝑘-core, 𝑘-truss, 𝑘-clique, 𝑘-edge connected compo-

nent (𝑘-ECC), and so on. To be specific, the𝑘-coremodel requires ev-

ery vertex in a community to have at least 𝑘 neighbors [4, 5, 12, 48].

The 𝑘-truss model requires every edge in a community to be con-

tained within at least 𝑘 − 2 triangles [1, 28, 31]. The clique model

ensures that any two vertices in a community are connected to

each other [11, 54]. On the other hand, the 𝑘-ECC-based commu-

nity search defines a community as a steiner maximum-connected

subgraph [7, 26, 27]. Besides simple graphs, community search

has also been widely studied for complex graphs, such as directed

graphs [10, 20, 43], temporal graphs [40], weighted graphs [9, 23, 37–

39], attributed graphs [16, 29, 45], and spatial graphs [8, 17, 19].

More recently, an indexing method has been proposed for maximal

D-truss searches over dynamic directed graphs [50]. However, [50]

requires maintaining the skyline trussness for fully dynamic D-truss

queries, which is not suitable for the streaming scenario. Despite

these extensive studies, no previous work has explored the problem

of community search in a streaming scenario, which inspires us to

explore community search over streaming directed graphs.

3 PROBLEM FORMULATION
We consider a directed, unweighted simple graph, denoted as 𝐺 =

(𝑉𝐺 , 𝐸𝐺 ). For brevity, we refer to a directed graph as a digraph.
Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝐺 represents a connection from

vertex 𝑢 to vertex 𝑣 . If the edge (𝑢, 𝑣) exists, 𝑢 is an in-neighbor of

𝑣 and 𝑣 is an out-neighbor of 𝑢. For a vertex 𝑣 , we denote all of its

in-neighbors and out-neighbors in 𝐺 by 𝑁 +
𝐺
(𝑣) = {𝑢 : (𝑢, 𝑣) ∈ 𝐸𝐺 }

and 𝑁 −
𝐺
(𝑣) = {𝑢 : (𝑣,𝑢) ∈ 𝐸𝐺 }, respectively. The neighbors of

vertex 𝑣 is defined as 𝑁𝐺 (𝑣) = 𝑁 +
𝐺
(𝑣) ∪𝑁 −

𝐺
(𝑣). Based on the above

notions, we introduce the streaming digraph model used in this

paper as follows.

Definition 3.1. Streaming Digraph. A streaming digraph is a
continually growing sequence of items denoted as 𝑆 = ⟨𝑒1, 𝑒2, 𝑒3, . . .⟩,
where each item 𝑒𝑖 = ⟨(𝑢, 𝑣), 𝑡𝑖 ⟩ signifies that a directed edge from
vertex 𝑢 to vertex 𝑣 arrives at time point 𝑡𝑖 , where 𝑡𝑖 < 𝑡 𝑗 for 𝑖 < 𝑗 .

Due to the ever-increasing volume of the streaming graph, we

focus on the most recent edges using the time-based sliding window

model [47].

Definition 3.2. Time-based Window. A time-based window
𝑊 with a length of 𝜏 contains edges with timestamps within the
interval (𝑡 − 𝜏, 𝑡], where 𝑡 is the current clock time of the system. The
time-based window is denoted by𝑊 𝑡 .

Definition 3.3. Time-based Sliding Window. A time-based
sliding window𝑊 with a slide interval of 𝛽 is a time-based window
that slides every 𝛽 time units. The slide interval 𝛽 is also referred to
as the stride [35, 46, 53].

Definition 3.4. Snapshot Digraph. A snapshot digraph 𝐺𝑡 at
time point 𝑡 is a digraph induced by all the edges in the time-based
window𝑊 𝑡 .

In this paper, we focus on an append-only steaming digraph,

where edge expiration occurs only when the time-based window

slides [46]. Figure 2(a) illustrates an example of a streaming digraph,

where 𝜏 = 16 and 𝛽 = 1. Figures 2(b) and 2(c) show the snapshot

digraph at time point 16 ant time point 17, respectively. When

the context is clear, we refer to the time-based window simply as

"window" and omit 𝑡 for 𝐺𝑡
.

Next, we introduce the D-truss model for community search.

Definition 3.5. Cycle Support, Flow Support [43]. Given a
digraph 𝐺 and an edge 𝑒 , the cycle support of 𝑒 in 𝐺 , denoted by
csup𝐺 (𝑒), represents the number of vertices that can form cycle tri-
angles with 𝑒 in 𝐺 . The flow support of 𝑒 in 𝐺 , denoted by fsup𝐺 (𝑒),
denotes the number of vertices that can form flow triangles with 𝑒

in 𝐺 .

We call the vertices that form cycle triangles with 𝑒 the cycle

neighbors of 𝑒 , and the vertices that form flow triangles as the

flow neighbors. We also denote cycle triangle as (△𝐶𝑣1𝑣2𝑣3 ) and flow

trianle as (△𝐹𝑣1𝑣2𝑣3 ). Given the definitions of cycle support and flow

support, we now introduce the definition of D-truss.

Definition 3.6. D-truss [43]. Given a digraph 𝐺 and two in-
tegers 𝑘𝑐 and 𝑘𝑓 , a subgraph 𝐻 ∈ 𝐺 is a D-truss, also denoted as
(𝑘𝑐 , 𝑘𝑓 )-truss, if ∀𝑒 ∈ 𝐸𝐻 , csup𝐺 (𝑒) ≥ 𝑘𝑐 and fsup𝐺 (𝑒) ≥ 𝑘𝑓 .

