
Interactive Graph Search for Multiple Targets on DAGs
Zheng Wu

1
, Xuliang Zhu

2
, Yixiang Fang

3
, Jianliang Xu

1
, Xin Huang

1

1
Hong Kong Baptist University, China

2
Antai College of Economics and Management, Shanghai Jiao Tong University, China

3
The Chinese University of Hong Kong, Shenzhen, China

{cszhengwu, xujl, xinhuang}@comp.hkbu.edu.hk, zhu.xl@sjtu.edu.cn, fangyixiang@cuhk.edu.cn

ABSTRACT
Interactive graph search (IGS) over DAGs aims to find a hidden

target by asking interactive questions as few as possible. IGS is

useful for many applications, e.g., facilitating supervised learning

tasks by harnessing labeled data, image categorization, and product

classification. However, most of the existing IGSmethods only work

for either single target search on DAGs or multiple targets search
on simple trees. To overcome the gap, it motivates us to study a

challenging and yet not solved problem of multiple targets search

over DAGs. We analyze the new problem in-depth and propose

a key concept of uncertain candidates. Based on it, we design an

effective gain function to determine the best vertex to be asked

questions and shrink the search space of potential targets greatly.

Leveraging our uncertain candidates and gain function, we develop

a unified k-EIS framework to search both single target and multiple

targets. We analyze all algorithm complexities and theoretically

show that our solution can significantly improve existing DFS-tree-

based methods by asking 𝑂 (𝑛) questions to 𝑂 (log
2
𝑛) questions in

worst cases. To further improve IGS for multiple targets, we propose

an advanced solution by dividing the whole DAG into 𝑘 disjoint

subgraphs with single targets and then tackling each subgraph

one by one independently. Extensive experiments on real-world

datasets validate that our proposed k-EIS framework can save lots

of questions to search exact targets against four state-of-the-art

IGS competitors.

PVLDB Reference Format:
Zheng Wu

1
, Xuliang Zhu

2
, Yixiang Fang

3
, Jianliang Xu

1
, Xin Huang

1
.

Interactive Graph Search for Multiple Targets on DAGs. PVLDB, 14(1):

XXX-XXX, 2025.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/i11ume/K-EIS.

1 INTRODUCTION
Crowdsourcing leverages human intelligence to address difficult

tasks, which plays pivotal roles in many data-driven applications [6,

7, 10, 12, 21, 25, 32]. As one typical application of crowdsourcing,

data labeling can provide high-quality labeled data, which are es-

sentially important for numerous supervised learning tasks, e.g.,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

animal

mammal aquatic

shell

whale

fishcat dog rabbit turtle

Yes
No
Target

(a) DAG𝐺 with labels (b) Unlabeled image

Figure 1: An example of a hierarchical DAG in ImageNet (on
the left) and an unlabeled image (on the right). The target
labels of image are T ={“rabbit", “turtle"}.

image classification [5, 33], product categorization [19, 26], rela-

tional database search [2, 31], data filtering [27, 29, 34], cold-start

recommendation [17, 19, 36], and so on. Given an unlabeled object,

the task of interactive graph search (IGS) [31] leverages human

intelligence to locate an exact target vertex for this object on a

directed acyclic graph (DAG), where each vertex is a label and a

directed edge represents the relationship of concept-of-instance.

However, existing studies of interactive graph search [3, 19, 35]

mainly focus on the search of single target, indicating that each

object can have only one label, which is unsatisfactory in a lot of

particular scenarios.

In many real applications, an unlabeled object needs multiple
labels as targets to accurately describe the object. For example, the

image in Figure 1(b) has two kinds of animal, indicating that two

labels of “rabbit” and “turtle” in the label DAG in Figure 1(a) are

needed to depict this image. Similar cases of multiple targets are as

follows. In academic research, a paper can have multiple keywords

of ACM Computing Classification System as the target, which can

be enough to accurately describe its research topic areas. In bio-

medicine, a new virus of “COVID-19” that leads to pneumonia,

may have two labels of “virus” and “pneumonia” in the disease

ontology. In recommendation systems, it needs to suggest interest

labels for new users, where the user preferences may be diverse

and not limited to a single interest, e.g., one may simultaneously

like “music”, “traveling”, “sports”, and so on. In this work, we study

a new problem of interactive search for multiple targets over DAGs,

which aims to find exact 𝑘 targets using the minimum number of

asking questions. Continuing the above example to find two labels

for the image in Figure 1(b), we can ask a question in the form of

“Is this an 𝑥?”. Assume that the first question on 𝑥 is “mammal”,

the answer is “Yes”. Because there is a path from “mammal” to

“rabbit”, indicating a rabbit is a mammal. Next, we ask the second

question on “whale”, the answer is “No”. Because there is no path

from “mammal” to neither “rabbit” nor “turtle”, indicating no whale

https://doi.org/XX.XX/XXX.XX
https://github.com/i11ume/K-EIS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

appears in the image. Finally, it seeks for at least six questions to

exactly identify two final targets “rabbit” and “turtle”.

In terms of data management perspective, it brings significant

challenges to address our task of interactive search for multiple tar-
gets. The reasons are two-fold. First, the design of efficient search

algorithms is vital, as a large number of unlabeled data is generated

every day in real life. Especially, those user-generated data fre-

quently happen on the web, e.g., user-uploaded images and videos,

AI-generated articles, which are produced greatly in a streaming

way. Second, the development of effective solutions is difficult but

very important, which directly affects the budget cost of asked ques-

tions w.r.t. human resources in economic aspect. In addition, an

unknown number of exact labels in a given data object also brings

challenges for a crowdsourcing-based data labeling system, which is

difficult to effectively handle. To tackle our problem, one straightfor-

ward idea is to extend existing single-target methods [3, 19, 35] and

tree-based multi-target method KBM-IGS [36]. Unfortunately, they

cannot work well for our problem, due to the reasons as follows.

(1) Difficulty of multiple targets search in DAGs. KBM-IGS [36]

addressed the search for multiple targets in trees. However,

in DAGs, vertices may have more than one parents and the

structure is more dense. So applying KBM-IGS to DAGs

is challenging due to the high time complexity involved.

IGS [31] extracted a DFS-tree fromDAGs and applied tree al-

gorithms on the extracted tree. The DFS-tree-based method

is correct for single target search. Because the unique tar-

get must be located within the subtree 𝑇𝑣 following any

question that receives a Yes answer, i.e., Q (𝑣) = Yes. How-
ever, this method is not applicable for multiple targets, as

multiple targets may reside outside the subtree 𝑇𝑣 .

(2) Limitation of DFS-tree in dense DAGs. In tree-like DAGs, the
DFS-tree method is effective as it retains most of the struc-

tural information after extracting a DFS-tree. However, in

dense DAGs, the extraction of a DFS-tree removes many

edges, leading to a significant loss of structural information.

In bad cases, we theoretically show that DFS-tree-based

methods require 𝑂 (𝑛) questions to locate a single target.

(3) Low effectiveness of exact multiple targets search. KBM-IGS

is designed to detect approximate targets in situations in-

volving multiple targets. Although this method can be ex-

tended to detect exact targets, it needs to ask a large number

of questions as validated in our experiments.

To tackle these bottlenecks, we propose a novel k-EIS framework

for the exact search for multiple targets on DAGs. The key of our

k-EIS framework includes two parts: uncertain candidates and a new
gain function for selecting the best vertex to be asked. First, we give
a new definition of uncertain candidates for those vertices that have

an answer to be either yes or no, indicating an uncertain status.

Thus, we can categorize all vertices into three statuses including

yes, no, and also uncertain. This greatly helps us to refine candidate

statues and shrink the search space of potential targets to exact

ones, in contrast to only two statuses in the existing studies [36].

Second, we propose a new gain function based on the uncertain

status to achieve a good balance trade-off by the worst case and

average case. Built upon k-EIS, we design specific pruning rules to

update candidate statuses, in terms of single target and multiple

Table 1: A detailed comparison of interactive search studies,
including IGS, TS-IGS, BinG, KBM-IGS, and our k-EIS.

Methods Target Size Exact Answers Data Domain

IGS [31] Single

√
DAG

TS-IGS [35] Single

√
DAG

BinG [4, 19] Single

√
Tree

KBM-IGS [36] Multiple × Tree

k-EIS (Ours) Multiple

√
DAG

targets. To further improve the effectiveness of multiple targets

search, we develop an improved algorithm called Mix-EIS. The
key idea of Mix-EIS is divide-and-conquer. Generally speaking,

it first divides the whole DAG into 𝑘 disjoint subgraphs so that

each subgraph has exactly one target. As the example of a DAG

𝐺 with two targets shown in Figure 1, we ask three questions on

“mammal”, “whale” and “aquatic”, receiving the answers “Yes”, “No”

and “Yes.” After asking these three questions, the 𝐺 is separated

into two disjoint subgraphs, G1 and G2, so that each subgraph has a

target. Finally, we independently use our k-EIS-based single target

search algorithm to quickly identify each target on each subgraph,

“rabbit” of G1, “turtle” of G2. To summarize, we make the following

contributions:

• We formulate a new problem of interactive graph search

for identifying exact multiple targets on DAGs (Section 3).

• We propose a new concept of uncertain candidates, which

contributes to an effective management of three typed

candidates and potential targets over a series of dynamic

question-and-answering. We design a gain function to ask

questions on the best vertex for reducing uncertain candi-

dates. Based on the above, we develop an effective k-EIS
framework (Section 4).

• We develop updating rules and k-EIS-based algorithm for

single target search. We analyze the algorithm complexities

(Section 5).

• In the k-EIS framework, we first develop a k-EIS-based al-

gorithm for multiple targets search. To further improve the

effectiveness, we proposed a divide-and-conquer solution

based on the partition of 𝑘 disjoint subgraphs such that it

finds single target within each subgraph (Section 6).

• We theoretically analyze the performance of our methods

and existing methods on various shapes of DAGs. It shows

that our methods outperform the existing DFS-tree-based

methods in a few cases, which improves to asking from

𝑂 (𝑛) questions to 𝑂 (log
2
𝑛) questions (Section 7).

• We conduct extensive experiments on real-world datasets

against four state-of-the-art methods. The results show that

our methods can use nearly 6% and 50% question cost for

searching single target and multiple targets, respectively,

in contrast to existing competitors (Section 8).

We review and compare existing studies in Section 2. Finally, we

conclude the paper in Section 9.