A D-truss 𝐻 is a maximal D-truss if there does not exist any

other D-truss 𝐻 ′ ⊆ 𝐺 such that 𝐻 ′ ⊃ 𝐻 .

Problem 1. Given a streaming graph 𝐺 , a sliding window with
length 𝜏 , a stride 𝛽 , two integers 𝑘𝑐 and 𝑘𝑓 , and a set of query vertices
𝑄 , the D-truss community search over the streaming digraph is to
continuously return the maximal D-truss that contains 𝑄 from the
snapshot digraph 𝐺𝑡 at time point 𝑡 , where 𝑡 = 𝑖 · 𝛽 and 𝑖 ∈ N.

Example 3.1. Consider the streaming digraph in Figure 2(a). Let
𝑘𝑐 = 𝑘𝑓 = 1, 𝑄 = 𝑣2, 𝜏 = 16, and 𝛽 = 1. At time point 16, the
snapshot digraph is Figure 2(b). The D-truss community is 𝐻1. At
time point 17, the window slides, and the corresponding snapshot
digraph is Figure 2(c). Then, the D-truss community is updated to 𝐻2.

4 PEELING-BASED ALGORITHM
In this section, we propose a peeling-based algorithm to handle

D-truss community search over streaming digraphs.
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formed by𝑤 , 𝑢, and 𝑣 . The pair of cycle-h-index and 𝑐𝑚 (𝑒) and the

pair of flow-h-index and 𝑓𝑚 (𝑒) have the following relationships.

Theorem 4.3. Given an edge 𝑒 , the cycle-h-index and flow-h-index
of 𝑒 are no smaller than 𝑐𝑚 (𝑒) and 𝑓𝑚 (𝑒), respectively.

Proof. We prove this theorem by contradiction. Assume that

the cycle-h-index of the edge 𝑒 , denoted as 𝑐 , is less than 𝑐𝑚 (𝑒).
However, according to the definition of 𝑐𝑚 (𝑒), we can identify

at least 𝑐𝑚 (𝑒) vertices that are capable of forming cycle triangles

with 𝑒 . Moreover, each edge within these triangles also possesses a

cycle support that is not less than 𝑐𝑚 (𝑒). With these 𝑐𝑚 (𝑒) vertices,
we can deduce that the cycle-h-index of 𝑒 is at least 𝑐𝑚 (𝑒), which
leads to a contradiction. The case for the flow-h-index can be proven

in a similar manner. □

Theorem 4.4. Given two integers 𝑘𝑐 and 𝑘𝑓 , and an edge 𝑒 , if
the cycle-h-index of 𝑒 is smaller than 𝑘𝑐 , or the flow-h-index of 𝑒 is
smaller than 𝑘𝑓 , 𝑒 cannot be in a (𝑘𝑐 , 𝑘𝑓 )-truss.

Proof. Building upon Theorem 4.3, we can derive that the cycle-

h-index and flow-h-index of an edge 𝑒 serve as an upper bound

for 𝑐𝑚 (𝑒) and 𝑓𝑚 (𝑒), respectively. Hence, Theorem 4.4 holds by

following from Theorem 4.2. □

Theorem 4.4 indicates that if the cycle-h-index of 𝑒 is smaller

than 𝑘𝑐 , or the flow-h-index of 𝑒 is smaller than 𝑘𝑓 , 𝑒 cannot be in

the final results and can be safely pruned. Based on Theorem 4.4,

the basic idea of our first optimization is as follows. When the

window slides to get a new snapshot digraph, we first compute the

cycle-h-index and flow-h-index for each edge. Then, we delete the

edges using Theorem 4.4. Finally, the remaining digraph is taken

as the input digraph for peeling in Algorithm 1.

Example 4.1. Suppose we want to retrieve a (2, 0)-truss from the
digraph in Figure 3. The number along an edge is the cycle-h-index
of the corresponding edge. As shown in the figure, since the cycle-
h-indexes of all edges are smaller than 2, we can safely prune all
edges.

Theorem 4.5. (Time and Space Complexities) Let 𝐺𝑡 be the
digraph in the window𝑊 𝑡 . If we denote the number of edges in𝐺𝑡 as
𝑚𝑡 , the time and space complexities of calculating the cycle-h-index
and flow-h-index for each window𝑊 𝑡 are𝑂 (∑︁𝑢∈𝑉𝐺𝑡

( |𝑁 (𝑢) |2)) and
𝑂 (𝑚𝑡 ), respectively.

Proof. For an edge 𝑒 = (𝑢, 𝑣), the calculation of its cycle-h-

index or flow-h-index takes 𝑂 (csup(𝑒)) / 𝑂 (fsup(𝑒)) time and the

collection of the corresponding set takes 𝑂 ( |𝑁 (𝑢) | + |𝑁 (𝑣) |) time.

Hence, the calculation on the h-index values for all the edges in

𝐺𝑡
is bounded by 𝑂 (∑︁𝑢∈𝑉𝐺𝑡

( |𝑁 (𝑢) |2)). The space complexity is

bounded by 𝑂 (𝑚𝑡 ). □

4.3 OPT-2: BFS-based Update
The first optimization employs the cycle-h-index and flow-h-index

to prune unqualified edges. In the second optimization, we focus

on smaller subgraphs to retrieve the D-truss community based on

the following two observations. (1) When edges are deleted from

the digraph, the new D-truss must be contained in the original D-

truss. Thus, we can peel the original D-truss to obtain the updated

Algorithm 2: Peeling Algorithm with OPT-2

Input: a snapshot graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ), a batch of deleted

edge E𝑑 , a batch of inserted edge E𝑖 , original
D-truss 𝐷𝑇 , parameters 𝑘𝑐 and 𝑘𝑓 , query vertices 𝑄

Output: updated (𝑘𝑐 , 𝑘𝑓 )-truss containing 𝑄
1 for 𝑒𝑖 ∈ E𝑑 do
2 𝐺 ← 𝐺 \ {𝑒𝑖 };
3 if all edges in E𝑑 are not in 𝐷𝑇 then
4 𝐷1 ← 𝐷𝑇 ;

5 else
6 𝐷1 ← Peeling(𝐷𝑇, 𝑘𝑐 , 𝑘𝑓 , ∅);
7 for 𝑒𝑖 ∈ E𝑖 do
8 𝐺 ← 𝐺 ∪ {𝑒𝑖 };
9 Let queue 𝑃 ← ∅, 𝑆 ← ∅;

10 for 𝑒𝑖 ∈ E𝑖 do
11 if csup𝐺 (𝑒𝑖 ) ≥ 𝑘𝑐 and fsup𝐺 (𝑒𝑖 ) ≥ 𝑘𝑓 then
12 𝑃 ← 𝑃 ∪ {𝑒𝑖 };
13 while 𝑃 ≠ ∅ do
14 Pop an edge 𝑒′ from 𝑃 ;

15 if csup𝐺 (𝑒′) ≥ 𝑘𝑐 and fsup𝐺 (𝑒′) ≥ 𝑘𝑓 then
16 𝑆 ← 𝑆 ∪ {𝑒′};
17 for 𝑒 𝑗 that can form a triangle with 𝑒′ do
18 if 𝑒 𝑗 ∉ 𝑃 and 𝑒 𝑗 ∉ 𝑆 then
19 𝑃 ← 𝑃 ∪ {𝑒′};
20 𝐷2 ← Peeling(𝑆, 𝑘𝑐 , 𝑘𝑓 , ∅);
21 𝐷𝑇 ← 𝐷1 ∪ 𝐷2;

22 if 𝑄 ⊂ 𝐷𝑇 then
23 Return 𝐷𝑇 ;
24 Return ∅;

D-truss. (2) When new edges are inserted into the digraph, the

new D-truss (if exists) must be contained within a subgraph 𝑆

where edges are triangle-connected to the inserted edges. Thus,

we only need to peel 𝑆 instead of the entire digraph. Based on the

above observations, the basic idea of the second optimization is as

follows. When the window slides, we first delete the expired edges

and maintain D-truss 𝐷1. Then, we insert new edges and form

a subgraph 𝑆 where edges are triangle-connected to the inserted

edges, and their cycle and flow supports are greater than 𝑘𝑐 and

𝑘𝑓 , respectively. Afterwards, we peel 𝑆 to get D-truss 𝐷2. Finally,

𝐷1 ∪ 𝐷2 is the final D-truss community. Algorithm 2 describes the

peeling algorithm with the second optimization.

For edge deletions, there are two cases. If the deleted edge is

within the original D-truss community, we remove the edge from

the D-truss and use Algorithm 1 to peel the remaining subgraph

to obtain an updated D-truss (lines 5-6). Otherwise, no updates are

made to the original D-truss (lines 3-4).

For edge insertions, we first update the snapshot graph with

newly inserted edges (lines 7-8). Then, we identify the new edges

that have sufficient supports and treat them as seeds (lines 10-12).

Next, we perform a BFS search to get the graph 𝑆 induced by the

edges that (1) have supports of csup𝐺 (𝑒) ≥ 𝑘𝑐 and fsup𝐺 (𝑒) ≥ 𝑘𝑓 ,

and (2) are triangle-connected to the new edges, i.e., reachable

through a set of triangles starting from the newly inserted edges

(lines 13-19). Finally, the algorithm continues to invoke Algorithm 1

to peel the subgraph 𝑆 (line 20). The final community answer is

updated as 𝐷1 ∪ 𝐷2 (line 21).

Example 4.2. Consider the example in Figure 2. Let 𝑘𝑐 = 𝑘𝑓 = 1,
𝜏 = 16, and 𝛽 = 1. We assume that the window slides from 𝑡 = 16 to
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the snapshot graph taken at time points 16 and 18, respectively. The
lifetime supports for (𝑣4, 𝑣1) are shown under each snapshot graph,
and the tuples in the first row represent (cycle 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , flow 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 )
of (𝑣4, 𝑣1). With newly inserted edges (𝑣2, 𝑣1) and (𝑣3, 𝑣2), the life-
time supports of (𝑣4, 𝑣1) are updated. The cycle and flow supports
of (𝑣4, 𝑣1) in the snapshot graphs at time points 16 and 18 can be
obtained directly from the corresponding lifetime supports. All the
edges whose cycle and flow supports are greater than 𝑘𝑐 and 𝑘𝑓 form
the subgraph for peeling in Algorithm 1.