2 RELATEDWORK
We summarize and compare the four most relevant studies to our

work, including IGS [31], TS-IGS [35], BinG [4, 19], and KBM-

IGS [36], as shown in Table 1. Specifically, Tao et al. [31] advanced

2

the Interactive Graph Search (IGS) problem that dynamically adapted

to responses to facilitate efficient target identification within Di-

rected Acyclic Graphs (DAGs). The general idea was to extract a

heavy DFS-tree and apply binary search and heavy-path decom-

position. Building upon the IGS, Zhao et al. [35] further improved

the IGS problem with the TS-IGS algorithm, which optimized the

number of questions needed when targets were located at shallower

depths within the graph. Furthermore, BinG [4, 19] was a greedy-

based method that queried the vertex with maximal gain. It modeled

the single-target problem as a decision tree construction problem

and proved the approximate guarantee in theory. Expanding the

application to multi-target scenario, Zhu et al. [36] developed the

KBM-IGS method, the first to handle multiple targets within tree

structures. It was a heuristic framework that provided a trade-off

between target probability and benefit gain. This framework incor-

porated budget constraints to effectively approximate the target set

under limited question budgets. In summary, these three methods
IGS [31], TS-IGS [35] and BinG [4, 19] only tackled single-target in-
teractive search, which was inapplicable for multiple targets scenario.
On the other hand, KBM-IGS [36] can detect approximate answers of
multiple targets in trees, but is hard to search exact targets in DAGs.

There were also several other graph search problems [3, 4, 8, 13–

15, 18–20, 22, 23, 28, 30] related to our work. Human-assisted graph

search [28] focused on optimizing the cost of human computations

necessary for tasks in crowdsourcing services. It was an offline

problem that asked all questions in one go. Cong et al. [4] tack-

led minimizing expected question numbers, assuming that objects

followed a probabilistic distribution. However, obtaining the ex-

act probabilistic distribution was difficult in the real world. Li et

al. [19, 20] introduced multiple interactive graph search, which uti-

lized a multiple-choice question to enhance the querying process.

In the work [3], the authors explored the complexities added by

human errors in responses within the IGS framework, focusing

on the effect of inaccurate answers on the search process. Lu et

al. [22, 23, 30] studied the partial order multiway search that asked

𝑘 questions in each turn. In the single question setting, the method

is the same as the IGS [31] method. In comparison, all these works
had different research focuses and problem settings from our k-EIS
problem.

3 PRELIMINARIES
3.1 Directed Acyclic Graph
Let 𝐺 = (𝑉 , 𝐸) be a directed acyclic graph (DAG) consisting of a

set of vertices 𝑉 and a set of directed edges 𝐸. Let 𝑛 = |𝑉 | and
𝑚 = |𝐸 | denote the size of vertices and edges, respectively. For

a directed edge ⟨𝑣,𝑢⟩ ∈ 𝐸, we say 𝑢 is an in-neighbor of 𝑣 , and 𝑣

is an out-neighbor of 𝑢. For the set of out-neighbors, denote by

N+ (𝑣) = {𝑢 | ⟨𝑣,𝑢⟩ ∈ 𝐸}, and for the set of in-neighbors, denoted

by N− (𝑣) = {𝑢 | ⟨𝑢, 𝑣⟩ ∈ 𝐸}. Assume that there is a unique root

𝑟 of 𝐺 , i.e., N− (𝑟) = 0 [31]. If there are multiple vertices with an

in-degree of 0, we add a virtual vertex 𝑟 with outgoing edges to

each of these vertices.

Given two vertices 𝑢 and 𝑣 , we say that 𝑢 can reach 𝑣 (denoted

by 𝑢 → 𝑣) if and only if there exists a directed path from 𝑢 to 𝑣 in𝐺 .

Note that for any vertex 𝑣 , it can reach itself, i.e., 𝑣 → 𝑣 . If 𝑢 cannot

reach 𝑣 , we denote it by𝑢 ↛ 𝑣 . In addition, the ancestors of a vertex

(a)

Targets

(b)

Figure 2: An example of a DAG 𝐺 . In Figure 2(b), 𝐺 has the
hidden targets T = {𝑣2, 𝑣4}, and we have asked the questions
Q = {Q (𝑣2) = Yes,Q (𝑣4) = Yes,Q (𝑣5) = No}.

𝑣 , denoted by anc(𝑣), are defined as the set of vertices that can reach
𝑣 in 𝐺 , i.e., anc(𝑣) = {𝑢 ∈ 𝑉 | 𝑢 → 𝑣}. Similarly, the descendants

of a vertex 𝑣 , denoted by des(𝑣), are defined as the set of vertices

that are reachable from 𝑣 in 𝐺 , i.e., des(𝑣) = {𝑢 ∈ 𝑉 | 𝑣 → 𝑢}.
Furthermore, we define𝐺𝑢 as the subgraph consisting of all vertices

and edges reachable from a vertex 𝑢 ∈ 𝑉 . Formally,𝐺𝑢 = (𝑉𝑢 , 𝐸𝑢),
where 𝑉𝑢 = des(𝑢) and 𝐸𝑢 = {⟨𝑣,𝑤⟩ ∈ 𝐸 | 𝑣,𝑤 ∈ des(𝑢)}.

Example 1. Figure 2(a) shows an example of a DAG 𝐺 rooted by
𝑟 = 𝑣0. We have N+ (𝑣3) = {𝑣6, 𝑣7, 𝑣8}, N− (𝑣3) = {𝑣1}, anc(𝑣3) =
{𝑣0, 𝑣1, 𝑣3}, des(𝑣3) = {𝑣3, 𝑣6, 𝑣7, 𝑣8}. The subgraph𝐺𝑣3 is formed by
four vertices {𝑣3, 𝑣6, 𝑣7, 𝑣8} and three edges {⟨𝑣3, 𝑣6⟩, ⟨𝑣3, 𝑣7⟩, ⟨𝑣3, 𝑣8⟩}.

3.2 Problem Formulation
In the following, we present the scheme of interactive graph search

for multiple targets over DAGs. We start with three important

concepts: targets, interactive questions, and potential targets.
Targets. The targets, denoted by T ⊆ 𝑉 , are a set of “hidden"

vertices that we aim to identify in the DAG 𝐺 . The number of

targets is represented by |T | = 𝑘 , where 𝑘 ≥ 1. For 𝑘 = 1, we

say that T is a single target; for 𝑘 > 1, T are multiple targets. We

assume that the targets satisfy the independent condition, i.e., for

any two distinct vertices 𝑢, 𝑣 ∈ T , there is no directed path from 𝑣

to 𝑢, i.e., {𝑢, 𝑣 ∈ T : �𝑣 ↛ 𝑢}.
Interactive questions. Given the targets T are unknown in ad-

vance, our system could interact with users by asking questions to

identify these hidden targets T . For a vertex 𝑣 ∈ 𝑉 , an interactive

question is represented as Q (𝑥), asking whether there exists a path
from 𝑥 to at least one of targets 𝑢 ∈ T , i.e., Q (𝑥) = boolean(𝑥 →
T). The question answer is “Yes” if one directed path exists from

𝑥 to one target in T , and “No” otherwise. We can ask a series of 𝑡

questions in order, denoted by,

Q = {Q (𝑥1),Q (𝑥2), . . . ,Q (𝑥𝑡)},

where 𝑥𝑖 represents the vertex asked in the 𝑖-th question. Note

that we assume that each question is answered correctly by users

following [19, 28, 31, 36]. If users make wrong answers, we can

adopt a few additional measures of quality control to improve the

final accuracy of search targets, such as the majority voting, expert

review, group consensus, and so on. For example, we can ask mul-

tiple users on the same question to seek additional answers, and

determine the final answer based on the majority voting. We have

conducted Exp-4 to validate the effectiveness in Section 8.

3

Potential targets. Following the definition in KBM-IGS [36], po-

tential targets (called candidate set in [28, 31]), denoted by P, are
defined as a candidate set of vertices that might precisely be the

targets, where T ⊆ P. Before asking any question, the whole set

of vertices𝑉 is regarded as the potential targets, denoted as P = 𝑉 .

In other words, each vertex 𝑣 ∈ P could be a potential answer of

targets in T .
Based on the above concepts, we are ready to formulate the

problem of interactive graph search for identifying exact 𝑘 targets

over DAGs (k-EIS) as follows.

Problem 1 (k-EIS Problem). Given a DAG 𝐺 = (𝑉 , 𝐸), hidden
targets T ⊆ 𝑉 , potential targets P = 𝑉 , and a positive integer 𝑘 ∈ Z+
where 𝑘 = |T |, the objective of k-EIS problem is to interactively refine
potential answers from P to P∗ ⊆ P via asking a series of 𝑡 questions
Q = {Q (𝑥1),Q (𝑥2), . . . ,Q (𝑥𝑡)}, such that it achieves the finalized
P∗ = T using the minimum number of 𝑡 questions.

Example 2. Assume that the targets T = {𝑣2, 𝑣4} and 𝑘 = 2

in the DAG 𝐺 shown in Figure 2(b), we have asked the questions
Q = {Q (𝑣2) = Yes,Q (𝑣4) = Yes,Q (𝑣5) = No} and the potential
targets P = {𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7, 𝑣8}. With one question asked on 𝑣3, the
potential targets P is finalized as P∗ = {𝑣2, 𝑣4}, where P∗ = T .

4 THE PROPOSED FRAMEWORK
This section introduces our proposed k-EIS framework to find exact

𝑘 targets in a DAG with a few questions. The key is to carefully

select a vertex with the most worth for asking questions to shrink

potential targets P greatly. To this end, we first leverage the previ-

ous questions’ answers to categorize all vertices into three statuses:

Yes-candidates (Y), No-candidates (N), and Uncertain-candidates

(U), which can prune disqualified candidates and help identify

potential targets. Second, we give a new gain function based on

the proposed three statuses to select the best vertex for asking

questions.

4.1 Dynamic Candidate Management
We start by defining all candidate vertices into three statuses: Yes-

candidates (Y), No-candidates (N), and Uncertain-candidates (U).

Different from the existing study of multi-target search over trees,

i.e. KBM-IGS [36], that only uses two statuses Y and N , we have a

new statue of Uncertain-candidates (U), which are very useful for

candidate pruning.

• Yes-candidates (Y): The Yes-candidates is defined as the

set of vertices confirmed to reach at least one target, denoted

by Y = {𝑣 ∈ 𝑉 | Q (𝑣) = Yes}.
• No-candidates (N): The No-candidates comprises all ver-

tices that are determined unable to reach any targets, rep-

resented as N = {𝑣 ∈ 𝑉 | Q (𝑣) = No}.
• Uncertain-candidates (U): The Uncertain-candidates is

the set of vertices that are not determined whether they can

reach targets or not. The answer could be either yes or no.

We denoted byU = 𝑉 \{Y∪N}. For initialization, we have
U = 𝑉 . With more questions Q are asked,U continuously

refines with more information of Y and N .

At each round, it is worth asking questions on an uncertain

candidate vertex 𝑥 ∈ U, but not the deterministic one of Y and

Target

Figure 3: An example of aDAG𝐺 with a hidden target 𝑣1. After
asking the question on the Uncertain-candidate 𝑣2, Q (𝑣2) =
No, the target 𝑣1 can be found.
N . For each question Q (𝑥), we have two important rules in the

following.

Rule 1. If a vertex 𝑥 ∈ U, and Q (𝑥) = Yes, then it is conclusively
any vertex 𝑦 ∈ anc(𝑥), Q (𝑦) = Yes.

Proof. Suppose that Q (𝑥) = Yes for 𝑥 ∈ U. This indicates

𝑥 → 𝑣 for some 𝑣 ∈ T . For any 𝑦 ∈ anc(𝑥), 𝑦 → 𝑥 . Therefore, the

path 𝑦 → 𝑥 → 𝑣 exists, thus Q (𝑦) = Yes holds. □

Rule 2. If a vertex 𝑥 ∈ U, and Q (𝑥) = No, then it is conclusively
any vertex 𝑦 ∈ des(𝑥), Q (𝑦) = No.

Proof. Suppose that Q (𝑥) = No for 𝑥 ∈ U. This indicates 𝑥 ↛
𝑣 for any 𝑣 ∈ T . For any 𝑦 ∈ des(𝑥), 𝑥 → 𝑦. If Q (𝑦) = Yes holds,
there exists a path 𝑥 → 𝑦 → 𝑣 , 𝑣 ∈ T , contradicting Q (𝑥) = No.
Thus, Q (𝑦) = No holds. □

Based on Y andU, we infer the potential targets P as follows.

Lemma 4.1. The potential targets P ⊆ Y∗ ∪U, whereY∗ = {𝑢 ∈
Y : �𝑤 ∈ Y such that 𝑢 → 𝑤}. Here, P ⊆ Y ∪U.

Proof. Assume that P ∩N = {𝑥}. 𝑥 ∈ N indicates that 𝑥 ↛ 𝑢

for any 𝑢 ∈ T , so 𝑥 ∉ P, contradicting 𝑥 ∈ P. Thus, P ∩ N = ∅
with 𝑉 = Y ∪ N ∪ U, P ⊆ Y ∪ U holds. Suppose that a vertex

𝑣 ∈ Y, 𝑣 ∉ Y∗ is a target, 𝑣 ∉ Y∗ indicates that ∃𝑢 | 𝑣 → 𝑢,𝑢 ∈ Y,
𝑢 ∈ Y indicates that there exists a path 𝑣 → 𝑢 → 𝑤,𝑤 ∈ T ,
contracting the definition of targets {𝑣,𝑤 ∈ T : �𝑣 ↛ 𝑤}. Thus,
for any vertex 𝑣 ∈ Y, 𝑣 ∉ Y∗ cannot be a target. So, P ⊆ Y∗ ∪U
holds. □

As a result, to find exact targets T , we need to shrink Y andU
to make the potential targets P close to T .

Example 3. Figure 2(b) illustrates the hidden targets T = {𝑣2, 𝑣4}
within a DAG𝐺 . Suppose that we have asked questions Q = {Q (𝑣2) =
Yes,Q (𝑣4) = Yes,Q (𝑣5) = No}. Consequently, according to Rule 1,
vertices 𝑣0, 𝑣1, 𝑣2 and 𝑣4 are classified into Yes-candidates, forming
the Yes-candidates Y = {𝑣0, 𝑣1, 𝑣2, 𝑣4}. According to Rule 2, vertices
𝑣5, and 𝑣9 are classified into No-candidates, hence the No-candidates
N = {𝑣5, 𝑣9}. The vertices 𝑣3, 𝑣6, 𝑣7, and 𝑣8 remain in the Uncertain-
candidates, denoted U = {𝑣3, 𝑣6, 𝑣7, 𝑣8}. The potential targets, P,
includes vertices {𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7, 𝑣8}. When we ask one more ques-
tion on 𝑣3, 𝑣3 has no path to any target 𝑣2 or 𝑣4, thus Q (𝑣3) = No,
according to the Rule 2, {𝑣3, 𝑣6, 𝑣7, 𝑣8} would be classified intoN from
U. Currently,U is an empty set, the potential targets P = {𝑣2, 𝑣4}
finalized P = T .

Benefit of Uncertain-candidates (U). We use the newly pro-

posed Uncertain-candidates, which can effectively reduce the search

space for finding targets fast. Different from the vertex of potential

targets, the vertex of Uncertain-candidates could be not a target.

4

Thus, we can ask a vertex 𝑥 of Uncertain-candidates, but 𝑥 is not a

potential target, i.e., 𝑥 ∈ U \ P. The following example in Figure 3

illustrates the benefit of Uncertain-candidates against potential tar-

gets. Our method using Uncertain-candidates can locate the target

by only one question, instead of four questions of other methods

using potential targets.

Example 4. Figure 3 shows an example of a DAG 𝐺 with a sin-
gle hidden target T = {𝑣1}. We have U = {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, P =

{𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6} and Y = {𝑣1}. As U ≠ P, we ask one question
on the Uncertain-candidate 𝑣2 ∈ U \ P. Since 𝑣2 cannot reach 𝑣1,
we find that Q (𝑣2) = No. According to Rule 2, {𝑣3, 𝑣4, 𝑣5, 𝑣6} are
No-candidates. Consequently, 𝑣1 can be identified as the target. If
a search algorithm only focuses on potential targets, then 𝑣2 can-
not be asked for questions, reflecting that four additional questions
{Q (𝑣3) = No,Q (𝑣4) = No,Q (𝑣5) = No,Q (𝑣6) = No} are needed to
locate the target 𝑣1.

4.2 Gain Calculation
Leveraging three kinds of candidatesY,N , andU, we give a novel

definition of gain(𝑥) to evaluate the goodness of asking question
on vertex 𝑥 , i.e., Q (𝑥). We consider the answer of Q (𝑥) into two

cases.

• If Q (𝑥) = Yes, a few candidates 𝑢 ∈ U change from U
to Y or N . The change from U to Y can be inferred by

Rule 1. Note that the change from U to N may happen

for |T | = 1. Assume that the updatedU is
ˆU𝑌 . Thus, we

denote the number of such updated vertices by cntY (𝑥), i.e.,
cntY (𝑥) = |U| − | ˆU𝑌 |.

• If Q (𝑥) = No, a few candidates 𝑢 ∈ U change from U
to N or Y. The change from U to N can be inferred by

Rule 2. Note that the change from U to Y may happen

for |T | = 1. Assume that the updatedU is
ˆU𝑁 . Thus, we

denote the number of such updated vertices by cntN (𝑥),
i.e., cntN (𝑥) = |U| − | ˆU𝑁 |.

Integrating the above two cases in a balanced way, gain(𝑥) is de-
fined as follows:

gain(𝑥) = cntY (𝑥) × cntN (𝑥). (1)

Our function gain(𝑥) can achieve a good balance of the reductions

of Uncertain-candidates (U) w.r.t. two question answers. Alter-

natively, one may propose to use another generalized gain func-

tion in terms of gain(𝑥) = 𝑓 (cntY (𝑥), cntN (𝑥)). Here, the func-

tion 𝑓 (.) needs to achieve three good properties: symmetry, non-
decreasing gain, and risk-aware balance. First, 𝑓 (.) is symmetry,

i.e., 𝑓 (𝑎, 𝑏) = 𝑓 (𝑏, 𝑎). Second, 𝑓 (𝑎1, 𝑏) ≥ 𝑓 (𝑎2, 𝑏) if and only if

𝑎1 ≥ 𝑎2 ≥ 0, implying the non-decreasing gain. Third, 𝑓 should

make a good trade-off balancing the benefits of two different an-

swers cntY (𝑥) and cntN (𝑥) as either case may incur. Our gain(𝑥) in
Eq. 1 successfully admits the above three properties. Other choices,

e.g., the minimum 𝑓 (𝑎, 𝑏) = min(𝑎, 𝑏) and the harmonic mean

𝑓 (𝑎, 𝑏) = 2𝑎𝑏
𝑎+𝑏 , cannot be better than ours. In summary, this justifies

the design choice of our gain function gain(𝑥).

Algorithm 1 k-EIS Framework

Input: DAG𝐺 = (𝑉 , 𝐸) , an integer 𝑘 .

Output: Targets T with | T | = 𝑘 .

1: Let Y ← {𝑟 }, N ← ∅,U ← {𝑉 } \ {𝑟 }, P ← {𝑉 } \ {𝑟 };
2: while U ≠ ∅ do
3: for each uncertain candidate 𝑣 ∈ U do
4: Calculate the reduced number of uncertain candidates cntY (𝑣)

by assuming that Q (𝑣) = Yes;
//Note that we calculate cntY (𝑣) by invoking Algo. 2 for single tar-

get with 𝑘 = 1 and Algo. 3 for multiple targets with 𝑘 > 1, respectively.

No P,Y,N,U are actually updated during this process. Likewise, sim-

ilar actions are performed for the following calculating cntN (𝑣) .
5: Calculate cntN (𝑣) for Q (𝑣) = No by invoking Algo. 2 or 3;

6: Calculate gain(𝑣) ← cntY (𝑣) × cntN (𝑣) ; ⊲ by Eq. 1

7: Select 𝑣∗ ← argmax𝑣∈U gain(𝑣) and ask the question Q (𝑣∗) ;
8: if Q (𝑣∗) = Yes then
9: Update potential targets and three candidate sets {P,Y,N,U}

by invoking Algo. 2 or 3 for Q (𝑣∗) = Yes;
10: else
11: Update potential targets and three candidate sets {P,Y,N,U}

by invoking Algo. 2 or 3 for Q (𝑣∗) = No;

12: return P as the final targets;

4.3 k-EIS Framework
Based on gain evaluation for reducing uncertain candidates, We

proposed k-EIS framework for multiple targets search. The key

idea of k-EIS is to greedily select a vertex 𝑣∗ ∈ U with the largest

gain(𝑣∗) for asking question Q (𝑣∗) and then update Y,N ,U at

each round until all candidates are deterministic, i.e.,U = ∅.
The algorithm of k-EIS framework is detailed in Algo. 1. The

framework can handle two search cases for single target with

|T | = 𝑘 = 1 and multiple targets with |T | = 𝑘 > 1. We deal

with these two cases by developing different gain calculation pro-

cedures in Algo. 2 and Algo. 3, respectively. Initially, it creates

four different subsets from 𝑉 (line 1): Y ← {𝑟 }, which contains

the root and denotes Yes-candidates; N ← ∅, representing No-

candidates; U ← {𝑉 } \ {𝑟 }, comprising all other vertices as the

Uncertain-candidates; and P ← {𝑉 } \ {𝑟 }, indicating potential

targets. Before asking each question, the algorithm calculates the

cntY and cntN of each vertex 𝑣 in the Uncertain-candidatesU (lines

3-6). It calculates the number of vertices that will transition fromU
to other subsets(Y or N) if Q (𝑣) = Yes, which determines cntY (𝑣)
(line 4). Similarly, assuming Q (𝑣) = No, it computes cntN (𝑣) (line
5). The gain of each vertex is then calculated using the function

gain(𝑣) = cntY (𝑣) × cntN (𝑣) (line 6). Following this, the vertex

𝑣∗ with the largest gain is selected and queried (line 7). After ask-

ing the question Q (𝑣∗), the subsets P,Y,N ,U are updated by

SingleEvalSync or MultipleEvalSync with a specific answer “Yes”
or “No” (lines 8-11). Finally, the algorithm terminates untilU = ∅
and returns the answer P for the identified targets (line 12).