Theorem 4.7. (Time and Space Complexities) Let 𝐺𝑡 be the
digraph in the window 𝑊 𝑡 , 𝛿 be the maximal cycle support/flow
support of an edge in E, 𝑆 be the subgraph where each edge satisfies
csup𝐺𝑡 (𝑒) > 𝑘𝑐 and fsup𝐺𝑡 (𝑒) > 𝑘𝑓 , the time and space complexities
of Algorithm 3 for each window𝑊 𝑡 are 𝑂 ( |E | · 𝛿 · ⌈ 𝜏

𝛽
⌉ + |𝑆 |1.5) and

𝑂 ( ⌈ 𝜏
𝛽
⌉ ·𝑚𝑡 ), respectively, where𝑚𝑡 is the number of edges in 𝐺𝑡 .

Proof. The update of lifetime supports takes 𝑂 ( |E | · 𝛿 · ⌈ 𝜏
𝛽
⌉)

time, and the peeling process takes𝑂 ( |𝑆 |1.5) time. So the total time

complexity is𝑂 ( |E | ·𝛿 · ⌈ 𝜏
𝛽
⌉ + |𝑆 |1.5). Since each edge takes𝑂 ( ⌈ 𝜏

𝛽
⌉)

space to store their lifetime supports, the total space complexity is

𝑂 ( ⌈ 𝜏
𝛽
⌉ ·𝑚𝑡 ). □

5 ORDER-BASED ALGORITHM
The peeling-based algorithm needs to iteratively delete edges to

obtain the community. Although we have proposed three optimiza-

tions to reduce the size of the digraph for the peeling algorithm,

the resulting graph may still be quite large. This can potentially

impact the performance of the peeling algorithm. In this section,

we propose an order-based D-truss community search algorithm.

The rationale behind this approach is that a streaming graph can

be viewed as a sequence of ordered edges based on their time in-

formation. By leveraging the properties of D-truss, we can devise

a rule to re-order the streaming graph. This allows us to directly

identify the D-truss from the order itself, eliminating the need to

peel the digraph from scratch, which can improve efficiency.

5.1 D-truss Peeling Order and Layers
We first introduce the concept of D-truss peeling order.

Definition 5.1. D-truss Peeling Order. The D-truss peeling
order of𝐺 , denoted by 𝐸⪯ = (𝑒1, 𝑒2, . . . , 𝑒 |𝐸 | ), is identical to the order
of edges’ deletions in the D-truss peeling algorithm. That is, for any
two edges 𝑒 and 𝑒′ of𝐺 , if 𝑒 precedes 𝑒′ in 𝐸⪯ , denoted by 𝑒 ⪯ 𝑒′, 𝑒 is
deleted before 𝑒′ in the peeling process.

In essence, the D-truss peeling order 𝐸⪯ records the process

of (𝑘𝑐 , 𝑘𝑓 )-truss computation. Note that there may be multiple

orders of edge deletions in the peeling process, and any one of

them can be used as the D-truss peeling order. For convenience,

we use 𝐸𝑒⪯ to denote the set of edges appearing after 𝑒 in 𝐸⪯ , i.e.,
𝐸𝑒⪯ = {𝑒′ | 𝑒 ⪯ 𝑒′}.

It is worth mentioning that the D-truss peeling order can be

generated by invoking the peeling algorithm. Our order is differ-

ent from the cycle decomposition order proposed in the previous

work [50]. In [50], the order-based D-index uses the cycle decompo-

sition order (i.e., CD order), which is the sequence of deleting edges

based on the cycle truss number for a (0, 𝑘𝑓𝑖 )-truss. The D-index
in [50] consists of multiple CD orders for all possible 𝑘𝑓𝑖 values.

Each order considers the two types of trussness separately during

maintenance. In contrast, our proposed order is a one-dimensional

index that considers both cycle support and flow support simulta-

neously. Specifically, an edge is removed if it fails to meet either

the cycle support or flow support criterion, and its position in the

order is identified. Nevertheless, it is non-trivial to retrieve the

community structure with the order directly. Inspired by the fact

that edges are usually peeled in batches during the peeling process,

we present two concepts of layers in D-truss peeling order and layer
number.

Definition 5.2. Layers in D-truss peeling order. Given a D-
truss peeling order 𝐸⪯ for a digraph 𝐺 and the community query
parameters 𝑘𝑐 and 𝑘𝑓 , the edges in 𝐸𝐺 can be uniquely accommo-
dated in different layers {𝐿1, 𝐿2, . . . , 𝐿𝜇 }. The 𝑗-th layer is the set of
edges satisfying 𝐿𝑗 = {𝑒 ∈ 𝐸𝐺 | {csup𝐻 𝑗

(𝑒) < 𝑘𝑐 ∨ fsup𝐻 𝑗
(𝑒) <

𝑘𝑓 } ∧ {csup𝐻 𝑗−1 (𝑒) ≥ 𝑘𝑐 ∧ fsup𝐻 𝑗−1 (𝑒) ≥ 𝑘𝑓 }}, where 𝐻 𝑗 =

𝐸𝐺 \
⋃︁𝑗−1

𝑖=1
𝐿𝑖 . The initial layer is 𝐿1 = {𝑒 ∈ 𝐸𝐺 | csup𝐺 (𝑒) <

𝑘𝑐 ∨ fsup𝐺 (𝑒) < 𝑘𝑓 }.

Definition 5.3. Layer number L. Given an edge 𝑒 , the layer
number of 𝑒 is defined as L(𝑒) = 𝑙 , where 𝑒 ∈ 𝐿𝑙 .