5 SINGLE TARGET SEARCH
In this section, we develop k-EIS algorithm for single target search

based on our framework in Algo. 1, where |T | = 𝑘 = 1.

5

Target

Figure 4: The k-EIS algorithm finds a hidden target 𝑣8 on the DAG 𝐺 rooted by 𝑟 = 𝑣0, showing questions and updates of
candidates. And it asks three questions Q = {Q (𝑣2) = No,Q (𝑣4) = Yes,Q (𝑣3) = Yes} to find the exact target 𝑣8.

Algorithm 2 SingleEvalSync

Input: Queried vertex 𝑥 with Q (𝑥) , P, Y, N, U.

Output: cnt(𝑥) , ˆP, ˆY, ˆN, ˆU
1:

ˆP ← P, ˆY ← Y, ˆN ← N, ˆU ← U;

2: if Q (𝑥) = Yes then
3: R ← anc(𝑥) ∩ ˆU,

ˆU ← ˆU \ R, ˆY ← ˆY ∪ R; ⊲ By Rule 1

4:
ˆP ← ˆP ∩ des(𝑥) ;

5: else
6: R ← des(𝑥) ∩ ˆU,

ˆU ← ˆU \ R, ˆN ← ˆN ∪ R; ⊲ By Rule 2

7:
ˆP ← ˆP ∩ {𝑉 \ des(𝑥) };

8: Let 𝑦 be the vertex which has the minimal topological order in P;
9: if 𝑦 can reach all the targets P then
10: R ← anc(𝑦) ∩ ˆU,

ˆU ← ˆU \ R, ˆY ← ˆY ∪ R;
⊲ By Rule 1 and Rule 3 (lines 9-11)

11: R ← 𝑉 \⋃
𝑣∈ ˆP anc(𝑣) ;

12: R ← R ∩ ˆU,
ˆU ← ˆU \ R, ˆN ← ˆN ∪ R; ⊲ By Rule 4

13: cnt(𝑥) ← |U| − | ˆU|;
14: return cnt(𝑥) , ˆP, ˆY, ˆN, ˆU;

5.1 Candidate Updating Rules for Single Target
In the scenario of single target, the potential targets P plays a

pivotal role, which refines the target’s scope based on the asked

questions.

Updating P. For asking a question on vertex 𝑣 ∈ U, P will be

updated in these two conditions.

• IfQ (𝑣) = Yes, then P is intersected with des(𝑣), narrowing
down the potential targets to the descendants of 𝑣 , i.e., if

Q (𝑣) = Yes, then P ← P ∩ des(𝑣).
• Otherwise, if Q (𝑣) = No, P is updated to exclude des(𝑣),

refining the potential targets outside the descendants of 𝑣 ,

i.e., if Q (𝑣) = No, then P ← P ∩ {𝑉 \ des(𝑣)}.
Updating Y, N , U. After the updated P, we can update other

candidates Y, N ,U via the following useful rules, accordingly.

Rule 3. For a vertex 𝑣 ∈ U with des(𝑣) ∩ P = P, we determine
that Q (𝑣) = Yes, Y ← Y ∪ {𝑣} andU ←U \ {𝑣}.

Proof. Suppose that des(𝑣) ∩ P = P for 𝑣 ∈ U. This indicates

𝑣 → 𝑢 for all 𝑢 ∈ P. Since T ⊆ P, 𝑣 → 𝑡 for every 𝑡 ∈ T . Thus,
Q (𝑣) = Yes holds. □

Rule 4. For a vertex 𝑣 ∈ U with des(𝑣) ∩ P = ∅, we determine
that Q (𝑣) = No, N ← N ∪ {𝑣} andU ←U \ {𝑣}.

Proof. Suppose that des(𝑣) ∩ P = ∅ for 𝑣 ∈ U. This indicates

𝑣 ↛ for all 𝑢 ∈ P. Since T ⊆ P, 𝑣 ↛ 𝑡 for any 𝑡 ∈ T . Thus,
Q (𝑣) = No holds. □

These rules can also help further update candidates, combining

with Rule 1 and Rule 2 in Section 4.1.

5.2 Single Target Search Algorithm
We propose the k-EIS algorithm for single target search.

k-EIS algorithm for single target. The k-EIS algorithm combines

the k-EIS framework and algorithm SingleEvalSync for evaluat-

ing the gain of each vertex and updating three sets of candidates

(Y,N ,U) and potential targets (P).We introduce the SingleEvalSync
in detail in Algo. 2. Initially, the algorithm duplicates the sets P,
Y, N ,U into temporary sets

ˆP, ˆY, ˆN , and
ˆU, ensuring no direct

modification to the original sets (line 1). If Q (𝑥) = Yes, according
to Rule 1, it performs the following updates (lines 2-4): Identifies all

vertices in
ˆU that can reach the queried vertex 𝑥 , i.e., anc(𝑥) ∩ ˆU,

and classifies these vertices into
ˆY, updating ˆU to exclude these

vertices (line 3). Narrows down the potential targets
ˆP to only

include the descendants of 𝑥 , as these are the only vertices that

could be the targets (line 4). Otherwise, if Q (𝑥) = No, according to

Rule 2, it performs the following updates (lines 5-7): Identifies all

vertices in
ˆU that the queried vertex 𝑥 can reach, i.e., des(𝑥) ∩ ˆU,

and classifies these vertices into
ˆN , updating

ˆU to exclude these

vertices (line 6). It updates
ˆP to exclude all descendants of 𝑥 , as

none of these vertices can be targets (line 7). Additionally, if a

vertex 𝑦 which has the minimal topological order within
ˆP can

reach all the potential targets
ˆP, it is definitively classified as a Yes-

candidate, per Rule 3 (lines 8-10). With the Q (𝑦) = Yes, according
to the Rule 1, the ancestors of 𝑦 in

ˆU could be classified into
ˆY

from
ˆU. According to Rule 4, the algorithm identifies vertices in

ˆU that cannot reach any vertex in
ˆP, these vertices are classified

into
ˆN (lines 11-12). Finally, the algorithm calculates the number

of vertices which have been classified fromU into either Y or N .

This calculation aids in determining cntY or cntN for the question

(line 13). The algorithm then returns these updated cnt(𝑥) along
with the updated candidates and potential targets (line 14).

Example 5. Figure 4 and Table 2 show a complete instance of
k-EIS algorithm for single target in 𝐺 , where the target T = {𝑣8}.
Initially, as shown in Table 2, the vertex with the largest gain, 𝑣2,
is queried first. Since there is no path from 𝑣2 to 𝑣8, Q (𝑣2) = No is
obtained. This leads to updates in the potential targets P ← P ∩

6

Table 2: Values of cntY, cntN, and gain for vertices across ques-
tions using k-EIS to find the single target in Figure 4.

Progress 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

Initial cntY 1 6 5 7 8 9 9 9 9

Initial cntN 9 4 4 2 2 1 1 1 1

Initial gain 9 24 20 14 16 9 9 9 9

After Q (𝑣2) cntY - - 1 3 - 5 5 5 -

After Q (𝑣2) cntN - - 4 2 - 1 1 1 -

After Q (𝑣2) gain - - 4 6 - 5 5 5 -

After Q (𝑣4) cntY - - 2 - - - - 2 -

After Q (𝑣4) cntN - - 2 - - - - 2 -

After Q (𝑣4) gain - - 4 - - - - 4 -

{𝑉 \des(𝑣2)}. According to Rule 2, vertices {𝑣5, 𝑣9} are classified into
No-candidates. By Rule 3, vertex {𝑣1} is classified into Yes-candidates.
The Uncertain-candidatesU then includes {𝑣3, 𝑣4, 𝑣6, 𝑣7, 𝑣8}. The next
question addresses vertex 𝑣4 fromU, which has the largest gain after
Q (𝑣2). ReceivingQ (𝑣4) = Yes leads to an update in P to P∩des(𝑣4),
thus P = {𝑣4, 𝑣8}. Applying Rule 4, vertices {𝑣6, 𝑣7} are classified into
No-candidates. Now,U is reduced to {𝑣3, 𝑣8}, 𝑣3 and 𝑣8 have same
gain, arbitrarily query 𝑣3 or 𝑣8, ultimately confirming 𝑣8 as the final
target.

Complexity analysis. The SingleEvalSync in Algo. 2 takes𝑂 (𝑛𝑚)
time and𝑂 (𝑚) memory to generate a question. For each vertex 𝑣 in

U, gain(𝑣) takes𝑂 (𝑚) time by performing a multi-source Breadth-

First Search. Overall, the k-EIS algorithm in Algo. 1 equipped with

Algo. 2 takes𝑂 (𝑡𝑛𝑚) time and𝑂 (𝑚) memory for finding the single

target by asking 𝑡 questions.

6 MULTIPLE TARGETS SEARCH
In this section, we first propose the k-EIS algorithm to find exact 𝑘

targets in DAGs. To further improve the effectiveness, we propose

a subgraph partition based methodMix-EIS algorithm. The general

idea is to separate 𝐺 into 𝑘 disjoint subgraphs such that each sub-

graph has a single target by k-EIS algorithm and apply the single

target search algorithms in each subgraph. Finally, we analyze the

time complexity of our proposed methods.

6.1 Multiple Target Search Algorithm
We propose k-EIS algorithm for multiple targets search.

k-EIS algorithm for multiple targets. The k-EIS algorithm com-

bines the k-EIS framework and algorithm MultipleEvalSync in

Algo. 3. Initially, MultipleEvalSync duplicates the sets P, Y, N ,

U into temporary sets
ˆP, ˆY, ˆN , and

ˆU (line 1). If Q (𝑥) = Yes, it
applies Rule 1 to update the sets as follows (lines 2-4): it identifies

all ancestors of the queried vertex 𝑥 in
ˆU,i.e., anc(𝑥) ∩ ˆU, these

vertices are classified from
ˆU into

ˆY (line 3). Subsequently, the

potential targets
ˆP is updated to exclude these ancestors except 𝑥 it-

self (line 4). If Q (𝑥) = No, according to Rule 2, the updates proceed
differently (lines 5-7): All descendants of 𝑥 that are still in

ˆU are

determined,i.e., des(𝑥) ∩ ˆU, and classified into
ˆN , indicating they

cannot reach any target (line 6). The
ˆP is also refined to exclude all

descendants of 𝑥 (line 7). Finally, the algorithm then calculates the

total number of vertices which have been updated from
ˆU to either

ˆY or
ˆN in this question, which assists in computing the values cntY

or cntN for the question (line 8). The algorithm then returns these

Algorithm 3 MultipleEvalSync

Input: Queried vertex 𝑥 with Q (𝑥) , P, Y, N, U.

Output: cnt(𝑥) for the question, ˆP, ˆY, ˆN, ˆU
1:

ˆP ← P, ˆY ← Y, ˆN ← N, ˆU ← U;

2: if Q (𝑥) = Yes then
3: R ← anc(𝑥) ∩ ˆU,

ˆU ← ˆU \ R, ˆY ← ˆY ∪ R; ⊲ By Rule 1

4:
ˆP ← ˆP ∩ {𝑉 \ {anc(𝑥) \ 𝑥 }};

5: else
6: R ← des(𝑥) ∩ ˆU,

ˆU ← ˆU \ R, ˆN ← ˆN ∪ R; ⊲ By Rule 2

7:
ˆP ← ˆP ∩ {𝑉 \ des(𝑥) };

8: cnt(𝑥) ← |U| − | ˆU|;
9: return cnt(𝑥) , ˆP, ˆY, ˆN, ˆU;

updated cnt(𝑥) along with the updated candidates and potential

targets (line 9).

Complexity analysis. The k-EIS algorithm in Algo. 1 equipped

with Algo. 3 takes𝑂 (𝑡𝑛𝑚) time with𝑂 (𝑚) memory to find multiple

targets by asking 𝑡 questions. We can optimize to pre-store the

reachability of each vertex with 𝑂 (𝑛2) memory, which reduces

the time complexity from 𝑂 (𝑡𝑛𝑚) to 𝑂 (𝑡𝑛2). Thus, k-EIS can take

𝑂 (𝑡𝑛2) time in 𝑂 (𝑛2) memory.

6.2 An Improved Algorithm for Multiple Target
Search using Divide-and-Conquer

The k-EIS algorithm formultiple targets is designed to address k-EIS
problem but requires lots of questions due to the low-valuable gain

of Yes answer. When we ask a question on vertex 𝑥 , if Q (𝑥) = No,
k-EIS algorithm effectively excludes all descendants of the queried

vertex both in the single and multiple targets scenarios. However,

in the scenario of multiple targets , if Q (𝑥) = Yes, while confirming

the reachability from the queried vertex to at least one target, it

affects only the ancestors of the queried vertex, providing limited

gain. Therefore, in the scenario of multiple targets, the information

gained from each question is significantly less compared to the

scenario of single target. To tackle it, the key idea is to divide

the DAG into 𝑘 disjoint subgraphs, provided it is guaranteed that

exactly one target exists within each subgraph. Then, it is allowed

to independently apply single target search algorithms such as our

k-EIS, IGS, and TS-IGS to each subgraph. Figure 5 shows an example

of our key idea. As some questions asked, we have the candidates

Y, N ,U and potential targets P. Then, based on potential targets,

our algorithm identifies that𝐺 can be separated into three disjoint

subgraphs G1, G2, and G3. Finally, we could independently apply

the single target search to find targets 𝑡1, 𝑡2, 𝑡3 effectively in each

subgraph. Next, we discuss how to divide the original graph into 𝑘

disjoint subgraphs such that each subgraph has a single target. As

the questions asked, potential targets are gradually pruned and the

graph can be separated into smaller components using a union-find

data structure to efficiently identify and group connected vertices.

The detail of subgraphs division algorithm is shown in Algo. 4.

Subgraphs division. Initialize a list of subgraphs, each represented
as G𝑖 = (𝑉𝑖 , 𝐸𝑖). Each subgraph starts with a single vertex from

the potential targets P (line 2). Then iterate through each vertex

𝑣 in P and examine each vertex 𝑢 of its out-neighbors N+ (𝑣). If
an out-neighbor 𝑢 also belongs to P and is not already in the

same subgraph as 𝑣 , merge the subgraphs containing 𝑣 and 𝑢. This

7

......

...

...

...

...

Figure 5: An example of Find-kSingle-DAGs algorithm on a
DAG𝐺 . The𝐺 has the hidden targets T = {𝑡1, 𝑡2, 𝑡3}, after ask-
ing some questions, 𝐺 can be separated into three subgraphs
{G1,G2,G3} such that each subgraph has a target.

Algorithm 4 Find-kSingle-DAGs

Input: 𝐺 = (𝑉 , 𝐸) , potential targets P.
Output: List of subgraphs {G1, ..., G𝑐 }.
1: Initialize a list of subgraphs, where each G𝑖 = (𝑉𝑖 , 𝐸𝑖) ;
2: Initialize each𝑉𝑖 with a single vertex 𝑣 ∈ P;
3: for each vertex 𝑣 ∈ P do
4: for each vertex 𝑢 ∈ N+ (𝑣) do
5: if 𝑢 ∈ P and 𝑢 not in the same𝑉𝑖 as 𝑣 then
6: Merge𝑉𝑖 and𝑉𝑗 containing 𝑣 and 𝑢, respectively;

7: for each subgraph G𝑖 = (𝑉𝑖 , 𝐸𝑖) do
8: Update 𝐸𝑖 = {⟨𝑣,𝑢 ⟩ | 𝑣,𝑢 ∈ 𝑉𝑖 , ⟨𝑣,𝑢 ⟩ ∈ 𝐸};
9: return {G1, . . . , G𝑐 };

merging step uses a union-find data structure to efficiently manage

the combination of subgraphs, ensuring that all connected potential

targets are merged together (lines 3-6). For each subgraph G𝑖 , define
its set of edges 𝐸𝑖 to include only those edges that connect vertices

within the same subgraph 𝑉𝑖 . This step preserves the connectivity

of the original graph within each identified subgraph (lines 7-8).

Return the list of disjoint subgraphs {𝐺1, . . . ,𝐺𝑐 }, each subgraph

contains targets (line 9).

Mix-EIS algorithm. We integrate all techniques in Algo. 1, 2, 3, 4

and propose Mix-EIS algorithm. The detail of Mix-EIS algorithm

is shown in Algo. 5. Initially, the algorithm establishes four dif-

ferent subsets from 𝑉 , and an integer 𝑐 represents the number of

subgraphs such that each has at least a target (line 1). Before asking

any question,𝐺 is the only graph that has targets, so 𝑐 = 1. Based on

k-EIS framework, the algorithm calculates gain of each vertex 𝑣 in

Uncertain-candidates, then selects the 𝑣∗ which has the largest gain
to ask a question and updates the potential targets and three can-

didate sets {P,Y,N ,U} by invoking MultipleEvalSync in Algo. 3

(lines 3-5). After updating the information of the question asked,

the algorithm identifies disjoint subgraphs with targets in each

subgraph and updates 𝑐 by using the Find-kSingle-DAGs algorithm
in Algo. 4 (line 6). If the number of disjoint subgraphs equals 𝑘 , it

determines each subgraph has a single target; the loop will end.

(line 2) For each subgraph G𝑖 , the algorithm will independently

find a single target 𝑡𝑖 by using k-EIS algorithm for a single target

by Algo. 1 and Algo. 2 (line 8). Finally, the set of targets T ∗ as the
output of theMix-EIS algorithm (line 10).

Algorithm 5 Mix-EIS

Input: 𝐺 = (𝑉 , 𝐸) , an integer 𝑘 .

Output: Targets T with | T | = 𝑘 .

1: Let 𝑐 = 1, Y ← {𝑟 }, N ← ∅,U ← {𝑉 } \ {𝑟 }, P ← {𝑉 } \ {𝑟 };
2: while the number of disjoint subgraphs 𝑐 ≠ 𝑘 do
3: Calculate gain(𝑣) ,𝑣 ∈ U, using MultipleEvalSync in Algo. 3;

4: Select 𝑣∗ ← argmax𝑣∈U gain(𝑣) and ask the question Q (𝑣∗) ;
5: Update {P,Y,N,U} by invoking Algo. 3;

6: Identify subgraphs {G1, ..., G𝑐 } and update 𝑐 by invoking Find-
kSingle-DAGs (𝐺 , P) in Algo. 4;

7: for G𝑖 do
8: Search each single target 𝑡𝑖 ∈ G𝑖 by invoking k-EIS in Algo. 1

equipped with Algo. 2;

9: T∗ ← T∗ ∪ {𝑡𝑖 };
10: return T∗;

6.3 Complexity Analysis
In this section, we give a detailed complexity analysis ofMix-EIS.

We analyze the Mix-EIS algorithm in two phases for asking

𝑡 ∈ Z+ questions. First,Mix-EIS asks 𝑡1 ∈ Z+ questions to identify

𝑘 subgraphs. Then, it further uses 𝑡2 ∈ Z+ additional questions
to find the exact 𝑘 targets in each identified subgraph. Here, 𝑡 =

𝑡1 + 𝑡2. During the first 𝑡1 questions, each question utilizes k-EIS for
multiple targets and the Find-kSingle-DAGs algorithm. The Find-
kSingle-DAGs algorithm, outlined in Algo. 4, requires𝑂 (𝑚) time to

merge connected potential targets into components by examining

the neighbors of each vertex in P. After asking 𝑡1 questions, the
search in each subgraph can be considered as the single target

problem, thus using k-EIS for search single target. Overall, the

Mix-EIS combines𝑂 (𝑡1𝑛𝑚) from k-EIS for multiple targets,𝑂 (𝑡1𝑚)
from Find-kSingle-DAGs algorithm and 𝑂 (𝑡2𝑛𝑚) from k-EIS for

single target search. Therefore, the Mix-EIS in Algo. 5 requires

𝑂 (𝑡1𝑛𝑚 + 𝑡1𝑚 + 𝑡2𝑛𝑚) ⊆ 𝑂 (𝑡𝑛𝑚) time with 𝑂 (𝑚) memory by

asking 𝑡 questions where 𝑡 = 𝑡1 + 𝑡2. In practice, the number of 𝑡

questions asked byMix-EIS is usually much less than the number of

𝑡 questions asked by k-EIS, i.e., 𝑡 ≪ 𝑡 , as demonstrated in Figure 9

in Section 8.