The layer number L(𝑒) represents the number of the round in

which 𝑒 is peeled from the original digraph during the community

finding process. For two edges 𝑒𝑖 and 𝑒 𝑗 with L(𝑒𝑖 ) < L(𝑒 𝑗 ), we
have 𝑒𝑖 ⪯ 𝑒 𝑗 . Based on the D-truss peeling order, the concept of

layers provides amore coarse-grainedway to record the sequence of

the edge removals in the peeling algorithm while still ensuring the

correctness of the retrieved community. With the layers introduced,

an order 𝐸⪯ can be represented as {𝐿1, 𝐿2, · · · , 𝐿𝜇 }. The edges in
the same layer can have an arbitrary order, i.e., if 𝑒 and 𝑒′ both
belong to 𝐿𝑖 for ∀𝑖 (1 ≤ 𝑖 ≤ 𝜇), then both 𝑒 ⪯ 𝑒′ and 𝑒′ ⪯ 𝑒 hold.

Example 5.1. We use Figure 5(a) to illustrate the D-truss peeling
order. Assume that 𝑘𝑐 = 𝑘𝑓 = 1. The red dashed line indicates the
edge to be inserted. The layers of 𝐺 without considering edge 𝑒1 are
shown at the top of Figure 5(a). Initially, we have 𝑒2, 𝑒4, 𝑒7, 𝑒9, 𝑒12, 𝑒13
with cycle/flow support values smaller than parameters 𝑘𝑐 = 𝑘𝑓 = 1.
These edges are peeled first and placed in 𝐿1, which is marked in
the first row of the table in Figure 5(a). The deletion of these edges
subsequently leads to 𝑒3, 𝑒6, 𝑒8 violating the support constraints, and
they are placed in 𝐿2. Finally, the remaining subgraph satisfies the
support constraints and is kept in 𝐿3. Therefore, the D-truss peeling
order is 𝐸⪯ = {𝐿1, 𝐿2, 𝐿3}, and the maximum layer number is 𝜇 = 3.

5.2 Property Analysis of Layers in Streaming
Graphs

We present the properties of layers in streaming updates of edge

insertions/deletions, which are the basis of designing efficient D-

truss community search algorithms.

Property 5.1. Given an order 𝐸⪯ for digraph 𝐺 with 𝜇 layers,
if we denote 𝐻 𝑗 = 𝐸𝐺 \

⋃︁𝑗−1
𝑖=1

𝐿𝑖 and 𝐻1 = 𝐸𝐺 , then the following
properties hold:

(1) For an edge 𝑒 ∈ 𝐿𝑗 , it holds that: {csup𝐻 𝑗
(𝑒) < 𝑘𝑐 ∨ fsup𝐻 𝑗

(𝑒)
< 𝑘𝑓 } ∧ { csup𝐻 𝑗−1 (𝑒) ≥ 𝑘𝑐 ∧ fsup𝐻 𝑗−1 (𝑒) ≥ 𝑘𝑓 }.
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Algorithm 4: Order Insertion Maintenance Algorithm

Input: a snapshot graph 𝐺 , inserted edge 𝑒𝑖 = (𝑢, 𝑣),
parameters 𝑘𝑐 and 𝑘𝑓 , original order

𝐸⪯ = 𝐿1𝐿2 · · · 𝐿𝜇
Output: updated order 𝐸′⪯ = 𝐿′

1
𝐿′
2
· · ·

1 Let a priority queue Q ← ∅ and graph 𝐺 ← 𝐺 ∪ {𝑒𝑖 };
2 if {csup𝐻𝜇−1 (𝑒𝑖 ) ≥ 𝑘𝑐 and fsup𝐻𝜇−1 (𝑒𝑖 ) ≥ 𝑘𝑓 } and

{csup𝐻𝜇
(𝑒𝑖 ) < 𝑘𝑐 or fsup𝐻𝜇

(𝑒𝑖 ) < 𝑘𝑓 } then
3 insert a new layer 𝐿′ between 𝐿𝜇−1 and 𝐿𝜇 ;
4 insert 𝑒𝑖 to 𝐿

′
;

5 else
6 insert edge 𝑒𝑖 into 𝐿𝑖 such that {csup𝐻𝑖−1 (𝑒𝑖 ) ≥ 𝑘𝑐 ∧

fsup𝐻𝑖−1 (𝑒𝑖 ) ≥ 𝑘𝑓 } ∧ {csup𝐻𝑖
(𝑒𝑖 ) < 𝑘𝑐 ∨

fsup𝐻𝑖
(𝑒𝑖 ) < 𝑘𝑓 };

7 𝑁 (𝑢) ← 𝑁 +
𝐺
(𝑢) ∪ 𝑁 −

𝐺
(𝑢); 𝑁 (𝑣) ← 𝑁 +

𝐺
(𝑣) ∪ 𝑁 −

𝐺
(𝑣);

8 for each vertex𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
9 for 𝑒′ ∈ {⟨𝑢,𝑤⟩, ⟨𝑣,𝑤⟩, ⟨𝑤,𝑢⟩, ⟨𝑤, 𝑣⟩} ∩ 𝐸𝐺 do
10 Q.enqueue(𝑒′);
11 if all edges in Q are in 𝐿𝜇 then
12 return;
13 while Q ≠ ∅ do