7 COMPARATIVE ANALYSIS IN THEORY
In this section, we compare our method with existing interactive

graph search algorithms on various shapes of DAGs in Figure 6,

including the DFS-tree-based methods IGS [31], TS-IGS [35], and

BinG [4, 19]. Note that we do not include a comparison with the

approximate method kBM-IGS [36] here. In addition, BinG only

works on tree-structured data.

The worst cases. In the arbitrary graph for searching multiple

targets, the worst case is that all vertices are feasible targets. Thus,

any algorithm needs to ask questions on all vertices in the worst

case as proven in [36]. As the worst case in multiple targets scenario

is𝑂 (𝑛) for any graph, we consider the single target search problem

only in the following.

Star, path, and perfect binary tree. We consider three tree-

structure of DAGs: star, path, and perfect binary tree. In the scenario

of single target, when the graph 𝐺 is a star, a central root vertex

connects directly to all other leaf vertices, requiring to ask indi-

vidual questions for each leaf vertex to ensure the target is found,

8

Shapes of DAG BinG [4, 19] IGS/TS-IGS [31, 35] Ours

star graph 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
path graph 𝑂 (log

2
𝑛) 𝑂 (log

2
𝑛) 𝑂 (log

2
𝑛)

perfect binary tree 𝑂 (log
2
𝑛) 𝑂 (log

2
ℎ (1 + log

2
𝑛) + log

2
𝑛) 𝑂 (log

2
𝑛)

tournament DAG N.A. 𝑂 (log
2
𝑛) 𝑂 (log

2
𝑛)

bipartite graph in Fig. 7 N.A. 𝑂 (𝑛) 𝑂 (log
2
𝑛)

...

(a) star graph (b) path graph

...

(c) perfect binary tree

...

(d) tournament DAG

Figure 6: Expected number of needed questions to find single
target on the different reasonable shapes of DAG, where 𝑛
represents the number of vertices, ℎ represents the longest
path from root to leaf. The dashed box indicates the reduction
in potential targets following the first and second questions.

resulting in𝑂 (𝑛) questions. Next, we consider a DAG of path. Each

vertex, except for the root and the leaf, has exactly one in-neighbor

and one out-neighbor, forming a simple linear path. Algorithms

based on binary search can efficiently identify a single target with

𝑂 (log
2
𝑛) questions. For perfect binary trees, previous work [31]

has demonstrated that any algorithm requires at least 𝑂 (log
2
𝑛)

questions, with IGS needing at most 𝑂 (log
2
ℎ(1 + log

2
𝑛) + log

2
𝑛)

questions. In contrast, our method requires to ask only 𝑂 (log
2
𝑛)

questions.

Dense DAGs. The above three tree shapes can be considered as

sparse DAGs, which motivates us to consider the algorithm perfor-

mance on dense DAGs. For dense DAGs, we analyze the tournament

DAG and a specific case of bipartite graph. A tournament DAG is

defined as 𝐺 = (𝑉 , 𝐸), for every pair of vertices 𝑣𝑖 and 𝑣 𝑗 with the

ID order 𝑖 < 𝑗 , there exists a directed edge from vertex 𝑖 to 𝑗 , i.e.

𝐸 = {⟨𝑣𝑖 , 𝑣 𝑗 ⟩ | 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 < 𝑗}. In the tournament DAG, DFS-

tree-based methods such as IGS and TS-IGS extract a path graph,

requiring 𝑂 (log
2
𝑛) questions. Our Mix-EIS method can always

find the queried vertex, effectively halving the potential targets,

thus also requiring 𝑂 (log
2
𝑛) questions.

Next, we consider a specific case of bipartite graphs illustrated

in Figure 7(a). For this complex dense DAG, Mix-EIS takes only
𝑂 (log

2
𝑛) questions, whereas DFS-tree-based methods take 𝑂 (𝑛)

questions. Let’s construct a structured DAG 𝐺 = (𝑉 , 𝐸) with three

layers L1, L2, L3, as depicted in Figure 7(a). L1 consists of a root

vertex, denoted by 𝑉1 = {𝑟 }. L2 contains 𝑘 vertices represent the 𝑘

bits, denoted by 𝑉2 = {𝑢0, 𝑢1 · · · , 𝑢𝑘−1}. L3 comprises 2
𝑘 − 1 ver-

tices of bitwise integer, denoted by𝑉3 = {𝑤1,𝑤2 · · · ,𝑤2
𝑘−1}. Thus,

𝑉 = 𝑉1∪𝑉2∪𝑉3. For the edges of𝐺 , 𝑟 connects all the vertices in𝑉2,

i.e.,N+ (𝑟) = 𝑉2, and each𝑢𝑖 inL2 connects to the𝑤 𝑗 inL3 that 𝑖-th

bit of 𝑗 is 1, i.e., N+ (𝑢𝑖) = {𝑤 𝑗 | 𝑗 mod 2
𝑖+1 ≥ 2

𝑖 , 1 ≤ 𝑗 ≤ 2
𝑘 − 1}.

For example,𝑤5 is connected to𝑢0 and𝑢2. In summary,𝐺 has a total

of 𝑂 (2𝑘) vertices and 𝑂 (𝑘2𝑘) edges. For the DFS-tree-based meth-

ods, here is a DFS-tree extracted from 𝐺 , as shown in Figure 7(b),

in the special case, present vertices with out-degrees as high as

𝑂 (2𝑘−1). Next, we prove in the DAG 𝐺 , DFS-tree-based methods

ask 𝑂 (2𝑘−1) questions, while our method asks 𝑂 (𝑘) questions.

Lemma 7.1. In any DFS-tree extracted from the DAG in Figure 7(a),
there exists a vertex with 2

𝑘−1 children.

Bitwise

(a) An example of dense DAG with three layers.

(b) DFS-tree derived from the DAG.

Figure 7: An example of dense DAG and its DFS-tree used in
IGS. In the DAG, each 𝑢𝑖 in L2 connects to the𝑤 𝑗 in L3 that
𝑖-th bit of 𝑗 is 1, i.e., N+ (𝑢𝑖) = {𝑤 𝑗 | 𝑗 mod 2

𝑖+1 ≥ 2
𝑖 , 1 ≤ 𝑗 ≤

2
𝑘 − 1}. For example,𝑤5 is connected to 𝑢0 and 𝑢2.

Proof. Each vertex 𝑣 ∈ L2 has |N+ (𝑣) | = 2
𝑘−1

. The first vertex

accessed in L2 during any DFS traversal will have 2
𝑘−1

children,

essentially forming a star graph. □

Lemma 7.2. For the DAG in Figure 7(a), any DFS-tree-basedmethod
requires 𝑂 (2𝑘−1) questions.

Proof. By Lemma 7.1, the subgraph formed by the first vertex

in L2 and its children can be viewed as a star graph, necessitating

𝑂 (2𝑘−1) questions in any DFS-tree. □

Lemma 7.3. For the DAG in Figure 7(a), our method requires𝑂 (𝑘)
questions to find the target.

Proof. Consider the Uncertain-candidates (U) split into two

candidates: Uncertain-candidates in L2 denoted byU2, Uncertain-

candidates in L3 denoted byU3, andU = U2 ∪U3. Before asking

any questions,U2 = 𝑉2 has 𝑘 vertices,U3 = 𝑉3 has 2
𝑘 − 1 vertices.

If we keep asking questions on the vertices inU2, irrespective of

whether the answers are Yes or No, each question has two effects:

(1) it directly reduces the current size of U2 by one, due to the

queried vertex itself. (2) it reducesU3 to half its original size, i.e.

|U3 | ← |U3 |
2

due to each vertex in U2 connects half of vertices

inU3. Consequently, after asking 𝑘 consecutive questions on the

vertices inU2,U2 will be an empty set andU3 will be an empty

set or last one vertex. IfU3 is an empty set, obviously we can find

the target. If U3 last one vertex 𝑤
last

, we need to ask one more

question on 𝑤
last

to determine the target is either 𝑤
last

itself or

𝑤
last

’s parents in L2. In summary, it requires 𝑘 or 𝑘 + 1 questions
to find any target in Figure 7 by querying 𝑘 vertices in L2. Our

method will ask questions as the above questions’ sequence and

asks 𝑂 (𝑘) questions to find the target in 𝐺 . □

9

Table 3: Summary of datasets.

Dataset Vertices (|𝑉 |) Edges (|𝐸 |) Max Degree Data Domain

ProdClass 3,616 3,615 95 Tree

Amazon 29,240 29,239 225 Tree

Yago 493,839 493,838 44,538 Tree

ACM_CCS 1,928 2,113 18 DAG

Wiki_Edits 1,587 5,343 1,418 DAG

ImageNet 74,401 75,850 402 DAG

Theorem 7.4. For the DAG shown in Figure 7(a), in the single
target scenarios, all the DFS-tree-based methods, e.g., IGS and TS-IGS
ask 𝑂 (𝑛) questions and our method asks 𝑂 (log

2
𝑛) questions.

Proof. By Lemmas 7.2 and 7.3, we can prove Theorem 7.4. □

In summary, our method is applicable for finding multiple targets

onDAGs. In the case of dense DAGs in Figure 7(a), ourmethod based

on the newly proposed gain function and Uncertain-candidates

outperforms the DFS-tree-basedmethods in finding the single target

in Theorem 7.4. Our method costs 𝑂 (log
2
𝑛) questions, but DFS-

tree-based methods need 𝑂 (𝑛) questions, reflecting the significant

effectiveness of our method in theory.

8 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of our proposed methods. All algorithms are imple-

mented in C++. The experiments are carried out on a server running

Oracle Linux 8.8, equipped with a Xeon Gold 6330 processor at 2.0

GHz and 2TB of RAM.

Datasets.We evaluate our algorithms using six real-world datasets,

each selected for their relevance to graph algorithms and their

distinct structural characteristics.

• ProdClass1: A product classification standard from the Na-

tional Bureau of Statistics of China. This dataset categorizes

products for statistical purposes across various economic

activities.

• Amazon [11]: Contains hierarchical product categories

from Amazon. This dataset traces paths from the root to

specific product categories within Amazon’s extensive prod-

uct catalog.

• Yago [1, 24]: Contains taxonomy vertices from Wikipedias.

• ACM_CCS2: Represents the 2012 ACMComputing Classifi-

cation System. It is a poly-hierarchical ontology to support

semantic web applications and enhance the ACM Digital

Library’s search capabilities.

• Wiki_Edits [16]: Captures the bipartite edit network from

the Kabiye Wikipedia. This network links users and pages

through edit events, depicting interactions within the plat-

form.

• ImageNet [5]: A hierarchical image database based on the

WordNet [9]. It features extensive image categories with

detailed ground truth labels for image classification tasks.

For clarity and to avoid redundancy, the specific details about

vertices, edges, max degree and structures of these datasets are

summarized in Table 3.

1
https://www.stats.gov.cn/sj/tjbz/tjypflml/2010/

2
https://dl.acm.org/ccs

Table 4: The average number of questions for finding a single
target in k-EIS problem.

Dataset IGS TS-IGS BinG KBM-IGS 1-EIS

ProdClass 34.80 34.22 30.93 30.93 30.93
Amazon 30.18 29.15 24.97 24.98 24.97
Yago 5171.46 5170.94 5167.73 5168.23 5167.74
ACM_CCS 18.65 17.96 × × 14.22
Wiki_Edits 639.99 639.01 × × 39.96
ImageNet 38.60 37.13 × × 31.43

Comparison methods.We compare four state-of-the-art competi-

tors for interactive graph search as follows.

• IGS [31]: This method identifies a single target in a DAG

by extracting a DFS-tree from the DAG and split the tree

into several connected paths.

• TS-IGS [35]: Building on IGS, TS-IGS also utilizes heavy-

path decomposition but introduces a result-sensitive binary

search technique.

• BinG [4, 19]: Based on a greedy strategy, this method lo-

cates a single target in a tree by querying vertices that most

significantly reduce the graph’s size.

• KBM-IGS [36]: Aimed at finding multiple targets in a tree,

it uses dynamic programming to select the best vertex with

the highest expected gain, providing a balanced trade-off

between target probability and benefit gain.

We also evaluate three of our developed algorithms:

• 1-EIS: The k-EIS method for single target search in Algo-

rithm 1 equipped with Algorithm 2.

• k-EIS: The k-EIS method for multiple targets search in Al-

gorithm 1 equipped with Algorithm 3.

• Mix-EIS: Our subgraph partition based method for multiple

targets search in Algorithm 5.

Evaluation metrics and parameter settings. We employ two

principal metrics to evaluate our algorithms:

(1) The number of questions: This metric counts the number

of questions needed to identify single or multiple targets.

In k-EIS problem, the number of questions can be seen as

the cost of problem. So, the fewer questions, the less cost.

(2) The size of potential targets [28, 31, 36]: This metric

reflects the number of vertices that could potentially be

targets, which denoted by |P |, evaluated under a scenario

with a fixed number of questions. In works [28, 31], it is

called candidate set size (CSS for short) in their experiments.

For the scenario of single target, we randomly select 1,000 ver-

tices from the Amazon and ImageNet datasets to serve as targets in

1,000 separate trials. For other datasets, each vertex is considered

as a target in separate groups. For the scenario of multiple targets,

we set 𝑘 = 2, 3, 4, 5 and conduct 200 test cases for each dataset, with

targets randomly generated. We set 𝑘 = 3 by default. We denote

the result as ×, if the method is inapplicable in the dataset. For all

algorithms, we precompute the first 𝑧 questions offline by taking

2
𝑧
states, no matter which the answer of each question is. Thus, it

can directly get the next vertex for asking question in the first 𝑧

rounds, where we set a small integer 𝑧 = 5 by default.

10

https://www.stats.gov.cn/sj/tjbz/tjypflml/2010/
https://dl.acm.org/ccs

0 10 20 30
number of questions

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(a) ProdClass(k=1)

1-EIS
IGS
TS-IGS
BinG
KBM-IGS

0 10 20 30
number of questions

10
1

10
2

10
3

10
4

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts
(b) Amazon(k=1)

1-EIS
IGS
TS-IGS
BinG
KBM-IGS

0 5 10 15
number of questions

10
0

10
1

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(c) ACM_CCS(k=1)

1-EIS
IGS
TS-IGS

0 50 100 150 200
number of questions

10
0

10
1

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(d) Wiki_Edits(k=1)

1-EIS
IGS
TS-IGS

0 5 10 15 20
number of questions

10
2

10
3

10
4

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(e) ImageNet(k=1)

1-EIS
IGS
TS-IGS

0 50 100 150
number of questions

10
1

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(f) ProdClass(k=3)

k-EIS
Mix-EIS
Mix-EIS+IGS
KBM-IGS

0 50 100
number of questions

10
1

10
2

10
3

10
4

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(g) Amazon(k=3)

k-EIS
Mix-EIS
Mix-EIS+IGS
KBM-IGS

0 20 40
number of questions

10
1

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts
(h) ACM_CCS(k=3)

k-EIS
Mix-EIS
Mix-EIS+IGS

0 200 400 600 800
number of questions

10
1

10
2

10
3

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(i) Wiki_Edits(k=3)

k-EIS
Mix-EIS
Mix-EIS+IGS

0 100 200 300 400
number of questions

10
1

10
2

10
3

10
4

si
ze

 o
f p

ot
en

tia
l t

ar
ge

ts

(j) ImageNet(k=3)

k-EIS
Mix-EIS
Mix-EIS+IGS

Figure 8: The size of potential targets with the fixed number of questions in the single or three targets scenarios.

k=2 k=3 k=4 k=5
(a) ProdClass

0

50

100

150

200

250

N
um

be
r o

f q
ue

st
io

ns

k=2 k=3 k=4 k=5
(b) Amazon

0

100

200

300

400

500

N
um

be
r o

f q
ue

st
io

ns

k=2 k=3 k=4 k=5
(c) Yago

0

20000

40000

60000

80000

N
um

be
r o

f q
ue

st
io

ns

k=2 k=3 k=4 k=5
(d) ACM_CCS

0

20

40

60

80

100

120

N
um

be
r o

f q
ue

st
io

ns

k=2 k=3 k=4 k=5
(e) Wiki_Edits

0

200

400

600

800

N
um

be
r o

f q
ue

st
io

ns

k=2 k=3 k=4 k=5
(f) ImageNet

0

200

400

600

800

1000

1200

N
um

be
r o

f q
ue

st
io

ns

k-EIS Mix-EIS Mix-EIS+IGS KBM-IGS

Figure 9: The average number of questions for different algorithms with different 𝑘 in the k-EIS problem.

EXP-1: Quality evaluation of finding a single target in k-EIS
problem. Our 1-EIS algorithm undergoes extensive evaluation

against IGS, TS-IGS, BinG, and KBM-IGS, focusing on an average

number of questions and the ability to reduce the size of potential

targets within diverse datasets. Detailed results are presented in

Table 4 and illustrated in Figure 8(a)-(e). In tree-structured datasets,

1-EIS demonstrates effectiveness comparable to that of BinG and

KBM-IGS, it achieves a significantly lower average number of ques-

tions (24.97 and 30.93, respectively), outperforming IGS and TS-IGS.

For DAG datasets, 1-EIS consistently achieves the best performance

regarding average questions and size of potential target reduction.

The Wiki_Edits dataset, characterizes by its dense DAG structure,

1-EIS not only reduces the average questions to 39.96—a substan-

tial improvement over other methods—but also demonstrates an

exceptionally rapid reduction in the size of potential targets.

EXP-2: Quality evaluation of the k-EIS problem. In the k-EIS
problem, we propose k-EIS algorithm to find the exact 𝑘 targets

in a DAG and the Mix-EIS algorithm to improve effectiveness. In

Section 6.2, recall that the final step of the Mix-EIS algorithm is

to find a single target in each subgraph, and we can use IGS to

replace the 1-EIS algorithm. For comparison, we use KBM-IGS in

tree datasets and combine theMix-EIS algorithm with IGS, referred

to as Mix-EIS +IGS algorithm, on all datasets. Specifically, KBM-

IGS can’t find exact multiple targets in Yago because of the large

scale. As shown in Figure 9,Mix-EIS algorithm andMix-EIS +IGS

algorithm perform much better than k-EIS algorithm and KBM-IGS.

Furthermore,Mix-EIS algorithm asks less questions thanMix-EIS
+IGS algorithm in all datasets. As shown in Figure 8(f)-(j), with a

low number of questions, all the algorithms have similar effective-

ness in decreasing the potential targets. With the larger number of

questions, the effectiveness has diverged, especially betweenMix-
EIS algorithm and k-EIS algorithm.Mix-EIS algorithm andMix-EIS
+IGS algorithm have a similar trend in all datasets, specifically, in

Amazon and ACM_CCS,Mix-EIS algorithm has significantly better

performance.

EXP-3: Case study of finding multiple targets on ACM_CCS.
We conduct a case study on the ACM_CCS to identify specific index

terms related to the article titled “Human-assisted graph search:

it’s okay to ask questions”
3
. The article targets terms such as “In-

formation retrieval”, “Database management System engines”, and

“Sorting and searching” (𝑘 = 3). We extracted a sub-DAG 𝐺 from

the dataset from “information systems” and “Theory of computa-

tion”, consisting of 531 vertices and 608 edges. The extracted graph

𝐺 is visualized in Figure 10. Through Mix-EIS algorithm’s initial

ten questions, it identified three disjoint subgraphs containing the

targets, which we denote as G1, G2, and G3. G1 is a tree with 26

vertices and 25 edges; G2 is another tree with 71 vertices and 70

edges; and G3 is a more complex DAG with 71 vertices and 104

edges, rooted in “design and analysis of algorithm”. In detail, we

discuss finding the single target in the most complex subgraphs

G3. The sequence of questions and their corresponding answers

in this subgraph are detailed in the table within Figure 10. It only

costs six questions to find the target “Sorting and searching” in

G3. On the contrast, IGS needs ten questions to find the same tar-

get in G3. Totally, to find the targets in 𝐺 , k-EIS algorithm costs

3
https://dl.acm.org/doi/10.14778/1952376.1952377

11

https://dl.acm.org/doi/10.14778/1952376.1952377

Human-assisted graph search: it's okay to ask questions

Information
system

Data
management

systems

Information
retrieval

Database
management

System
engines

Theory of
computation

Design and
analysis of
algorithm

Pattern
matching

Sorting and
searching

Data
compression

...

Mathematical
optimization

Approximation
algorithms
analysis

Online
algorithms

Mathematical
optimization

...

...

Q Q cntY cntN |U |

Initial / / / 71

𝑞1 No 48 23 47

𝑞2 No 38 8 39

𝑞3 Yes 34 6 5

𝑞4 No 5 1 4

𝑞5 No 4 1 3

𝑞6 Yes 3 1 0

Figure 10: Case study on ACM_CCS. Here, 𝑘 = 3, and the targets are T = {“Information retrieval”, “Database management
System engines”, “Sorting and searching”}. After asking ten questions in 𝐺 , 𝐺 separates into three disjoint subgraphs G1, G2, G3.
In the G3,Mix-EIS algorithm only costs six questions to find the exact target “Sorting and searching”.