// 𝑒′ is the leftmost edge among egdes in Q
14 𝑒′ ← Q.dequeue();
15 if {csup𝐻𝜇−1 (𝑒

′) ≥ 𝑘𝑐 and fsup𝐻𝜇−1 (𝑒
′) ≥ 𝑘𝑓 } and

{csup𝐻𝜇
(𝑒𝑖 ) < 𝑘𝑐 or fsup𝐻𝜇

(𝑒𝑖 ) < 𝑘𝑓 } then
16 insert a new layer 𝐿′ between 𝐿𝜇−1 and 𝐿𝜇 ;
17 insert 𝑒′ to 𝐿′;
18 if all edges in 𝐿′ ∪ 𝐿𝜇 satisfying support constraint

then
19 append 𝐿′ to 𝐿𝜇 ;
20 else
21 move 𝑒′ right from original layer 𝐿𝑖 to 𝐿𝑖′ such that

{csup𝐻𝑖′−1
(𝑒′) ≥ 𝑘𝑐 ∧ fsup𝐻𝑖′−1

(𝑒′) ≥ 𝑘𝑓 } ∧
{csup𝐻𝑖′

(𝑒′) < 𝑘𝑐 ∨ fsup𝐻𝑖′
(𝑒′) < 𝑘𝑓 };

22 if 𝐿𝑖 ≠ 𝐿𝑖′ then
23 for 𝑒1 and 𝑒2 that form triangles with 𝑒′ and both in

layers preceded by 𝐿𝑖 and precedes 𝐿′𝑖 and not in 𝐿𝜇
do

24 Q.enqueue(𝑒1), Q.enqueue(𝑒2);
25 Return Updated 𝐸⪯ as 𝐸′⪯ ;

of the algorithm. First, certain layers may be merged with 𝐿′𝜇 and

subsequently removed from 𝐸⪯ , resulting in a decrease in the total

number of layers in the new order 𝐸⪯ (lines 18-19). Specifically,

if all edges in a layer 𝐿𝑜 satisfy csup𝐻𝑜
≥ 𝑘𝑐 and fsup𝐻𝑜

≥ 𝑘𝑓 , all

layers 𝐿𝑜 · · · 𝐿𝜇−1 can be combined with 𝐿𝜇 . Second, new layers

may be generated (lines 2-3, 15-16). This is due to the adjustment

of the edges’ layer numbers, during which some edges have suffi-

cient supports in 𝐿𝜇−1 ∪ 𝐿𝜇 but lack the necessary supports in 𝐿𝜇 .

Consequently, a new layer is created "between" the original 𝐿𝜇−1
and 𝐿𝜇 to satisfy Property 5.1(1).

The order maintenance algorithm for edge deletions is similar

to that of the insertion case, but with a few differences. In specific,

given an edge 𝑒𝑖 , if its layer is recently decremented from 𝐿𝑜 to 𝐿𝑛
(𝐿𝑛 ⪯ 𝐿𝑜 ), then only the edges in 𝐿𝑛 to 𝐿𝑜+1 may have their layers

decremented. Note that if 𝐿𝑜+1 happens to be 𝐿𝜇 , the range becomes

𝐿𝑛 to 𝐿𝑜 . The proof for the edge deletion can be done similarly to

Theorem 5.2.

Algorithm 5: Order-based D-truss Community Search

Input: snapshot graph 𝐺 , inserted edges E𝑖 , deleted edges

E𝑑 parameters 𝑘𝑐 and 𝑘𝑓 , original order

𝐸⪯ = 𝐿1𝐿2 · · · 𝐿𝜇 , query vertices 𝑄

Output: updated (𝑘𝑐 , 𝑘𝑓 )-truss for all the edges in updated

𝐺 ′

1 for 𝑒𝑑 ∈ E𝑑 do
2 𝐸⪯′ ← Apply the order deletion maintenance algorithm

similar to the order insertion maintenance in

Algorithm 4(𝐺, 𝑒𝑑 , 𝑘𝑐 , 𝑘𝑓 , 𝐸⪯ );
3 for 𝑒𝑖 ∈ E𝑖 do
4 𝐸⪯′ ← Algorithm 4(𝐺, 𝑒𝑖 , 𝑘𝑐 , 𝑘𝑓 , 𝐸⪯′ );
5 if edges in 𝐿′𝜇 satisfy the support constraint then
6 𝐷𝑇 ← the last layer 𝐿′𝜇 of 𝐸⪯′ ;
7 if 𝑄 ⊂ 𝐷𝑇 then
8 Return 𝐷𝑇 ;
9 Return ∅;

Equipped with the order maintenance algorithms for edge in-

sertions/deletions, we now present the order-based community

search algorithm, as outlined in Algorithm 5. We maintain the lay-

ers with edge deletions and insertions, respectively (lines 2 and 4),

and then directly output 𝐿′𝜇 . Example 5.2 illustrates the case of an

edge insertion. The case for an edge deletion is similar. Note that

the peeling-based algorithm and the order-based algorithm cannot

be combined. Specifically, the peeling-based algorithm iteratively

removes edges that violate the flow and cycle support constraints.

This removal process naturally generates an order that represents

the sequence of edge removal. On the other hand, the order-based

algorithm is designed to maintain and simulate the order generated

by the peeling process. In essence, these two algorithms share the

same underlying principle but have different implementations.