100 98 96 94 92 90
accuracy rate (%)

50

60

70

80

90

100

ta
rg

et
s

ra
te

 (%
)

P=3
P=5
P=15

(a) ACM_CCS

100 98 96 94 92 90
accuracy rate (%)

50

60

70

80

90

100

ta
rg

et
s

ra
te

 (%
)

P=3
P=5
P=15

(b) Amazon

Figure 11: Quality evaluation with wrong answers.

59 questions,Mix-EIS +IGS algorithm costs 43 questions, and our

Mix-EIS algorithm only costs 36 questions, which performs best in

the case study. It displays that ourMix-EIS algorithm has perfect

effectiveness int real-world applications.

EXP-4: Quality evaluation of handling wrong answers. We

conduct a quality evaluation ofMix-EIS to handle wrong answers.

To reduce the error, we use the strategy of majority voting to ask

𝑃 ∈ Z users on the same question and then take the majority

voting answer as the final answer. In this experiment, we vary

the accuracy rate from 100% to 90%, which is the probability of

answering wrongly by a user. We test three cases for 𝑃 = 3, 5, 15.

Figure 11 shows thatMix-EIS finds more than 80% of targets and

all targets for 𝑃 = 3 and 𝑃 = 15, respectively, even for the accuracy

of correct answer is 90%.

EXP-5: Latency evaluation of interactive search. We evaluate

the latency of Mix-EIS in determining the next question on Ima-

geNet and Yago. Similar results on other datasets can be observed.

As shown in Figure 12, Mix-EIS takes the maximum latency of less

than one second at the sixth question on both datasets. Note that

we have precomputed the first five questions offline for all com-

petitive methods by default. Moreover, with more questions asked,

the decision latency ofMix-EIS generally decreases. The average

latency of Mix-EIS takes 0.129 seconds on ImageNet and 0.015 sec-

onds on Yago, respectively. The fast latency results demonstrate

the feasibility of our interactive search for multiple targets, which

can provide a user-friendly service.

EXP-6: Scalability test.
We conducted a scalability test for Mix-EIS on the increasing-

sized DAGs. We randomly generated seven DAGs by varying the

vertex size from 10
3
to 10

6
following a power-law distribution,

maintaining an edge-to-vertex ratio of 1.02 (similar to the ImageNet).

We repeat 100 random cases to search three targets on each graph

0 20 40 60 80 100
number of questions

0.0
0.1
0.2
0.3
0.4
0.5
0.6

la
te

nc
y(

s)
(a) ImageNet

0 20 40 60 80 100
number of questions

0.0

0.2

0.4

0.6

0.8

1.0

la
te

nc
y(

s)

(b) Yago

Figure 12: The latency of theMix-EIS algorithm to determine
the next question on ImageNet and Yago.

103 5 × 103 104 5 × 104 105 5 × 105 106

number of vertices
10 4

10 3

10 2

10 1

100

101

102
av

er
ag

e
la

te
nc

y
(s

)

Figure 13: Efficiency evaluation ofMix-EIS on the DAGs.

and report the average time. Figure 13 shows that the average

latency increases stable from small DAGs to million-scale DAGs

and takes a few seconds on the largest DAG, demonstrating a good

scalability performance ofMix-EIS.

9 CONCLUSION
This paper studies the problem of interactive graph search for mul-

tiple targets on DAGs. We tackle the problem by proposing a novel

k-EIS framework based on uncertain candidates. We design a gain

function to select the best vertex for asking questions. Effective

rules are derived to update three kinds of candidates and poten-

tial targets. Built upon k-EIS framework, we propose an effective

method for single target search, which is much better than state-

of-the-art methods in worst DAG cases. In addition, we develop

Mix-EIS for multiple targets search that can partition the whole

DAG into disjoint subgraphs for single target search. Extensive

experiments validate the superiority of our k-EIS framework and

algorithms against state-of-the-art competitors.

12

REFERENCES
[1] [n. d.]. https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago.

[2] Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh

Mohania. 2008. Minimum-effort driven dynamic faceted search in structured

databases. In Proceedings of the 17th ACM conference on Information and knowledge
management. 13–22.

[3] Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng

Chee. 2022. Noisy Interactive Graph Search. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 231–240.

[4] Qianhao Cong, Jing Tang, Yuming Huang, Lei Chen, and Yeow Meng Chee. 2022.

Cost-effective algorithms for average-case interactive graph search. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). IEEE, 1152–1165.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[6] Eyal Dushkin and Tova Milo. 2018. Top-k sorting under partial order information.

In Proceedings of the 2018 International Conference on Management of Data. 1007–
1019.

[7] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-lee Tan, and Jianhua Feng. 2015. icrowd:

An adaptive crowdsourcing framework. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 1015–1030.

[8] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29 (2020), 353–392.

[9] Christiane Fellbaum. 1998. WordNet: An electronic lexical database. MIT press.

[10] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. 2012. So who

won? Dynamic max discovery with the crowd. In Proceedings of the 2012 ACM
SIGMOD international conference on management of data. 385–396.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[12] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. 2013. Adaptive

task assignment for crowdsourced classification. In International conference on
machine learning. PMLR, 534–542.

[13] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2017. Community search

over big graphs: Models, algorithms, and opportunities. In Proceedings of the 33rd
IEEE International Conference on Data Engineering (ICDE). 1451–1454.

[14] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2019. Community Search
over Big Graphs. Morgan & Claypool Publishers.

[15] Rajesh Jayaram. 2023. Technical Perspective: Optimal Algorithms for Multiway

Search on Partial Orders. ACM SIGMOD Record 52, 1 (2023), 83–83.

[16] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd international conference on world wide web. 1343–1350.

[17] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-

Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection: Towards deep

interaction between conversational and recommender systems. In Proceedings of
the 13th International Conference on Web Search and Data Mining. 304–312.

[18] Yingxue Li, Shaohan Chen, and Weiguo Zheng. 2023. Knowledge-Driven Inter-

active Graph Search. Beijing Da Xue Xue Bao 59, 5 (2023), 735–746.
[19] Yuanbing Li, XianWu, Yifei Jin, Jian Li, andGuoliang Li. 2020. Efficient algorithms

for crowd-aided categorization. PVLDB 13, 8 (2020), 1221–1233.

[20] Yuanbing Li, Xian Wu, Yifei Jin, Jian Li, Guoliang Li, and Jianhua Feng. 2022.

Adapative algorithms for crowd-aided categorization. The VLDB Journal (2022),
1–27.

[21] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Meihui Zhang.

2012. Cdas: a crowdsourcing data analytics system. Proceedings of the VLDB
Endowment 5, 10 (2012), 1040–1051.

[22] Shangqi Lu, Wim Martens, Matthias Niewerth, and Yufei Tao. 2022. Optimal

algorithms for multiway search on partial orders. In Proceedings of the 41st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 175–187.

[23] Shangqi Lu, Wim Martens, Matthias Niewerth, and Yufei Tao. 2023. An Optimal

Algorithm for Partial Order Multiway Search. ACM SIGMOD Record 52, 1 (2023),

84–92.

[24] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. 2015. Yago3: A

knowledge base from multilingual wikipedias. In CIDR.
[25] Adam Marcus, David Karger, Samuel Madden, Robert Miller, and Sewoong Oh.

2012. Counting with the crowd. Proceedings of the VLDB Endowment 6, 2 (2012),
109–120.

[26] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations

using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[27] Aditya Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta,

Neoklis Polyzotis, and Jennifer Widom. 2014. Optimal crowd-powered rating

and filtering algorithms. Proceedings of the VLDB Endowment 7, 9 (2014), 685–696.
[28] Aditya Parameswaran, Anish Das Sarma, Hector Garcia-Molina, Neoklis Polyzo-

tis, and Jennifer Widom. 2011. Human-Assisted Graph Search: It’s Okay to Ask

Questions. PVLDB 4, 5 (2011), 267–278.

[29] Aditya G Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Poly-

zotis, Aditya Ramesh, and Jennifer Widom. 2012. Crowdscreen: Algorithms for

filtering data with humans. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 361–372.

[30] Lu Shangqi, Wim Martens, Matthias Niewerth, and Yufei Tao. 2023. Partial Order

Multiway Search. ACM Transactions on Database Systems 48, 4 (2023), 1–31.
[31] Yufei Tao, Yuanbing Li, and Guoliang Li. 2019. Interactive graph search. In

Proceedings of the 2019 International Conference on Management of Data. 1393–
1410.

[32] Vasilis Verroios, Hector Garcia-Molina, and Yannis Papakonstantinou. 2017.

Waldo: An adaptive human interface for crowd entity resolution. In Proceedings
of the 2017 ACM International Conference on Management of Data. 1133–1148.

[33] Steven EuijongWhang, Peter Lofgren, and Hector Garcia-Molina. 2013. Question

selection for crowd entity resolution. Proceedings of the VLDB Endowment 6, 6
(2013), 349–360.

[34] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo.

2009. Whose vote should count more: Optimal integration of labels from labelers

of unknown expertise. Advances in neural information processing systems 22
(2009).

[35] Zhuowei Zhao, Junhao Gan, Jianzhong Qi, and Zhifeng Bao. 2024. Efficient

Example-Guided Interactive Graph Search. In 2024 IEEE 40th International Con-
ference on Data Engineering (ICDE). IEEE, 342–354.

[36] Xuliang Zhu, Xin Huang, Byron Choi, Jiaxin Jiang, Zhaonian Zou, and Jianliang

Xu. 2021. Budget constrained interactive search for multiple targets. Proceedings
of the VLDB Endowment 14, 6 (2021), 890–902.

13

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago

	Abstract
	1 INTRODUCTION
	2 Related Work
	3 PRELIMINARIES
	3.1 Directed Acyclic Graph
	3.2 Problem Formulation

	4 THE PROPOSED FRAMEWORK
	4.1 Dynamic Candidate Management
	4.2 Gain Calculation
	4.3 k-EIS Framework

	5 SINGLE TARGET SEARCH
	5.1 Candidate Updating Rules for Single Target
	5.2 Single Target Search Algorithm

	6 MULTIPLE TARGETS SEARCH
	6.1 Multiple Target Search Algorithm
	6.2 An Improved Algorithm for Multiple Target Search using Divide-and-Conquer
	6.3 Complexity Analysis

	7 Comparative Analysis in Theory
	8 EXPERIMENTS
	9 Conclusion
	References