Example 5.2. We use the digraph in Figure 5 to illustrate Al-
gorithm 4. Let 𝑘𝑐 = 𝑘𝑓 = 1. Figures 5(b) and 5(c) show the order
maintenance process after the edge 𝑒1 (marked as red) is inserted.
Note that the edges in the current queue Q are shown on the left
of each order, and the edge to be processed is marked as blue. The
original layers are shown at the top of Figure 5(a). Note that after we
insert edge 𝑒8 into 𝐿3 from 𝐿2, the condition in line 18 of Algorithm 4
is fulfilled and this layer is appended to 𝐿′𝜇 . The updated layers are
shown in Figure 5(c).

Theorem 5.3. (Time and Space Complexities) Let 𝐺𝑡 be the
digraph in window𝑊 𝑡 , C be the number of edges that have their
layers changed,𝑚𝑡 be the number of edges in 𝐺𝑡 , 𝛿 be the maximal
cycle support/flow support in 𝐺𝑡 , and 𝜇 be the total number of layers.
Algorithm 4 takes𝑂 (C∗𝜇∗𝛿) time and𝑂 (𝑚𝑡 ) space for each window
𝑊 𝑡 .

Proof. An edge can have its layer changed at most 𝜇 times.

As each layer changes costs 𝛿 time, the total time complexity is

𝑂 (C ∗ 𝜇 ∗ 𝛿). The space complexity is 𝑂 (𝑚𝑡 ). □

6 PERFORMANCE EVALUATION
In this section, we evaluate the efficiency of our proposed algo-

rithms through extensive experiments on real-world datasets. All

experiments are conducted on a Linux server with an Intel Xeon

Gold 6230R 2.1GHz CPU and 128 GB of memory, running Oracle
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Table 1: Statistics of the datasets (K = 10
3 and M = 10

6)

Dataset Abbr. |𝑽𝑮 | |𝑬𝑮 | 𝑑𝑒𝑔𝑎𝑣𝑔 𝑘𝑚𝑎𝑥
𝑐 𝑘𝑚𝑎𝑥

𝑓

College-Msg MSG 1.9K 59.8K 63.0 6 8

Sx-Mathoverflow SX 24.8K 506.5K 40.8 7 6

Ask-Ubuntu UT 159.3K 964.4K 12.1 2 3

Amazon AM 334.8K 1.9M 11.1 2 2

DBLP DP 317.1K 2.1M 13.2 10 10

Flickr FC 2.3M 33.1M 28.8 3 2

Stack-Overflow SO 2.6M 63.5M 48.8 1 4

UK-2002 UK2 18.5M 298.1M 32.2 7 5

Linux 8.6. Our algorithms were implemented in C++.

Datasets. We use six real-world directed networks in our exper-

iments. Table 1 summarizes the statistics of these graphs. Note

that 𝑘𝑚𝑎𝑥
𝑐 and 𝑘𝑚𝑎𝑥

𝑓
are the maximum parameters for which a non-

empty (𝑘𝑚𝑎𝑥
𝑐 , 0)-truss or (0, 𝑘𝑚𝑎𝑥

𝑓
)-truss can be obtained with the

default window size for each dataset. Specifically, College-Msg1

is a private message graph; Amazon1 is a product co-purchasing

network; DBLP1 is a co-authorship network ; Flickr2 is a social
graph; Sx-Mathoverflow1, Ask-Ubuntu1, and Stack-Overflow1

are internet interaction graphs; UK-20023 is a web graph. Note that
UK-2002, Amazon, and DBLP do not come with timestamps. Thus,

we generated random timestamps for each edge in them.

Algorithms. We compare several algorithms in our experiments.

• DYNAMIC: [50] proposes batch insertion and deletion

algorithms for D-truss retrieval in dynamic graphs. We

adapted these algorithms to solve our problem.

• REPEEL: The basic peeling-based algorithm that peels the

directed networks whenever the window slides.

• REPEEL+OPT1, REPEEL +OPT2, andREPEEL +OPT3:
The peeling-based algorithm with optimizations OPT-1,

OPT-2, and OPT-3, respectively.

• REPEEL+: The peeling-based algorithm with all three op-

timizations.

• ORDER: The order-based algorithm.

Parameters and Metrics. The parameters tested in the experi-

ments include 𝑘𝑐 and 𝑘𝑓 , the window size 𝜏 , and the stride size 𝛽 .

For each dataset, the settings for 𝑘𝑐 and 𝑘𝑓 are determined based

on the intrinsic characteristics of the graph. They are set to be no

larger than 𝑘𝑚𝑎𝑥
𝑐 and 𝑘𝑚𝑎𝑥

𝑓
, respectively, while ensuring that the

resulting community is not empty. Table 2 summarizes the default

parameter settings. For each experiment, we report the throughput,

which represents the number of incoming edges processed per sec-

ond. In each experiment, we run 100 queries and report the average

throughput. If an algorithm cannot be completed within 10 days, it

is denoted by INF.

6.1 Efficiency Evaluation
Exp-1: Effect of window size. In the first experiment, we evaluate

the performance of our proposed algorithms by varying the window

size. The results are shown in Figure 6. As expected, the throughput

1
http://snap.stanford.edu/data/index.html

2
http://konect.cc

3
http://law.di.unimi.it/datasets.php

Table 2: Default parameter settings

Dataset |𝑾𝒊𝒏𝒅𝒐𝒘 | |𝑺𝒕𝒓 𝒊𝒅𝒆 | 𝒌𝒄 𝒌𝒇

College-Msg 9K 900 1 1

Sx-Mathoverflow 6K 600 0 1

Ask-Ubuntu 11K 1.1K 0 1

Amazon 19K 1.9K 1 1

DBLP 21K 2.1K 8 8

Flickr 115K 11.5K 2 2

Stack-Overflow 160K 16K 0 1

UK-2002 700K 70K 4 4
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Figure 6: Effect of window size
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Figure 7: Effect of stride size

of all algorithms decreases when the window size increases. This

is because a larger window size induces a larger directed graph,

which takes more time to process. In addition, we observe that both

REPEEL+ and ORDER are two orders of magnitude faster than DY-

NAMIC. This is because REPEEL+ integrates all three optimizations

we proposed, which reduce the size of the peeling input, resulting in

higher efficiency. Moreover, ORDER is more efficient than REPEEL+

because it does not require peeling the graph from scratch.

Exp-2: Effect of stride size. We next evaluate the impact of stride

size on our proposed algorithms by varying the stride size on SX and
FC. As shown in Figure 7, larger strides result in higher throughput.

This is because larger strides mean that fewer community searches

need to be performed, leading to higher throughput. In all cases,

both REPEEL+ and ORDER outperform DYNAMIC. Additionally,

it is worth noting that although both REPEEL+ and ORDER ex-

hibit an improvement in throughput as the stride size increases, the

magnitude of this improvement is larger for REPEEL+ compared

to ORDER. Consequently, when the stride size is larger than 80%

and 35% of the window size (i.e., 4.8K and 40.3K edges, respec-

tively), REPEEL+ outperforms ORDER in terms of efficiency. This
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Figure 9: Effect of |𝑄 |

phenomenon can be attributed to the fact that it takes more time

for ORDER to maintain a community compared to REPEEL+ when

there are a larger number of edge insertions or deletions. The main

overhead arises from the higher time cost required by ORDER to

adjust the layers of edges. In contrast, the time cost for REPEEL+

to process a single community remains relatively stable, regardless

of the number of edge modifications.

Exp-3: Effect of query parameters 𝑘𝑐 and 𝑘𝑓 . We also evaluate

the impact of parameters 𝑘𝑐 and 𝑘𝑓 on the performance of our

proposed algorithms using the MSG dataset. To do so, we fix one

parameter and vary the other. The results are presented in Fig-

ure 8. We can see that the throughput of the algorithms gradually

increases as 𝑘𝑐 and 𝑘𝑓 grow. As the query parameters increase, the

search space becomes smaller, resulting in higher throughput.

Exp-4: Effect of |𝑄 |. To examine the impact of the number of query

vertices on our algorithms, we vary |𝑄 | from 1 to 8. The results in

Figure 9 show that as |𝑄 | increases, the throughput of all algorithms

decreases slightly. The reason behind this is that the running time

overhead is dominated by the maintenance of the community, and

checking whether the query vertices are contained in the commu-

nity incurs only a slight overhead. As a result, the change of |𝑄 |
does not significantly impact the throughput. However, it is worth

noting that ORDER consistently outperforms the other algorithms.

Exp-5: Effect of the optimizations. Next, we evaluate the effec-
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Figure 11: Effect of concurrent queries

tiveness of our proposed optimizations for REPEEL, and the results

are shown in Figure 10. It is clear that the algorithm with all op-

timizations has the best performance, followed by the algorithms

with only one optimization. The basic peeling-based algorithm

without any optimization has the worst performance, demonstrat-

ing the effectiveness of our proposed optimizations. Furthermore,

REPEEL+ consistently outperforms REPEEL by one to two orders

of magnitude over all datasets. For example, REPEEL+ is 96 times

faster than REPEEL on UK2. On average, the optimizations boost

the algorithm by 44 times. Additionally, the efficiency of the op-

timizations varies across different datasets. For instance, OPT-1

outperforms OPT-2 on MSG, SX, UT, FC, and SO, while OPT-2 has a
better performance on UK2 compared to OPT-1.

Exp-6: Effect of concurrent queries. In practical applications,

there are scenarios where simultaneous queries are performed for

different parameter combinations. Therefore, we evaluate the per-

formance of our proposed algorithms compared to DYNAMICwhen

processing multiple queries simultaneously. Our proposed algo-

rithms can support multiple queries as follows. Specifically, for

REPEEL+, we can re-peel the directed graph for each pair of 𝑘𝑐 and

𝑘𝑓 to obtain different communities; for ORDER, we can maintain

a separate order for each pair of 𝑘𝑐 and 𝑘𝑓 , and as the window

slides, we can update each order to return different communities.

As for DYNAMIC, which retains the entire trussness sets for each

edge, we maintain a D-index and execute all the queries based on

the updated index [50]. The results are shown in Figure 11. As the

number of queries increases from 8 to 128, the throughput of all

the algorithms decreases. However, the running time of DYNAMIC

remains relatively stable. This is because its primary overhead is

associated with index maintenance, which is a one-time task re-

gardless of the number of queries. Most of the increase in running

time is attributed to the execution of the queries themselves. In

contrast, for ORDER and REPEEL+, which involve order maintain-

ing or graph peeling for each query, the computational cost grows

linearly with the number of queries. Nevertheless, our algorithms

consistently outperform DYNAMIC in all cases.

Exp-7: Querying undirected graphs. This experiment validates

the efficiency of our algorithms when querying undirected graphs.
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